JP4468137B2 - Ferritic stainless steel material and automotive exhaust gas path member with excellent thermal fatigue characteristics - Google Patents

Ferritic stainless steel material and automotive exhaust gas path member with excellent thermal fatigue characteristics Download PDF

Info

Publication number
JP4468137B2
JP4468137B2 JP2004305767A JP2004305767A JP4468137B2 JP 4468137 B2 JP4468137 B2 JP 4468137B2 JP 2004305767 A JP2004305767 A JP 2004305767A JP 2004305767 A JP2004305767 A JP 2004305767A JP 4468137 B2 JP4468137 B2 JP 4468137B2
Authority
JP
Japan
Prior art keywords
temperature
less
exhaust gas
gas path
thermal fatigue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004305767A
Other languages
Japanese (ja)
Other versions
JP2006117985A (en
Inventor
学 奥
壮郎 冨田
洋介 鷲見
健久 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Toyota Motor Corp
Original Assignee
Nippon Steel Nisshin Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Nisshin Co Ltd, Toyota Motor Corp filed Critical Nippon Steel Nisshin Co Ltd
Priority to JP2004305767A priority Critical patent/JP4468137B2/en
Publication of JP2006117985A publication Critical patent/JP2006117985A/en
Application granted granted Critical
Publication of JP4468137B2 publication Critical patent/JP4468137B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、熱疲労特性に優れたフェライト系ステンレス鋼材、およびそれを用いた自動車排ガス経路部材に関する。特に排ガス経路の上流部を構成して、自動車使用時に700℃以上に昇温される部材が好適な対象となる。   The present invention relates to a ferritic stainless steel material excellent in thermal fatigue characteristics, and an automobile exhaust gas path member using the same. In particular, a member that constitutes the upstream portion of the exhaust gas path and is heated to 700 ° C. or higher when the automobile is used is a suitable target.

自動車の排ガス経路部材のうち、特に使用中に700℃以上に昇温されるような上流側の部材には、いうまでもなく700℃を超える高温領域での耐熱性が要求される。そこで、従来一般的には、例えば700〜1000℃といった高温域での高温強度を高めることを主眼に材料開発が行われてきた。また、自動車排ガス経路部材は、エンジンの起動・停止に伴って高温域への昇温と常温への降温という熱サイクルを繰り返し受ける。このため、昇温過程と冷却過程で通過する500〜700℃の中温域での強度も重要であり、500〜1000℃の広い温度領域で高温強度を向上させる成分設計が研究されている。   Of the exhaust gas path members of automobiles, it is needless to say that heat resistance in a high temperature range exceeding 700 ° C. is required for an upstream side member that is heated to 700 ° C. or more during use. Therefore, in general, materials have been developed mainly for increasing the high-temperature strength in a high-temperature region such as 700 to 1000 ° C. In addition, the automobile exhaust gas path member repeatedly undergoes a heat cycle of temperature rise to a high temperature range and temperature drop to room temperature as the engine is started and stopped. For this reason, the strength in the middle temperature range of 500 to 700 ° C. that passes in the temperature raising process and the cooling process is also important, and component design that improves the high temperature strength in a wide temperature range of 500 to 1000 ° C. has been studied.

一方、自動車排ガス経路部材は、繰り返しの昇温・降温に対する抵抗力として熱疲労特性に優れることも重要であるとの見地から、特許文献1ではフェライト系ステンレス鋼において600〜750℃の中温度域での強度向上が熱疲労特性の向上につながるとして、中温度域での強度低下の防止を図っている。その主たる手段は鋼中にCuを1〜3%含有させ、中温度域でCuの微細析出物を生成させるものである。   On the other hand, from the standpoint that it is also important for automobile exhaust gas path members to be excellent in thermal fatigue characteristics as resistance to repeated temperature rise and fall, in Patent Document 1, in a ferritic stainless steel, a medium temperature range of 600 to 750 ° C. As an improvement in strength leads to an improvement in thermal fatigue properties, the strength is prevented from decreasing in the middle temperature range. The main means is to contain 1 to 3% of Cu in the steel and generate Cu fine precipitates in the middle temperature range.

また、特許文献2でもフェライト系ステンレス鋼にCuを1.0〜1.7%含有させ、加熱中にこれを析出させることで700℃あるいは800℃での高温強度の向上を図っている。   Also in Patent Document 2, 1.0 to 1.7% of Cu is contained in ferritic stainless steel, and the high temperature strength at 700 ° C. or 800 ° C. is improved by precipitating this during heating.

特許第3468156号公報Japanese Patent No. 3468156 国際公開第03/004714号パンフレットInternational Publication No. 03/004714 Pamphlet

前述したような、500〜1000℃といった広い範囲で高温強度を上昇させる思想では、特殊元素を多量に添加した成分設計に頼らざるを得ず、素材コストが高くなる。また、成形加工性についても不利になる。   In the idea of increasing the high temperature strength in a wide range of 500 to 1000 ° C. as described above, it is necessary to rely on the component design in which a large amount of special elements are added, and the material cost increases. In addition, the moldability is disadvantageous.

特許文献1、2のCuを添加する手法では、Cu析出相による析出硬化を利用して600℃あるいは700〜800℃の温度域で鋼材の強度向上が図られている。
しかし、発明者らが詳細な検討を行ったところ、単にCuを適量添加したフェライト系ステンレス鋼の焼鈍材を製造してみても、700℃を超える温度への昇温と常温への降温を繰り返す自動車排ガス経路上流部材において、必ずしも満足できる熱疲労特性が再現性良く実現できるとは限らなかった。
In the technique of adding Cu in Patent Documents 1 and 2, the strength of the steel material is improved in a temperature range of 600 ° C. or 700 to 800 ° C. by using precipitation hardening by a Cu precipitation phase.
However, as a result of detailed investigations by the inventors, even when an annealed material of ferritic stainless steel simply added with an appropriate amount of Cu is repeatedly produced, the temperature rise to over 700 ° C. and the temperature drop to room temperature are repeated. In an automobile exhaust gas path upstream member, satisfactory thermal fatigue characteristics have not always been realized with good reproducibility.

本発明は、フェライト系ステンレス鋼材において、自動車排ガス経路上流部材を想定した場合の基本的な高温強度レベルと成形加工性、さらには低温靱性を具備しつつ、部材の耐久性に大きく関わる「熱疲労特性」を、比較的安価な成分設計により安定的に改善する技術を開発し、その技術を適用した鋼材および自動車排ガス部材を提供しようというものである。   The present invention relates to a ferritic stainless steel material that has a basic high temperature strength level and molding processability when assuming an automobile exhaust gas path upstream member, and further relates to the durability of the member while having a low temperature toughness. The aim is to develop a technology that stably improves the “characteristic” by a relatively inexpensive component design, and to provide a steel material and an automobile exhaust gas member to which the technology is applied.

発明者らは種々検討の結果、自動車排ガス経路上流部材の耐久性・信頼性を向上させるには、総合的にみて、熱疲労特性を安定的に改善することが極めて有利であることを知見した。700℃を超える高温域の基本的耐熱性(高温強度や耐酸化性)は従来からの技術の積み重ねにより、現時点ではかなり高水準にある。これをさらに向上させるには特殊元素の添加など多大なコスト増を必要とする。一方、自動車使用時の昇温・降温の熱サイクルに耐えうる耐久性(熱疲労特性)には未だ改善の余地が大きく、現状ではこの点を改善することが自動車排ガス経路上流部材の耐久性・信頼性向上に極めて効果的であると考えられる。   As a result of various studies, the inventors have found that, in order to improve the durability and reliability of the upstream member of the automobile exhaust gas path, it is extremely advantageous to improve the thermal fatigue characteristics stably in a comprehensive manner. . The basic heat resistance (high temperature strength and oxidation resistance) in the high temperature range exceeding 700 ° C. is considerably high at present due to the accumulation of conventional technologies. In order to further improve this, a great increase in costs such as addition of special elements is required. On the other hand, there is still much room for improvement in durability (thermal fatigue characteristics) that can withstand the heat cycle of temperature rise / fall when using an automobile. It is considered to be extremely effective for improving reliability.

発明者らの詳細な研究の結果、Cuを添加したフェライト系ステンレス鋼材において、排ガス部材として実際の使用に供される前の段階で、Cuの析出物(ここでは「ε−Cu相」という)の存在形態をある特定の状態にしておくことによって、その後の昇温および降温の繰り返しサイクルにおいて熱疲労特性が安定して改善されることがわかった。本発明はこのような知見に基づいて完成したものである。   As a result of detailed studies by the inventors, in a ferritic stainless steel material to which Cu has been added, a Cu precipitate (herein referred to as “ε-Cu phase”) at a stage prior to actual use as an exhaust gas member. It was found that the thermal fatigue characteristics were stably improved in the subsequent repeated cycle of temperature increase and decrease by keeping the existence form of in a certain state. The present invention has been completed based on such findings.

すなわち、本発明で提供する熱疲労特性に優れたフェライト系ステンレス鋼材(例えば鋼板)は、質量%で、C:0.03%以下、Si:1.0%以下、Mn:1.5%以下、Ni:0.6%以下、Cr:10〜20%、Ti:0.05〜0.30%、Nb:0.10〜0.60%、Mo:0〜0.10%未満、Cu:0.8〜2.0%、Al:0〜0.10%、B:0.0005〜0.02%、V:0.03〜0.20%、N:0.03%以下、残部Feおよび不可避的不純物からなり、下記式(1)および式(2)を満たす組成を有し、長径0.5μm以上のε−Cu相が10個/25μm2以下に調整された組織を有するものである。
Nb−8(C+N)≧0 …(1)
10Si+20Mo+30Cu+20(Ti+V)+160Nb−(Mn+Ni)≧100 …(2)
That is, the ferritic stainless steel material (for example, steel plate) excellent in thermal fatigue characteristics provided by the present invention is in mass%, C: 0.03% or less, Si: 1.0% or less, Mn: 1.5% or less. Ni: 0.6% or less, Cr: 10 to 20%, Ti: 0.05 to 0.30%, Nb: 0.10 to 0.60%, Mo: 0 to less than 0.10%, Cu: 0.8 to 2.0%, Al: 0 to 0.10%, B: 0.0005 to 0.02%, V: 0.03 to 0.20%, N: 0.03% or less, balance Fe In addition, it has a composition consisting of inevitable impurities, satisfying the following formulas (1) and (2), and having a structure in which ε-Cu phases having a major axis of 0.5 μm or more are adjusted to 10/25 μm 2 or less. is there.
Nb-8 (C + N) ≧ 0 (1)
10Si + 20Mo + 30Cu + 20 (Ti + V) + 160Nb- (Mn + Ni) ≥100 (2)

ここで、Mo、AlおよびVの下限0%は、製鋼工程で行う通常の分析手法でこれらの元素の含有量が測定限界以下の場合である。ε−Cu相の存在は鋼材の圧延方向に垂直な断面(C-断面)の試料についての透過型電子顕微鏡観察によって確かめることができる。式(1)(2)の元素記号の箇所には質量%で表された当該元素の含有量が代入される。   Here, the lower limit of 0% for Mo, Al, and V is the case where the content of these elements is below the measurement limit in a normal analysis method performed in the steelmaking process. The presence of the ε-Cu phase can be confirmed by observation with a transmission electron microscope on a sample having a cross section (C-cross section) perpendicular to the rolling direction of the steel material. The content of the element expressed in mass% is substituted for the element symbol in the formulas (1) and (2).

また、本発明では前記鋼材で構成される自動車排ガス経路部材が提供される。当該部材は、例えば前記鋼材である鋼板に曲げや溶接造管などの加工を施して製造される。その自動車排ガス経路部材としては、例えばエキゾーストマニホールド、触媒コンバーター、フロントパイプまたはセンターパイプを構成するものが挙げられ、特に、エンジン作動中に700℃以上の温度に昇温され、エンジン停止後に前記昇温温度から400℃まで平均冷却速度0.1〜30℃/秒で冷却される部材が好ましい適用対象となる。   Moreover, in this invention, the motor vehicle exhaust gas path member comprised with the said steel material is provided. The member is manufactured, for example, by subjecting a steel plate, which is the steel material, to a process such as bending or welding pipe forming. Examples of the automobile exhaust gas path member include those constituting an exhaust manifold, a catalytic converter, a front pipe or a center pipe, and in particular, the temperature is raised to a temperature of 700 ° C. or higher during engine operation, and from the temperature rise temperature after the engine is stopped. A member cooled to an average cooling rate of 0.1 to 30 ° C./second up to 400 ° C. is a preferable application target.

本発明によれば、Mo等の高価な元素に頼ることなくフェライト系ステンレス鋼材の熱疲労特性を顕著に改善することができた。この鋼材は、700℃を超える高温域で必要以上に高温強度を高めることを避けた合理的な成分設計を採用し、700℃を超える高温域への昇温および常温への降温を繰り返す用途で優れた耐久性を発現するものである。また鋼板として提供されるものは曲げ加工や溶接造管が可能で、低温靱性も良好である。このため、このフェライト系ステンレス鋼材は、自動車排ガス経路部材の、特に700℃を超える温度に昇温する上流部材に好適である。そして、この鋼板を用いた自動車排ガス経路部材は、材料コストの低減および耐久性・信頼性の向上を同時に実現するものである。   According to the present invention, the thermal fatigue characteristics of the ferritic stainless steel material could be remarkably improved without resorting to expensive elements such as Mo. This steel material adopts a rational component design that avoids increasing the high temperature strength more than necessary in a high temperature range exceeding 700 ° C., and repeatedly raises the temperature to a high temperature range exceeding 700 ° C. and lowers the temperature to room temperature. It exhibits excellent durability. Moreover, what is provided as a steel plate can be bent and welded, and has low temperature toughness. For this reason, this ferritic stainless steel material is suitable for an upstream member of an automobile exhaust gas path member that is heated to a temperature exceeding 700 ° C. in particular. And the automobile exhaust gas path member using this steel plate realizes simultaneously reduction of material cost and improvement of durability and reliability.

例えば自動車排ガス経路の上流部材のように、700℃、あるいは800℃を超えるような高温に曝されて使用される部材に用いるフェライト系ステンレス鋼材では、従来一般的に、そのような高温域での高温強度および耐酸化性を向上させることを重視して成分設計がなされてきた。そのためには高価な元素の添加が不可欠であり、素材コストの増大が避けられなかった。   For example, in the case of a ferritic stainless steel material used for a member that is used by being exposed to a high temperature exceeding 700 ° C. or 800 ° C., such as an upstream member of an automobile exhaust gas route, conventionally, Component design has been made with emphasis on improving high temperature strength and oxidation resistance. For this purpose, the addition of expensive elements is indispensable, and an increase in material cost is inevitable.

しかしながら発明者らの詳細な検討によれば、自動車排ガス経路部材のように頻繁に高温域への昇温と常温への降温が繰り返される用途においては、部材の耐久寿命を総合的に考慮すると、500℃から例えば900℃までといった、広範囲での高温強度を、いわばオールラウンドに向上させることよりも、むしろ500〜700℃の中温域における熱疲労特性を改善することの方が、耐久性・信頼性の向上および低コスト化に有利であることがわかってきた。   However, according to the detailed examination by the inventors, in the application where the temperature rise to the high temperature region and the temperature fall to the room temperature are frequently repeated like the automobile exhaust gas path member, considering the durable life of the member comprehensively, Rather than improving the high-temperature strength in a wide range from 500 ° C to 900 ° C, for example, in an all-round manner, it is better to improve the thermal fatigue characteristics in the middle temperature range of 500-700 ° C. It has been found to be advantageous for improving the performance and reducing the cost.

本発明ではその熱疲労特性を改善するために、Cuを添加したフェライト系鋼において、ε−Cu相の析出を利用する。Cuを例えば1〜2質量%程度添加したフェライト系ステンレス鋼においては、600℃前後の中温域でε−Cu相の析出が起こり、これがマトリックス中に微細分散しているとき析出強化現象が発現する。温度が900℃程度を超えるとε−Cu相のマトリックス中への固溶化が進む。そして、その後の降温過程で再び析出する。   In the present invention, in order to improve the thermal fatigue characteristics, precipitation of ε-Cu phase is used in ferritic steel added with Cu. In ferritic stainless steel to which, for example, about 1 to 2% by mass of Cu is added, precipitation of ε-Cu phase occurs in the middle temperature range around 600 ° C., and precipitation strengthening occurs when this is finely dispersed in the matrix. . When the temperature exceeds about 900 ° C., solidification of the ε-Cu phase into the matrix proceeds. And it precipitates again in the subsequent temperature-fall process.

従来からε−Cu相の析出を利用して中温域の強化を図った例はある(特許文献1、2)。しかし、これらを自動車排ガス経路の上流部材に使用した場合、熱疲労特性は必ずしも安定して改善されるとは限らず、信頼性の面で満足できなかった。発明者らはこの問題を解消すべく種々検討した結果、自動車排ガス経路に搭載されて最初の昇温・降温履歴を受ける前の段階(以下「初期段階」ということがある)における鋼材の金属組織状態が、その後の使用における熱疲労特性に重大な影響を与えることを突き止めた。   Conventionally, there are examples in which the intermediate temperature region is strengthened by utilizing precipitation of ε-Cu phase (Patent Documents 1 and 2). However, when these are used for the upstream member of the automobile exhaust gas path, the thermal fatigue characteristics are not always stably improved, and the reliability cannot be satisfied. As a result of various studies conducted by the inventors to solve this problem, the metallographic structure of the steel material in the stage (hereinafter sometimes referred to as the “initial stage”) before being mounted on the automobile exhaust gas path and receiving the first temperature rise / fall history. The condition was found to have a significant impact on thermal fatigue properties in subsequent use.

すなわち、鋼板素材を加工して自動車排ガス経路上流部材にする場合であれば、部材へ成形加工する前の鋼板段階において、長径0.5μm以上のε−Cu相が10個/25μm2以下(すなわち25μm2当たり10個以下)に調整された組織状態を実現しておけばよい。5個/25μm2以下であることが一層好ましい。 That is, if the steel plate material is processed into an automobile exhaust gas path upstream member, at the steel plate stage before forming into the member, the number of ε-Cu phases having a major axis of 0.5 μm or more is 10/25 μm 2 or less (ie, The tissue state adjusted to 10 or less per 25 μm 2 may be realized. More preferably, the number is 5/25 μm 2 or less.

長径0.5μm以上のε−Cu相が10個/25μm2より多く存在していると、部材に加工後、実際の使用時での最初の昇温において、例えば800℃以上といったエンジン稼働時の温度に到達したときにε−Cu相の固溶化が十分に起こらないケースが出てくる。この場合、エンジンを停止すると、既にかなりのε−Cu相が存在している状態で降温を開始することになる。そうすると、降温過程では既に存在するε−Cu相の表面を主たる析出サイトとして新たなε−Cu相の析出が起こるので、微細分散による十分な析出強化が発現しない。つまり、熱疲労特性を左右する降温過程での強度が十分に確保されない。そして、次回の昇温時にはこの粗大化したε−Cu相が存在する組織状態から昇温が始まるので、その後、昇温・降温の熱サイクルを繰り返す過程で、ε−Cu相が微細分散した組織状態はいつまでたってもなかなか実現しないことになる。その結果、熱疲労特性の改善は達成されない。 If there are more than 10/25 μm 2 ε-Cu phases with a major axis of 0.5 μm or more, the first temperature rise in actual use after processing the member, for example, when the engine is running at 800 ° C. or more When the temperature is reached, there will be cases where the ε-Cu phase does not sufficiently dissolve. In this case, when the engine is stopped, the temperature lowering is started in a state where a considerable ε-Cu phase already exists. Then, since a new ε-Cu phase precipitates with the surface of the existing ε-Cu phase as the main precipitation site in the temperature lowering process, sufficient precipitation strengthening due to fine dispersion does not occur. That is, the strength in the temperature lowering process that affects the thermal fatigue characteristics is not sufficiently ensured. Then, at the next temperature rise, the temperature rise starts from the textured state in which the coarsened ε-Cu phase exists, and then the structure in which the ε-Cu phase is finely dispersed in the process of repeating the heat cycle of temperature rise / fall. The state will not be realized indefinitely. As a result, no improvement in thermal fatigue properties is achieved.

一方、初期段階で長径0.5μm以上のε−Cu相は0個/25μm2(実質的に観察されない状態)であることが望ましいが、それより小さいε−Cu相がマトリックス中に分散して存在していても構わない。微細なε−Cu相が存在しても、排ガス経路部材としての最初の昇温過程で再固溶し、続く冷却過程でε−Cu相がマトリックス中に微細析出して、析出強化現象が発現する。 On the other hand, it is desirable that the number of ε-Cu phases having a major axis of 0.5 μm or more in the initial stage is 0/25 μm 2 (substantially not observed), but smaller ε-Cu phases are dispersed in the matrix. It does not matter if it exists. Even if a fine ε-Cu phase is present, it re-dissolves in the first heating process as an exhaust gas path member, and the ε-Cu phase precipitates finely in the matrix in the subsequent cooling process, resulting in a precipitation strengthening phenomenon. To do.

長径0.5μm以上のε−Cu相が10個/25μm2以下に調整された組織状態は、鋼材の製造段階で行われる仕上焼鈍の冷却速度を大きくすることで実現できる。ただし、冷却速度が大きすぎるとCuは完全に固溶したままとなり、微細なε−Cu相の分散した組織状態にはならず、好ましくない。発明者らの実験では、後述の成分組成を有するフェライト系ステンレス鋼板の製造工程において、連続ラインにて950〜1050℃×均熱0秒〜均熱60秒の仕上焼鈍を施す場合の例では、900℃から400℃までの平均冷却速度を10〜30℃/秒にコントロールすることで、望ましい組織状態が得られた。 The structure state in which the ε-Cu phase having a major axis of 0.5 μm or more is adjusted to 10/25 μm 2 or less can be realized by increasing the cooling rate of the finish annealing performed in the steel material manufacturing stage. However, if the cooling rate is too high, Cu remains in a solid solution, and the fine ε-Cu phase is not dispersed and is not preferable. In the experiment of the inventors, in an example of performing a finish annealing of 950 to 1050 ° C. × soaking 0 seconds to soaking 60 seconds in a continuous line in a manufacturing process of a ferritic stainless steel plate having a component composition described later, By controlling the average cooling rate from 900 ° C. to 400 ° C. to 10 to 30 ° C./second, a desirable tissue state was obtained.

以下、成分組成について説明する。
CおよびNは、一般的にはクリープ強度等の高温強度向上に有効な元素とされるが、過剰に含有すると酸化特性、加工性、低温靱性、溶接性が低下する。本発明ではC、Nとも0.03質量%以下に制限する。
Hereinafter, the component composition will be described.
C and N are generally effective elements for improving high-temperature strength such as creep strength, but if contained excessively, oxidation characteristics, workability, low-temperature toughness, and weldability deteriorate. In the present invention, both C and N are limited to 0.03 mass% or less.

Siは、高温酸化特性の改善に有効であるが、過剰に添加すると硬さが上昇し、加工性、低温靱性が低下する。本発明ではSi含有量は1.0質量%以下に制限される。   Si is effective in improving high-temperature oxidation characteristics, but if added excessively, hardness increases, and workability and low-temperature toughness decrease. In the present invention, the Si content is limited to 1.0 mass% or less.

Mnは、高温酸化特性、特に耐スケール剥離性を改善する。ただし過剰添加は加工性、溶接性を阻害する。またMnはオーステナイト安定化元素であるため、多量に添加するとマルテンサイト相が生成し易くなり、熱疲労特性、加工性の低下要因となる。このためMn含有量は1.5質量%以下とする。   Mn improves the high temperature oxidation properties, particularly the scale peel resistance. However, excessive addition hinders workability and weldability. Further, since Mn is an austenite stabilizing element, if added in a large amount, a martensite phase is likely to be generated, which causes a decrease in thermal fatigue characteristics and workability. For this reason, Mn content shall be 1.5 mass% or less.

Crは、フェライト相を安定化するとともに、高温材料に重視される耐酸化性の改善に寄与する。ただし、過剰のCr含有は鋼材の脆化や加工性劣化を招く。このためCr含有量は10〜20質量%とする。Cr含有量は、好ましくは材料の使用温度に合わせて調整される。例えば、950℃までの優れた耐高温酸化性を要求する場合は16質量%以上のCr含有が望まれ、900℃までであれば12〜16質量%の範囲で良い。   Cr stabilizes the ferrite phase and contributes to the improvement of oxidation resistance, which is important for high temperature materials. However, excessive Cr content causes embrittlement and workability deterioration of the steel material. For this reason, Cr content shall be 10-20 mass%. The Cr content is preferably adjusted according to the use temperature of the material. For example, when high temperature oxidation resistance up to 950 ° C. is required, Cr content of 16% by mass or more is desired, and up to 900 ° C. may be in the range of 12-16% by mass.

Tiは、成形性の改善に有効である。そのメカニズムは必ずしも明確ではないが、熱延板を熱処理する際にNb−Ti系析出物を生成させると冷延焼鈍板の成形性が著しく向上することから、この析出現象が成形性の改善に有効な集合組織すなわち圧延面に平行に(111)面または(211)面が集積した集合組織の形成に寄与しているものと推察される。析出物自体が直接作用するか、析出物の生成に伴う固溶Cの減少が作用することが考えられる。
しかし、過剰のTi添加はTiNの生成に起因する表面性状の劣化を招き、溶接性、低温靱性にも悪影響を及ぼすようになる。Ti含有量は0.05〜0.30質量%に規定される。
Ti is effective in improving moldability. The mechanism is not necessarily clear, but when Nb-Ti-based precipitates are formed when heat-treating hot-rolled sheets, the formability of cold-rolled annealed plates is remarkably improved. It is inferred that this contributes to the formation of an effective texture, that is, a texture in which (111) or (211) faces are accumulated parallel to the rolling surface. It is conceivable that the precipitate itself acts directly, or a decrease in solid solution C accompanying the formation of the precipitate acts.
However, excessive addition of Ti causes deterioration of the surface properties due to the formation of TiN, and adversely affects weldability and low temperature toughness. The Ti content is specified to be 0.05 to 0.30 mass%.

Nbは、700℃を超える高温域での高温強度を確保するために非常に有効な元素である。本成分系では固溶強化による寄与が大きいと考えられる。ただし、過剰のNb添加は加工性、低温靱性の劣化、溶接高温割れ感受性の増大を招き、好ましくない。Nb含有量は0.10〜0.60質量%に規定される。   Nb is a very effective element for ensuring high temperature strength in a high temperature range exceeding 700 ° C. In this component system, the contribution by solid solution strengthening is considered to be large. However, excessive Nb addition is not preferable because it causes deterioration of workability, low-temperature toughness, and increased weld hot cracking sensitivity. The Nb content is defined as 0.10 to 0.60% by mass.

Moは、高温強度の向上に有効な面もあるが、本発明では高価なMoを特に必要としない。多量のMo含有は加工性、低温靱性、溶接性を劣化させる。Mo含有量は0.10質量%未満に制限される。   Mo is effective for improving the high-temperature strength, but expensive Mo is not particularly required in the present invention. When a large amount of Mo is contained, workability, low temperature toughness and weldability deteriorate. The Mo content is limited to less than 0.10% by mass.

Cuは、本発明において重要な元素である。すなわち、本発明では前述のようにε−Cu相の微細分散析出現象を利用して500〜700℃の中温域での強度を高め、熱疲労特性を向上させる。そのためには少なくとも0.8質量%のCu含有が必要となる。ただし過剰のCu含有は加工性、低温靱性、溶接性を低下させるのでCu含有量の上限は2.0質量%に制限される。   Cu is an important element in the present invention. That is, in the present invention, as described above, the strength in the middle temperature range of 500 to 700 ° C. is increased by utilizing the fine dispersion precipitation phenomenon of the ε-Cu phase, and the thermal fatigue characteristics are improved. For this purpose, at least 0.8% by mass of Cu is required. However, since excessive Cu content reduces workability, low temperature toughness, and weldability, the upper limit of Cu content is limited to 2.0% by mass.

Alは、脱酸剤であるとともに、耐高温酸化性を改善する。しかし、多量にAlを含有させると表面性状、加工性、溶接性、低温靱性に悪影響を及ぼす。このため、Alを添加する場合は0.10質量%以下の含有量範囲で行う。   Al is a deoxidizer and improves high-temperature oxidation resistance. However, if Al is contained in a large amount, the surface properties, workability, weldability, and low temperature toughness are adversely affected. For this reason, when adding Al, it carries out in the content range of 0.10 mass% or less.

Bは、二次加工脆性を改善するために有効である。そのメカニズムは粒界固溶Cの減少や粒界強化によるものと推察される。しかし、過剰なB添加は製造性や溶接性を劣化させる。本発明では0.0005〜0.02質量%の範囲でBを含有させる。   B is effective for improving secondary work brittleness. The mechanism is presumed to be due to the decrease in grain boundary solid solution C and the strengthening of grain boundaries. However, excessive addition of B deteriorates manufacturability and weldability. In the present invention, B is contained in the range of 0.0005 to 0.02 mass%.

Vは、Nb、Cuとの複合添加によって高温強度の向上に寄与する。また、Nbとの共存により、加工性、低温靱性、耐粒界腐食感受性、溶接熱影響部の靱性を改善する。ただし、過剰添加すると却って加工性、低温靱性を招くようになる。したがって、V含有量は0.03〜0.20質量%の範囲とする。0.04〜0.15質量%とすることが一層好ましい。 V contributes to the improvement of the high-temperature strength by the combined addition with Nb and Cu. In addition, coexistence with Nb improves workability, low temperature toughness, intergranular corrosion susceptibility, and toughness of weld heat affected zone. However, excessive addition causes workability and low temperature toughness. Therefore , the V content is in the range of 0.03 to 0.20% by mass . And more preferably be 0.04 to 0.15 mass%.

各元素の含有量を以上の範囲にすると共に、下記式(1)および式(2)を満たすように組成調整する必要がある。
Nb−8(C+N)≧0 …(1)
10Si+20Mo+30Cu+20(Ti+V)+160Nb−(Mn+Ni)≧100 …(2)
ここで、式(1)は固溶Nbを確保するための規定であり、式(2)は基本的な高温強度を確保するための規定である。
It is necessary to adjust the composition so that the content of each element is in the above range and the following formulas (1) and (2) are satisfied.
Nb-8 (C + N) ≧ 0 (1)
10Si + 20Mo + 30Cu + 20 (Ti + V) + 160Nb- (Mn + Ni) ≥100 (2)
Here, equation (1) is a rule for securing solid solution Nb, and equation (2) is a rule for securing basic high-temperature strength.

本発明のフェライト系ステンレス鋼材は、例えば上記のように組成調整された鋼を溶製し、熱間圧延→焼鈍→酸洗の工程、あるいは更に、「冷間圧延→焼鈍→酸洗」を1回または複数回行う工程で製造することができる。ただし、前記のようなε−Cu相の析出形態を得るためには、仕上焼鈍において、900℃から400℃までの平均冷却速度を10〜30℃/秒の範囲にコントロールすることが望ましい。ここで、「仕上焼鈍」とは、鋼材の製造段階で行われる最後の焼鈍であり、例えば950〜1050℃で均熱0〜3分保持する熱処理が挙げられる。   The ferritic stainless steel material of the present invention, for example, melts the steel whose composition has been adjusted as described above, and performs a hot rolling → annealing → pickling process, or further, “cold rolling → annealing → pickling” 1 It can be manufactured by a process performed once or multiple times. However, in order to obtain the precipitation form of the ε-Cu phase as described above, it is desirable to control the average cooling rate from 900 ° C. to 400 ° C. in the range of 10 to 30 ° C./second in the finish annealing. Here, "finish annealing" is the last annealing performed in the manufacture stage of steel materials, for example, the heat processing hold | maintained at 950-1050 degreeC for 0-3 minutes soaking.

このようにして得られた鋼材に成形加工や溶接を施し、自動車排ガス経路部材を製造する。例えば、エキゾーストマニホールドやフロントパイプの場合、所望の板厚の鋼板を溶接造管し、必要に応じて曲げ加工等を施して部材とすることができる。   The steel material thus obtained is subjected to forming and welding to produce an automobile exhaust gas path member. For example, in the case of an exhaust manifold or a front pipe, a steel plate having a desired thickness can be formed by welding, and bending can be performed as necessary to form a member.

表1に示すフェライト系ステンレス鋼を溶製し、熱間圧延→熱延板焼鈍→冷間圧延→仕上焼鈍→酸洗の工程で板厚2mmの焼鈍鋼板を得た。また、鋳造スラブの一部を用いて熱間鍛造にて直径約25mmの丸棒を作り、これを仕上焼鈍した。冷間圧延後の仕上焼鈍、および熱間鍛造後の仕上焼鈍は、鋼No.10を除き、いずれも1000℃×1分保持後、900℃から400℃までの平均冷却速度が10〜30℃/秒となるように冷却速度をコントロールした。鋼No.10では、1000℃×1分保持後、900℃から400℃までの平均冷却速度を約50℃/秒と遅くした(圧延材、棒材とも共通条件)。   Ferritic stainless steel shown in Table 1 was melted, and an annealed steel sheet having a thickness of 2 mm was obtained in the steps of hot rolling → hot rolled sheet annealing → cold rolling → finish annealing → pickling. Further, a round bar having a diameter of about 25 mm was made by hot forging using a part of the cast slab, and this was subjected to finish annealing. Finish annealing after cold rolling and finishing annealing after hot forging, except for steel No. 10, after holding at 1000 ° C. for 1 minute, the average cooling rate from 900 ° C. to 400 ° C. is 10 to 30 ° C. The cooling rate was controlled to be 1 / second. In Steel No. 10, after holding at 1000 ° C. for 1 minute, the average cooling rate from 900 ° C. to 400 ° C. was slowed to about 50 ° C./second (common conditions for both rolled material and bar material).

Figure 0004468137
Figure 0004468137

仕上焼鈍後の板材および棒材について、それぞれ圧延方向および長手方向に垂直な断面における金属組織観察を行った。透過型電子顕微鏡を用いてε−Cu相のサイズを調べ、25μm2当たりに観察される長径0.5μm以上のε−Cu相の数を求めた。1つの試料につき少なくとも10視野の観察を行い、平均を採った。長径0.5μm以上のε−Cu相が10個/25μm2以下のものを○、それ以外のものを×として、表2に結果を示してある。各鋼とも、板材と棒材との間で結果に差はなかったため、表2に示すε−Cu量の評価は板材、棒材のいずれにも当てはまる。 With respect to the plate material and the bar material after finish annealing, the metal structures were observed in cross sections perpendicular to the rolling direction and the longitudinal direction, respectively. The size of the ε-Cu phase was examined using a transmission electron microscope, and the number of ε-Cu phases having a major axis of 0.5 μm or more observed per 25 μm 2 was determined. At least 10 visual fields were observed per sample, and the average was taken. The results are shown in Table 2, where ε-Cu phases having a major axis of 0.5 μm or more are 10/25 μm 2 or less, and ◯ is the others. For each steel, there was no difference in the results between the plate and the bar, so the evaluation of the amount of ε-Cu shown in Table 2 applies to both the plate and the bar.

板材を用い、常温での引張試験を実施して加工性を評価した。引張方向は圧延方向に対し0°(平行)、45°、90°の3種類とし、試験片はJIS 13B号試験片とした。JIS Z2241の引張試験を破断まで行い、破断後の試験片を突き合わせて破断時の伸びを測定した。下記の式で平均伸び値ELAを求めた。
ELA=(ELL+2ELD+ELT
ただし、ELLは圧延方向に対し0°方向の伸び(%)、ELDは圧延方向に対し45°方向の伸び(%)、ELTは圧延方向に対し90°方向の伸び(%)である。
ELAが30%以上のものを○、30%未満のものを×として評価した。
Using a plate material, a tensile test at normal temperature was performed to evaluate workability. The tensile direction was three types of 0 ° (parallel), 45 °, and 90 ° with respect to the rolling direction, and the test piece was a JIS 13B test piece. The tensile test of JIS Z2241 was conducted until breakage, and the test pieces after breakage were butted together to measure the elongation at breakage. The average elongation value EL A was determined by the following formula.
EL A = (EL L + 2EL D + EL T )
However, EL L is the elongation (%) in the 0 ° direction relative to the rolling direction, EL D is the elongation (%) in the 45 ° direction relative to the rolling direction, and EL T is the elongation (%) in the 90 ° direction relative to the rolling direction. is there.
What EL A is more than 30% ○, it was evaluated as × those less than 30%.

板材を用い、衝撃試験を実施して低温靱性を評価した。衝撃を付与する方向が板の圧延方向となるようにVノッチ衝撃試験片を採取し、JIS Z2242の衝撃試験を−75〜25℃の範囲で25℃ピッチで行い、延性脆性遷移温度を求めた。遷移温度が−50℃より低いもの(−50℃でも延性破面を呈するもの)を○、−50℃以上のものを×として評価した。   Using the plate material, an impact test was conducted to evaluate low temperature toughness. V-notch impact test specimens were collected so that the direction in which the impact was applied was the rolling direction of the plate, and the impact test of JIS Z2242 was performed at a pitch of 25 ° C. in the range of −75 to 25 ° C. to determine the ductile brittle transition temperature. . A transition temperature lower than −50 ° C. (those exhibiting a ductile fracture surface even at −50 ° C.) was evaluated as “◯”, and a transition temperature of −50 ° C. or higher was evaluated as “x”.

板材を用い、高温連続酸化試験を実施して耐高温酸化性を評価した。表面および端面を#400湿式研磨仕上した25×35mmの試験片を用い、JIS Z2281に準拠した高温連続酸化試験を大気中、900℃×200時間の条件で行い、試験後の試験片を目視観察し、こぶ状の厚い酸化スケールの生成を異常酸化と定義し、異常酸化の有無を判定した。異常酸化が認められなかったものを○、認められたものを×として評価した。   Using the plate material, a high-temperature continuous oxidation test was conducted to evaluate high-temperature oxidation resistance. Using a 25 x 35 mm test piece with a surface and end surface of # 400 wet polished, a high-temperature continuous oxidation test according to JIS Z2281 is performed in the atmosphere at 900 ° C for 200 hours, and the test piece after the test is visually observed. Then, the formation of a knot-like thick oxide scale was defined as abnormal oxidation, and the presence or absence of abnormal oxidation was determined. The case where abnormal oxidation was not recognized was evaluated as ◯, and the case where abnormal oxidation was observed was evaluated as ×.

板材を用い、高温引張試験を実施して高温強度を評価した。JIS G0567に準拠した高温引張試験を600℃にて行い、0.2%耐力を求めた。その値が180MPa以上のものを○、180MPa未満のものを×として評価した。   Using the plate material, a high temperature tensile test was performed to evaluate the high temperature strength. A high temperature tensile test in accordance with JIS G0567 was performed at 600 ° C., and a 0.2% proof stress was obtained. The value was evaluated as ◯ when the value was 180 MPa or more, and x when the value was less than 180 MPa.

棒材を用いて熱疲労試験を実施し、熱疲労特性を評価した。棒材から直径10mm、標点間中央部の直径が7mmの切欠き丸棒試験片を作製し、拘束力20%で、大気中にて「200℃×0.5分保持→昇温速度約3℃/秒で900℃まで昇温→900℃×0.5分保持→冷却速度約3℃/秒で200℃まで冷却」を1サイクルとするヒートサイクルを繰り返した。応力が初期応力の75%に低下したときの繰り返し数を熱疲労寿命と定義し、熱疲労寿命が900サイクル以上のものを○、900サイクル未満のものを×として評価した。
これらの結果を表2に示す。
A thermal fatigue test was conducted using the bar material, and the thermal fatigue characteristics were evaluated. A notched round bar test piece having a diameter of 10 mm and a diameter of 7 mm in the center between the gauge points was prepared from the bar, and was held at 200 ° C. for 0.5 minutes in the atmosphere with a binding force of 20%. The heat cycle was repeated with the temperature rising to 900 ° C. at 3 ° C./second→holding at 900 ° C. × 0.5 min → cooling to 200 ° C. at a cooling rate of about 3 ° C./second ” The number of repetitions when the stress decreased to 75% of the initial stress was defined as the thermal fatigue life, and the thermal fatigue life of 900 cycles or more was evaluated as ◯, and the cycle of less than 900 cycles was evaluated as x.
These results are shown in Table 2.

Figure 0004468137
Figure 0004468137

表2から判るように、本発明で規定する化学組成およびε−Cu相の析出形態を満たす本発明例のものは、優れた熱疲労特性を呈し、かつ加工性、低温靱性、耐高温酸化性、高温強度とも、自動車排ガス経路上流部材に適した特性を具備していた。なお、表中には記載していないが、これらはいずれも、長径0.5μm未満の微細なε−Cu相がマトリックス中に分散した組織を呈していた。   As can be seen from Table 2, the examples of the present invention satisfying the chemical composition defined in the present invention and the precipitation form of the ε-Cu phase exhibit excellent thermal fatigue properties, and have workability, low temperature toughness, and high temperature oxidation resistance. Both high-temperature strength and the characteristics suitable for the upstream member of the automobile exhaust gas path were provided. Although not shown in the table, each of these exhibited a structure in which fine ε-Cu phases having a major axis of less than 0.5 μm were dispersed in the matrix.

他方、比較例の鋼No.10は本発明で規定する化学組成を有しているが、仕上焼鈍後の冷却速度が10℃/秒より遅かったため、長径0.5μm以上のε−Cu相が10個/25μm2を超えて多くなり、600℃での高温強度および熱疲労特性に劣った。鋼No.11および18はCu含有量が低いのでε−Cu相の析出が十分に起こらず、また式(2)の値が小さいために、高温強度および熱疲労特性に劣った。鋼No.12はCu含有量が高すぎたため、長径0.5μm以上のε−Cu相が10個/25μm2を超えて多くなり、高温強度および熱疲労特性に劣った。また過剰なCu添加のため低温靱性も不十分であった。鋼No.13はNb含有量が低く式(1)を満たさず、鋼No.14はC含有量が高く、鋼No.15はSi含有量が高く、鋼No.16はMoを多量に含むためいため、いすれも加工性および低温靱性に劣った。鋼No.16ではさらにCu含有量が低いため、熱疲労特性も改善できていない。鋼No.17はMn含有量が高すぎたため、加工性に劣った。鋼No.19はAl含有量が高いため、低温靱性に劣った。鋼No.20はB含有量が多すぎたため、加工性に劣った。 On the other hand, steel No. 10 of the comparative example has the chemical composition specified in the present invention, but the cooling rate after finish annealing was slower than 10 ° C./second, so that the ε-Cu phase having a major axis of 0.5 μm or more was present. The number exceeded 10/25 μm 2 , and the high temperature strength and thermal fatigue properties at 600 ° C. were inferior. Steel Nos. 11 and 18 were low in Cu content, so that the precipitation of ε-Cu phase did not occur sufficiently, and the value of formula (2) was small, so that the high temperature strength and thermal fatigue characteristics were inferior. Steel No. 12 had an excessively high Cu content, so the number of ε-Cu phases having a major axis of 0.5 μm or more exceeded 10/25 μm 2 and was inferior in high-temperature strength and thermal fatigue characteristics. Moreover, the low temperature toughness was insufficient due to the excessive addition of Cu. Steel No. 13 has a low Nb content and does not satisfy the formula (1), Steel No. 14 has a high C content, Steel No. 15 has a high Si content, and Steel No. 16 contains a large amount of Mo. As a result, the chairs were inferior in workability and low temperature toughness. In Steel No. 16, since the Cu content is further low, the thermal fatigue characteristics cannot be improved. Steel No. 17 was inferior in workability because the Mn content was too high. Steel No. 19 was inferior in low temperature toughness due to its high Al content. Steel No. 20 was inferior in workability because the B content was too high.

Claims (5)

質量%で、
C:0.03%以下、
Si:1.0%以下、
Mn:1.5%以下、
Ni:0.6%以下、
Cr:10〜20%、
Ti:0.05〜0.30%、
Nb:0.10〜0.60%、
Mo:0〜0.10%未満、
Cu:0.8〜2.0%、
Al:0〜0.10%、
B:0.0005〜0.02%、
V:0.03〜0.20%、
N:0.03%以下、
残部Feおよび不可避的不純物からなり、下記式(1)および式(2)を満たす組成を有し、長径0.5μm以上のε−Cu相が10個/25μm2以下に調整された組織を有する熱疲労特性に優れたフェライト系ステンレス鋼材。
Nb−8(C+N)≧0 …(1)
10Si+20Mo+30Cu+20(Ti+V)+160Nb−(Mn+Ni)≧100 …(2)
% By mass
C: 0.03% or less,
Si: 1.0% or less,
Mn: 1.5% or less,
Ni: 0.6% or less,
Cr: 10 to 20%,
Ti: 0.05 to 0.30%,
Nb: 0.10 to 0.60%,
Mo: 0 to less than 0.10%,
Cu: 0.8-2.0%,
Al: 0 to 0.10%,
B: 0.0005 to 0.02%,
V: 0.03 to 0.20%,
N: 0.03% or less,
It has a composition composed of the balance Fe and inevitable impurities, satisfying the following formulas (1) and (2), and having a structure in which the ε-Cu phases having a major axis of 0.5 μm or more are adjusted to 10/25 μm 2 or less. Ferritic stainless steel with excellent thermal fatigue properties.
Nb-8 (C + N) ≧ 0 (1)
10Si + 20Mo + 30Cu + 20 (Ti + V) + 160Nb- (Mn + Ni) ≥100 (2)
前記鋼材が鋼板である請求項1に記載の熱疲労特性に優れたフェライト系ステンレス鋼材。   The ferritic stainless steel material having excellent thermal fatigue characteristics according to claim 1, wherein the steel material is a steel plate. 請求項1に記載の鋼材を用いた自動車排ガス経路部材。   An automobile exhaust gas path member using the steel material according to claim 1. 当該部材はエキゾーストマニホールド、触媒コンバーター、フロントパイプまたはセンターパイプを構成するものである請求項3に記載の自動車排ガス経路部材。   The automobile exhaust gas path member according to claim 3, wherein the member constitutes an exhaust manifold, a catalytic converter, a front pipe or a center pipe. 当該部材はエンジン作動中に700℃以上の温度に昇温され、エンジン停止後に前記昇温温度から400℃まで平均冷却速度0.1〜30℃/秒で冷却されるものである請求項3または4に記載の自動車排ガス経路部材。   The member is heated to a temperature of 700 ° C or higher during engine operation, and is cooled from the temperature rising temperature to 400 ° C at an average cooling rate of 0.1 to 30 ° C / second after the engine is stopped. 4. The automobile exhaust gas path member according to 4.
JP2004305767A 2004-10-20 2004-10-20 Ferritic stainless steel material and automotive exhaust gas path member with excellent thermal fatigue characteristics Active JP4468137B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004305767A JP4468137B2 (en) 2004-10-20 2004-10-20 Ferritic stainless steel material and automotive exhaust gas path member with excellent thermal fatigue characteristics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004305767A JP4468137B2 (en) 2004-10-20 2004-10-20 Ferritic stainless steel material and automotive exhaust gas path member with excellent thermal fatigue characteristics

Publications (2)

Publication Number Publication Date
JP2006117985A JP2006117985A (en) 2006-05-11
JP4468137B2 true JP4468137B2 (en) 2010-05-26

Family

ID=36536138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004305767A Active JP4468137B2 (en) 2004-10-20 2004-10-20 Ferritic stainless steel material and automotive exhaust gas path member with excellent thermal fatigue characteristics

Country Status (1)

Country Link
JP (1) JP4468137B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106591736A (en) * 2016-12-13 2017-04-26 山西太钢不锈钢股份有限公司 High-strength low-chromium stainless steel and heat treatment method thereof

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4948998B2 (en) 2006-12-07 2012-06-06 日新製鋼株式会社 Ferritic stainless steel and welded steel pipe for automotive exhaust gas flow path members
JP5010301B2 (en) 2007-02-02 2012-08-29 日新製鋼株式会社 Ferritic stainless steel for exhaust gas path member and exhaust gas path member
JP5348458B2 (en) * 2007-04-27 2013-11-20 Jfeスチール株式会社 Cr-containing steel pipe and manufacturing method thereof
JP5178157B2 (en) 2007-11-13 2013-04-10 日新製鋼株式会社 Ferritic stainless steel material for automobile exhaust gas path members
JP5387057B2 (en) 2008-03-07 2014-01-15 Jfeスチール株式会社 Ferritic stainless steel with excellent heat resistance and toughness
JP4386144B2 (en) 2008-03-07 2009-12-16 Jfeスチール株式会社 Ferritic stainless steel with excellent heat resistance
JP5239644B2 (en) * 2008-08-29 2013-07-17 Jfeスチール株式会社 Ferritic stainless steel with excellent thermal fatigue properties, high temperature fatigue properties, oxidation resistance and toughness
JP5239643B2 (en) * 2008-08-29 2013-07-17 Jfeスチール株式会社 Ferritic stainless steel with excellent thermal fatigue properties, high temperature fatigue properties, oxidation resistance and workability
JP5239642B2 (en) * 2008-08-29 2013-07-17 Jfeスチール株式会社 Ferritic stainless steel with excellent thermal fatigue properties, high temperature fatigue properties and oxidation resistance
JP5546911B2 (en) * 2009-03-24 2014-07-09 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet with excellent heat resistance and workability
JP2010236001A (en) * 2009-03-31 2010-10-21 Nisshin Steel Co Ltd Ferritic stainless steel
JP4702493B1 (en) 2009-08-31 2011-06-15 Jfeスチール株式会社 Ferritic stainless steel with excellent heat resistance
JP5709875B2 (en) * 2010-09-16 2015-04-30 新日鐵住金ステンレス株式会社 Heat-resistant ferritic stainless steel sheet with excellent oxidation resistance
JP5152387B2 (en) 2010-10-14 2013-02-27 Jfeスチール株式会社 Ferritic stainless steel with excellent heat resistance and workability
JP5609571B2 (en) 2010-11-11 2014-10-22 Jfeスチール株式会社 Ferritic stainless steel with excellent oxidation resistance
JP5234214B2 (en) * 2011-10-14 2013-07-10 Jfeスチール株式会社 Ferritic stainless steel
JP5304935B2 (en) * 2011-10-14 2013-10-02 Jfeスチール株式会社 Ferritic stainless steel
JP6037882B2 (en) 2012-02-15 2016-12-07 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet with excellent scale peel resistance and method for producing the same
JP6071608B2 (en) 2012-03-09 2017-02-01 新日鐵住金ステンレス株式会社 Ferritic stainless steel plate with excellent oxidation resistance
JP6196453B2 (en) * 2012-03-22 2017-09-13 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet with excellent scale peel resistance and method for producing the same
CN104046917B (en) * 2013-03-13 2016-05-18 香港城市大学 Superhigh intensity ferritic steel and the manufacture method thereof of rich Cu nanocluster strengthening
MX2015013765A (en) * 2013-03-27 2016-02-26 Nippon Steel & Sumikin Sst Hot-rolled ferritic stainless-steel plate, process for producing same, and steel strip.
JP5904306B2 (en) 2014-02-05 2016-04-13 Jfeスチール株式会社 Ferritic stainless steel hot-rolled annealed steel sheet, manufacturing method thereof, and ferritic stainless steel cold-rolled annealed steel sheet
MX2016014668A (en) 2014-05-14 2017-03-06 Jfe Steel Corp Ferritic stainless steel.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106591736A (en) * 2016-12-13 2017-04-26 山西太钢不锈钢股份有限公司 High-strength low-chromium stainless steel and heat treatment method thereof

Also Published As

Publication number Publication date
JP2006117985A (en) 2006-05-11

Similar Documents

Publication Publication Date Title
JP4468137B2 (en) Ferritic stainless steel material and automotive exhaust gas path member with excellent thermal fatigue characteristics
JP5010301B2 (en) Ferritic stainless steel for exhaust gas path member and exhaust gas path member
RU2429306C1 (en) Thermal resistant ferrite stainless steel
JP5387057B2 (en) Ferritic stainless steel with excellent heat resistance and toughness
JP4948998B2 (en) Ferritic stainless steel and welded steel pipe for automotive exhaust gas flow path members
US8153055B2 (en) Ferritic stainless steel with excellent heat resistance
JP5396752B2 (en) Ferritic stainless steel with excellent toughness and method for producing the same
US20080279712A1 (en) Ferritic stainless steel sheet with excellent thermal fatigue properties, and automotive exhaust-gas path member
WO2010110466A1 (en) Ferritic stainless steel plate having excellent heat resistance and excellent workability
JP3468156B2 (en) Ferritic stainless steel for automotive exhaust system parts
KR101841379B1 (en) Hot rolled and annealed ferritic stainless steel sheet, method for producing same, and cold rolled and annealed ferritic stainless steel sheet
JP5208450B2 (en) Cr-containing steel with excellent thermal fatigue properties
JP2000303149A (en) Ferritic stainless steel for automotive exhaust system parts
JP2001059141A (en) Austenitic stainless steel and automotive exhaust system paprts
JP7278079B2 (en) Cold-rolled stainless steel sheet, hot-rolled stainless steel sheet, and method for manufacturing hot-rolled stainless steel sheet
JP2002030346A (en) METHOD FOR PRODUCING Cr-CONTAINING HEAT AND CORROSION RESISTANT STEEL SHEET EXCELLENT IN FORMABILITY
CN111954724B (en) Ferritic stainless steel sheet, method for producing same, and ferritic stainless steel member
JP4309293B2 (en) Ferritic stainless steel for automotive exhaust system parts
JP5428397B2 (en) Ferritic stainless steel with excellent heat resistance and workability
JP2009235572A (en) Ferritic stainless steel having excellent heat resistance and shape-fixability
JP7468470B2 (en) Ferritic stainless steel sheet and its manufacturing method
JPH11229034A (en) Working method for ferritic stainless steel pipe
JP2012107314A (en) Ferritic stainless steel excellent in thermal fatigue characteristics and high temperature fatigue characteristics
JP3844662B2 (en) Martensitic stainless steel sheet and manufacturing method thereof
JP4940844B2 (en) Method for producing Cr-containing steel pipe excellent in high-temperature strength and toughness, and Cr-containing steel pipe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100223

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100224

R150 Certificate of patent or registration of utility model

Ref document number: 4468137

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140305

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250