JP5208450B2 - Cr-containing steel with excellent thermal fatigue properties - Google Patents

Cr-containing steel with excellent thermal fatigue properties Download PDF

Info

Publication number
JP5208450B2
JP5208450B2 JP2007141481A JP2007141481A JP5208450B2 JP 5208450 B2 JP5208450 B2 JP 5208450B2 JP 2007141481 A JP2007141481 A JP 2007141481A JP 2007141481 A JP2007141481 A JP 2007141481A JP 5208450 B2 JP5208450 B2 JP 5208450B2
Authority
JP
Japan
Prior art keywords
thermal fatigue
temperature
steel
high temperature
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007141481A
Other languages
Japanese (ja)
Other versions
JP2008144263A (en
Inventor
純一 濱田
治彦 梶村
信彦 平出
寿男 小島
大治 土居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel and Sumikin Stainless Steel Corp
Original Assignee
Nippon Steel and Sumikin Stainless Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Stainless Steel Corp filed Critical Nippon Steel and Sumikin Stainless Steel Corp
Priority to JP2007141481A priority Critical patent/JP5208450B2/en
Priority to PCT/JP2007/063185 priority patent/WO2008004506A1/en
Priority to US11/991,873 priority patent/US20100218856A1/en
Priority to EP07767965A priority patent/EP2036994B1/en
Priority to KR1020087006108A priority patent/KR20080038218A/en
Priority to CN2007800009606A priority patent/CN101346487B/en
Publication of JP2008144263A publication Critical patent/JP2008144263A/en
Application granted granted Critical
Publication of JP5208450B2 publication Critical patent/JP5208450B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/16Selection of particular materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)

Description

本発明は、特に高温強度や耐酸化性が必要な排気系部材などの使用に最適な熱疲労特性
に優れたCr含有鋼に関するものである。
The present invention relates to a Cr-containing steel excellent in thermal fatigue characteristics, which is optimal for use in exhaust system members that particularly require high-temperature strength and oxidation resistance.

自動車の排気マニホールド、フロントパイプおよびセンターパイプなどの排気系部材は
、エンジンから排出される高温の排気ガスを通すため、排気部材を構成する材料には耐酸
化性、高温強度、熱疲労特性など多様な特性が要求される。
Exhaust system members such as automobile exhaust manifolds, front pipes, and center pipes pass high-temperature exhaust gas exhausted from the engine, so the materials that make up the exhaust members have various characteristics such as oxidation resistance, high-temperature strength, and thermal fatigue characteristics. Is required.

従来、自動車排気部材には鋳鉄が使用されるのが一般的であったが、排ガス規制の強化
、エンジン性能の向上、車体軽量化などの観点から、ステンレス鋼製の排気マニホールド
が使用される様になった。また、近年では排ガス温度が800〜900℃程度と高温化し
ており、高温で、かつ長時間使用された環境における耐酸化性、高温強度および熱疲労特
性を有する材料が要望されている。
Conventionally, cast iron is generally used for automobile exhaust members, but stainless steel exhaust manifolds are used from the viewpoints of stricter exhaust gas regulations, improved engine performance, and lighter vehicle body. Became. In recent years, the exhaust gas temperature has increased to about 800 to 900 ° C., and there is a demand for a material having oxidation resistance, high temperature strength, and thermal fatigue characteristics in an environment used at a high temperature for a long time.

ステンレス鋼の中でオーステナイト系ステンレス鋼は、耐熱性や加工性に優れているが
、熱膨張係数が大きいために、排気マニホールドの様に加熱・冷却を繰り返し受ける部材
に適用した場合、熱疲労破壊が生じやすい。
Among stainless steels, austenitic stainless steel has excellent heat resistance and workability, but due to its large thermal expansion coefficient, thermal fatigue failure occurs when it is applied to a member that repeatedly receives heating and cooling, such as an exhaust manifold. Is likely to occur.

一方、フェライト系ステンレス鋼は、オーステナイト系ステンレス鋼に比べて熱膨張係
数が小さいため、熱疲労特性に優れている。また、排ガス温度に応じて、高温強度を高め
るために、Cr、Mo、Nbといった合金添加量を調整した鋼が使用されている。排気ガ
ス高温化に伴い、これらの合金添加量は増加しているが、最も重要な特性である熱疲労寿
命が必ずしも長くなっているわけではなかった。また、合金添加量の過度な増加は、コス
ト増につながるため、経済的では無い欠点も有する場合があった。
On the other hand, since ferritic stainless steel has a smaller coefficient of thermal expansion than austenitic stainless steel, it has excellent thermal fatigue characteristics. Also, steel with adjusted alloy addition amount such as Cr, Mo, Nb is used to increase the high temperature strength according to the exhaust gas temperature. As the exhaust gas temperature increases, the amount of these alloys added has increased, but the thermal fatigue life, which is the most important characteristic, has not necessarily increased. Further, excessive increase in the amount of alloy added leads to an increase in cost, and may have a disadvantage that is not economical.

下記特許文献1には、自動車排気マニホールド用に、耐酸化性、高温強度、熱疲労特性に優れたフェライト系ステンレス鋼が開示されている。Cr量が11〜14%と比較的低Cr含有量であり、Si添加により900℃以上における耐酸化性、高温強度、熱疲労特性を向上させる技術である。この中で熱疲労特性は、200〜900℃において50%拘束した条件で成され、発明鋼は熱疲労寿命が長くなっているが、拘束率が低かったり、800℃程度の温度になり、付与されるサイクルが長くなる条件では十分な特性が得られなかった。この要因としては、長時間使用環境に曝された条件、即ち材料を時効処理した際の高温強度および高温延性が不足していたためと考えられる。また、特許文献1ではTiとNbの複合添加の実施例があるが、この場合実際の成形部品に加工する途中で割れが生じる現象(2次加工割れ)が発生し、部材成形が出来なかったり、微小割れから熱疲労特性が著しく劣化する場合があった。   Patent Document 1 below discloses ferritic stainless steel excellent in oxidation resistance, high temperature strength, and thermal fatigue characteristics for an automobile exhaust manifold. The Cr content is a relatively low Cr content of 11 to 14%, and is a technique for improving oxidation resistance, high temperature strength, and thermal fatigue characteristics at 900 ° C. or more by adding Si. Among them, the thermal fatigue property is made under the condition of 50% restraint at 200 to 900 ° C., and the invention steel has a long thermal fatigue life, but the restraint rate is low or the temperature becomes about 800 ° C. However, sufficient characteristics could not be obtained under the condition that the cycle to be performed was long. This is considered to be due to the lack of high-temperature strength and high-temperature ductility when the material was subjected to aging treatment, that is, when the material was aged. In addition, in Patent Document 1, there is an example of combined addition of Ti and Nb. In this case, a phenomenon that a crack occurs during the processing of an actual molded part (secondary processing crack) occurs, and the member cannot be molded. In some cases, the thermal fatigue characteristics are significantly deteriorated due to micro cracks.

下記特許文献2には、Si/Mnを制御して900℃での耐力を15Mpa以上とし高温特性を向上させる発明が開示されている。この場合も、製品板の900℃における引張耐力を規定しただけでは、長時間使用環境においては不十分であった。また、Mnが0.7〜1.3%添加されているため延性が低く、部材に加工する際の成形性や、高温延性の低下による熱疲労寿命の低下が生じる問題があった。   Patent Document 2 below discloses an invention in which Si / Mn is controlled so that the proof stress at 900 ° C. is 15 Mpa or more and the high temperature characteristics are improved. Also in this case, it was not sufficient in a long-time use environment only by specifying the tensile strength of the product plate at 900 ° C. Further, since Mn is added in an amount of 0.7 to 1.3%, the ductility is low, and there is a problem that the thermal fatigue life is reduced due to the formability when processing into a member and the high temperature ductility is reduced.

下記特許文献3には、成分調整により900℃で1時間保持した後の0.2%耐力を18MPa以上とすることが開示されている。ここでは、高温で1時間以上の保持を行うことで、
使用環境下での強度を向上させることが技術思想となっているが、熱サイクルを受ける場
合、高温強度を向上させるだけでは熱疲労寿命は向上しない場合があった。
Patent Document 3 below discloses that the 0.2% yield strength after holding at 900 ° C. for 1 hour by adjusting the components is 18 MPa or more. Here, by holding at high temperature for 1 hour or more,
Although it has been a technical idea to improve the strength under the use environment, when subjected to a thermal cycle, the thermal fatigue life may not be improved only by improving the high temperature strength.

下記特許文献4〜6には、高温特性に優れたフェライト系ステンレス鋼として、Bを含有した鋼が開示されているが、加工性改善の観点で添加されており、従来知見において高温特性への影響は明確では無かった。加工性改善におけるBの役割は、粒界偏析による粒界強度を向上させて、2次加工性を向上させるものであるが、本発明においてはB添加により析出物を微細化させて、高温強度向上を図ったものである。また、特許文献4〜6にはVが添加されているが、溶接部の耐食性向上、CやNの固定による加工性の向上の観点で添加されている場合があった。
特開平07−145453号公報 特開平09−279316号公報 特開2002−105605号公報 特開平9−279312号公報 特開2000−169943号公報 特開平10−204590号公報
In Patent Documents 4 to 6 below, steel containing B is disclosed as a ferritic stainless steel having excellent high-temperature characteristics, but it is added from the viewpoint of workability improvement. The impact was not clear. The role of B in improving workability is to improve the secondary workability by improving the grain boundary strength due to grain boundary segregation, but in the present invention, by adding B, the precipitates are refined to increase the high temperature strength. It is an improvement. Further, V is added to Patent Documents 4 to 6, but there are cases where V is added from the viewpoint of improving the corrosion resistance of the welded portion and improving the workability by fixing C or N.
Japanese Patent Laid-Open No. 07-145453 JP 09-279316 A JP 2002-105605 A JP-A-9-279312 JP 2000-169943 A Japanese Patent Laid-Open No. 10-204590

特に排気温度が800℃近傍に対応出来る材料として、高温で長時間使用されたり、加
熱・冷却を繰り返し受ける環境において、優れた耐酸化性、高温強度、熱疲労特性を有し
、比較的安価なCr含有鋼を提供することである。
In particular, it is a relatively inexpensive material with excellent oxidation resistance, high temperature strength, and thermal fatigue characteristics in an environment where the exhaust temperature is close to 800 ° C and is used for a long time at high temperatures or repeatedly subjected to heating and cooling. It is to provide a Cr-containing steel.

上記課題を解決するために、本発明者らはCr含有鋼の耐酸化性、高温強度、熱疲労特
性に関して、成分および高温変形特性との関連を調査した。この中で特に熱サイクルを受
ける環境を考慮し、高温域での変形特性に加え低温域での変形特性が熱疲労寿命にどの様
に作用するかを入念に調べた。そして、かかる目的を達成すべく種々の検討を重ねた結果
、以下の知見を得た。この特徴としては、主に耐酸化性の観点からCrとSiを添加し、
高温特性向上の観点からNb−Ti複合添加、更にV,B添加した新規成分における各成
分調整によって、長時間使用時における強度および延性を確保して熱疲労特性を大幅に向
上させるものである。
In order to solve the above-mentioned problems, the present inventors investigated the relationship between the components and the high temperature deformation characteristics regarding the oxidation resistance, high temperature strength and thermal fatigue characteristics of the Cr-containing steel. In particular, considering the environment subject to thermal cycling, we carefully investigated how the deformation characteristics in the low temperature range affect the thermal fatigue life in addition to the deformation characteristics in the high temperature range. And as a result of repeating various examinations in order to achieve this purpose, the following knowledge was obtained. As this feature, Cr and Si are added mainly from the viewpoint of oxidation resistance,
From the viewpoint of improving the high temperature characteristics, by adjusting each component in the new component added with Nb-Ti composite and further adding V and B, the strength and ductility during long-time use are ensured and the thermal fatigue characteristics are greatly improved.

上記課題を解決する本発明の要旨は、
(1) 質量%にて、C:0.01%以下、N:0.015%以下、Si:0.8〜1.0%、Mn:0.2〜1.5%、P:0.03%以下、S:0.01%以下、Ni:0.2%以下、Cu:0.2%以下、Cr:13〜15%、Mo:0.1%以下、Nb:0.3〜0.55%、Ti:0.05〜0.2%、V:0.01〜0.2%、Al:0.015〜1.0%、B:0.0002〜0.0010%を含有し、かつ(Nb+1.9×Ti)/(C+N)≦40を満足し、残部がFeおよび不可避的不純物からなることを特徴とする熱疲労特性に優れたCr含有鋼。
(2) 800℃で100時間以上時効処理した後の800℃における0.2%耐力が2
0MPa以上、かつ200℃における絞り値が35%以上であることを特徴とする(1)に記載の熱疲労特性に優れたCr含有鋼。
(3) 800℃で100時間以上の時効処理を施した後の固溶Nb量+固溶Ti量が0
.08%以上であることを特徴とする(1)または(2)に記載の熱疲労特性に優れたCr含有鋼。
(4)Mn/Ti≧3を満足することを特徴とする(1)乃至(3)のいずれか一項に記載の熱疲労特性に優れたCr含有鋼。
The gist of the present invention for solving the above problems is as follows.
(1) In mass%, C: 0.01% or less, N: 0.015% or less, Si: 0.8 to 1.0%, Mn: 0.2 to 1.5%, P: 0.0. 03% or less, S: 0.01% or less, Ni: 0.2% or less, Cu: 0.2% or less, Cr: 13-15%, Mo: 0.1% or less, Nb: 0.3-0 0.55%, Ti: 0.05-0.2%, V: 0.01-0.2%, Al: 0.015-1.0%, B: 0.0002-0.0010% And (Nb + 1.9 × Ti) / (C + N) ≦ 40, a Cr-containing steel excellent in thermal fatigue characteristics, characterized in that the balance consists of Fe and inevitable impurities.
(2) 0.2% proof stress at 800 ° C. after aging treatment at 800 ° C. for 100 hours or more is 2
The Cr-containing steel having excellent thermal fatigue properties as described in (1), wherein the drawing value at 0 MPa or more and a drawing value at 200 ° C. is 35% or more.
(3) The amount of solid solution Nb + the amount of solid solution Ti after the aging treatment at 800 ° C. for 100 hours or more is 0
. The Cr-containing steel excellent in thermal fatigue properties according to (1) or (2), characterized by being at least 08%.
(4) The Cr-containing steel excellent in thermal fatigue properties according to any one of (1) to (3), wherein Mn / Ti ≧ 3 is satisfied.

本発明によれば特に高価な合金元素を添加せずとも、熱疲労特性に優れたCr含有鋼を提供することができ、特に自動車などの排気系部材に適用することにより、環境対策などに大きな効果が得られる。   According to the present invention, it is possible to provide Cr-containing steel having excellent thermal fatigue characteristics without adding particularly expensive alloy elements, and it is particularly effective for environmental measures by applying it to exhaust system members such as automobiles. An effect is obtained.

以下に本発明の限定理由について説明する。   The reason for limitation of the present invention will be described below.

Cは、成形性と耐食性を劣化させ、高温強度の低下をもたらすため、その含有量は少な
いほど良いため、0.015%以下とした。但し、過度の低減は精錬コストの増加に繋が
るため、更に、0.001〜0.005%が望ましい。
C deteriorates moldability and corrosion resistance and causes a decrease in high-temperature strength. Therefore, the smaller the content, the better. Therefore, the content is set to 0.015% or less. However, excessive reduction leads to an increase in refining costs, so 0.001 to 0.005% is further desirable.

NはCと同様、成形性と耐食性を劣化させ、高温強度の低下をもたらすため、その含有
量は少ないほど良いため、0.015%以下とした。但し、過度の低減は精錬コストの増
加に繋がるため、更に、0.001〜0.010%が望ましい。
N, like C, deteriorates moldability and corrosion resistance and causes a decrease in high-temperature strength. Therefore, the smaller the content, the better. Therefore, the content was made 0.015% or less. However, excessive reduction leads to an increase in refining costs, so 0.001 to 0.010% is further desirable.

Siは、本願発明において耐酸化性と高温特性を改善するために重要な元素である。耐
酸化性や高温強度は、Si量の増加とともに向上し、その効果は0.8%以上で発現する
。また、Siは高温でLaves相と呼ばれるFeとNbを主体とする金属間化合物の析
出を促進する。Laves相が過度に析出すると高温強度を確保するために必要な固溶N
b量が低減してしまう。また、過度にSiを添加すると、常温加工性が劣化する他、長時
間使用中における延性を低下させ、熱疲労寿命の低下をもたらす。これらの観点から、上
限を1.0%とした。更に、望ましくは0.8〜0.9%である。
Si is an important element for improving oxidation resistance and high temperature characteristics in the present invention. Oxidation resistance and high-temperature strength improve with an increase in Si content, and the effect is manifested at 0.8% or more. Further, Si promotes the precipitation of intermetallic compounds mainly composed of Fe and Nb called a Laves phase at a high temperature. If the Laves phase precipitates excessively, the solid solution N necessary to ensure high temperature strength
The amount of b is reduced. Moreover, when Si is added excessively, the room temperature workability deteriorates, and the ductility during long-time use is lowered, resulting in a decrease in the thermal fatigue life. From these viewpoints, the upper limit was made 1.0%. Furthermore, it is 0.8 to 0.9% desirably.

Mnは、脱酸剤として添加され、高温強度を向上させる元素であり、0.2%以上から
効果が発現する。また、Tiとの複合添加鋼においては、Mn添加により連続酸化時にTiの酸化を抑制し、耐酸化性が向上することが判明した。一方、1.5%超の添加は延性を低下させる他、MnSを形成して耐食性を低下させる。また、過度な添加は、耐酸化性の劣化をもたらす。よって、0.2〜1.5%とした。更に、高温延性やスケール密着性を考慮すると、0.3〜1.0%が望ましい。
Mn is an element that is added as a deoxidizer and improves the high-temperature strength, and the effect is manifested from 0.2% or more. In addition, it has been found that, in a composite additive steel with Ti, oxidation of Ti is suppressed during continuous oxidation by addition of Mn, and oxidation resistance is improved. On the other hand, addition over 1.5% lowers the ductility and forms MnS to lower the corrosion resistance. Moreover, excessive addition brings about deterioration of oxidation resistance. Therefore, it was set to 0.2 to 1.5%. Furthermore, when considering high temperature ductility and scale adhesion, 0.3 to 1.0% is desirable.

Pは、MnやSi同様に固溶強化元素であるため、材質上その含有量は少ないほど良いため、上限は0.03%が望ましい。但し、過度の低減は精錬コストの増加に繋がるため、下限は0.01%が望ましい。更に、精錬コストと耐食性を考慮すると0.012〜0.025%が望ましい。   Since P is a solid solution strengthening element like Mn and Si, the lower the content, the better. Therefore, the upper limit is preferably 0.03%. However, excessive reduction leads to an increase in refining costs, so the lower limit is preferably 0.01%. Furthermore, if considering the refining cost and corrosion resistance, 0.012 to 0.025% is desirable.

Sは、耐食性や耐酸化性を劣化させる元素であるが、TiやCと結合して加工性を向上
させる効果が0.0001%から発現するため、下限を0.0001%とした。一方、適
度な添加によりTiやCと結合して固溶Ti量を低減させるととも析出物の粗大化をもた
らすために、高温強度が低下するため、上限を0.01%とした。更に、更に、精錬コス
トや高温酸化特性を考慮すると0.0010〜0.0090%が望ましい。
S is an element that deteriorates the corrosion resistance and oxidation resistance, but since the effect of improving the workability by combining with Ti or C is manifested from 0.0001%, the lower limit was made 0.0001%. On the other hand, the upper limit is set to 0.01% because the high-temperature strength decreases because it combines with Ti and C by appropriate addition to reduce the amount of solid solution Ti and causes coarsening of precipitates. Furthermore, if considering refining costs and high-temperature oxidation characteristics, 0.0010 to 0.0090% is desirable.

Crは、本願発明において、耐酸化性確保のために必須な元素である。13%未満では
、その効果は発現せず、15%超では加工性を低下させたり、靭性の劣化をもたらすため
、13〜15%とした。更に、高温延性、製造コストを考慮すると13.2〜14.5%
が望ましい。
Cr is an essential element for securing oxidation resistance in the present invention. If it is less than 13%, the effect is not exhibited, and if it exceeds 15%, the workability is lowered or the toughness is deteriorated. Furthermore, considering high temperature ductility and manufacturing cost, 13.2 to 14.5%
Is desirable.

Niは、靭性向上、耐高温塩害腐食性向上に有効である。しかし、オーステナイト形成
元素であり、耐酸化性に悪影響を及ぼしたり、高価であることから、0.2%以下とした
Ni is effective for improving toughness and resistance to high temperature salt corrosion. However, it is an austenite-forming element, has an adverse effect on oxidation resistance, and is expensive.

Cuは、高温強度向上に有効であるが、延性を低下させたり、耐酸化性に悪影響を及ぼ
すことから、0.2%以下とした。
Cu is effective for improving the high-temperature strength, but lowers the ductility and adversely affects the oxidation resistance, so the content was made 0.2% or less.

Moは、耐食性を向上させるとともに、高温酸化を抑制したり、固溶強化による高温強
度向上に対して有効である。しかしながら、高温延性の低下をもたらす他、高価であるこ
とから0.2%以下とした。更に望ましくは、0.1%以下である。
Mo is effective for improving corrosion resistance, suppressing high-temperature oxidation, and improving high-temperature strength by solid solution strengthening. However, it is not more than 0.2% because of high cost ductility and high cost. More desirably, it is 0.1% or less.

Nbは、固溶強化および析出物微細化強化による高温強度向上のために必要な元素であ
る。また、CやNを炭窒化物として固定し、製品板の耐食性やr値に影響する再結晶集合
組織の発達に寄与する役割もある。これらの効果は0.3%以上から発現する。一方、使
用環境中では温度によってラーフェス相として析出した場合、固溶強化能を失うため過度
に添加しても効果は飽和してしまう。また、過度な添加は低温域での延性が低下して熱疲
労寿命が短くなってしまう。本発明ではTiとの複合添加により固溶Nb量を確保してお
り、この場合にその作用は、0.55%で飽和するため、0.3〜0.55%とした。更に、成型性、粒界腐食性および製造コストを考慮すると、0.32〜0.45%が望ましい。
Nb is an element necessary for improving the high-temperature strength by solid solution strengthening and precipitate refinement strengthening. In addition, C and N are fixed as carbonitrides, contributing to the development of the recrystallization texture that affects the corrosion resistance and r value of the product plate. These effects appear from 0.3% or more. On the other hand, in the environment of use, when it precipitates as a Lafes phase depending on the temperature, the effect is saturated even if added excessively because it loses the solid solution strengthening ability. Moreover, excessive addition will reduce the ductility in a low temperature range and will shorten a thermal fatigue life. In the present invention, the amount of dissolved Nb is ensured by composite addition with Ti. In this case, the action is saturated at 0.55%, so the content is set to 0.3 to 0.55%. Furthermore, if considering moldability, intergranular corrosion property and production cost, 0.32 to 0.45% is desirable.

Tiは、C,N,Sと結合して耐食性、耐粒界腐食性、深絞り性を向上させる元素であ
る。また、Nbとの複合添加において、適量添加することにより長時間高温で晒された後
の高温強度の向上、高温延性の向上をもたらし、熱疲労特性を向上させる。これらの効果
は、0.05%以上から発現するが、0.2%超の添加により、固溶Ti量が増加して成
型性を劣化させる他、表面疵の発生や靭性の低下、耐酸化性の劣化をもたらすため、0.05〜0.2%とした。更に、製造性を考慮すると、0.05〜0.15%が望ましい。
Ti is an element that combines with C, N, and S to improve corrosion resistance, intergranular corrosion resistance, and deep drawability. In addition, in the combined addition with Nb, addition of an appropriate amount brings about improvement in high-temperature strength and high-temperature ductility after being exposed at high temperature for a long time, thereby improving thermal fatigue characteristics. These effects are manifested from 0.05% or more, but addition of more than 0.2% increases the amount of solid solution Ti and deteriorates the formability, as well as generation of surface flaws, lower toughness, and oxidation resistance. In order to bring about deterioration of property, it was made 0.05 to 0.2%. Furthermore, if considering the manufacturability, 0.05 to 0.15% is desirable.

Vは、0.01%以上の添加により微細な炭窒化物を形成し、析出強化作用が生じて高温強度向上に寄与する。一方、0.2%超の添加で低温延性が低下し、逆に熱疲労寿命は低下してしまうため、上限を0.2%とした。更に、製造コストや製造性を考慮すると、0.08〜0.15%が望ましい。   V, when added in an amount of 0.01% or more, forms fine carbonitrides and causes a precipitation strengthening action, thereby contributing to an improvement in high temperature strength. On the other hand, addition of over 0.2% lowers the low temperature ductility and conversely reduces the thermal fatigue life, so the upper limit was made 0.2%. Furthermore, if considering the manufacturing cost and manufacturability, 0.08 to 0.15% is desirable.

Alは、脱酸元素として添加される他、耐酸化性、固溶強化により高温強度を向上させる元素であり、本願発明において必須元素である。その作用は0.015%から発現するが、1.0%超の添加は硬質化したり、表面疵の発生や溶接性を劣化させるため、0.015〜1.0%とした。更に、精錬コストを考慮する0.03〜0.7%が望ましい。   In addition to being added as a deoxidizing element, Al is an element that improves high-temperature strength by oxidation resistance and solid solution strengthening, and is an essential element in the present invention. The effect is manifested from 0.015%, but addition of more than 1.0% hardens or deteriorates surface defects and weldability, so the content was made 0.015 to 1.0%. Furthermore, 0.03 to 0.7% considering the refining cost is desirable.

Bは、製品のプレス加工時の2次加工性を向上させる元素である。特に、Ti添加鋼は
、2次加工割れが発生し易いので、本願発明においては必須元素である。この他に、本願
発明の様なNb,Tiが添加され、かつSiが添加された成分系においては、高温強度の
向上に寄与することを見出した。一般的にBは、高温域で(Fe,Cr)23(C,B)
6やCr2Bを形成したり、粒界偏析するとされているが、Siが添加された成分系にお
いては、これらの析出物は析出せず、先述したLavesを微細析出させる効果があるこ
とが判明した。Laves相は、固溶Nb量の低減をもたらし、通常粗大化してしまうの
で、特に長時間時効後の高温強化能はほとんど無いが、B添加により微細析出するため、
析出強化能を有し、高温強度の向上に寄与する様になる。BがLaves相を微細析出さ
せる要因としては、粒界偏析により界面エネルギーが低下し、粒界析出し難くなると推察
される。これらの効果は、0.0002%以上で発現するが、過度な添加は硬質化や粒界
腐食性を劣化させる他、溶接割れが生じるため、0.0002〜0.0010%とした。
更に、成型性や製造コストを考慮すると、0.0003〜0.0007%が望ましい。
TiとNbの複合添加の場合、両者が過度に添加されると固溶Ti、固溶Nbが増加し常
温延性を著しく低下させることが判明した。本研究では、図1に示す様に、(Nb+1.
9×Ti)/(C+N)≦50とすることで、常温での破断伸びが32%以上確保できる
。ここで、Ti,Nb,C,N量が異なる14%Cr鋼、板厚2mmについて、圧延方向
にJIS13号B試験片を採取し、引張試験を行い、破断伸びを測定した。破断伸びが3
2%以上であれば、板材から排気部材へのプレス加工やパイプ形状に加工後曲げや拡管加
工を施しても割れや括れが発生しないレベルである。
B is an element that improves the secondary workability during product press working. In particular, Ti-added steel is an essential element in the present invention because secondary processing cracks are likely to occur. In addition, it has been found that the component system to which Nb and Ti are added and Si is added as in the present invention contributes to the improvement of the high temperature strength. In general, B is (Fe, Cr) 23 (C, B) at high temperatures.
6 or Cr2B is formed or segregated at grain boundaries, but in the component system to which Si is added, these precipitates are not precipitated, and it has been found that there is an effect of finely depositing the above-mentioned Laves. . The Laves phase brings about a decrease in the amount of solid solution Nb and usually coarsens, so there is almost no high-temperature strengthening ability after long-term aging in particular, but because B precipitates finely,
It has precipitation strengthening ability and contributes to improvement of high temperature strength. As a factor for causing B to finely precipitate the Laves phase, it is presumed that the interfacial energy is lowered due to grain boundary segregation, and the grain boundary is hardly precipitated. These effects are manifested at 0.0002% or more. However, excessive addition deteriorates the hardness and intergranular corrosion, and also causes weld cracks. Therefore, the content was made 0.0002 to 0.0010%.
Furthermore, if considering moldability and manufacturing cost, 0.0003 to 0.0007% is desirable.
In the case of combined addition of Ti and Nb, it has been found that if both of them are added excessively, the solid solution Ti and the solid solution Nb increase and the room temperature ductility is remarkably lowered. In this study, as shown in FIG. 1, (Nb + 1.
By setting 9 × Ti) / (C + N) ≦ 50, the elongation at break at room temperature can be secured at 32% or more. Here, JIS No. 13 B specimens were sampled in the rolling direction with respect to 14% Cr steel having a Ti, Nb, C, and N amount and a plate thickness of 2 mm, a tensile test was performed, and the elongation at break was measured. Elongation at break is 3
If it is 2% or more, it is at a level where cracking and constriction do not occur even if press working from the plate material to the exhaust member or bending or pipe expansion after processing into the pipe shape.

また、熱疲労寿命向上に対しては、時効後の高温強度に加え延性が重要であることを見
出した。ここで、熱疲労試験について説明する。製品板を電縫溶接により製管(外径38
.1mm)し、熱疲労試験に供した。熱疲労試験は、コンピュータ制御式電気的油圧制御
疲労試験機により行った。付与する温度サイクルは、200から800℃まで120se
cで昇温し、800℃で30sec保持した後に、300℃まで120secで冷却し、
更に200℃まで90secで冷却するパターンとした。加熱は高周波誘導加熱コイルで
行い、冷却は試験管内部に空気を供給して行った。拘束率は、自由膨張量に対して一定比
率になる様に圧縮歪を付与する様にした。即ち、例えば50%拘束の場合、自由膨張の半
分の膨張量になる様に圧縮歪を機械的に付与した。供試材の化学成分は表1に示しており
、鋼Aは本願発明の適合鋼で鋼Bは比較鋼である。ここで、鋼Bは汎用的に使用されてい
る耐熱ステンレス鋼板である。図2より、本願発明の鋼はいずれの拘束率においても、比
較例よりも高寿命が得られている。これは、高温強度の時効劣化即ち長時間熱サイクルを
付与しても強度低下が殆ど無い事に加えて、熱サイクルの低温域において高延性を保持し
ているためである。熱サイクルを受けている間、高温では材料に圧縮荷重が付与される他
、800℃保持においてはクリープ変形もしくは応力緩和現象が生じるため、800℃に
おける0.2%耐力の増加が熱疲労寿命の延長に有効であると考えられる。一方、800
℃から200℃までの冷却過程においては、材料は引張応力が付与される。この引張応力
は高温域での圧縮応力よりも格段に大きな応力であり、かつ熱サイクルで損傷(欠陥)が
生じた場合、この部位での塑性変形は著しい。よって、材料の200℃における延性(絞
り)の増加は、冷却過程での損傷進展を抑える効果があると考えられる。図3および図4に800℃で時効処理した後の高温での引張強度と絞りを示す。本願発明鋼は、800℃で10hr以上の長時間時効処理を施しても、高温強度が20MPa以上と高強度で、200℃の絞り値が35%以上と高延性である。このことは、熱疲労過程で長時間の熱サイクル処理を受けても、最高温度での強度が高く、かつ最低温度での延性が高いことを意味する。これにより、図2で示した様にいずれの拘束率においても熱疲労寿命が向上することにつながると考えられる。従来の発明では、熱サイクルを受ける場合の最高温度での強度を向上させるのみが技術思想であったが、本願発明では最低温度における延性を向上させることで熱疲労寿命が格段に向上することを見出した。
It was also found that ductility is important in addition to high temperature strength after aging for improving the thermal fatigue life. Here, the thermal fatigue test will be described. The product plate is made by electro-welding welding (outer diameter 38
. 1 mm) and subjected to a thermal fatigue test. The thermal fatigue test was conducted with a computer-controlled electrohydraulic control fatigue tester. The temperature cycle to be applied is 120se from 200 to 800 ° C.
The temperature was raised at c and held at 800 ° C. for 30 seconds, then cooled to 300 ° C. in 120 seconds,
Furthermore, it was set as the pattern cooled to 90 degreeC in 90 seconds. Heating was performed with a high-frequency induction heating coil, and cooling was performed by supplying air into the test tube. The restraint rate was set so as to give a compressive strain so as to be a constant ratio with respect to the free expansion amount. That is, for example, in the case of 50% restraint, compressive strain was mechanically applied so that the amount of expansion was half of the free expansion. The chemical components of the test materials are shown in Table 1. Steel A is a compatible steel of the present invention, and steel B is a comparative steel. Here, the steel B is a heat-resistant stainless steel plate that is used for general purposes. From FIG. 2, the steel of the present invention has a longer life than the comparative example at any constraint. This is because high ductility is maintained in the low temperature region of the thermal cycle, in addition to the fact that there is almost no decrease in strength even when aging deterioration of high temperature strength, that is, long-term thermal cycling is applied. While undergoing a thermal cycle, a compressive load is applied to the material at a high temperature, and creep deformation or stress relaxation phenomenon occurs at 800 ° C. Therefore, an increase in 0.2% proof stress at 800 ° C. It is considered effective for extension. Meanwhile, 800
In the cooling process from ℃ to 200 ℃, the material is given tensile stress. This tensile stress is much larger than the compressive stress in the high temperature region, and when damage (defect) occurs in the thermal cycle, the plastic deformation at this portion is remarkable. Therefore, it is considered that an increase in ductility (drawing) at 200 ° C. of the material has an effect of suppressing damage progress in the cooling process. 3 and 4 show the tensile strength and drawing at high temperature after aging treatment at 800 ° C. The steel of the present invention has a high strength at a high temperature strength of 20 MPa or higher and a drawing value at 200 ° C. of 35% or higher even when subjected to an aging treatment at 800 ° C. for 10 hours or longer. This means that the strength at the highest temperature is high and the ductility at the lowest temperature is high even when subjected to a long thermal cycle treatment in the thermal fatigue process. As a result, it is considered that the thermal fatigue life is improved at any of the restraints as shown in FIG. In the conventional invention, the technical idea was only to improve the strength at the maximum temperature when subjected to a thermal cycle, but in the present invention, the thermal fatigue life is remarkably improved by improving the ductility at the minimum temperature. I found it.

200℃での絞り値向上は、先に示した常温での破断伸びの確保と時効劣化が抑制され
たことによると考えられる。即ち、TI,Nbの添加バランスが重要であることが本願発
明で明らかになったことである。一方、800℃での高温強度の向上については、固溶N
b量と固溶Ti量が影響している。図5に800℃で時効した後の固溶Nb量+固溶Ti
量と800℃での高温強度の関係を示す。固溶Nb量+固溶Ti量が0.08%以上にお
いて800℃での高温強度が20MPa以上となっている。これより高温強度20MPa
以上を得、熱疲労寿命を向上させるために、固溶Nb量+固溶Ti量は0.08%以上と
した。
The improvement of the aperture value at 200 ° C. is considered to be due to the fact that the elongation at break and the aging deterioration described above were suppressed. That is, the present invention has revealed that the balance of addition of TI and Nb is important. On the other hand, for improvement of high temperature strength at 800 ° C., solid solution N
The amount of b and the amount of solid solution Ti have an influence. FIG. 5 shows the amount of solid solution Nb + solution Ti after aging at 800 ° C.
The relationship between the amount and the high temperature strength at 800 ° C. is shown. When the solid solution Nb amount + solid solution Ti amount is 0.08% or more, the high-temperature strength at 800 ° C. is 20 MPa or more. Higher temperature strength than 20MPa
In order to obtain the above and improve the thermal fatigue life, the amount of solid solution Nb + the amount of solid solution Ti was set to 0.08% or more.

本願発明では、適正量のTiをNbと複合添加することで、長時間時効後の高温強度、高温延性の向上をもたらして熱疲労特性を向上させているが、逆に耐酸化性に対して劣化作用がある。本願発明に示すSi、Cr、Mn、Tiを含有する鋼を大気中で連続酸化すると、スケールは、外層にはTiO、Cr、Mnを主に含むスピネル型酸化物が、内層にはCrが形成される。Ti量が増加するにつれ、内層のCr皮膜が厚くなり耐酸化性が劣化する。本発明者らは、Mnの影響について検討したところ、Mnを増加させると、外層のTiO量が減少して、内層のCr皮膜の成長が抑制されており、これにより耐酸化性が向上することを見出した。図6にTi/Mnと900℃で200h連続酸化した後の内層のCr皮膜厚さを示す。Cr内層スケールの厚さが5μm超の場合、スケール剥離等が生じて耐酸化性が劣るが、Mn/Ti≧3の場合にはCr内層スケールの厚さが薄く、耐酸化性に優れている。Tiは内層のCrを介して外方拡散するが、MnによってTiの外方拡散が抑制された結果、内層のCr皮膜の成長が抑制されたと考えられる。良好な耐酸化性を得るには、内層のCr皮膜の成長を抑制することが重要であり、900℃において200h、大気中で連続酸化させた時に生成するCr内層スケールの厚さを5μm以下とするために、Mn/Ti≧3とした。 In the present invention, by adding an appropriate amount of Ti and Nb in combination, the high temperature strength after long-term aging and high temperature ductility are improved to improve thermal fatigue properties. There is a deterioration effect. When the steel containing Si, Cr, Mn, and Ti shown in the present invention is continuously oxidized in the atmosphere, the scale has a spinel oxide mainly containing TiO 2 , Cr, and Mn in the outer layer, and Cr 2 in the inner layer. O 3 is formed. As the amount of Ti increases, the Cr 2 O 3 film of the inner layer becomes thicker and the oxidation resistance deteriorates. The present inventors examined the influence of Mn, and when Mn was increased, the amount of TiO 2 in the outer layer was reduced, and the growth of the Cr 2 O 3 film in the inner layer was suppressed, whereby the oxidation resistance was increased. Found to improve. FIG. 6 shows the Cr 2 O 3 film thickness of the inner layer after continuous oxidation with Ti / Mn at 900 ° C. for 200 hours. When the thickness of the Cr 2 O 3 inner layer scale exceeds 5 μm, scale peeling occurs and the oxidation resistance is inferior. However, when Mn / Ti ≧ 3, the thickness of the Cr 2 O 3 inner layer scale is thin and the acid resistance Excellent in chemical properties. Ti is diffused outward through the inner layer of Cr 2 O 3, results outward diffusion of Ti is inhibited by Mn, believed to growth of the inner layer of Cr 2 O 3 film is suppressed. In order to obtain good oxidation resistance, it is important to suppress the growth of the Cr 2 O 3 film of the inner layer, and the Cr 2 O 3 inner layer scale formed when continuously oxidized in the atmosphere at 900 ° C. for 200 hours. In order to make the thickness 5 μm or less, Mn / Ti ≧ 3.

表2に示す成分組成の鋼を溶製してスラブに鋳造し、スラブを熱間圧延して5mm厚の
熱延コイルとした。その後、熱延コイルを焼鈍・酸洗を施し、2mm厚まで冷間圧延し、
焼鈍・酸洗を施して製品板とした。冷延板の焼鈍温度は、結晶粒度番号を6〜8程度にす
るために、980〜1050℃とした。このようにして得られた製品板から、高温引張試
験片を採取し、200℃および800℃で引張試験を行った。また、800℃で100時
間時効処理を施した後に上記と同様に高温引張試験を行った。更に、製品板を電縫溶接に
より製管(外径38.1mm)し、熱疲労試験に供した。付与する温度サイクルは、20
0から800℃まで120secで昇温し、800℃で30sec保持した後に、300
℃まで120secで冷却し、更に200℃まで90secで冷却するパターンとし、拘
束率は50%とした。また、耐酸化性の評価のために、製品板から、幅20mm、長さ25mmの試験片を切り出し、エメリー紙にて#600まで研磨後、900℃にて200hの大気中連続酸化試験を行った。Cr内層スケールの厚みは、SEM(走査型電子顕微鏡)により、断面観察して求めた。
Steel having the component composition shown in Table 2 was melted and cast into a slab, and the slab was hot-rolled to form a hot rolled coil having a thickness of 5 mm. Then, the hot-rolled coil is annealed and pickled, cold-rolled to a thickness of 2 mm,
Annealed and pickled to give product plates. The annealing temperature of the cold-rolled sheet was set to 980 to 1050 ° C. in order to make the grain size number about 6 to 8. From the product plate thus obtained, a high-temperature tensile test piece was collected and subjected to a tensile test at 200 ° C and 800 ° C. Further, after aging treatment at 800 ° C. for 100 hours, a high-temperature tensile test was conducted in the same manner as described above. Further, the product plate was pipe-formed (outer diameter 38.1 mm) by electro-welding and subjected to a thermal fatigue test. The applied temperature cycle is 20
After raising the temperature from 0 to 800 ° C. in 120 seconds and holding at 800 ° C. for 30 seconds, 300 °
The pattern was cooled to 120 ° C. in 120 seconds and further cooled to 200 ° C. in 90 seconds, and the constraint rate was 50%. For evaluation of oxidation resistance, a test piece with a width of 20 mm and a length of 25 mm was cut from the product plate, polished to # 600 with emery paper, and then subjected to a continuous oxidation test in the atmosphere at 900 ° C. for 200 hours. It was. The thickness of the Cr 2 O 3 inner layer scale was determined by observing a cross section with an SEM (scanning electron microscope).

表2から明らかなように、本発明で規定する成分組成を有する鋼を上記の様な通常の方
法にて製造した場合、比較例に比べて常温伸びが高く、加工性に優れていることがわかる
。また、高温強度についても上記範囲を満足しており、熱疲労特性に優れている。比較例
において、鋼No.12と13はCやNが高いため、常温での破断伸びが低く、高温での絞り値も低い。また炭窒化物生成により高温強度が低い。鋼No.14は、Siが低いため、時効後の高温強度が低い。鋼No15、17,18,19、20はそれぞれMn、S,Ni、Cu、Crが高いため、常温加工性が悪く、時効後の絞り値が低い。鋼No.16はSが上限外れで、時効後の固溶Ti+Nb量が低くなり、時効後高温強度が低い。鋼No.21,22,23,24,25,26はMo,Nb,Ti,V,Al,Bが上限を外れている。これらは、高温強度には寄与するものの、常温加工性が悪く、200℃での絞りが低いことから熱疲労寿命が短い。
As is apparent from Table 2, when a steel having the component composition defined in the present invention is produced by the usual method as described above, it has a higher room temperature elongation than the comparative example and is excellent in workability. Recognize. Further, the high temperature strength satisfies the above range and is excellent in thermal fatigue characteristics. In the comparative example, Steel No. Since 12 and 13 have high C and N, the elongation at break at normal temperature is low, and the drawing value at high temperature is also low. Moreover, high temperature strength is low by carbonitride formation. Steel No. No. 14 is low in Si and thus has a low high temperature strength after aging. Steel Nos. 15, 17, 18, 19, and 20 have high Mn, S, Ni, Cu, and Cr, respectively, so that the room temperature workability is poor and the aperture value after aging is low. Steel No. In No. 16, S is outside the upper limit, the amount of solid solution Ti + Nb after aging is low, and the high temperature strength after aging is low. Steel No. In 21, 22, 23, 24, 25, and 26, Mo, Nb, Ti, V, Al, and B are out of the upper limit. Although these contribute to high temperature strength, they have poor room temperature workability and have a short thermal fatigue life due to low drawing at 200 ° C.

耐酸化性において、本発明鋼の内層スケール厚さは5μm以下と良好である。比較例において、Siが本発明範囲からはずれ、Mn/Tiの小さい鋼No.14,17,23,24,26は、内層スケール厚さが5μmを超えており、耐酸化性に劣る。   In terms of oxidation resistance, the inner layer scale thickness of the steel of the present invention is as good as 5 μm or less. In the comparative example, Si deviates from the scope of the present invention, and steel No. 1 with a small Mn / Ti. 14, 17, 23, 24, and 26 have an inner layer scale thickness of more than 5 μm, and are inferior in oxidation resistance.

なお、鋼板の製造方法については、特に規定しないが、熱延条件や熱延板厚、熱延板お
よび冷延板焼鈍温度、雰囲気などは適宜選択すれば良い。また、冷延・焼鈍後に調質圧延
やテンションレベラーを付与しても構わない。更に、製品板厚についても、要求部材厚保
に応じて選択すれば良い。
In addition, although it does not prescribe | regulate especially about the manufacturing method of a steel plate, what is necessary is just to select hot-rolling conditions, hot-rolled sheet thickness, a hot-rolled sheet and cold-rolled sheet annealing temperature, atmosphere, etc. suitably. Further, temper rolling or tension leveler may be applied after cold rolling and annealing. Further, the product plate thickness may be selected according to the required member thickness maintenance.

Figure 0005208450
Figure 0005208450

Figure 0005208450
Figure 0005208450

(Nb+1.9Ti)/(C+N)と常温での破断伸びの関係を示す図である。It is a figure which shows the relationship between (Nb + 1.9Ti) / (C + N) and breaking elongation at normal temperature. 熱疲労寿命に及ぼすTi添加の影響を示す図である。It is a figure which shows the influence of Ti addition on a thermal fatigue life. 800℃で時効した後の800℃における耐力である。Yield strength at 800 ° C. after aging at 800 ° C. 800℃で時効した後の200℃における絞り値を示す図である。It is a figure which shows the aperture value in 200 degreeC after aging at 800 degreeC. 800℃で時効した後の200℃における絞りを示す図である。It is a figure which shows the aperture_diaphragm | restriction in 200 degreeC after aging at 800 degreeC. Mn/Tiと900℃で200h連続酸化試験した際のCr厚さの関係を示す図である。It is a diagram showing the Cr 2 O 3 thickness relationship at the time of 200h continuous oxidation test in Mn / Ti and 900 ° C..

Claims (4)

質量%にて、
C:0.01%以下、
N:0.015%以下、
Si:0.8〜1.0%、
Mn:0.2〜1.5%、
P:0.03%以下、
S:0.01%以下、
Ni:0.2%以下、
Cu:0.2%以下、
Cr:13〜15%、
Mo:0.1%以下、
Nb:0.3〜0.55%、
Ti:0.05〜0.2%、
V:0.01〜0.2%、
Al:0.015〜1.0%、
B:0.0002〜0.0010%を含有し、
かつ(Nb+1.9×Ti)/(C+N)≦50を満足し、残部がFeおよび不可避的不純物からなることを特徴とする熱疲労特性に優れたCr含有鋼。
In mass%
C: 0.01% or less,
N: 0.015% or less,
Si: 0.8 to 1.0%,
Mn: 0.2 to 1.5%
P: 0.03% or less,
S: 0.01% or less,
Ni: 0.2% or less,
Cu: 0.2% or less,
Cr: 13-15%,
Mo: 0.1% or less,
Nb: 0.3 to 0.55%,
Ti: 0.05 to 0.2%,
V: 0.01-0.2%
Al: 0.015-1.0%,
B: contains 0.0002 to 0.0010%,
And (Nb + 1.9 × Ti) / (C + N) ≦ 50, a Cr-containing steel excellent in thermal fatigue characteristics, characterized in that the balance consists of Fe and inevitable impurities.
800℃で100時間以上時効処理した後の800℃における0.2%耐力が20MP
a以上、かつ200℃における絞り値が35%以上であることを特徴とする請求項1に記載の熱疲労特性に優れたCr含有鋼。
0.2% proof stress at 800 ° C after aging treatment at 800 ° C for 100 hours or more is 20MP
The Cr-containing steel excellent in thermal fatigue characteristics according to claim 1, wherein the drawing value at a is 200% or more and 35% or more.
800℃で100時間以上の時効処理を施した後の固溶Nb量+固溶Ti量が0.08
%以上であることを特徴とする請求項1または請求項2に記載の熱疲労特性に優れたCr含有鋼。
The amount of solute Nb + the amount of solute Ti after aging treatment at 800 ° C. for 100 hours or more is 0.08.
The Cr-containing steel excellent in thermal fatigue characteristics according to claim 1 or 2, wherein the Cr-containing steel is excellent in thermal fatigue characteristics.
Mn/Ti≧3を満足することを特徴とする請求項1乃至請求項3のいずれか一項に記載の熱疲労特性に優れたCr含有鋼。   4. The Cr-containing steel excellent in thermal fatigue properties according to claim 1, wherein Mn / Ti ≧ 3 is satisfied. 5.
JP2007141481A 2006-07-04 2007-05-29 Cr-containing steel with excellent thermal fatigue properties Active JP5208450B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2007141481A JP5208450B2 (en) 2006-07-04 2007-05-29 Cr-containing steel with excellent thermal fatigue properties
PCT/JP2007/063185 WO2008004506A1 (en) 2006-07-04 2007-06-25 Cr-CONTAINING STEEL EXCELLENT IN THERMAL FATIGUE CHARACTERISTICS
US11/991,873 US20100218856A1 (en) 2006-07-04 2007-06-25 Cr-Containing Steel Superior in Heat Fatigue Charateristics
EP07767965A EP2036994B1 (en) 2006-07-04 2007-06-25 Cr-CONTAINING STEEL EXCELLENT IN THERMAL FATIGUE CHARACTERISTICS
KR1020087006108A KR20080038218A (en) 2006-07-04 2007-06-25 Cr-containing steel excellent in thermal fatigue characteristics
CN2007800009606A CN101346487B (en) 2006-07-04 2007-06-25 Cr-containing steel excellent in thermal fatigue characteristics

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2006184028 2006-07-04
JP2006184028 2006-07-04
JP2006306078 2006-11-13
JP2006306078 2006-11-13
JP2007141481A JP5208450B2 (en) 2006-07-04 2007-05-29 Cr-containing steel with excellent thermal fatigue properties

Publications (2)

Publication Number Publication Date
JP2008144263A JP2008144263A (en) 2008-06-26
JP5208450B2 true JP5208450B2 (en) 2013-06-12

Family

ID=38894476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007141481A Active JP5208450B2 (en) 2006-07-04 2007-05-29 Cr-containing steel with excellent thermal fatigue properties

Country Status (6)

Country Link
US (1) US20100218856A1 (en)
EP (1) EP2036994B1 (en)
JP (1) JP5208450B2 (en)
KR (1) KR20080038218A (en)
CN (1) CN101346487B (en)
WO (1) WO2008004506A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5152387B2 (en) * 2010-10-14 2013-02-27 Jfeスチール株式会社 Ferritic stainless steel with excellent heat resistance and workability
JP5796398B2 (en) * 2010-10-26 2015-10-21 Jfeスチール株式会社 Ferritic stainless steel with excellent thermal and high temperature fatigue properties
JP5609571B2 (en) * 2010-11-11 2014-10-22 Jfeスチール株式会社 Ferritic stainless steel with excellent oxidation resistance
DE102013004905A1 (en) * 2012-03-23 2013-09-26 Salzgitter Flachstahl Gmbh Zunderarmer tempered steel and process for producing a low-dispersion component of this steel
CN106795599B (en) * 2014-08-29 2019-12-24 杰富意钢铁株式会社 Ferritic stainless steel foil and method for producing same
JP6314806B2 (en) * 2014-12-05 2018-04-25 Jfeスチール株式会社 Ferritic stainless steel sheet

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2803538B2 (en) 1993-11-22 1998-09-24 住友金属工業株式会社 Ferritic stainless steel for automotive exhaust manifold
JPH08120417A (en) * 1994-10-26 1996-05-14 Sumitomo Metal Ind Ltd Heat resistant ferritic stainless steel
JPH08199244A (en) * 1995-01-25 1996-08-06 Nisshin Steel Co Ltd Production of ferritic stainless steel sheet excellent in burring workability
JP3064871B2 (en) * 1995-06-22 2000-07-12 川崎製鉄株式会社 Ferritic stainless steel hot-rolled steel sheet with excellent roughening resistance and high temperature fatigue properties after forming
JPH09279316A (en) 1996-04-09 1997-10-28 Nippon Steel Corp Ferritic stainless steel extremely few in hot rolling scale flaw and excellent in high temperature characteristic
JPH09279312A (en) 1996-04-18 1997-10-28 Nippon Steel Corp Ferritic stainless steel excellent in high temperature characteristic, corrosion resistance, and workability
JP3536567B2 (en) * 1997-01-24 2004-06-14 Jfeスチール株式会社 Ferritic stainless steel for engine exhaust components with excellent heat resistance, workability and muffler corrosion resistance
JP3508520B2 (en) * 1997-12-05 2004-03-22 Jfeスチール株式会社 Cr-containing ferritic steel with excellent high-temperature fatigue properties for welds
JP2000169943A (en) 1998-12-04 2000-06-20 Nippon Steel Corp Ferritic stainless steel excellent in high temperature strength and its production
JP4301638B2 (en) * 1999-05-27 2009-07-22 新日鐵住金ステンレス株式会社 High purity ferritic stainless steel with excellent high temperature strength
US6426039B2 (en) * 2000-07-04 2002-07-30 Kawasaki Steel Corporation Ferritic stainless steel
JP4622171B2 (en) 2000-07-25 2011-02-02 Jfeスチール株式会社 Ferritic stainless steel sheet excellent in room temperature workability and mechanical properties at high temperature and method for producing the same
JP4562280B2 (en) * 2000-12-25 2010-10-13 日新製鋼株式会社 Ferritic stainless steel with excellent workability and small in-plane anisotropy and method for producing the same
EP1219719B1 (en) * 2000-12-25 2004-09-29 Nisshin Steel Co., Ltd. A ferritic stainless steel sheet good of workability and a manufacturing method thereof
JP3504655B2 (en) * 2001-12-06 2004-03-08 新日本製鐵株式会社 Ferritic stainless steel sheet excellent in press formability and workability and manufacturing method thereof
JP3995978B2 (en) * 2002-05-13 2007-10-24 日新製鋼株式会社 Ferritic stainless steel for heat exchanger
JP2005146345A (en) * 2003-11-14 2005-06-09 Nippon Steel & Sumikin Stainless Steel Corp Ferritic stainless steel superior in oxidation resistance
JP4241431B2 (en) * 2004-02-26 2009-03-18 Jfeスチール株式会社 Ferritic stainless steel
JP2005264269A (en) * 2004-03-19 2005-09-29 Nisshin Steel Co Ltd Ferritic stainless steel having excellent toughness in weld zone
JP4304109B2 (en) * 2004-04-02 2009-07-29 新日鐵住金ステンレス株式会社 Ferritic stainless steel for automotive exhaust systems with excellent thermal fatigue properties

Also Published As

Publication number Publication date
KR20080038218A (en) 2008-05-02
WO2008004506A1 (en) 2008-01-10
US20100218856A1 (en) 2010-09-02
JP2008144263A (en) 2008-06-26
CN101346487B (en) 2012-07-04
EP2036994A1 (en) 2009-03-18
CN101346487A (en) 2009-01-14
EP2036994A4 (en) 2011-04-20
EP2036994B1 (en) 2012-01-04

Similar Documents

Publication Publication Date Title
JP5546911B2 (en) Ferritic stainless steel sheet with excellent heat resistance and workability
JP5297630B2 (en) Ferritic stainless steel plate with excellent heat resistance
KR100727497B1 (en) Ferritic stainless steel sheet excellent in formability and method for production thereof
JP5274074B2 (en) Heat-resistant ferritic stainless steel sheet with excellent oxidation resistance
JP4702493B1 (en) Ferritic stainless steel with excellent heat resistance
JP5546922B2 (en) Ferritic stainless steel sheet with excellent heat resistance and workability and method for producing the same
JP5709875B2 (en) Heat-resistant ferritic stainless steel sheet with excellent oxidation resistance
WO2013146815A1 (en) Heat-resistant cold rolled ferritic stainless steel sheet, hot rolled ferritic stainless steel sheet for cold rolling raw material, and methods for producing same
JP5025671B2 (en) Ferritic stainless steel sheet excellent in high temperature strength and method for producing the same
JP6851269B2 (en) Manufacturing method of ferritic stainless steel sheets, ferritic stainless steel members for steel pipes and exhaust system parts, and ferritic stainless steel sheets
WO2012133573A1 (en) Ferritic stainless steel sheet having excellent heat resistance and processability, and method for producing same
WO2011111871A1 (en) Highly oxidation-resistant ferrite stainless steel plate, highly heat-resistant ferrite stainless steel plate, and manufacturing method therefor
JP5846950B2 (en) Ferritic stainless steel hot-rolled steel sheet and method for producing the same, and method for producing ferritic stainless steel sheet
JP5904306B2 (en) Ferritic stainless steel hot-rolled annealed steel sheet, manufacturing method thereof, and ferritic stainless steel cold-rolled annealed steel sheet
JP5208450B2 (en) Cr-containing steel with excellent thermal fatigue properties
KR20220073804A (en) Ferritic stainless steel sheet, manufacturing method thereof, and ferritic stainless steel member
JP5677819B2 (en) Ferritic stainless steel plate with excellent oxidation resistance
US20060225820A1 (en) Ferritic stainless steel sheet excellent in formability and method for production thereof
CN111954724B (en) Ferritic stainless steel sheet, method for producing same, and ferritic stainless steel member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130220

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160301

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5208450

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250