JP4562280B2 - Ferritic stainless steel with excellent workability and small in-plane anisotropy and method for producing the same - Google Patents

Ferritic stainless steel with excellent workability and small in-plane anisotropy and method for producing the same Download PDF

Info

Publication number
JP4562280B2
JP4562280B2 JP2000392911A JP2000392911A JP4562280B2 JP 4562280 B2 JP4562280 B2 JP 4562280B2 JP 2000392911 A JP2000392911 A JP 2000392911A JP 2000392911 A JP2000392911 A JP 2000392911A JP 4562280 B2 JP4562280 B2 JP 4562280B2
Authority
JP
Japan
Prior art keywords
less
mass
plane
stainless steel
ferritic stainless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000392911A
Other languages
Japanese (ja)
Other versions
JP2002194507A (en
Inventor
学 奥
佳幸 藤村
芳明 堀
敏郎 名越
保利 國武
壮郎 冨田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nippon Steel Nisshin Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Nisshin Co Ltd filed Critical Nippon Steel Nisshin Co Ltd
Priority to JP2000392911A priority Critical patent/JP4562280B2/en
Priority to DE60105955T priority patent/DE60105955T2/en
Priority to ES01129311T priority patent/ES2230227T3/en
Priority to EP01129311A priority patent/EP1219719B1/en
Priority to US10/027,850 priority patent/US6673166B2/en
Priority to KR1020010084112A priority patent/KR100799240B1/en
Priority to CNB011369132A priority patent/CN1172017C/en
Publication of JP2002194507A publication Critical patent/JP2002194507A/en
Priority to US10/695,185 priority patent/US7094295B2/en
Application granted granted Critical
Publication of JP4562280B2 publication Critical patent/JP4562280B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は、自動車用鋼板や各種成形素材等に供される加工性に優れ異方性の小さいフェライト系ステンレス鋼に関するものである。さらに具体的には、平均塑性ひずみ比(r−)が1.2以上、異方度(△r)が0.5以下である加工性に優れた異方度の小さいフェライト系ステンレス鋼に関するものである。
なお、本発明の鋼は、熱延鋼帯もしくは熱延鋼板、冷延鋼帯もしくは冷延鋼板、あるいは鋼管の形で市場に供給されるが、本発明においてはこれらを鋼と総称する。
【0002】
【従来の技術】
近年、NbやTi等でCやNを固定し、耐食性や耐熱性を向上させたフェライト系ステンレス鋼が多方面で使用されている。例えば自動車用鋼板では、排ガス経路部材にこれらのステンレス鋼が多く使用されている。耐食性が要求されるセンターパイプやマフラー等にはNbやTiの添加によって鋭敏化を抑制し耐粒界腐食感受性を高めた鋼として、SUS409L、SUS436L、SUS436J1L等の鋼やその類似鋼種が使用されている。また、耐熱性が要求されるエキゾーストマニホールドやフロントパイプ等にはNbやTiをCやNとの化学量論組成以上添加し固溶状態の余剰Nbによる高温高強度を図った鋼として、SUS430LX、SUS430J1L、SUS444等の鋼やその類似鋼種が使用されている。
【0003】
一方、自動車排ガス経路部材は省スペースや排気効率向上のために、より複雑な構造になりつつある。これに伴って、プレス成形や管の成形時の構造が複雑になり、厳しい加工が施される傾向にある。その結果、上述したフェライト系ステンレス鋼に対しては、より高い成形性が要求されている。この傾向は、各種成形用品についても同様であり、機能性や意匠性を高めるために、形状の複雑化に伴い高加工化する傾向にある。
【0004】
フェライト系ステンレス鋼の成形性向上を目的とした研究開発は、これまでにも数多く行われてきた。その手法としては、成分の調整と製造方法の適正化に大別される。成分の調整に関しては、炭素および窒素の低減と比較的多量のTiやNb等の炭窒化物形成元素の添加とを組み合わせた方法(例えば特公昭51−29694号公報、特公昭51−35369号公報)の他に、Al、B、Cu等の元素を添加する方法およびこれらを複合添加する方法等が多数開示されている。
TiやNbの添加は、上述した自動車排ガス経路部材の耐食性や耐熱性を確保するという点で、使用環境中で性能向上と成形性向上の両者を兼ね備えた手法であると言える。
しかし、TiやNbの添加は、深絞り性の指標となるr値(r−)の向上には効果があるものの、r値の面内異方性(△r)が大きいという問題があるため、合金元素の添加のみでは厳しい加工に適用可能な成形性を有しているとは必ずしも言えない。
【0005】
製造方法の適正化による加工性改善の手法に関しても、製鋼工程から冷延焼鈍工程までにわたり、従来から数多くの方法が提案されている。例えば、製鋼ではスラブの鋳造組織の等軸晶化、熱延では熱間圧延開始温度の低温化、圧延中の均熱保持、仕上げ温度の低温化、巻取り温度の低温化等の手法であり、さらに、これらの圧延温度と圧下率を種々組み合わせたり、熱間圧延時のロールとの摩擦係数を適正化する手法も提案されている。これらは、いずれも再結晶集合組織に悪影響を及ぼすといわれる鋳造時の凝固組織を分断することを主目的とするものである。
【0006】
また、熱延以降の工程において、冷間圧延率の上昇により、(r−)値および(△r)値の双方が改善されること、このためにはTi添加鋼では60%以上、好ましくは70〜90%の冷間圧延率が必要であることが古くから知られている(例えば日刊工業新聞社発行、ステンレス協会編、ステンレス鋼便覧(1995発行)、p935)。この他にも、2回冷延2回焼鈍を施し、その際に冷延率の組み合わせや焼鈍条件を種々組み合わせたり、圧延ロール径を大きくする手法も提案されている。
【0007】
これらの製造方法による加工性の改善は、SUS430鋼を中心に微量の合金元素を添加した鋼、特にSUS430にAlやTiを添加した鋼に対し、様々な形で提案されている。ところが、上述した耐食または耐熱用途に用いられる、TiやNbを添加した鋼に関する製造方法の提案は比較的少なく、いずれも「TiまたはNbのいずれか一方または双方」といった形で規定されているものが散見される程度である(特公平6−17519号公報、特開平8−311542号公報)。
【0008】
これらの方法は、通常の製造工程以外に何らかの手段を講じるか、製造工程そのものを変更しなければならないため、製造コストが増大し、最終的には製品のコストアップとなって現れる可能性がある。また大部分は、製品板厚が0.7〜0.8mmで詳細に検討されており、製品板厚1.0mm以上の加工性については言及されていない。特に、上述した製造方法を板厚2.0mm前後の製品(自動車排ガス経路部材には比較的多く使用されている)に適用する場合、冷間圧延率を70%以上とするためには、熱延鋼帯の板厚を6mm以上とする必要がある。この場合、熱延鋼帯の通板性(低温靭性や曲げ性)に十分配慮するとともに、冷間圧延の負荷が大きくなるため、製造コストの上昇を避け得ない。
【0009】
【発明が解決しようとする課題】
以上のように、TiやNbを含有するフェライト系ステンレス鋼において、製品板厚が1.0mm以上であっても製造工程の追加や製造コストの上昇がなく、優れた加工性および面内異方性を有する鋼の開発が望まれていた。
本発明は、このような問題を解消すべく案出されたものであり、耐食性や耐熱性に有効な合金元素の低減もしくは特殊元素の添加を行うことなしに、また製品板厚の制約をさほど受けることなしに、加工性および面内異方性に優れたNb含有フェライト系ステンレス鋼およびその製造方法を提供することを目的とするものである。
【0010】
【課題を解決するための手段】
本発明の加工性に優れ面内異方性の小さいフェライト系ステンレス鋼は、その目的を達成するため、質量%で、C:0.03%以下、N:0.03%以下、Si:2.0%以下、Mn:2.0%以下、Ni:0.6%以下,Cr:9〜35%、Nb:0.15〜0.80%を含有し、必要に応じてTi:0.5%以下、Mo:3.0%以下、Cu:2.0%以下、Al:6.0%以下の1種または2種以上を含み、残部がFeおよび不可避的不純物からなり、かつ加熱により一旦析出させた微細析出物を最終焼鈍によりマトリックス中に固溶させて最終焼鈍後に粒径0.5μm以下の析出物を0.5質量%以下にするとともに、板厚の1/4深さにおける圧延面の結晶方位を下式(a)で定義する積分強度比で2.0以上となるようにしたものである。
(a)積分強度比=(I(222)/I0(222))/(I(200)/I0(200)
(222)、I(200):供試材のX線回折による(222)面、(200)面の面反射強度
0(222)、I0(200):無方向試料のX線回折による(222)面、(200)面の面反射強度
【0011】
【課題を解決するための手段】
本発明の加工性に優れ面内異方性の小さいフェライト系ステンレス鋼は、その目的を達成するため、質量%で、C:0.03%以下、N:0.03%以下、Si:2.0%以下、Mn:2.0%以下、Ni:0.6%以下,Cr:9〜35%、Nb:0.15〜0.80%を含有し、必要に応じてTi:0.5%以下、Mo:3.0%以下、Cu:2.0%以下、Al:6.0%以下の1種または2種以上を含み、残部がFeおよび不可避的不純物からなり、かつ加熱により一旦析出させた微細析出物を最終焼鈍によりマトリックス中に固溶させて最終焼鈍後に粒径0.5μm以下の析出物を0.5質量%以下にするとともに、板厚の1/4深さにおける圧延面の結晶方位を下式(a)で定義する積分強度比で2.0以上となるようにしたものである。
(a)積分強度比=(I(222)/I0(222))/(I(200)/I0(200)
(222)、I(200):供試材のX線回折による(222)面、(200)面の面反射強度I0(222)、I0(200):無方向試料のX線回折による(222)面、(200)面の面反射強度【0011】また、前記(a)で定義される積分強度比を2.0以上にするためには、最終焼鈍前の、加熱により一旦析出させた微細析出物の量を0.4〜1.2質量%の範囲にしなければならない。さらに本発明の製造方法は、その目的を達成するため、最終焼鈍前のいずれかの工程において、450℃以上750℃以下の温度範囲、20h以下の時間で析出処理を行い、さらに最終焼鈍工程において、1000〜1100℃の温度範囲で1min以下の熱処理を施すことを特徴とするものである。
【0012】
【実施の態様】
本発明者等は、上記目的を達成するために、NbまたはTiのいずれかもしくは双方を、CおよびNを化学量論上炭窒化物として固定する量以上含むフェライト系ステンレス鋼を用いて、一般的にはr値がさほど上昇しないとされる50〜60%程度の冷間圧延率を前提として、加工性に及ぶす成分および製造方法の影響を詳細に検討した。その結果、Nbを含有するフェライト系ステンレス鋼において、従来の製造方法で作成した熱延板を用い、最終焼鈍前のいずれかの工程において、微細な析出物を生成させた後に最終焼鈍を行うことによって、極めて高い加工性および小さい面内異方性を有する鋼が得られるとの基礎的な知見を得た。
【0013】
また、このようなNb含有フェライト系ステンレス鋼に、適正量のTi、Mo、Cu、Alを添加することにより、耐食性や耐熱性を向上させるとともに、加工性や面内異方性の向上が可能なことを見出した。さらに、微細な析出物の生成条件および最終焼鈍条件の適正範囲等、工業上利用可能な製造条件をも明らかにした。本発明は、これらの知見に基づき完成したものである。以下に、発明の実施の態様を実験結果に基づいて説明する。
【0014】
図1は、14Cr−1Mn―1Si―0.4Nb−0.1Cu鋼の板厚4.5mmの熱延板を用いて、種々の温度にて、30secの焼鈍を行い微細析出物を生成させた後に、板厚2.0mmまで冷間圧延を施し、1040℃で焼鈍を行った試料の加工性を、最終焼鈍前に存在する粒径0.5μm以下の析出物総量で整理したものである。なお、加工性は、実施例にて後述する、平均r値(r−)および面内異方性(△r)で評価しており、図中には(a)式で示される積分強度比も併記している。
【0015】
図1から明らかなように、粒径0.5μm以下の析出物総量が約0.4質量%以上となると、平均r値が大きくなり、面内異方性が小さくなることがわかる。
また、これに対応して、式(a)で定義される積分強度比は大きくなり、良好な加工性を有する領域ではその値が2.0以上となることがわかる。一方、析出物の総量が約1.2質量%を超えると、平均r値は低下しないものの、面内異方性が急激に大きくなるとともに、積分強度比が小さくなることがわかる。これらの原因は、現時点では必ずしも明らかではないが、熱延板を再結晶温度未満の低温で焼鈍することにより、Nb系の微細析出物が均一に分散し、この析出物が最終焼鈍時の再結晶の際に、加工性に悪影響を及ぼすとされる(100)面集合組織の発達を抑制するとともに、加工性の向上に有利な(111)面集合組織を発達させるものと考えられる。
【0016】
一方、析出物が多量に生成すると、いずれの方位の再結晶集合組織も析出物のピン止め効果により成長し難くなり、結果として(111)面集合組織の発達が他の方位の発達する度合いと大きな差がなくなるためと推察される。なお、本成分系で熱延板の加工時に生成する析出物は、Fe2Nbを主体とするLaves相およびFe3Nb3Cを主体とする炭窒化物であることを別の実験で確認している(材料とプロセス(1992)、1935に記載)。
【0017】
以上の結果から、良好な加工性、すなわち平均r値(r−)で1.2以上、面内異方性(△r)で0.5以下のフェライト系ステンレス鋼を得るためには、式(a)で定義される積分強度比を2.0以上とすることが必要である。また、この積分強度比を得るためには、最終焼鈍前に粒径0.5μm以下の微細析出物を総量で0.4〜1.2%生成させておく必要がある。なお、本成分系においては、析出物が脆性破壊の起点となることが知られていることから、靭性をさほど重視しない用途に対しては最終焼鈍後の析出物総量を規定する必要がないものの、汎用性を考慮した場合には少ない方が好ましい。靭性を確保するためには、最終焼鈍において再結晶集合組織の制御に用いた微細析出物を固溶させる必要があり、最終焼鈍後には、粒径0.5μm以下の析出物は総量で0.5質量%以下になるようにした。
【0018】
以下に、本発明における各合金成分の含有量およびその範囲に限定した理由を述べる。
CおよびN:それぞれ0.03質量%以下
CおよびNは、一般的にはクリープ強度等の高温強度に対して有効な元素とされているが、含有量が多くなると、耐食性、酸化特性、加工性ならびに靭性が低下するばかりでなく、CおよびNを炭窒化物として固溶する元素Nbを多量に添加しなければならなくなる。したがって、本成分系においては、CおよびNは低い方が好ましく、それぞれ0.03質量%以下とする。好ましいCおよびNの含有量の範囲は、0.02質量%以下である。
【0019】
Si:2.0質量%以下
Siは、高温酸化特性の改善に非常に有効な元素である。しかし、過剰に含有させると硬さが上昇し、加工性および靭性が低下することから、Siの含有範囲は、2.0質量%以下とする。好ましいSi含有量の範囲は、1.5質量%以下である。
【0020】
Mn:2.0質量%以下
Mnは、フェライト系ステンレス鋼の高温酸化特性、特にスケール剥離性を改善する作用を有するが、過剰に含有させると加工性および溶接性に問題が生じてくる。また、オーステナイト相安定化元素であるため、過剰な含有によってマルテンサイト相が生成すると、加工性の劣化を招く。そこで、Mnの含有量は、2.0質量%以下とした。好ましいMn含有量の範囲は1.5質量%以下である。
【0021】
Ni:0.6質量%以下
Niは、オーステナイト相安定化元素であるため、フェライト系ステンレス鋼に過剰に含有させるとMnと同様にマルテンサイト相を生成し、加工性が低下する。また、原料価格も高いため、過剰な添加は避けるべきである。そこでNiは0.6質量%以下とした。好ましいNi含有量の範囲は、0.5質量%以下である。
【0022】
Cr:9〜35質量%
Crは、フェライト相を安定させるとともに、高温材料に重要視される耐酸化性、耐食材料に重要視される耐孔食性や耐候性の改善に不可欠な元素である。耐熱性や耐食性の面からはCrは高いほど好ましいが、過剰に添加すると鋼の脆化を招き、また硬さの上昇によって加工性も劣化する。したがって、Crの範囲は9質量%以上35質量%以下とする。好ましいCr含有量の下限は12質量%、上限は19質量%である。
【0023】
Nb:0.15〜0.80質量%
Nbは、一般的にはCおよびNを炭窒化物として固定する作用を持つとともに、炭窒化物を形成した残りのNbは材料の高温強度の上昇に有効であることが知られている。本発明においては、Nbは再結晶集合組織を制御する上で必要不可欠な元素である。微細な析出物を生成させるためには、少なくとも熱延板には固溶状態のNbが存在することが必要となる。このためには、CおよびNを炭窒化物(この場合、NbCまたはNbNであり、上述したFe3Nb3Cとは異なり、熱延板に既に存在する粒径1μm程度もしくはそれ以上の比較的粗大なものを指す)として固定する量以上の添加が必要であり、Nbの含有範囲の下限は0.15質量%とした。一方、Nbを過剰に添加すると析出物を多く生成し、その結果、靭性を低下させる。また鋼の製造コストの上昇にもつながる。したがって、Nbの過剰な添加は好ましくなく、Nb含有量の範囲の上限は0.80質量%以下とした。好ましいNb含有量の下限は0.20質量%、上限は0.50質量%である。
【0024】
Ti:0.5質量%以下
Tiは、Nbと同様にCおよびNを炭窒化物として固定することにより、鋼の耐粒界腐食性を改善することが知られている。しかし、Tiの過剰な添加は、鋼の靭性や加工性を低下させるとともに、製品の表面性状の悪影響を及ぼす。したがって、Ti含有量の範囲は0.5質量%以下とした。好ましいTi含有量の範囲は0.3質量%以下である。
【0025】
Mo:3.0質量%以下
Moは、鋼の耐食性および耐熱性(高温強度および耐高温酸化性)を向上させる元素であり、より高い特性(耐食性もしくは耐熱性)が必要な場合に適宜添加される。しかし、多量な添加は、鋼の熱間加工性、加工性や靭性を低下させるとともに、製造コストの上昇につながる。したがって、Moの添加は3.0質量%以下とした。好ましいMo含有量の範囲は、2.5質量%以下である。
【0026】
Cu:2.0質量%以下
Cuは、耐食性および高温強度を改善するとともに、抗菌性を付与することが可能な元素であり、使用環境に応じて適宜添加することが可能である。しかし、過剰の添加は、鋼の熱間加工性を低下させるとともに、加工性および靭性も劣化する。したがって、Cuの範囲は2.0質量%以下とした。好ましいCu含有量の範囲は、1.5質量%以下である。
【0027】
Al:6.0質量%以下
Alは、Siと同様にフェライト系ステンレス鋼の耐高温酸化特性を改善する元素として知られる。しかし、Alを過剰に添加すると硬さが上昇し、加工性および靭性が低下することから、Alの範囲は、6.0質量%以下とする。好ましいAl含有量の範囲は、4.0質量%以下である。
【0028】
上述以外の合金元素については、本発明では特に規制しないが、一般的な不純物元素であるP、S、O等は、可能な限り低減することが好ましい。より好ましい範囲としては、Pの上限は0.04質量%以下、Sの上限は0.03質量%以下,Oの上限は0.02質量%以下であるが、上述した加工性や靭性を更に高いレベルで確保するためには、これらの合金元素の上限を更に厳密に規定しても構わない。また、一般に高温強度を改善する元素として知られているTa、W、V、Coや、耐高温酸化性を改善する元素として知られているY、REMや、熱間加工性や靭性を改善する元素として知られているCa、Mg、B等の元素についても本発明では規制しないが、必要に応じて適宜添加することが可能である。
なお、Ta、W、V、Coは3.0質量%以下、Y、REMは0.5質量%以下、Ca、Mg、Bは0.05質量%以下の添加が望ましい。
【0029】
次に、本発明で規定する製造条件の範囲について説明する。
析出処理
析出処理は、本発明の製造条件において最も重要であり、製品(冷延焼鈍板)を得るための最終焼鈍前の何れかの工程において行う必要がある。上述したように、良好な加工性および面内異方性を得るためには、最終焼鈍前に、粒径0.5μm以下の微細析出物を総量で0.4質量%以上生成させておく必要がある。450℃未満であると析出物の生成はほとんど認められず、750℃を超えると粒径が0.5μmを超える析出物が生成しやすくなるため、析出物生成のために熱処理温度は450℃以上750℃以下とした。
【0030】
熱処理時間は、析出物の成長を抑制するために、20h以下とした。なお、析出物を生成させるための温度と時間の組み合わせについては特に規定しないが、より安定した特性を得るために、下式で定義するλの値が13以上19以下の範囲になるように調整することが好ましい。
λ=(T+273)×(20+log t)/1000
ここで、T:析出処理温度(℃)、t:析出時間(h)
【0031】
最終焼鈍処理
製品とするための最終焼鈍温度は、再結晶温度未満であると圧延組織が残留するために面内異方性を小さくすることが非常に困難になるとともに、前工程で生成させた微細析出物が十分に固溶しないため製品の靭性(特に二次加工性)に劣る。また、焼鈍温度が高すぎると結晶粒が粗大化し十分な靭性を確保できない。したがって、製品とするための最終焼鈍温度は、1000℃以上1100℃以下、焼鈍時間は1min以下とした。
【0032】
この他の製造条件については特に規定しないが、熱延板を再結晶組織とする前に上述した析出処理を施すことが必要となる。例えば、冷延回数が1回もしくは複数回の何れであっても、最終焼鈍以外の工程において再結晶温度までの昇温加熱は避けるべきである。特に冷延回数が複数回にわたる場合は、冷延後の焼鈍工程において、再結晶組織とならないよう再結晶温度よりも低い温度で加工ひずみを除去する必要がある。
【0033】
なお、熱間圧延は、通常実施される800℃以上1250℃以下の温度で実施すれば、圧延中に再結晶することはないため、熱間圧延条件は特に規定しない。
また、熱間圧延後に直ちに水冷して巻き取りを行えば上述した析出物は生成しないため、その後の工程で微細析出物を生成させればよいが、熱間圧延後の冷却速度を調整して微細析出物を生成させた場合には、その後の工程において微細析出物を生成させる加熱処理は必ずしも必要としない。
【0034】
また、本発明では、製品形態については、特に規定していないが、上述したように、従来の技術では困難であった製品板厚1.0mm以上のステンレス鋼板に適用可能なことが特徴である。また。板厚1.0mm未満の鋼板や、さらに、これらの鋼板を所望の形状に加工および溶接(管の成形等も含む)した製品でも、本発明の特性を確保することができる。
【0035】
【実施例】
以下に本発明の実施例を示す。
表1に供試材の化学成分を示した。表中の鋼種番号1〜9は本発明鋼、鋼種番号10は比較鋼、鋼種番号11はSUS409相当鋼、鋼種番号12はSUS436相当鋼である。これらの鋼は、いずれも30kg真空溶解後に板厚40mmのスラブに切り出し、1250℃で2時間の加熱を行い、板厚4.5mmまで熱間圧延を行った後水冷した。得られた熱延板を用いて、種々の条件で板厚2.0mmの冷延焼鈍板を製造し、室温での引張り試験に供した。冷延焼鈍板を得るまでの製造条件を表2、3に示す。表2は本発明例を、表3は比較例を示す。
【0036】

Figure 0004562280
【0037】
Figure 0004562280
【0038】
Figure 0004562280
【0039】
析出物は、仕上げ焼鈍前および仕上げ焼鈍後の板を用いてそれぞれの生成量を求めた。生成量は、電解抽出により析出物以外の母材を溶解した後、残渣重量を測定し、(残渣重量)/(電解前重量−電解後重量)にて析出総量を求めた。結晶方位は、板厚の1/4まで切削後研磨仕上げした試料を用い、X線回折により(222)面および(200)面の面反射強度を求めるとともに、無方向資料を用いて同様に(222)面および(200)面の面反射強度を求めた。これらの面反射強度を用い、上述した式(a)で定義される積分強度比を算出し、結晶方位の指標とした。
【0040】
成形性は、張り出し成形性を指標として伸びを、深絞り成形性の指標としてのr−値および△r値をそれぞれ引張り試験にて求め、評価した。それぞれの測定は以下の方法によった。まず、鋼板の圧延方向、圧延方向に対し45°の方向、圧延方向に対し90°の方向からJIS13B号試験片を採取した。その後、JISZ2254(薄板金属材料の塑性ひずみ比試験方法)に準拠し、15%の単軸引張り予ひずみを与えたときの横ひずみおよび板厚ひずみの比から各方向の塑性ひずみ比を測定し、平均塑性ひずみ比(r−)および異方性(△r)を次式によって求めた。
r−=(rL+2rD+rT)/4
△r=(rL−2rD+rT)/2
ただし、rL、rDおよびrTは、それぞれ圧延方向、圧延方向に対して45°の方向、および圧延方向に対して90°の方向の塑性ひずみ比を示す。
靭性は、JISZ2242(金属材料衝撃試験方法)に準拠してVノッチシャルピー衝撃試験を−75〜0℃の温度範囲で行ない、シャルピー衝撃値より延性−脆化繊維温度を求めた。
これらの結果をまとめて表4,5に示す。表4は本発明例を、表5は比較例を示す。
【0041】
Figure 0004562280
【0042】
Figure 0004562280
【0043】
本発明にしたがった発明例試験番号1〜15の鋼は、最終焼鈍前の析出量および鋼板の結晶方位(積分強度比)が適正範囲にあるため、従来の手法で製造した比較例試験番号19よりも加工性(r−)および面内異方性(△r)に優れている。また、製品の靭性も延性靭性遷移温度が−50℃以下であり、実用上大きな問題にならないレベルであると言える。これらのことから、本発明によれば、微細析出物を利用することによる加工性の改善効果が顕著に現れていることがわかる。
【0044】
試験番号16〜18は比較鋼の試験結果を示している。また、試験番号19〜26は、成分は本発明に含まれるものの製造方法が本発明から外れている比較例を示すものである。
試験番号16は、Nbを本発明で規定される量よりも多く含むため、比較的良好な加工性が得られているものの、靭性に劣っている。比較例試験番号17および18は、Nbを含まない鋼であるため、良好な靭性は得られているものの、仕上げ焼鈍前に加熱処理を行っても本発明で規定する積分強度比を満足しないために、加工性および面内異方性に劣っている。
【0045】
比較例試験番号19、20は、熱延板の加熱を本発明製造方法で規定する加熱温度よりも高い1040℃で行っているために、この時点で再結晶組織となっており、その後に微細析出物を生成させる加熱を行っても、加工性および面内異方性は改善されない。比較例試験番号21および24は、熱延板もしくは冷延板の加熱において、温度が高すぎるために析出物が多量に生成する結果,本発明で規定する積分強度比を満足せず、面内異方性に劣っている。比較例試験番号22および23は、熱延板もしくは冷延板の加熱において、温度が低すぎるために析出物の生成量が少なく、本発明で規定する積分強度比を満足しなくなり、加工性に劣っている。さらに、仕上げ焼鈍において、焼鈍温度が低い比較例試験番号25は析出物の未固溶により、また焼鈍温度が高い比較例試験番号26および焼鈍時間が長い比較例試験番号27は結晶粒の粗大化により、それぞれの冷延焼鈍板の靭性が劣っている。
【0046】
【発明の効果】
以上に説明したように、本発明においては、各種合金元素の含有量、最終焼鈍後の析出物の生成量および結晶方位(積分強度比)を厳密に規定しているため、耐熱性、耐食性および靭性といった基本的な特性を大きく損なわずに、しかも板厚1〜2mmといった比較的厚い製品においても、優れた加工性および面内異方性を有するフェライト系ステンレス鋼が提供される。
このフェライト系ステンレス鋼は、優れた加工性、面内異方性、耐食性および靭性を有するため、自動車排ガス経路用部材をはじめとする各種成形品として好適に使用できる。
【図面の簡単な説明】
【図1】 冷延焼鈍板の加工性および面内異方性に及ぼす、最終焼鈍前に存在する微細析出物の量の影響を示す図。[0001]
[Industrial application fields]
The present invention relates to a ferritic stainless steel having excellent workability and low anisotropy used for automobile steel sheets and various forming materials. More specifically, the present invention relates to a ferritic stainless steel with excellent workability having an average plastic strain ratio (r−) of 1.2 or more and an anisotropy (Δr) of 0.5 or less and having a low degree of anisotropy. It is.
The steel of the present invention is supplied to the market in the form of a hot-rolled steel strip or a hot-rolled steel plate, a cold-rolled steel strip or a cold-rolled steel plate, or a steel pipe. In the present invention, these are collectively referred to as steel.
[0002]
[Prior art]
In recent years, ferritic stainless steels in which C and N are fixed with Nb, Ti or the like to improve corrosion resistance and heat resistance have been used in various fields. For example, in a steel plate for automobiles, many of these stainless steels are used for exhaust gas passage members. For steel pipes and mufflers that require corrosion resistance, steels such as SUS409L, SUS436L, and SUS436J1L, and similar steel types, are used as steels that suppress sensitization and increase intergranular corrosion resistance by adding Nb and Ti. . In addition, SUS430LX and SUS430J1L are steels that have high heat and high strength by adding Nb or Ti in excess of the stoichiometric composition with C or N to exhaust manifolds and front pipes that require heat resistance and are in a solid solution state. Steel such as SUS444 and similar steel types are used.
[0003]
On the other hand, automobile exhaust gas path members are becoming more complicated structures in order to save space and improve exhaust efficiency. Along with this, the structure at the time of press molding and pipe molding becomes complicated, and there is a tendency that severe processing is performed. As a result, higher formability is required for the ferritic stainless steel described above. This tendency is the same also about various molded articles, and in order to improve functionality and designability, it exists in the tendency which becomes highly processed with the complexity of a shape.
[0004]
Many researches and developments aimed at improving the formability of ferritic stainless steel have been conducted so far. The method is roughly divided into adjustment of components and optimization of manufacturing methods. Regarding the adjustment of the components, a method combining carbon and nitrogen reduction with the addition of a relatively large amount of a carbonitride-forming element such as Ti or Nb (for example, Japanese Patent Publication Nos. 51-29694 and 51-35369). In addition to the above, many methods for adding elements such as Al, B, and Cu, and methods for adding these in combination are disclosed.
The addition of Ti or Nb can be said to be a technique that combines both performance improvement and formability improvement in the use environment in terms of securing the corrosion resistance and heat resistance of the automobile exhaust gas path member described above.
However, although the addition of Ti or Nb is effective in improving the r value (r−), which is an index of deep drawability, there is a problem that the in-plane anisotropy (Δr) of the r value is large. However, the addition of alloy elements alone does not necessarily have formability applicable to severe processing.
[0005]
Regarding methods for improving workability by optimizing manufacturing methods, many methods have been proposed from the steelmaking process to the cold rolling annealing process. For example, in steelmaking, the slab cast structure is equiaxed, and in hot rolling, the hot rolling start temperature is lowered, the temperature is kept constant during rolling, the finishing temperature is lowered, and the coiling temperature is lowered. Furthermore, there are also proposed methods for combining these rolling temperatures and rolling reductions in various ways, or optimizing the coefficient of friction with the roll during hot rolling. These are mainly intended to sever the solidification structure during casting, which is said to have an adverse effect on the recrystallized texture.
[0006]
Further, in the process after hot rolling, both the (r−) value and the (Δr) value are improved due to an increase in the cold rolling rate. For this purpose, the Ti-added steel is preferably 60% or more, preferably It has long been known that a cold rolling rate of 70 to 90% is necessary (for example, published by Nikkan Kogyo Shimbun, edited by the Stainless Steel Association, Stainless Steel Handbook (published in 1995), p935). In addition to this, there have also been proposed methods in which two cold rolling and two annealing processes are performed, and various combinations of the cold rolling rates and annealing conditions are combined at that time, or the diameter of the rolling roll is increased.
[0007]
Improvements in workability by these production methods have been proposed in various forms for steel obtained by adding a small amount of alloying elements, particularly SUS430 steel, and particularly for steel obtained by adding Al or Ti to SUS430. However, there are relatively few proposals for manufacturing methods relating to steels added with Ti or Nb, which are used for the above-mentioned corrosion resistance or heat resistance applications, both of which are defined in the form of “one or both of Ti and Nb” (See Japanese Patent Publication No. 6-17519, Japanese Patent Laid-Open No. 8-311542).
[0008]
These methods must take some measure other than the normal manufacturing process or change the manufacturing process itself, which increases the manufacturing cost and may appear as an increase in the cost of the product. . In most cases, the product plate thickness is 0.7 to 0.8 mm and has been studied in detail, and no mention is made of workability of a product plate thickness of 1.0 mm or more. In particular, when the manufacturing method described above is applied to a product having a plate thickness of around 2.0 mm (which is relatively used for automobile exhaust gas path members), in order to achieve a cold rolling rate of 70% or more, It is necessary that the thickness of the steel strip is 6 mm or more. In this case, sufficient consideration is given to the plateability (low temperature toughness and bendability) of the hot-rolled steel strip, and the load of cold rolling becomes large, so an increase in manufacturing cost cannot be avoided.
[0009]
[Problems to be solved by the invention]
As described above, in ferritic stainless steel containing Ti and Nb, there is no additional manufacturing process or increase in manufacturing cost even if the product plate thickness is 1.0 mm or more, and excellent workability and in-plane anisotropy The development of steel having the properties has been desired.
The present invention has been devised to solve such problems, and without restricting the alloying elements effective for corrosion resistance and heat resistance or adding special elements, and restricting the thickness of the product. An object of the present invention is to provide an Nb-containing ferritic stainless steel excellent in workability and in-plane anisotropy and a method for producing the same without being subjected to this.
[0010]
[Means for Solving the Problems]
The ferritic stainless steel having excellent workability and small in-plane anisotropy according to the present invention, in order to achieve the object, C: 0.03% or less, N: 0.03% or less, Si: 2 in mass%. 0.0% or less, Mn: 2.0% or less, Ni: 0.6% or less, Cr: 9 to 35%, Nb: 0.15 to 0.80%, and Ti: 0.005% as necessary. 5% or less, Mo: 3.0% or less, Cu: 2.0% or less, Al: 6.0% or less, including one or more, the balance is Fe and inevitable impurities, and by heating The fine precipitate once precipitated is solid-dissolved in the matrix by final annealing, and after the final annealing, the precipitate having a particle size of 0.5 μm or less is made 0.5 mass% or less, and at a depth of ¼ of the plate thickness. The crystal orientation of the rolled surface is 2.0 or more in terms of the integrated intensity ratio defined by the following formula (a). It is.
(A) Integrated intensity ratio = (I(222)/ I0 (222)) / (I(200)/ I0 (200))
I(222), I(200): Surface reflection intensity of (222) plane and (200) plane by X-ray diffraction of specimen
I0 (222), I0 (200): Surface reflection intensity of (222) plane and (200) plane by X-ray diffraction of non-directional sample
[0011]
[Means for Solving the Problems]
  The ferritic stainless steel having excellent workability and small in-plane anisotropy according to the present invention, in order to achieve the object, C: 0.03% or less, N: 0.03% or less, Si: 2 in mass%. 0.0% or less, Mn: 2.0% or less, Ni: 0.6% or less, Cr: 9 to 35%, Nb: 0.15 to 0.80%, and Ti: 0.005% as necessary. 5% or less, Mo: 3.0% or less, Cu: 2.0% or less, Al: 6.0% or less, including one or more, the balance is Fe and inevitable impurities, and by heating The fine precipitate once precipitated is solid-dissolved in the matrix by final annealing, and after the final annealing, the precipitate having a particle size of 0.5 μm or less is made 0.5 mass% or less, and at a depth of ¼ of the plate thickness. The crystal orientation of the rolled surface is 2.0 or more in terms of the integrated intensity ratio defined by the following formula (a). It is.
(A) Integrated intensity ratio = (I(222)/ I0 (222)) / (I(200)/ I0 (200))
I(222), I(200): Surface reflection intensity I of (222) plane and (200) plane by X-ray diffraction of specimen0 (222), I0 (200): Surface reflection intensity of (222) plane and (200) plane by X-ray diffraction of non-directional sample [0011] In order to make the integral intensity ratio defined in (a) above 2.0, Before annealing, the amount of fine precipitates once deposited by heating must be in the range of 0.4 to 1.2% by mass. Furthermore, in order to achieve the object, the production method of the present invention performs precipitation treatment in a temperature range of 450 ° C. or more and 750 ° C. or less and a time of 20 hours or less in any step before the final annealing, and further in the final annealing step. ,1000A heat treatment for 1 min or less is performed in a temperature range of ˜1100 ° C.
[0012]
Embodiment
In order to achieve the above object, the present inventors generally used ferritic stainless steel containing either or both of Nb and Ti in an amount that fixes C and N as stoichiometric carbonitrides. Specifically, on the premise of a cold rolling rate of about 50 to 60% that the r value does not increase so much, the effects of the components and the manufacturing method on the workability were examined in detail. As a result, in ferritic stainless steel containing Nb, the final annealing is performed after generating fine precipitates in any step before final annealing using a hot-rolled sheet prepared by a conventional manufacturing method. Thus, the basic knowledge that a steel having extremely high workability and small in-plane anisotropy can be obtained was obtained.
[0013]
In addition, by adding appropriate amounts of Ti, Mo, Cu, and Al to such Nb-containing ferritic stainless steel, corrosion resistance and heat resistance can be improved, and workability and in-plane anisotropy can be improved. I found out. Furthermore, the production conditions that can be used industrially, such as the appropriate conditions for the fine precipitate formation conditions and the final annealing conditions, were also clarified. The present invention has been completed based on these findings. Hereinafter, embodiments of the invention will be described based on experimental results.
[0014]
FIG. 1 shows the use of 14Cr-1Mn-1Si-0.4Nb-0.1Cu steel with a thickness of 4.5 mm and annealing at various temperatures for 30 seconds to produce fine precipitates. Later, the workability of the sample which was cold-rolled to a thickness of 2.0 mm and annealed at 1040 ° C. was organized by the total amount of precipitates having a particle size of 0.5 μm or less existing before the final annealing. In addition, the workability is evaluated by an average r value (r−) and an in-plane anisotropy (Δr), which will be described later in Examples, and in the figure, the integrated intensity ratio represented by the equation (a). Is also written.
[0015]
As can be seen from FIG. 1, when the total amount of precipitates having a particle size of 0.5 μm or less is about 0.4 mass% or more, the average r value increases and the in-plane anisotropy decreases.
Correspondingly, the integrated intensity ratio defined by the equation (a) increases, and it can be seen that the value is 2.0 or more in a region having good workability. On the other hand, when the total amount of precipitates exceeds about 1.2% by mass, the average r value does not decrease, but the in-plane anisotropy increases rapidly and the integrated intensity ratio decreases. The cause of this is not necessarily clear at the present time, but by annealing the hot-rolled sheet at a temperature lower than the recrystallization temperature, the Nb-based fine precipitates are uniformly dispersed, and the precipitates are regenerated at the time of final annealing. It is considered that during the crystallization, the development of the (100) plane texture, which is considered to adversely affect the workability, is suppressed, and the (111) plane texture advantageous for improving the workability is developed.
[0016]
On the other hand, when a large amount of precipitates are generated, the recrystallization texture in any orientation becomes difficult to grow due to the pinning effect of the precipitate, and as a result, the degree of development of the (111) plane texture in other orientations It is guessed that there is no big difference. In this component system, the precipitates generated during hot-rolled sheet processing are Fe2Laves phase mainly composed of Nb and FeThreeNbThreeIt has been confirmed by another experiment that the carbonitride is mainly composed of C (described in Materials and Processes (1992) and 1935).
[0017]
From the above results, in order to obtain good workability, that is, a ferritic stainless steel having an average r value (r−) of 1.2 or more and an in-plane anisotropy (Δr) of 0.5 or less, The integrated intensity ratio defined in (a) needs to be 2.0 or more. Further, in order to obtain this integrated intensity ratio, it is necessary to produce 0.4 to 1.2% of fine precipitates having a particle size of 0.5 μm or less before the final annealing. In this component system, since it is known that precipitates are the starting point of brittle fracture, it is not necessary to specify the total amount of precipitates after final annealing for applications where the toughness is not so important. In view of versatility, it is preferable to reduce the number. In order to ensure toughness, it is necessary to dissolve the fine precipitates used for controlling the recrystallized texture in the final annealing, and after the final annealing, the total amount of precipitates having a particle size of 0.5 μm or less is set to 0. It was made to be 5 mass% or less.
[0018]
The reason why the content of each alloy component in the present invention and the range thereof are limited will be described below.
C and N: 0.03% by mass or less
C and N are generally effective elements for high-temperature strength such as creep strength, but as the content increases, not only the corrosion resistance, oxidation characteristics, workability and toughness are reduced, but also C In addition, a large amount of element Nb, which dissolves N and N as carbonitrides, must be added. Therefore, in this component system, C and N are preferably low, and are each 0.03% by mass or less. A preferable range of the C and N content is 0.02% by mass or less.
[0019]
Si: 2.0 mass% or less
Si is an extremely effective element for improving high-temperature oxidation characteristics. However, if the content is excessive, the hardness increases, and the workability and toughness decrease. Therefore, the Si content range is 2.0% by mass or less. The range of preferable Si content is 1.5 mass% or less.
[0020]
Mn: 2.0% by mass or less
Mn has the effect of improving the high-temperature oxidation characteristics of ferritic stainless steel, particularly the scale peelability, but if it is excessively contained, problems arise in workability and weldability. Moreover, since it is an austenite phase stabilization element, when a martensite phase produces | generates by excessive inclusion, it will cause deterioration of workability. Therefore, the Mn content is set to 2.0% by mass or less. A preferable range of the Mn content is 1.5% by mass or less.
[0021]
Ni: 0.6 mass% or less
Since Ni is an austenite phase stabilizing element, if it is excessively contained in ferritic stainless steel, a martensite phase is generated in the same manner as Mn, and workability is reduced. Moreover, since the raw material price is high, excessive addition should be avoided. Therefore, Ni is set to 0.6% by mass or less. The range of preferable Ni content is 0.5 mass% or less.
[0022]
Cr: 9 to 35% by mass
Cr is an element essential for stabilizing the ferrite phase and improving the oxidation resistance important for high-temperature materials and the improvement of pitting corrosion resistance and weather resistance important for corrosion-resistant materials. From the viewpoint of heat resistance and corrosion resistance, Cr is preferably as high as possible, but if added excessively, steel becomes brittle, and the workability deteriorates due to the increase in hardness. Therefore, the Cr range is 9 mass% or more and 35 mass% or less. The lower limit of the preferred Cr content is 12% by mass, and the upper limit is 19% by mass.
[0023]
Nb: 0.15-0.80 mass%
It is known that Nb generally has an effect of fixing C and N as carbonitrides, and the remaining Nb that forms carbonitrides is effective in increasing the high-temperature strength of the material. In the present invention, Nb is an indispensable element for controlling the recrystallization texture. In order to produce fine precipitates, it is necessary that Nb in a solid solution state is present at least in the hot-rolled sheet. For this purpose, C and N are carbonitrides (in this case NbC or NbN,ThreeNbThreeUnlike C, it is necessary to add more than a fixed amount as a relatively coarse particle having a particle diameter of about 1 μm or more already existing in the hot-rolled sheet, and the lower limit of the Nb content range is 0.15 It was set as mass%. On the other hand, when Nb is added excessively, a lot of precipitates are generated, and as a result, the toughness is lowered. It also leads to an increase in steel manufacturing costs. Therefore, excessive addition of Nb is not preferable, and the upper limit of the Nb content range is set to 0.80% by mass or less. The minimum with preferable Nb content is 0.20 mass%, and an upper limit is 0.50 mass%.
[0024]
Ti: 0.5 mass% or less
Ti is known to improve the intergranular corrosion resistance of steel by fixing C and N as carbonitrides in the same manner as Nb. However, excessive addition of Ti reduces the toughness and workability of the steel and adversely affects the surface properties of the product. Therefore, the range of Ti content is 0.5% by mass or less. The range of preferable Ti content is 0.3 mass% or less.
[0025]
Mo: 3.0% by mass or less
Mo is an element that improves the corrosion resistance and heat resistance (high temperature strength and high temperature oxidation resistance) of steel, and is appropriately added when higher properties (corrosion resistance or heat resistance) are required. However, a large amount of addition reduces the hot workability, workability and toughness of steel, and leads to an increase in production cost. Therefore, the addition of Mo is set to 3.0% by mass or less. The range of preferable Mo content is 2.5 mass% or less.
[0026]
Cu: 2.0 mass% or less
Cu is an element capable of improving corrosion resistance and high-temperature strength and imparting antibacterial properties, and can be appropriately added depending on the use environment. However, excessive addition reduces the hot workability of the steel and also degrades the workability and toughness. Therefore, the Cu range is set to 2.0 mass% or less. The range of preferable Cu content is 1.5 mass% or less.
[0027]
Al: 6.0% by mass or less
Al is known as an element that improves the high-temperature oxidation resistance properties of ferritic stainless steel, like Si. However, when Al is added excessively, the hardness is increased, and the workability and toughness are lowered. Therefore, the range of Al is set to 6.0% by mass or less. The range of preferable Al content is 4.0 mass% or less.
[0028]
Although alloy elements other than those described above are not particularly restricted in the present invention, it is preferable to reduce general impurity elements such as P, S, and O as much as possible. As a more preferable range, the upper limit of P is 0.04% by mass or less, the upper limit of S is 0.03% by mass or less, and the upper limit of O is 0.02% by mass or less. In order to ensure a high level, the upper limit of these alloy elements may be specified more strictly. Also, Ta, W, V, Co, which are generally known as elements for improving high-temperature strength, Y, REM, which are known as elements for improving high-temperature oxidation resistance, and hot workability and toughness are improved. Although elements such as Ca, Mg, and B that are known as elements are not regulated in the present invention, they can be appropriately added as necessary.
Note that Ta, W, V, and Co are preferably added at 3.0 mass% or less, Y and REM are added at 0.5 mass% or less, and Ca, Mg, and B are added at 0.05 mass% or less.
[0029]
Next, the range of manufacturing conditions defined in the present invention will be described.
Precipitation treatment
The precipitation treatment is most important in the production conditions of the present invention, and needs to be performed in any step before final annealing for obtaining a product (cold-rolled annealed sheet). As described above, in order to obtain good workability and in-plane anisotropy, it is necessary to produce fine precipitates having a particle size of 0.5 μm or less in a total amount of 0.4 mass% or more before the final annealing. There is. When the temperature is lower than 450 ° C., almost no precipitate is observed. When the temperature exceeds 750 ° C., a precipitate having a particle size exceeding 0.5 μm is likely to be generated. The temperature was 750 ° C. or lower.
[0030]
The heat treatment time was set to 20 hours or less in order to suppress the growth of precipitates. Note that the combination of temperature and time for generating the precipitate is not particularly defined, but in order to obtain more stable characteristics, the value of λ defined by the following equation is adjusted to be in the range of 13 to 19. It is preferable to do.
λ = (T + 273) × (20 + log t) / 1000
Here, T: Precipitation temperature (° C.), t: Precipitation time (h)
[0031]
  Final annealing treatment
  When the final annealing temperature for making the product is lower than the recrystallization temperature, it is very difficult to reduce the in-plane anisotropy because the rolling structure remains, and fine precipitates generated in the previous process However, the product is inferior in toughness (especially secondary workability). On the other hand, if the annealing temperature is too high, the crystal grains become coarse and sufficient toughness cannot be ensured. Therefore, the final annealing temperature to make a product is1000The annealing time was 1 min or less.
[0032]
Other manufacturing conditions are not particularly defined, but it is necessary to perform the above-described precipitation treatment before the hot-rolled sheet has a recrystallized structure. For example, even if the number of cold rollings is one time or a plurality of times, heating by heating up to the recrystallization temperature should be avoided in steps other than final annealing. In particular, when the number of cold rollings is more than one, it is necessary to remove the processing strain at a temperature lower than the recrystallization temperature so as not to form a recrystallized structure in the annealing process after cold rolling.
[0033]
In addition, if hot rolling is performed at a temperature of 800 ° C. or higher and 1250 ° C. or lower, which is usually performed, recrystallization does not occur during rolling, and thus the hot rolling conditions are not particularly specified.
Moreover, since the precipitate described above is not generated if water cooling is performed immediately after hot rolling, the fine precipitate may be generated in the subsequent process, but the cooling rate after hot rolling is adjusted. When the fine precipitate is generated, the heat treatment for generating the fine precipitate in the subsequent process is not necessarily required.
[0034]
In the present invention, the product form is not particularly defined, but as described above, it is characterized in that it can be applied to a stainless steel plate having a product plate thickness of 1.0 mm or more, which has been difficult with the prior art. . Also. The characteristics of the present invention can be ensured even with steel sheets having a thickness of less than 1.0 mm and products obtained by processing and welding these steel sheets into a desired shape (including tube forming and the like).
[0035]
【Example】
Examples of the present invention are shown below.
Table 1 shows chemical components of the test materials. Steel type numbers 1 to 9 in the table are invention steels, steel type number 10 is comparative steel, steel type number 11 is SUS409 equivalent steel, and steel type number 12 is SUS436 equivalent steel. Each of these steels was cut into a slab having a thickness of 40 mm after being melted in a vacuum of 30 kg, heated at 1250 ° C. for 2 hours, hot-rolled to a thickness of 4.5 mm, and then water-cooled. Using the obtained hot-rolled sheet, a cold-rolled annealed sheet having a thickness of 2.0 mm was produced under various conditions and subjected to a tensile test at room temperature. Tables 2 and 3 show the production conditions for obtaining a cold-rolled annealed plate. Table 2 shows an example of the present invention, and Table 3 shows a comparative example.
[0036]
Figure 0004562280
[0037]
Figure 0004562280
[0038]
Figure 0004562280
[0039]
The amount of each precipitate was determined using the plate before finish annealing and after finish annealing. The amount produced was determined by dissolving the base material other than the precipitate by electrolytic extraction, then measuring the weight of the residue, and calculating the total amount of precipitation by (residue weight) / (weight before electrolysis−weight after electrolysis). The crystal orientation is obtained by cutting the surface thickness after cutting to 1/4 of the plate thickness, obtaining surface reflection strengths of the (222) plane and (200) plane by X-ray diffraction, and similarly using non-directional materials ( 222) and (200) plane reflection intensities were obtained. Using these surface reflection intensities, the integral intensity ratio defined by the above-described equation (a) was calculated and used as an index of crystal orientation.
[0040]
Formability was evaluated by obtaining elongation by using stretch formability as an index, and obtaining r-value and Δr value as indices of deep drawability by a tensile test. Each measurement was performed by the following method. First, JIS13B test pieces were sampled from the rolling direction of the steel sheet, the direction of 45 ° with respect to the rolling direction, and the direction of 90 ° with respect to the rolling direction. Then, based on JISZ2254 (plastic strain ratio test method for sheet metal material), the plastic strain ratio in each direction is measured from the ratio of lateral strain and sheet thickness strain when 15% uniaxial tensile prestrain is applied, The average plastic strain ratio (r−) and anisotropy (Δr) were determined by the following equations.
r-= (rL+ 2rD+ RT) / 4
Δr = (rL-2rD+ RT) / 2
Where rL, RDAnd rTRespectively show the plastic strain ratio in the rolling direction, the direction of 45 ° with respect to the rolling direction, and the direction of 90 ° with respect to the rolling direction.
As for toughness, a V-notch Charpy impact test was performed in a temperature range of −75 to 0 ° C. in accordance with JISZ2242 (metal material impact test method), and the ductile-brittle fiber temperature was determined from the Charpy impact value.
These results are summarized in Tables 4 and 5. Table 4 shows an example of the present invention, and Table 5 shows a comparative example.
[0041]
Figure 0004562280
[0042]
Figure 0004562280
[0043]
Inventive Example Test Nos. 1 to 15 according to the present invention have a precipitation amount before the final annealing and a crystal orientation (integrated strength ratio) of the steel sheet in an appropriate range, so that the Comparative Example Test No. 19 manufactured by the conventional method is used. More excellent in workability (r−) and in-plane anisotropy (Δr). In addition, the toughness of the product has a ductile toughness transition temperature of −50 ° C. or less, which can be said to be a level that does not cause a large problem in practice. From these facts, it can be seen that, according to the present invention, the effect of improving workability by using fine precipitates is remarkably exhibited.
[0044]
Test numbers 16 to 18 show the test results of the comparative steel. Test Nos. 19 to 26 show comparative examples in which the components are included in the present invention but the production method is out of the present invention.
Since test number 16 contains Nb more than the quantity prescribed | regulated by this invention, although comparatively favorable workability is obtained, it is inferior to toughness. Since Comparative Example Test Nos. 17 and 18 are steels that do not contain Nb, good toughness is obtained, but even if heat treatment is performed before finish annealing, the integral strength ratio defined in the present invention is not satisfied. Furthermore, it is inferior in workability and in-plane anisotropy.
[0045]
Comparative Example Test Nos. 19 and 20 have a recrystallized structure at this point because the hot-rolled sheet is heated at 1040 ° C., which is higher than the heating temperature specified in the production method of the present invention. Workability and in-plane anisotropy are not improved even by heating to generate precipitates. In Comparative Example Test Nos. 21 and 24, in the heating of a hot-rolled sheet or a cold-rolled sheet, the temperature was too high, and as a result, a large amount of precipitates were formed. As a result, the integral strength ratio defined in the present invention was not satisfied. It is inferior to anisotropy. In Comparative Example Test Nos. 22 and 23, in the heating of a hot-rolled sheet or a cold-rolled sheet, the temperature is too low so that the amount of precipitates generated is small. Inferior. Further, in the final annealing, comparative example test number 25 having a low annealing temperature is due to insoluble dissolution of precipitates, comparative example test number 26 having a high annealing temperature and comparative example test number 27 having a long annealing time are coarsened grains. Therefore, the toughness of each cold-rolled annealed sheet is inferior.
[0046]
【The invention's effect】
As described above, in the present invention, the content of various alloy elements, the amount of precipitates formed after the final annealing and the crystal orientation (integral strength ratio) are strictly defined, so that the heat resistance, corrosion resistance and A ferritic stainless steel having excellent workability and in-plane anisotropy is provided even in a relatively thick product having a plate thickness of 1 to 2 mm without greatly impairing basic properties such as toughness.
Since this ferritic stainless steel has excellent workability, in-plane anisotropy, corrosion resistance, and toughness, it can be suitably used as various molded products including automobile exhaust gas path members.
[Brief description of the drawings]
FIG. 1 is a diagram showing the influence of the amount of fine precipitates existing before final annealing on the workability and in-plane anisotropy of a cold-rolled annealed sheet.

Claims (4)

質量%で、C:0.03%以下、N:0.03%以下、Si:2.0%以下、Mn:2.0%以下、Ni:0.6%以下,Cr:9〜35%、Nb:0.15〜0.80%を含有し、残部がFeおよび不可避的不純物からなり、かつ加熱により一旦析出させた微細析出物を最終焼鈍によりマトリックス中に固溶させて最終焼鈍後に粒径0.5μm以下の析出物を0.5質量%以下にするとともに、板厚の1/4深さにおける圧延面の結晶方位を下式(a)で定義する積分強度比で2.0以上となるようにしたことを特徴とする、加工性に優れ面内異方性の小さいフェライト系ステンレス鋼。
(a)積分強度比=(I(222)/I0(222))/(I(200)/I0(200)
(222)、I(200):供試材のX線回折による(222)面、(200)面の面反射強度I0(222)、I0(200):無方向試料のX線回折による(222)面、(200)面の面反射強度
In mass%, C: 0.03% or less, N: 0.03% or less, Si: 2.0% or less, Mn: 2.0% or less, Ni: 0.6% or less, Cr: 9 to 35% , Nb: 0.15 to 0.80%, the balance consisting of Fe and inevitable impurities, and fine precipitates once precipitated by heating are solid-solved in the matrix by final annealing, and the grains after final annealing The precipitate having a diameter of 0.5 μm or less is made 0.5 mass% or less, and the crystal orientation of the rolled surface at a quarter depth of the plate thickness is 2.0 or more in terms of the integrated strength ratio defined by the following formula (a). Ferritic stainless steel with excellent workability and small in-plane anisotropy, characterized in that
(A) Integrated intensity ratio = (I (222) / I 0 (222) ) / (I (200) / I 0 (200) )
I (222) , I (200) : Surface reflection intensity of (222) plane and (200) plane by X-ray diffraction of test material I 0 (222) , I 0 (200) : X-ray diffraction of non-directional sample Reflection intensity of (222) plane and (200) plane by
さらに、質量%で、Ti:0.5%以下、Mo:3.0%以下、Cu:2.0%以下、Al:6.0%以下の1種または2種以上を含む請求項1に記載の加工性に優れ面内異方性の小さいフェライト系ステンレス鋼。 Furthermore, in mass%, Ti: 0.5% or less, Mo: 3.0% or less, Cu: 2.0% or less, Al: 6.0% or less, 1 type or 2 types or more are included. Ferritic stainless steel with excellent processability and low in-plane anisotropy. 最終焼鈍前の、加熱により一旦析出させた微細析出物の量が0.4〜1.2質量%である請求項1または2に記載の加工性に優れ面内異方性の小さいフェライト系ステンレス鋼。 The ferritic stainless steel having excellent workability and low in-plane anisotropy according to claim 1 or 2, wherein the amount of fine precipitates once precipitated by heating before final annealing is 0.4 to 1.2% by mass. steel. 最終焼鈍前のいずれかの工程において、450℃以上750℃以下の温度範囲、20h以下の時間で析出処理を行い、さらに最終焼鈍工程において、1000〜1100℃の温度範囲で1min以下の熱処理を施すことを特徴とする請求項1または2に記載の加工性に優れ面内異方性の小さいフェライト系ステンレス鋼の製造方法。In any step before final annealing, precipitation treatment is performed in a temperature range of 450 ° C. or higher and 750 ° C. or lower for a time of 20 hours or shorter, and in the final annealing step, heat treatment is performed for 1 minute or less in a temperature range of 1000 to 1100 ° C. The method for producing a ferritic stainless steel having excellent workability and low in-plane anisotropy according to claim 1 or 2.
JP2000392911A 2000-12-25 2000-12-25 Ferritic stainless steel with excellent workability and small in-plane anisotropy and method for producing the same Expired - Lifetime JP4562280B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2000392911A JP4562280B2 (en) 2000-12-25 2000-12-25 Ferritic stainless steel with excellent workability and small in-plane anisotropy and method for producing the same
ES01129311T ES2230227T3 (en) 2000-12-25 2001-12-13 FERRITIC STAINLESS STEEL SHEET WITH GOOD WORKABILITY AND METHOD FOR MANUFACTURING.
EP01129311A EP1219719B1 (en) 2000-12-25 2001-12-13 A ferritic stainless steel sheet good of workability and a manufacturing method thereof
DE60105955T DE60105955T2 (en) 2000-12-25 2001-12-13 Ferritic stainless steel sheet with good processability and process for its production
US10/027,850 US6673166B2 (en) 2000-12-25 2001-12-21 Ferritic stainless steel sheet having good workability
KR1020010084112A KR100799240B1 (en) 2000-12-25 2001-12-24 A ferritic stainless steel sheet good of workability and a manufacturing method thereof
CNB011369132A CN1172017C (en) 2000-12-25 2001-12-25 Ferritic stainless steel with excellent machinability and production thereof
US10/695,185 US7094295B2 (en) 2000-12-25 2003-10-28 Ferritic stainless steel sheet having good workability and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000392911A JP4562280B2 (en) 2000-12-25 2000-12-25 Ferritic stainless steel with excellent workability and small in-plane anisotropy and method for producing the same

Publications (2)

Publication Number Publication Date
JP2002194507A JP2002194507A (en) 2002-07-10
JP4562280B2 true JP4562280B2 (en) 2010-10-13

Family

ID=18858824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000392911A Expired - Lifetime JP4562280B2 (en) 2000-12-25 2000-12-25 Ferritic stainless steel with excellent workability and small in-plane anisotropy and method for producing the same

Country Status (1)

Country Link
JP (1) JP4562280B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4519505B2 (en) 2004-04-07 2010-08-04 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet having excellent formability and method for producing the same
JP2005320559A (en) * 2004-05-06 2005-11-17 Nippon Steel & Sumikin Stainless Steel Corp Automobile exhaust system component having excellent initial rust resistance
JP5208450B2 (en) * 2006-07-04 2013-06-12 新日鐵住金ステンレス株式会社 Cr-containing steel with excellent thermal fatigue properties
US8152937B2 (en) 2007-06-21 2012-04-10 Jfe Steel Corporation Ferritic stainless steel sheet having superior sulfuric acid corrosion resistance and method for manufacturing the same
DE102009039552B4 (en) * 2009-09-01 2011-05-26 Thyssenkrupp Vdm Gmbh Process for producing an iron-chromium alloy
US9399809B2 (en) 2011-02-08 2016-07-26 Nippon Steel & Sumikin Stainless Steel Corporation Hot rolled ferritic stainless steel sheet, method for producing same, and method for producing ferritic stainless steel sheet
ES2673216T3 (en) * 2012-05-28 2018-06-20 Jfe Steel Corporation Ferritic stainless steel
CN106164315B (en) * 2014-04-08 2018-04-03 杰富意钢铁株式会社 Ferrite-group stainless steel paper tinsel and its manufacture method
KR102463485B1 (en) * 2018-03-30 2022-11-04 닛테츠 스테인레스 가부시키가이샤 Ferritic stainless steel sheet, manufacturing method thereof, and ferritic stainless steel member
KR102123663B1 (en) * 2018-09-27 2020-06-17 주식회사 포스코 Ferritic stainless steel and ferritic stainless steel pipe with improved mechanical properties of weld

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08199235A (en) * 1995-01-19 1996-08-06 Kawasaki Steel Corp Production of niobium-containing ferritic steel sheet
JPH08253818A (en) * 1995-03-14 1996-10-01 Kawasaki Steel Corp Production of ferritic stainless steel strip reduced in inplane anisotropy and excellent in balance between strength and elongation
JPH11302739A (en) * 1998-04-23 1999-11-02 Nippon Steel Corp Production of ferritic stainless steel excellent in surface property and small in anisotropy

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08199235A (en) * 1995-01-19 1996-08-06 Kawasaki Steel Corp Production of niobium-containing ferritic steel sheet
JPH08253818A (en) * 1995-03-14 1996-10-01 Kawasaki Steel Corp Production of ferritic stainless steel strip reduced in inplane anisotropy and excellent in balance between strength and elongation
JPH11302739A (en) * 1998-04-23 1999-11-02 Nippon Steel Corp Production of ferritic stainless steel excellent in surface property and small in anisotropy

Also Published As

Publication number Publication date
JP2002194507A (en) 2002-07-10

Similar Documents

Publication Publication Date Title
KR100799240B1 (en) A ferritic stainless steel sheet good of workability and a manufacturing method thereof
US8876986B2 (en) Cold-rolled steel sheet
JP6851269B2 (en) Manufacturing method of ferritic stainless steel sheets, ferritic stainless steel members for steel pipes and exhaust system parts, and ferritic stainless steel sheets
WO2013146815A1 (en) Heat-resistant cold rolled ferritic stainless steel sheet, hot rolled ferritic stainless steel sheet for cold rolling raw material, and methods for producing same
JP7238161B2 (en) Ferritic stainless steel plate
JP5396752B2 (en) Ferritic stainless steel with excellent toughness and method for producing the same
KR20180109865A (en) Nb-containing ferritic stainless steel hot-rolled steel sheet and manufacturing method thereof, Nb-containing ferritic stainless steel cold-rolled steel sheet and manufacturing method thereof
JP4221518B2 (en) Ferritic heat resistant steel
JP5362582B2 (en) Ferritic stainless steel with excellent corrosion resistance and stretch formability and method for producing the same
WO2013054464A1 (en) High-strength cold-rolled steel plate having excellent deep drawability and in-coil material uniformity, and method for manufacturing same
JP7268182B2 (en) Ferritic stainless steel sheet, manufacturing method thereof, and ferritic stainless steel member
JP4065579B2 (en) Ferritic stainless steel sheet with small in-plane anisotropy and excellent ridging resistance and method for producing the same
JP5655475B2 (en) High-strength cold-rolled steel sheet excellent in deep drawability and manufacturing method thereof
JP4562280B2 (en) Ferritic stainless steel with excellent workability and small in-plane anisotropy and method for producing the same
JP3460659B2 (en) Soft high carbon steel strip with small heat treatment distortion and method for producing the same
JP4622171B2 (en) Ferritic stainless steel sheet excellent in room temperature workability and mechanical properties at high temperature and method for producing the same
MX2015006269A (en) Ferritic stainless steel.
JP3932020B2 (en) Ferritic stainless steel with excellent deep drawability and small in-plane anisotropy and method for producing the same
JP7278079B2 (en) Cold-rolled stainless steel sheet, hot-rolled stainless steel sheet, and method for manufacturing hot-rolled stainless steel sheet
WO2009066868A1 (en) Low chrome ferritic stainless steel with high corrosion resistance and stretchability and method of manufacturing the same
JP3290598B2 (en) Ferritic stainless steel sheet excellent in formability and ridging resistance and method for producing the same
JP4562281B2 (en) Ferritic stainless steel sheet with excellent workability and method for producing the same
JP6986135B2 (en) Ferritic stainless steel sheets, their manufacturing methods, and ferritic stainless steel members
JP4061213B2 (en) Steel sheet for hot forming
JP2004137554A (en) Steel sheet having excellent workability, and production method therefor

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070313

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100727

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100727

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4562280

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term