JP5025671B2 - Ferritic stainless steel sheet excellent in high temperature strength and method for producing the same - Google Patents

Ferritic stainless steel sheet excellent in high temperature strength and method for producing the same Download PDF

Info

Publication number
JP5025671B2
JP5025671B2 JP2009030101A JP2009030101A JP5025671B2 JP 5025671 B2 JP5025671 B2 JP 5025671B2 JP 2009030101 A JP2009030101 A JP 2009030101A JP 2009030101 A JP2009030101 A JP 2009030101A JP 5025671 B2 JP5025671 B2 JP 5025671B2
Authority
JP
Japan
Prior art keywords
less
temperature
temperature strength
stainless steel
ferritic stainless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009030101A
Other languages
Japanese (ja)
Other versions
JP2009215648A (en
Inventor
憲博 神野
純一 濱田
治彦 梶村
宜治 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel and Sumikin Stainless Steel Corp
Original Assignee
Nippon Steel and Sumikin Stainless Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Stainless Steel Corp filed Critical Nippon Steel and Sumikin Stainless Steel Corp
Priority to JP2009030101A priority Critical patent/JP5025671B2/en
Publication of JP2009215648A publication Critical patent/JP2009215648A/en
Application granted granted Critical
Publication of JP5025671B2 publication Critical patent/JP5025671B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、特に高温強度が必要な排気系部材などの使用に最適な高温強度に優れたフェライト系ステンレス鋼板およびその製造方法に関するものである。   The present invention relates to a ferritic stainless steel sheet excellent in high-temperature strength and particularly suitable for use in exhaust system members that require high-temperature strength, and a method for producing the same.

自動車のエキゾーストマニホールドおよびマフラーなどの排気系部材は、エンジンから排出される高温の排気ガスを通すため、排気部材を構成する材料には高温強度、耐酸化性など多様な特性が要求されている。   Exhaust system members such as exhaust manifolds and mufflers for automobiles allow high-temperature exhaust gas discharged from the engine to pass therethrough, and therefore, materials constituting the exhaust members are required to have various characteristics such as high-temperature strength and oxidation resistance.

従来、自動車排気部材には鋳鉄が使用されるのが一般的であったが、排ガス規制の強化、エンジン性能の向上、車体軽量化などの観点から、ステンレス鋼製のエキゾーストマニホールドが使用されるようになった。排ガス温度は、車種によって異なるが、近年では800〜900℃程度が多く、エンジンから排出される高温の排気ガスを通すエキゾーストマニホールドの温度は750〜850℃と高温となる。しかし、さらに排ガス規制の強化、燃費向上が進められており、排ガス温度はさらに高温化するものと考えられている。   Conventionally, cast iron was generally used for automobile exhaust members, but an exhaust manifold made of stainless steel seems to be used from the viewpoints of stricter exhaust gas regulations, improved engine performance, and lighter vehicle body. Became. Although the exhaust gas temperature varies depending on the vehicle type, in recent years, the temperature is often about 800 to 900 ° C., and the temperature of the exhaust manifold through which the high-temperature exhaust gas discharged from the engine passes is as high as 750 to 850 ° C. However, exhaust gas regulations are being further strengthened and fuel efficiency is being improved, and the exhaust gas temperature is considered to increase further.

ステンレス鋼の中でオーステナイト系ステンレス鋼は、高温強度や加工性に優れているが、熱膨張係数が大きいために、エキゾーストマニホールドのように加熱・冷却を繰り返し受ける部材に適用した場合、熱疲労破壊やスケール剥離が生じやすい。   Among the stainless steels, austenitic stainless steels are superior in high-temperature strength and workability, but due to their large thermal expansion coefficient, thermal fatigue failure occurs when applied to a member that repeatedly receives heating and cooling, such as an exhaust manifold. And scale peeling easily occurs.

一方、フェライト系ステンレス鋼は、オーステナイト系ステンレス鋼に比べて熱膨張係数が小さいため、熱疲労特性や耐スケール剥離性に優れている。また、オーステナイト系ステンレス鋼に比べて、Niを含有しないため材料コストも安く、汎用的に使用されている。但し、フェライト系ステンレス鋼は、オーステナイト系ステンレス鋼に比べて、高温強度が低いために、高温強度を向上させる技術が開発されてきた。例えば、SUS430J1(Nb添加鋼)、Nb−Si添加鋼、SUS444(Nb−Mo添加鋼)があり、Nb添加を基本に、Si、Moの添加によって高温強度を向上させるものであった。この中で、SUS444は2%程度のMoを添加するため、最も高強度である。しかし、排ガス温度の高温化にSUS444では対応不可であり、SUS444以上の高温強度、SUS444と同等の耐酸化性を有するフェライト系ステンレス鋼が要望されている。   On the other hand, since ferritic stainless steel has a smaller thermal expansion coefficient than austenitic stainless steel, it is excellent in thermal fatigue characteristics and scale peel resistance. Further, compared with austenitic stainless steel, it does not contain Ni, so the material cost is low and it is used for general purposes. However, since ferritic stainless steel has lower high-temperature strength than austenitic stainless steel, a technique for improving high-temperature strength has been developed. For example, there are SUS430J1 (Nb-added steel), Nb-Si-added steel, and SUS444 (Nb-Mo-added steel). Based on Nb addition, the high-temperature strength is improved by adding Si and Mo. Among them, SUS444 has the highest strength because about 2% of Mo is added. However, SUS444 cannot cope with the increase in exhaust gas temperature, and a ferritic stainless steel having a high-temperature strength equal to or higher than SUS444 and oxidation resistance equivalent to SUS444 is desired.

上記の例以外にも種々の添加元素が検討されている。特許文献1,2にはCu−Ti複合添加を行う技術が開示されている。特許文献1におけるCuおよびTi添加は、いずれも低温靭性向上のためにそれぞれ0.5%以下の添加が検討されており、耐熱性の観点からの添加ではない。特許文献2では、Cu析出物による析出硬化を利用して700℃〜850℃の温度域における高温強度を向上させる技術が開示されているが、850℃における耐力はSUS444レベルとほぼ同等であることから、SUS444以上の排気部品として考えられるものではなかった。Cu添加による高温強度向上についての従来技術は、Cu析出物を利用したものであるが、Cu析出物は長時間高温に曝された場合、析出物の凝集・合体による粗大化が急速に生じるため、析出強化能が著しく低下してしまう問題がある。特許文献3,4には総析出量を制限する技術が開示されている。特許文献3は成形性向上のために総析出量を0.05〜0.6%以下に制御する方法が検討されており、耐熱性の観点からの方法ではない。特許文献4では、冷延焼鈍板と同等の加工性を焼鈍したステンレスパイプにおいて得るために、総析出量を1%以下にする方法が検討されているが、低温靭性および加工性向上のためにCu添加をしており、Cu析出物による析出強化を考慮していない。特許文献5にはNb−Mo添加鋼をベースとしてBを添加する技術が開示されている。しかし、特許文献5におけるB添加は冷間加工性及び2次加工性の改善のために0.0003〜0.001%の添加が検討されており、耐熱性の観点からの添加ではない。従来知見におけるB添加は、加工性改善目的のためで、粒界偏析による粒界強度を向上させて、2次加工性を向上させるもので、高温特性への影響は明確ではなかった。   In addition to the above examples, various additive elements have been studied. Patent Documents 1 and 2 disclose techniques for performing Cu-Ti composite addition. In Cu and Ti additions in Patent Document 1, additions of 0.5% or less have been studied for improving low-temperature toughness, and they are not additions from the viewpoint of heat resistance. Patent Document 2 discloses a technique for improving the high-temperature strength in the temperature range of 700 ° C. to 850 ° C. using precipitation hardening by Cu precipitates, but the proof stress at 850 ° C. is almost equivalent to the SUS444 level. Therefore, it was not considered as an exhaust part of SUS444 or higher. The conventional technology for improving the high-temperature strength by adding Cu utilizes Cu precipitates. However, when Cu precipitates are exposed to high temperatures for a long time, coarsening due to aggregation and coalescence of precipitates occurs rapidly. There is a problem that the precipitation strengthening ability is remarkably lowered. Patent Documents 3 and 4 disclose techniques for limiting the total precipitation amount. In Patent Document 3, a method of controlling the total precipitation amount to 0.05 to 0.6% or less for improving formability has been studied, and is not a method from the viewpoint of heat resistance. In Patent Document 4, in order to obtain a workability equivalent to that of a cold-rolled annealed plate in an annealed stainless steel pipe, a method of reducing the total precipitation amount to 1% or less has been studied, but for improving low-temperature toughness and workability. Cu is added, and precipitation strengthening due to Cu precipitates is not considered. Patent Document 5 discloses a technique of adding B based on Nb—Mo-added steel. However, the addition of B in Patent Document 5 has been studied for the addition of 0.0003 to 0.001% in order to improve cold workability and secondary workability, and is not an addition from the viewpoint of heat resistance. The B addition in the conventional knowledge is for the purpose of improving workability, and improves the grain boundary strength due to grain boundary segregation to improve the secondary workability, and the influence on the high temperature characteristics has not been clear.

発明者らは、直近、特許文献6において、Nb−Cu−B添加により750℃程度の温度域の高温強度を得る技術を開示している。しかし、本技術を用いても、850℃以上の温度領域ではSUS444と同程度に留まり、SUS444以上の高温強度、SUS444と同等の耐酸化性を有するフェライト系ステンレス鋼に対する要望を満たしていなかった。   The inventors have recently disclosed a technique for obtaining high-temperature strength in a temperature range of about 750 ° C. by adding Nb—Cu—B in Patent Document 6. However, even when this technology is used, the temperature range of 850 ° C. or higher remains at the same level as that of SUS444, and does not satisfy the demand for a ferritic stainless steel having a high-temperature strength of SUS444 or higher and an oxidation resistance equivalent to that of SUS444.

特開2006−37176号公報JP 2006-37176 A 特許第3397167号公報Japanese Patent No. 3397167 特開2005−298854号公報JP 2005-298854 A 特許第3678321号公報Japanese Patent No. 3678321 国際公開WO2004/053171号公報International Publication WO 2004/053171 特開2008−240143号公報JP 2008-240143 A

本発明は、従来技術とは異なる強化メカニズムを活用することにより高い高温強度を有するフェライト系ステンレス鋼およびその製造方法を提供することを目的とする。   An object of this invention is to provide the ferritic stainless steel which has high high temperature strength by utilizing the reinforcement mechanism different from a prior art, and its manufacturing method.

上記課題を解決するために、本発明者らは、エキゾーストマニホールドでの使用条件を勘案して、800〜900℃の温度域では、析出物が多量に析出、成長することから、冷延焼鈍板においてはNb、Mo系析出物であるLaves相およびCu添加により析出するε−Cuを従来材より微細析出させておくことによる析出強化に基づく排気部材としての高強度化を狙いとして、これら、Laves相およびε−Cuの微細分散化手段を検討した結果、Nb−Mo−Cu−Ti−B複合添加が微細析出化に有効であることが判明した。特にBは、一般的に高温域で(Fe,Cr)23(C,B)6やCr2Bを形成し易いが、Nb−Mo−Cu−Ti−B複合添加鋼においては、これらの析出物は析出せず、Laves相とε−Cu相を微細析出させる効果があることが判明した。Laves相は、固溶Nb,Mo量の低減をもたらし、通常粗大化してしまうので、特に長時間時効後の高温強化能はほとんど無いが、B添加により微細析出するため、析出強化能を有し、高温強度の向上に寄与し長時間使用時の強度安定性を高くする。また、ε−Cuは通常析出初期において極めて微細に析出し強度向上効果が大きいが、時効熱処理により粗大化し、時効後の強度低下が大きい。しかしながら、B添加によりε−Cuの粗大化が抑制され、使用時の強度安定性が高くなる。B添加による析出微細化および粗大化抑制効果の機構は明確ではないが、Bの粒界偏析により界面エネルギーが低下することにより、Laves相とε−Cuの粒界析出を抑制し粒内に微細析出させると推察される。また、Nb,MoやCuの粒界拡散を抑えることがこれらの析出物の粗大化を抑制すると推察される。 In order to solve the above problems, the present inventors have taken into consideration the use conditions in the exhaust manifold, and in the temperature range of 800 to 900 ° C., a large amount of precipitates precipitate and grow. In order to increase the strength as an exhaust member based on precipitation strengthening by precipitating ε-Cu precipitated by addition of Nb and Mo-based Laves phases and Cu from the conventional material, these are Laves. As a result of examining the means for finely dispersing the phase and ε-Cu, it has been found that the Nb—Mo—Cu—Ti—B composite addition is effective for fine precipitation. In particular, B generally tends to form (Fe, Cr) 23 (C, B) 6 or Cr 2 B in a high temperature range, but these precipitates are present in Nb—Mo—Cu—Ti—B composite added steel. It was found that the product did not precipitate and had the effect of finely depositing the Laves phase and the ε-Cu phase. The Laves phase reduces the amount of dissolved Nb and Mo and usually coarsens, so there is almost no high-temperature strengthening ability after aging in particular, but it has fine precipitation due to the addition of B, so it has precipitation strengthening ability. Contributes to the improvement of high-temperature strength, and increases the strength stability when used for a long time. In addition, ε-Cu usually precipitates very finely at the initial stage of precipitation and has a large effect of improving the strength, but is coarsened by aging heat treatment, and the strength decrease after aging is large. However, the addition of B suppresses the coarsening of ε-Cu and increases the strength stability during use. Although the mechanism of the effect of suppressing precipitation refinement and coarsening due to the addition of B is not clear, the interfacial energy is reduced by the grain boundary segregation of B, so that the grain boundary precipitation of the Laves phase and ε-Cu is suppressed and the grain is refined. Presumed to be deposited. Moreover, it is guessed that suppressing the grain boundary diffusion of Nb, Mo and Cu suppresses the coarsening of these precipitates.

さらに、Nb−Mo−Cu−Ti−B複合添加鋼において1070℃以上、好ましくは1100℃以上で冷延焼鈍することにより、総析出物量を2質量%以下にしておき、排気系部材として使用する際に析出物量を増加させることにより、SUS444以上の高温強度、即ち850℃における0.2%耐力が40MPa以上を有し、かつ耐酸化性はSUS444と同等のフェライト系ステンレス鋼を提供できることを見出した。   Further, the Nb—Mo—Cu—Ti—B composite added steel is subjected to cold rolling annealing at 1070 ° C. or more, preferably 1100 ° C. or more, so that the total amount of precipitates is kept to 2% by mass or less and used as an exhaust system member. It is found that by increasing the amount of precipitates, it is possible to provide a ferritic stainless steel having a high temperature strength of SUS444 or higher, that is, 0.2% proof stress at 850 ° C. of 40 MPa or more and oxidation resistance equivalent to SUS444. It was.

図1は18.5〜19%Cr−0.004〜0.006%C−0.2〜0.3%Si−0.9〜1.1%Mn−1.8〜2%Mo−1.8〜2%Cu−0.6〜0.7Nb−0.1〜0.2%Ti−0.009〜0.011%N鋼の基本組成に、Bを添加していない鋼板とBを0.0002%添加した鋼板を用いて、1100℃×60sの焼鈍後に、850℃で10分時効熱処理した場合の析出物(主にLaves相とε−Cu)の析出頻度と粒径の関係を示した結果である。B添加鋼では平均粒径がB無添加鋼より微細化する傾向にあり、B添加によってLaves相およびε−Cuの微細化されていることがわかる。   FIG. 1 shows 18.5 to 19% Cr-0.004 to 0.006% C-0.2 to 0.3% Si-0.9 to 1.1% Mn-1.8 to 2% Mo-1. .8-2% Cu-0.6-0.7 Nb-0.1-0.2% Ti-0.009-0.011% N steel sheet and B to which B is not added to the basic composition of steel The relationship between the precipitation frequency and the particle size of precipitates (mainly the Laves phase and ε-Cu) in the case of aging heat treatment at 850 ° C. for 10 minutes after annealing at 1100 ° C. × 60 s using 0.0002% added steel sheet It is the result shown. In the B-added steel, the average particle size tends to be finer than that in the B-free steel, and it can be seen that the Laves phase and ε-Cu are refined by the addition of B.

また図2は、18.5〜20%Cr−0.002〜0.008%C−0.3〜0.4%Si−0.9〜1.2%Mn−1.8〜2.5%Mo−1.5〜2%Cu−0.6〜0.9Nb−0.1〜0.2%Ti−0.008〜0.011%N−0.0003〜0.0008B鋼の製品板の析出量と850℃の高温強度の関係を示した結果である。図2から850℃の耐力は、製品板の析出量が減少してゆくほど増加しており、2質量%以下でSUS444並の耐力を有することがわかる。さらに図3では、18.7%Cr−0.005%C−0.3%Si−1.1%Mn−1.9%Mo−1.8%Cu−0.85Nb−0.14%Ti−0.011%N−0.001B鋼の製品板の析出量と最終焼鈍温度の関係を示した結果である。図3から最終焼鈍温度を上昇させてゆくと、総析出物量が減少していくことがわかる。また、図2および図3より、通常の最終焼鈍温度1000℃で焼鈍しても、850℃の0.2%耐力は34MPa以上を確保できることがわかる。   FIG. 2 shows that 18.5 to 20% Cr-0.002 to 0.008% C-0.3 to 0.4% Si-0.9 to 1.2% Mn-1.8 to 2.5 % Mo-1.5-2% Cu-0.6-0.9Nb-0.1-0.2% Ti-0.008-0.011% N-0.0003-0.0008B Steel Product Plate It is the result which showed the relationship between the precipitation amount of and 850 degreeC high temperature intensity | strength. It can be seen from FIG. 2 that the yield strength at 850 ° C. increases as the precipitation amount of the product plate decreases, and has a yield strength equivalent to SUS444 at 2% by mass or less. Further, in FIG. 3, 18.7% Cr-0.005% C-0.3% Si-1.1% Mn-1.9% Mo-1.8% Cu-0.85Nb-0.14% Ti It is the result which showed the relationship between the precipitation amount of the product plate of -0.011% N-0.001B steel, and the final annealing temperature. FIG. 3 shows that the total amount of precipitates decreases as the final annealing temperature is increased. 2 and 3, it can be seen that a 0.2% proof stress at 850 ° C. of 34 MPa or more can be secured even if annealing is performed at a normal final annealing temperature of 1000 ° C.

また、Cuを2%以上添加する場合、高温強度はε−Cuの析出強化で十分に確保されることから、高価な添加元素であるMoを減少させてもSUS444を上回る高温特性を実現できることも新たに知見した。しかしながら、Cuを増加し、Moを低減させた場合、まれに異常酸化現象が起こり耐酸化性が低下していることも明らかになった。この課題に対し、詳細に検討した結果、Siを低減させた場合のみに起こる現象であり、Siを0.15mass%以上添加すると異常酸化が起こらなくなることを見出した。   In addition, when Cu is added in an amount of 2% or more, the high temperature strength is sufficiently ensured by precipitation strengthening of ε-Cu, so that high temperature characteristics exceeding SUS444 can be realized even if Mo, which is an expensive additive element, is reduced. Newly discovered. However, when Cu was increased and Mo was reduced, it became clear that an abnormal oxidation phenomenon occurred rarely and the oxidation resistance was lowered. As a result of detailed studies on this problem, it was found that this phenomenon occurs only when Si is reduced, and that abnormal oxidation does not occur when Si is added in an amount of 0.15 mass% or more.

以上のとおり本発明では、BによるLaves相およびε−Cuを微細析出させる効果において、従来発明とは異なる作用効果を見出し、高温強度向上する本発明に至った。そして、1070℃以上の焼鈍により析出物を減少させ、排気系部材に使用する際に析出物を析出させ、析出強化を最大限に発揮させた高温強度に優れたフェライト系ステンレス鋼板を発明した。   As described above, in the present invention, in the effect of finely precipitating the Laves phase and ε-Cu due to B, the present invention has found an operational effect different from that of the conventional invention and has led to the present invention that improves the high-temperature strength. And the ferritic stainless steel sheet excellent in the high temperature strength which reduced the precipitate by annealing at 1070 degreeC or more, precipitated the precipitate when using it for an exhaust system member, and exhibited precipitation strengthening to the maximum was invented.

上記課題を解決する本発明の要旨は、
(1)質量%にて、C:0.01%以下、N:0.02%以下、Si:0.05〜1%、Mn:0.6超〜2%、Cr:15〜30%、Mo:1〜4%、Cu:1〜3.3%、Nb:0.2〜1.5%、Ti:0.05〜0.5%、B:0.0002〜0.01%を含有し、残部がFeおよび不可避的不純物よりなり、850℃の0.2%耐力が32MPaより高いことを特徴とする高温強度に優れたフェライト系ステンレス鋼板。
(2)質量%にて、C:0.01%以下、N:0.02%以下、Si:0.15〜1%、Mn:0.6超〜2%、Cr:15〜30%、Mo:0.1〜1%未満、Cu:2超〜3.5%、Nb:0.2〜1.5%、Ti:0.05〜0.5%、B:0.0002〜0.01%を含有し、残部がFeおよび不可避的不純物よりなり、850℃の0.2%耐力が32MPaより高いことを特徴とする高温強度に優れたフェライト系ステンレス鋼板。
(3)総析出量が質量%にて2%以下であることを特徴とする(1)または(2)記載の高温強度に優れたフェライト系ステンレス鋼板。
(4)質量%にて、Al:0.1%以上4%以下、V:1%以下の1種以上を含有することを特徴とする(1)から(3)のいずれかに記載の高温強度に優れたフェライト系ステンレス鋼板。
(5)質量%にて、W:5%以下、Sn:1%以下、Zr:2%以下、Hf:2%以下、Ta:5%以下の1種以上を含有することを特徴とする(1)〜(4)のいずれかに記載の高温強度に優れたフェライト系ステンレス鋼板。
(6)冷延板の最終焼鈍温度が1070℃以上であることを特徴とする(3)〜(5)のいずれかに記載の高温強度に優れたフェライト系ステンレス鋼板の製造方法。
The gist of the present invention for solving the above problems is as follows.
(1) In mass%, C: 0.01% or less, N: 0.02% or less, Si: 0.05-1%, Mn: more than 0.6-2%, Cr: 15-30%, Mo: 1~4%, Cu: 1~ 3.3%, Nb: 0.2~1.5%, Ti: 0.05~0.5%, B: containing .0002-.01% and, Ri is Na Fe and unavoidable impurities balance, excellent ferritic stainless steel high-temperature strength of 0.2% proof stress of 850 ° C. may be higher than 32 MPa.
(2) In mass%, C: 0.01% or less, N: 0.02% or less, Si: 0.15 to 1%, Mn: more than 0.6 to 2%, Cr: 15 to 30%, Mo: 0.1 to less than 1%, Cu: more than 2 to 3.5%, Nb: 0.2 to 1.5%, Ti: 0.05 to 0.5%, B: 0.0002 to 0. containing 01% Ri is Na Fe and unavoidable impurities balance, excellent ferritic stainless steel high-temperature strength of 0.2% proof stress of 850 ° C. may be higher than 32 MPa.
(3) The ferritic stainless steel sheet having excellent high temperature strength as described in (1) or (2), wherein the total precipitation amount is 2% or less by mass%.
(4) High temperature according to any one of (1) to (3), characterized by containing one or more of Al: 0.1% or more and 4% or less and V: 1% or less in mass% Ferritic stainless steel sheet with excellent strength.
(5) It is characterized by containing one or more of W: 5% or less, Sn: 1% or less, Zr: 2% or less, Hf: 2% or less, Ta: 5% or less in mass% ( A ferritic stainless steel sheet having excellent high-temperature strength as described in any one of 1) to (4).
(6) The method for producing a ferritic stainless steel sheet having excellent high-temperature strength according to any one of (3) to (5), wherein the final annealing temperature of the cold-rolled sheet is 1070 ° C. or higher.

ここで、下限の規定が無いものについては、不可避的不純物レベルまで含むことを示す。   Here, for the case where the lower limit is not specified, it indicates that an inevitable impurity level is included.

本発明によればSUS444以上の高温特性が得られ、特に自動車などの排気系部材に適用することにより、排ガス温度の高温化に対応することが可能となる。   According to the present invention, a high temperature characteristic of SUS444 or higher can be obtained, and in particular, by applying it to an exhaust system member such as an automobile, it becomes possible to cope with a high exhaust gas temperature.

850℃で10min時効熱処理した後の、B添加鋼およびB無添加鋼の析出物の粒径分布を示す図である。It is a figure which shows the particle size distribution of the precipitate of B addition steel and B additive-free steel after aging heat processing for 10 minutes at 850 degreeC. 冷延板の析出量と850℃の0.2%耐力の関係を示す図である。It is a figure which shows the relationship between the precipitation amount of a cold rolled sheet, and 0.2% yield strength of 850 degreeC. 冷延板の最終焼鈍温度と析出量の関係を示す図である。It is a figure which shows the relationship between the final annealing temperature and precipitation amount of a cold rolled sheet.

以下に本発明の限定理由について説明する。   The reason for limiting the present invention will be described below.

Cは、成形性と耐食性を劣化させ、高温強度の低下をもたらすため、その含有量は少ないほど良いため、0.01%以下とした。但し、過度の低減は精錬コストの増加に繋がるため、0.001〜0.005%が望ましい。   C deteriorates moldability and corrosion resistance and causes a decrease in high-temperature strength. Therefore, the lower the content, the better. Therefore, the C content is set to 0.01% or less. However, excessive reduction leads to an increase in refining costs, so 0.001 to 0.005% is desirable.

NはCと同様、成形性と耐食性を劣化させ、高温強度の低下をもたらすため、その含有量は少ないほど良いため、0.02%以下とした。但し、過度の低減は精錬コストの増加に繋がるため、0.003〜0.015%が望ましい。   N, like C, deteriorates moldability and corrosion resistance and brings about a decrease in high-temperature strength. Therefore, the smaller the content, the better. Therefore, the N content is set to 0.02% or less. However, excessive reduction leads to an increase in refining costs, so 0.003 to 0.015% is desirable.

Siは、脱酸剤としても有用な元素であるが、高温特性と耐酸化性を改善するために非常に重要な元素である。高温強度に関して、Siは、0.05%以上含有することにより、高温でLaves相と呼ばれるFeとNb,Moを主体とする金属間化合物の析出を促進する。一方、1%超の添加によりLaves相が過度に析出および凝集・粗大化して、析出強化能は無くなるため、その上限を1%とする。また、Siは耐酸化性を向上させる元素でもあり、その効果を発現させるためには、0.05%以上添加する必要がある。一方、1%超の添加ではスケール剥離が起こりやすい傾向となるとともに常温の加工性も低下する。以上から、Siの範囲は、0.05〜1%とする。   Si is an element useful as a deoxidizer, but is an extremely important element for improving high-temperature characteristics and oxidation resistance. Concerning the high temperature strength, the Si content of 0.05% or more promotes the precipitation of an intermetallic compound mainly composed of Fe, Nb, and Mo called a Laves phase at a high temperature. On the other hand, the addition of more than 1% causes the Laves phase to excessively precipitate, agglomerate / coarse, and the precipitation strengthening ability disappears, so the upper limit is made 1%. Si is also an element that improves the oxidation resistance. In order to exhibit the effect, it is necessary to add 0.05% or more. On the other hand, when it exceeds 1%, scale peeling tends to occur and the processability at room temperature also decreases. From the above, the range of Si is 0.05 to 1%.

また、Cu:2%超、Mo:1%未満の場合は、特に異常酸化が起きやすくなるので、その防止のため、Siは0.15%以上必要である。この場合も1%超の添加ではスケール剥離が起こりやすい傾向にあるため、上限は1%とする。   Further, when Cu is more than 2% and Mo is less than 1%, abnormal oxidation is particularly likely to occur. Therefore, Si needs to be 0.15% or more to prevent this. In this case, too, addition of more than 1% tends to cause scale peeling, so the upper limit is made 1%.

Mnは、脱酸剤として添加される元素で、長時間使用中にMn系酸化物を表層に形成し、スケール密着性や異常酸化抑制効果に寄与する。その効果は0.6%超で発現する。一方、2%超の過度な添加は、常温の均一伸びを低下させる他、MnSを形成して耐食性を低下させたり、耐酸化性の劣化をもたらす。これらの観点から、上限を2%とした。更に、高温延性やスケール密着性を考慮すると、0.6超〜1.5%が望ましい。   Mn is an element added as a deoxidizing agent, and forms a Mn-based oxide on the surface layer during long-time use, contributing to scale adhesion and an effect of suppressing abnormal oxidation. The effect is manifested at over 0.6%. On the other hand, excessive addition of more than 2% lowers the uniform elongation at room temperature, forms MnS, lowers the corrosion resistance, and brings about deterioration of oxidation resistance. From these viewpoints, the upper limit was made 2%. Furthermore, if considering high temperature ductility and scale adhesion, 0.6 to 1.5% is desirable.

Crは、本発明において、耐酸化性確保のために必須な元素である。15%未満では、その効果は発現せず、30%超では加工性を低下させたり、靭性の劣化をもたらすため、15〜30%とした。更に、高温延性、製造コストを考慮すると17〜22%が望ましい。   Cr is an essential element for ensuring oxidation resistance in the present invention. If it is less than 15%, the effect is not exhibited, and if it exceeds 30%, the workability is deteriorated or the toughness is deteriorated, so the content is made 15 to 30%. Furthermore, considering the high temperature ductility and the manufacturing cost, 17 to 22% is desirable.

Moは、耐食性を向上させるとともに、高温酸化を抑制、Laves相の微細析出による析出強化および固溶強化による高温強度向上に対して有効である。しかし、過度な添加はLaves相の粗大析出を促進し、析出強化能を低下させ、また加工性を劣化させる。さらに、本発明のNb−Mo−Cu−Ti−B添加鋼においては、Cu添加による固溶Mo増が得られ、かつB添加によるLaves相微細化が1%以上のMo添加で得られる。その効果はCu添加量の影響を受け、Cu1%以上2%までの添加ではCuによる強化能向上効果がやや小さいのでMoは1%以上の添加を必要とする。4%超の過度のMo添加はLaves相の粗大化を促進して高温強度には寄与せず、かつコスト増になることから、上限を4%とする。   Mo improves corrosion resistance, suppresses high-temperature oxidation, and is effective for precipitation strengthening by fine precipitation of the Laves phase and high-temperature strength improvement by solid solution strengthening. However, excessive addition promotes coarse precipitation of the Laves phase, lowers precipitation strengthening ability, and degrades workability. Furthermore, in the Nb—Mo—Cu—Ti—B-added steel of the present invention, solid solution Mo can be increased by adding Cu, and the Laves phase refinement by adding B can be obtained by adding 1% or more of Mo. The effect is affected by the amount of Cu added, and when Cu is added in an amount of 1% or more and 2%, the effect of improving the strengthening ability by Cu is somewhat small, so Mo needs to be added in an amount of 1% or more. Excessive Mo addition exceeding 4% promotes coarsening of the Laves phase, does not contribute to high-temperature strength, and increases costs, so the upper limit is made 4%.

しかし、Cuを2%超添加する場合、Cuによる強化能向上効果が大きく、加工性の向上も図るために、Moの添加が少なくできる。Moは高価であるため、コストも低減することができる。その下限は0.1%で、これ以上のMo添加でその効果を発現する。また、Cuを2%超添加する場合も、Mo上限を4%とすることができるが、Laves相による析出強化および固溶強化を活用する必要がなくなるため、Mo上限を1%未満と非常に低減することもできる。   However, when Cu is added in excess of 2%, the effect of improving the strengthening ability due to Cu is large, and the workability is also improved, so the addition of Mo can be reduced. Since Mo is expensive, the cost can be reduced. The lower limit is 0.1%, and the effect is manifested by addition of more Mo. Also, when Cu is added in excess of 2%, the upper limit of Mo can be made 4%, but it is not necessary to utilize precipitation strengthening and solid solution strengthening by the Laves phase, so the upper limit of Mo is extremely less than 1%. It can also be reduced.

Tiは、C,N,Sと結合して耐食性、耐粒界腐食性、深絞り性の指標となるr値を向上させる元素である。また、Nb、Moとの複合添加において、適量添加することによりNb、Moの冷延焼鈍時の固溶量増加、高温強度の向上および高温延性の向上をもたらし、熱疲労特性を向上させる。さらにこれらの効果は、0.05%以上から発現するが、0.5%超の添加により、固溶Ti量が増加して均一伸びを低下させる他、粗大なTi系析出物を形成し、穴拡げ加工時の割れの起点になり、穴拡げ性を劣化させる。よって、Ti添加量は、0.05〜0.5%とした。更に、表面疵の発生や靭性を考慮すると0.1〜0.3%が望ましい。   Ti is an element that combines with C, N, and S to improve the r value that serves as an index of corrosion resistance, intergranular corrosion resistance, and deep drawability. In addition, in the combined addition with Nb and Mo, addition of an appropriate amount brings about an increase in the amount of solid solution during cold rolling annealing of Nb and Mo, an improvement in high temperature strength, and an improvement in hot ductility, thereby improving thermal fatigue characteristics. Furthermore, these effects are manifested from 0.05% or more, but by adding more than 0.5%, the amount of solid solution Ti is increased and the uniform elongation is lowered, and coarse Ti-based precipitates are formed, It becomes the starting point of cracks during hole expansion processing and deteriorates hole expansion. Therefore, the Ti addition amount is set to 0.05 to 0.5%. Furthermore, if considering the occurrence of surface flaws and toughness, 0.1 to 0.3% is desirable.

Nbは、固溶強化および析出物微細化強化による高温強度向上のために必要な元素である。また、CやNを炭窒化物として固定し、製品板の耐食性やr値に影響する再結晶集合組織の発達に寄与する役割もある。さらに、Laves相の微細析出による析出強化および固溶Nbによる固溶強化に寄与し、この効果は0.2%以上の添加で発現する。一方、過度な添加は均一伸びを低下させ、穴拡げ性が劣化するため、0.2〜1.5%とした。更に、溶接部の粒界腐食性、製造性および製造コストを考慮すると、0.4〜0.9%が望ましい。   Nb is an element necessary for improving the high-temperature strength by solid solution strengthening and precipitate refinement strengthening. In addition, C and N are fixed as carbonitrides, contributing to the development of the recrystallization texture that affects the corrosion resistance and r value of the product plate. Furthermore, it contributes to precipitation strengthening by fine precipitation of the Laves phase and solid solution strengthening by solid solution Nb, and this effect is manifested by addition of 0.2% or more. On the other hand, excessive addition reduces the uniform elongation and deteriorates the hole expandability. Furthermore, if considering the intergranular corrosion property, the manufacturability and the manufacturing cost of the welded portion, 0.4 to 0.9% is desirable.

Bは、製品のプレス加工時の2次加工性を向上させる元素であるが、本発明では先述したNb−Mo−Cu−Ti−B添加でNb,Mo系析出物とε−Cuの微細析出をもたらし、高温強度の向上に寄与する。これらの効果は、0.0002%以上で発現するが、過度な添加は硬質化や粒界腐食性を劣化させる他、溶接割れが生じるため、0.0002〜0.01%とした。更に、成型性や製造コストを考慮すると、0.0003〜0.005%が望ましい。   B is an element that improves the secondary workability at the time of press working of the product. In the present invention, fine precipitation of Nb, Mo-based precipitates and ε-Cu by adding Nb—Mo—Cu—Ti—B as described above. Contributes to the improvement of high temperature strength. These effects are manifested at 0.0002% or more. However, excessive addition deteriorates the hardness and intergranular corrosion, and also causes weld cracks. Therefore, the content was made 0.0002 to 0.01%. Furthermore, if considering moldability and manufacturing cost, 0.0003 to 0.005% is desirable.

Cuは、先述したように高温強度向上に有効な元素である。これは、ε−Cuが析出することによる析出硬化作用であり、1%以上の添加により著しく発揮する。また、1%未満では析出硬化作用は顕著に発揮しない。一方、過度な添加は、均一伸びの低下や常温耐力が高くなりすぎてプレス成型性に支障が生じる。また、3.5%以上添加すると高温域でオーステナイト相が形成されて表面に異常酸化が生じるため上限を3.5%とした。Cuの上限は3%が好ましい。また、製造性やスケール密着性を考慮すると、1.2〜2%が望ましい。   Cu is an element effective for improving the high-temperature strength as described above. This is a precipitation hardening effect due to the precipitation of ε-Cu, and is remarkably exhibited by addition of 1% or more. On the other hand, if it is less than 1%, the precipitation hardening effect is not remarkably exhibited. On the other hand, excessive addition causes a reduction in uniform elongation and excessively high room temperature proof stress, which impairs press formability. Further, if added in an amount of 3.5% or more, an austenite phase is formed in a high temperature range and abnormal oxidation occurs on the surface, so the upper limit was made 3.5%. The upper limit of Cu is preferably 3%. In consideration of manufacturability and scale adhesion, 1.2 to 2% is desirable.

Alは、脱酸元素として添加される元素であるが、耐酸化性を向上させる元素でもある。また、固溶強化元素としての強度向上に有用である。強度向上の作用は0.1%から安定して発現するが、過度の添加は硬質化して均一伸びを著しく低下させる他、靭性が著しく低下するため、上限を4%とした。更に、表面疵の発生や溶接性、製造性を考慮すると、0.1〜2.5%が望ましい。なお、脱酸の目的でAlを添加する場合、鋼中に0.1%未満のAlが不可避的不純物として残存する。   Al is an element added as a deoxidizing element, but is also an element that improves oxidation resistance. It is also useful for improving the strength as a solid solution strengthening element. The effect of improving the strength is stably manifested from 0.1%, but excessive addition hardens it to significantly reduce uniform elongation and toughness to remarkably decrease, so the upper limit was made 4%. Furthermore, if considering the occurrence of surface defects, weldability, and manufacturability, 0.1 to 2.5% is desirable. When Al is added for the purpose of deoxidation, less than 0.1% of Al remains in the steel as an inevitable impurity.

Vは、微細な炭窒化物を形成し、析出強化作用が生じて高温強度向上に寄与する。この効果は0.01%以上の添加で安定して発現するが、1%超添加すると析出物が粗大化して高温強度が低下し、熱疲労寿命および加工性が低下してしまうため、上限を1%とした。更に、製造コストや製造性を考慮すると、0.08〜0.5%が望ましい。   V forms fine carbonitrides and causes a precipitation strengthening action, which contributes to an improvement in high temperature strength. This effect is stably manifested by addition of 0.01% or more. However, if added over 1%, the precipitates become coarse and the high-temperature strength decreases, and the thermal fatigue life and workability decrease. 1%. Furthermore, if considering the manufacturing cost and manufacturability, 0.08 to 0.5% is desirable.

Wは、Moと同様な効果を有し、高温強度を向上させる元素である。この効果は1%以上から安定して発現するが、過度に添加するとLaves相中に固溶し、析出物を粗大化させてしまうとともに製造性および加工性を劣化させるため、1〜4%が好ましい。更に、コストや耐酸化性等を考慮すると、1.2〜3%が望ましい。   W is an element having the same effect as Mo and improving the high temperature strength. This effect appears stably from 1% or more, but if added excessively, it dissolves in the Laves phase, coarsening precipitates and degrading manufacturability and workability. preferable. Furthermore, if considering cost, oxidation resistance, etc., 1.2 to 3% is desirable.

Snは、原子半径が大きく固溶強化に有効な元素であり、常温の機械的特性を大きく劣化させない。高温強度への寄与は0.1%以上で安定して発現するが、1%以上添加すると製造性および加工性が著しく劣化するため、0.1〜1%が好ましい。更に、耐酸化性等を考慮すると、0.2〜0.8%が望ましい。   Sn is an element having a large atomic radius and effective for solid solution strengthening, and does not greatly deteriorate the mechanical properties at room temperature. The contribution to the high-temperature strength is stably manifested at 0.1% or more, but if added at 1% or more, manufacturability and workability are remarkably deteriorated, so 0.1 to 1% is preferable. Furthermore, if considering oxidation resistance and the like, 0.2 to 0.8% is desirable.

ZrはTiやNb以上の強力な炭窒化物形成元素であるので、Zrを添加すれば固溶Ti,Nb量の増加による高温強度向上、耐酸化性の向上に寄与し、0.2%以上の添加により安定して効果を発揮する。しかしながら、2%超の添加により製造性および加工性の劣化が著しいため、0.2〜2%とした。更に、コストや表面品位を考慮すると、0.2〜0.9%が望ましい。   Zr is a strong carbonitride-forming element over Ti and Nb. Therefore, if Zr is added, it contributes to improvement in high-temperature strength and oxidation resistance by increasing the amount of solid solution Ti and Nb. Adds a stable effect. However, since addition of more than 2% significantly deteriorates manufacturability and workability, the content is set to 0.2 to 2%. Furthermore, if considering cost and surface quality, 0.2 to 0.9% is desirable.

HfはTi,Nb以上の強力な炭窒化物形成元素であるので、Hfを添加すれば固溶Ti,Nb量の増加による高温強度向上、耐酸化性の向上に寄与し、0.2%以上の添加により安定して効果を発揮する。しかしながら、2%超の添加により製造性および加工性の劣化が著しいため、0.2〜2%とした。更に、コストや表面品位を考慮すると、0.2〜1%が望ましい。   Hf is a strong carbonitride-forming element higher than Ti and Nb, so if Hf is added, it contributes to improving high temperature strength and oxidation resistance by increasing the amount of solid solution Ti and Nb, and 0.2% or more. Adds a stable effect. However, since addition of more than 2% significantly deteriorates manufacturability and workability, the content is set to 0.2 to 2%. Furthermore, if considering cost and surface quality, 0.2 to 1% is desirable.

TaはTi,Nb以上の強力な炭窒化物形成元素であるので、Taを添加すれば固溶Ti,Nb量の増加による高温強度向上、耐酸化性の向上に寄与し、0.2%以上の添加により安定して効果を発揮する。しかしながら、5%超の添加により製造性および加工性の劣化が著しいため、0.2〜5%とした。更に、コストや表面品位を考慮すると、0.2〜3%が望ましい。   Since Ta is a strong carbonitride-forming element over Ti and Nb, if Ta is added, it contributes to improving high-temperature strength and oxidation resistance by increasing the amount of dissolved Ti and Nb, and 0.2% or more Adds a stable effect. However, since addition of more than 5% causes remarkable deterioration of manufacturability and workability, the content is set to 0.2 to 5%. Furthermore, if considering cost and surface quality, 0.2 to 3% is desirable.

冷延焼鈍板における総析出量は2質量%以下が望ましい。排気系部材として使用される800〜900℃において、析出物の微細析出が促進され、高温強度が維持されやすいためである(図2参照)。   The total precipitation amount in the cold-rolled annealed sheet is desirably 2% by mass or less. This is because, at 800 to 900 ° C. used as an exhaust system member, fine precipitation of precipitates is promoted and high temperature strength is easily maintained (see FIG. 2).

冷延板の最終焼鈍温度は、高温であればあるほど冷延板中の析出物が多量に固溶し、冷延焼鈍板における総析出物量を低減することができる。その結果、排気系部材として使用する際に析出する微細析出物量を増加させ、析出物の微細化に寄与する。冷延板の最終焼鈍温度が1070℃以上であれば、冷延焼鈍板における総析出物量が2質量%以下となり、850℃における0.2%耐力として40MPaを得ることが出来る。1200℃を超えると結晶粒が大きくなりすぎるので、1200℃を最終焼鈍温度の上限とする。高温強度安定性とコストや表面品位を考慮すると最終焼鈍温度は1100℃以上1200℃以下が望ましい。   The higher the final annealing temperature of the cold-rolled sheet, the larger the amount of precipitates in the cold-rolled sheet, so that the total amount of precipitates in the cold-rolled annealed sheet can be reduced. As a result, the amount of fine precipitates deposited when used as an exhaust system member is increased, contributing to refinement of the precipitates. When the final annealing temperature of the cold-rolled sheet is 1070 ° C. or higher, the total amount of precipitates in the cold-rolled annealed sheet is 2% by mass or less, and 40 MPa can be obtained as the 0.2% yield strength at 850 ° C. If it exceeds 1200 ° C, the crystal grains become too large, so 1200 ° C is set as the upper limit of the final annealing temperature. Considering high-temperature strength stability, cost, and surface quality, the final annealing temperature is desirably 1100 ° C. or higher and 1200 ° C. or lower.

なお、鋼板の製造方法については、冷延板の最終焼鈍温度を1070℃以上にすることが望ましいこと以外は特に規定しないが、熱延条件、熱延板厚、熱延板焼鈍の有無、冷延条件、熱延板および焼鈍温度、雰囲気などは適宜選択すれば良い。また、冷延・焼鈍後に調質圧延やテンションレベラーを付与しても構わない。更に、製品板厚についても、要求部材厚に応じて選択すれば良い。   The manufacturing method of the steel sheet is not particularly specified except that the final annealing temperature of the cold-rolled sheet is preferably 1070 ° C. or higher, but the hot-rolling conditions, hot-rolled sheet thickness, presence / absence of hot-rolled sheet annealing, The rolling conditions, hot-rolled sheet and annealing temperature, atmosphere, etc. may be appropriately selected. Further, temper rolling or tension leveler may be applied after cold rolling and annealing. Further, the product plate thickness may be selected according to the required member thickness.

表1、表2に示す成分組成の鋼を溶製してスラブに鋳造し、スラブを熱間圧延して5mm厚の熱延コイルとした。その後、熱延コイルに酸洗を施し、2mm厚まで冷間圧延し、焼鈍・酸洗を施して製品板とした。冷延板の焼鈍温度は、総析出量を考慮して1000〜1150℃とした。表1のNo.1〜36は本発明鋼、表2のNo.37〜57は比較鋼である。   Steels having the composition shown in Tables 1 and 2 were melted and cast into slabs, and the slabs were hot-rolled to form hot rolled coils having a thickness of 5 mm. Thereafter, the hot rolled coil was pickled, cold-rolled to a thickness of 2 mm, annealed and pickled to obtain a product plate. The annealing temperature of the cold-rolled sheet was set to 1000 to 1150 ° C. in consideration of the total precipitation amount. No. in Table 1 1 to 36 are steels of the present invention, No. 1 in Table 2. Reference numerals 37 to 57 are comparative steels.

このようにして得られた製品板から、圧延方向が引張方向となるように高温引張試験片を採取し、850℃で引張試験を実施し、0.2%耐力を測定した(JIS G 0567に準拠、数値は小数点以下を四捨五入)。また、製品板の総析出物は、冷延焼鈍板のサンプルを電解抽出残渣にて求めた。更に、耐酸化性の試験として、大気中850℃および950℃で200時間の連続酸化試験を行い、異常酸化とスケール剥離の発生有無を評価した(JIS Z 2281に準拠)。常温の加工性として、JIS Z 2201に規定されているJIS13号B試験片を作製して圧延方向と平行方向の引張試験を行い、破断伸びを測定した(JIS Z 2241に準拠)。ここで、常温での破断伸びは25%以上あれば、一般的な排気部品への加工が可能なため、25%以上の破断伸びを有するものを合格とした。   From the product plate thus obtained, a high-temperature tensile test piece was collected so that the rolling direction was the tensile direction, a tensile test was performed at 850 ° C., and 0.2% proof stress was measured (according to JIS G 0567). Compliant, figures are rounded off to the nearest decimal point). Moreover, the total deposit of a product board calculated | required the sample of the cold rolled annealing board in the electrolytic extraction residue. Furthermore, as an oxidation resistance test, a continuous oxidation test was performed for 200 hours at 850 ° C. and 950 ° C. in the atmosphere to evaluate whether or not abnormal oxidation and scale peeling occurred (based on JIS Z 2281). As normal temperature workability, a JIS No. 13 B test piece defined in JIS Z 2201 was prepared, a tensile test in a direction parallel to the rolling direction was performed, and elongation at break was measured (conforms to JIS Z 2241). Here, if the elongation at break at room temperature is 25% or more, it can be processed into a general exhaust part.

Figure 0005025671
Figure 0005025671

Figure 0005025671
Figure 0005025671

表1、表2から明らかなように、本発明で規定する成分組成を有する鋼は、850℃の0.2%耐力が34MPa以上と、SUS444(No.56鋼)の850℃の0.2%耐力32MPaより高く、常温の破断伸びも25%以上確保されており、さらに、850℃および950℃において異常酸化やスケール剥離も無く耐酸化性にも優れていることがわかる。   As is clear from Tables 1 and 2, the steel having the component composition defined in the present invention has a 0.2% proof stress of 850 ° C. of 34 MPa or more and SUS444 (No. 56 steel) of 850 ° C. of 0.2. It can be seen that the% yield strength is higher than 32 MPa, the elongation at break at room temperature is secured at 25% or more, and there is no abnormal oxidation or scale peeling at 850 ° C. and 950 ° C. and excellent oxidation resistance.

また、Al含有量が0.1%以上4%以下の本発明例では、0.2%耐力の改善が見られる。Al含有量0.1%未満については、脱酸の目的で添加したAl起因の不可避不純物としてのAlである。   Moreover, in the present invention examples in which the Al content is 0.1% or more and 4% or less, improvement of 0.2% proof stress is observed. About Al content less than 0.1%, it is Al as an inevitable impurity derived from Al added for the purpose of deoxidation.

さらに、総析出量2%以下にするように焼鈍温度を1070℃以上で製造したNo.1〜30鋼の場合、850℃における0.2%耐力は40MPa以上となり、常温での破断伸びも30%以上あり、850℃および950℃での耐酸化性も問題なく、非常に優れた特性を示している。   Further, No. 1 manufactured at an annealing temperature of 1070 ° C. or higher so that the total precipitation amount is 2% or less. In the case of 1 to 30 steel, the 0.2% proof stress at 850 ° C. is 40 MPa or more, the elongation at break at room temperature is 30% or more, the oxidation resistance at 850 ° C. and 950 ° C. is no problem, and very excellent characteristics Is shown.

比較鋼である、No.37,38および39鋼は、それぞれC,N,Siが上限を外れており、耐酸化性が発明鋼に比べて低い。No.41鋼はCrが下限を外れており、耐酸化性が発明鋼に比べて低い。No.43鋼はCuが少なめでMoが下限をはずれており、高温耐力がやや低い。また、Siが0.1%とやや低めのため、耐酸化性が850℃では問題ないが、950℃では劣る。No.40鋼はMnが過剰に添加されて耐酸化性が劣るとともに、常温における延性が低い。No.42,44鋼はそれぞれCr,Moが上限を外れており、高温耐力は高いものの総析出量が多く、常温延性が低い。No.45鋼は、Cuが上限を外れており、高温耐力は高いものの常温延性が低く、耐酸化性も劣っている。No.46,47鋼はTi,Nbが上限を外れており、高温耐力は高いものの総析出量が多く、常温延性が低い。No.48鋼はAlが上限を外れており、高温耐力は高いものの常温延性が低い。No.49鋼は、Moが1%未満の成分としてはSiが0.11%と下限を外れており、耐酸化性が850℃では問題ないが、950℃では異常酸化が生じたので耐酸化性が劣る。No.50〜56鋼はB,V,W,Sn,Zr,Hf,Ta添加量が上限外れで、高温強度は高いものの総析出量が多いため常温延性が低く、部品加工に支障をきたす。No.57鋼はSUS444で、Cuが下限を外れており高温耐力が低い。   It is a comparative steel, No. The 37, 38, and 39 steels have C, N, and Si that are outside the upper limits, respectively, and their oxidation resistance is lower than that of the inventive steel. No. 41 steel has Cr lower than the lower limit, and its oxidation resistance is lower than that of invention steel. No. Steel No. 43 has less Cu, Mo is off the lower limit, and the high-temperature yield strength is slightly low. Moreover, since Si is slightly low at 0.1%, there is no problem with oxidation resistance at 850 ° C., but it is inferior at 950 ° C. No. Forty steel, Mn is added excessively, resulting in poor oxidation resistance and low ductility at room temperature. No. In Steel Nos. 42 and 44, Cr and Mo are out of the upper limits, respectively, while the high-temperature proof stress is high, but the total precipitation amount is large and the room temperature ductility is low. No. In 45 steel, Cu is out of the upper limit, and the high temperature proof stress is high, but the room temperature ductility is low, and the oxidation resistance is also inferior. No. In Steel Nos. 46 and 47, Ti and Nb are outside the upper limit, and although the high-temperature proof stress is high, the total precipitation amount is large and the room temperature ductility is low. No. In 48 steel, Al is out of the upper limit, and high temperature proof stress is high, but cold ductility is low. No. As for steel No. 49, Si is less than the lower limit of 0.11% as a component of less than 1%, and oxidation resistance is not a problem at 850 ° C., but abnormal oxidation occurred at 950 ° C., so that the oxidation resistance is low. Inferior. No. Steel Nos. 50 to 56 have B, V, W, Sn, Zr, Hf, and Ta additions outside the upper limit, and although the high temperature strength is high, the total precipitation amount is large, so that the room temperature ductility is low, which hinders part processing. No. 57 steel is SUS444, Cu is out of the lower limit, and the high temperature proof stress is low.

Claims (6)

質量%にて、C:0.01%以下、N:0.02%以下、Si:0.05〜1%、Mn:0.6超〜2%、Cr:15〜30%、Mo:1〜4%、Cu:1〜3.3%、Nb:0.2〜1.5%、Ti:0.05〜0.5%、B:0.0002〜0.01%を含有し、残部がFeおよび不可避的不純物よりなり、850℃の0.2%耐力が32MPaより高いことを特徴とする高温強度に優れたフェライト系ステンレス鋼板。 In mass%, C: 0.01% or less, N: 0.02% or less, Si: 0.05 to 1%, Mn: more than 0.6 to 2%, Cr: 15 to 30%, Mo: 1 -4%, Cu: 1 to 3.3 %, Nb: 0.2 to 1.5%, Ti: 0.05 to 0.5%, B: 0.0002 to 0.01%, the balance There Fe and Ri name from unavoidable impurities, excellent ferritic stainless steel high-temperature strength of 0.2% proof stress of 850 ° C. may be higher than 32 MPa. 質量%にて、C:0.01%以下、N:0.02%以下、Si:0.15〜1%、Mn:0.6超〜2%、Cr:15〜30%、Mo:0.1〜1%未満、Cu:2超〜3.5%、Nb:0.2〜1.5%、Ti:0.05〜0.5%、B:0.0002〜0.01%を含有し、残部がFeおよび不可避的不純物よりなり、850℃の0.2%耐力が32MPaより高いことを特徴とする高温強度に優れたフェライト系ステンレス鋼板。 In mass%, C: 0.01% or less, N: 0.02% or less, Si: 0.15 to 1%, Mn: more than 0.6 to 2%, Cr: 15 to 30%, Mo: 0 0.1 to less than 1%, Cu: more than 2 to 3.5%, Nb: 0.2 to 1.5%, Ti: 0.05 to 0.5%, B: 0.0002 to 0.01% containing, and Ri is Na Fe and unavoidable impurities balance, excellent ferritic stainless steel high-temperature strength of 0.2% proof stress of 850 ° C. may be higher than 32 MPa. 総析出量が質量%にて2%以下であることを特徴とする請求項1または2記載の高温強度に優れたフェライト系ステンレス鋼板。   The ferritic stainless steel sheet having excellent high temperature strength according to claim 1 or 2, wherein the total precipitation amount is 2% or less in terms of mass%. 質量%にて、Al:0.1%以上4%以下、V:1%以下の1種以上を含有することを特徴とする請求項1から3のいずれかに記載の高温強度に優れたフェライト系ステンレス鋼板。   The ferrite having excellent high-temperature strength according to any one of claims 1 to 3, characterized by containing at least one of Al: 0.1% to 4% and V: 1% in mass%. Stainless steel sheet. 質量%にて、W:5%以下、Sn:1%以下、Zr:2%以下、Hf:2%以下、Ta:5%以下の1種以上を含有することを特徴とする請求項1〜4のいずれかに記載の高温強度に優れたフェライト系ステンレス鋼板。   It contains at least one of W: 5% or less, Sn: 1% or less, Zr: 2% or less, Hf: 2% or less, Ta: 5% or less in mass%. 4. A ferritic stainless steel sheet excellent in high temperature strength according to any one of 4 above. 冷延板の最終焼鈍温度が1070℃以上であることを特徴とする請求項3〜5のいずれかに記載の高温強度に優れたフェライト系ステンレス鋼板の製造方法。   The method for producing a ferritic stainless steel sheet having excellent high-temperature strength according to any one of claims 3 to 5, wherein the final annealing temperature of the cold-rolled sheet is 1070 ° C or higher.
JP2009030101A 2008-02-13 2009-02-12 Ferritic stainless steel sheet excellent in high temperature strength and method for producing the same Active JP5025671B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009030101A JP5025671B2 (en) 2008-02-13 2009-02-12 Ferritic stainless steel sheet excellent in high temperature strength and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008031960 2008-02-13
JP2008031960 2008-02-13
JP2009030101A JP5025671B2 (en) 2008-02-13 2009-02-12 Ferritic stainless steel sheet excellent in high temperature strength and method for producing the same

Publications (2)

Publication Number Publication Date
JP2009215648A JP2009215648A (en) 2009-09-24
JP5025671B2 true JP5025671B2 (en) 2012-09-12

Family

ID=41187784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009030101A Active JP5025671B2 (en) 2008-02-13 2009-02-12 Ferritic stainless steel sheet excellent in high temperature strength and method for producing the same

Country Status (1)

Country Link
JP (1) JP5025671B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5658893B2 (en) * 2010-03-11 2015-01-28 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet with excellent heat resistance and method for producing the same
WO2011111871A1 (en) 2010-03-11 2011-09-15 新日鐵住金ステンレス株式会社 Highly oxidation-resistant ferrite stainless steel plate, highly heat-resistant ferrite stainless steel plate, and manufacturing method therefor
BR112013020903B1 (en) * 2011-02-17 2019-07-02 Nippon Steel & Sumikin Stainless Steel Corporation FERRITIC STAINLESS STEEL SHEET AND PROCESS FOR PRODUCTION
JP5659061B2 (en) 2011-03-29 2015-01-28 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet excellent in heat resistance and workability and manufacturing method thereof
JP6037882B2 (en) 2012-02-15 2016-12-07 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet with excellent scale peel resistance and method for producing the same
JP6071608B2 (en) 2012-03-09 2017-02-01 新日鐵住金ステンレス株式会社 Ferritic stainless steel plate with excellent oxidation resistance
JP5793459B2 (en) 2012-03-30 2015-10-14 新日鐵住金ステンレス株式会社 Heat-resistant ferritic stainless steel cold-rolled steel sheet excellent in workability, ferritic stainless hot-rolled steel sheet for cold-rolled material, and production method thereof
FI125855B (en) * 2012-06-26 2016-03-15 Outokumpu Oy Ferritic stainless steel
WO2014136866A1 (en) * 2013-03-06 2014-09-12 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet having excellent heat resistance
MX2015013765A (en) 2013-03-27 2016-02-26 Nippon Steel & Sumikin Sst Hot-rolled ferritic stainless-steel plate, process for producing same, and steel strip.
EP3318653B1 (en) 2015-09-29 2019-05-22 JFE Steel Corporation Ferritic stainless steel
MX2019011670A (en) 2017-03-27 2019-12-19 Nippon Steel Stainless Steel Corp Ferrite stainless steel sheet and production method therefor, and exhaust components.

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4498950B2 (en) * 2005-02-25 2010-07-07 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet for exhaust parts with excellent workability and manufacturing method thereof

Also Published As

Publication number Publication date
JP2009215648A (en) 2009-09-24

Similar Documents

Publication Publication Date Title
JP5025671B2 (en) Ferritic stainless steel sheet excellent in high temperature strength and method for producing the same
JP5297630B2 (en) Ferritic stainless steel plate with excellent heat resistance
JP5546911B2 (en) Ferritic stainless steel sheet with excellent heat resistance and workability
KR101744432B1 (en) Heat-resistant austenitic stainless steel sheet
KR101619008B1 (en) Heat-resistant austenitic stainless steel sheet
JP5274074B2 (en) Heat-resistant ferritic stainless steel sheet with excellent oxidation resistance
KR101878245B1 (en) Ferritic stainless steel excellent in oxidation resistance
JP6071608B2 (en) Ferritic stainless steel plate with excellent oxidation resistance
JP5546922B2 (en) Ferritic stainless steel sheet with excellent heat resistance and workability and method for producing the same
WO2011111871A1 (en) Highly oxidation-resistant ferrite stainless steel plate, highly heat-resistant ferrite stainless steel plate, and manufacturing method therefor
WO2012133573A1 (en) Ferritic stainless steel sheet having excellent heat resistance and processability, and method for producing same
JP5658893B2 (en) Ferritic stainless steel sheet with excellent heat resistance and method for producing the same
WO2018181060A1 (en) Ferrite stainless steel sheet and production method therefor, and exhaust components
JP5703075B2 (en) Ferritic stainless steel plate with excellent heat resistance
JP7009278B2 (en) Ferritic stainless steel sheets with excellent heat resistance and exhaust parts and their manufacturing methods
JP5208450B2 (en) Cr-containing steel with excellent thermal fatigue properties
JP5677819B2 (en) Ferritic stainless steel plate with excellent oxidation resistance
JP2019218588A (en) Austenite stainless steel sheet and manufacturing method therefor
JP2019059995A (en) Austenitic stainless steel plate having excellent heat resistance and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120529

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120619

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5025671

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250