JPH11229034A - Working method for ferritic stainless steel pipe - Google Patents

Working method for ferritic stainless steel pipe

Info

Publication number
JPH11229034A
JPH11229034A JP10042954A JP4295498A JPH11229034A JP H11229034 A JPH11229034 A JP H11229034A JP 10042954 A JP10042954 A JP 10042954A JP 4295498 A JP4295498 A JP 4295498A JP H11229034 A JPH11229034 A JP H11229034A
Authority
JP
Japan
Prior art keywords
pipe
stainless steel
processing
less
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10042954A
Other languages
Japanese (ja)
Other versions
JP3937369B2 (en
Inventor
Kazumasa Tarumi
一政 垂水
Keiji Minami
啓二 南
Manabu Oku
学 奥
Naoto Hiramatsu
直人 平松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP04295498A priority Critical patent/JP3937369B2/en
Publication of JPH11229034A publication Critical patent/JPH11229034A/en
Application granted granted Critical
Publication of JP3937369B2 publication Critical patent/JP3937369B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/04Tubular or hollow articles
    • B23K2101/06Tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • B23K2103/05Stainless steel

Landscapes

  • Arc Welding In General (AREA)
  • Laser Beam Processing (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for working a ferritic stainless steel pipe less prone to brittle cracks. SOLUTION: A ferritic stainless steel contg., by mass, <=0.03% C, <=2.0% Si, <=2.0% Mn, 10.0 to 35.0% Cr and <=0.03% N, furthermore contg. one or more kinds among <=1.0% Cu, <=3.0% Mo, <=0.8% Nb, <=0.5% Ti and <=0.3% Al, and the balance Fe with inevitable impurities in the production is subjected to TIG welding, laser welding or high frequency welding to make a tube, which is, if circumstances required, furthermore subjected to stress relieving annealing after making the tube and is thereafter subjected to warm working at >=15 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、各種内燃機関の排
ガス経路部材用途、特に自動車用排ガス経路部材に使用
されるフェライト系ステンレス鋼管の加工方法に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas path member for various internal combustion engines, and more particularly to a method for processing a ferritic stainless steel pipe used for an automobile exhaust gas path member.

【0002】[0002]

【従来の技術】近年、地球環境問題に係る関心の高まり
から、厳しい排ガス規制をクリアできる自動車エンジン
が求められている。これらの要求を満足すべく対策を行
うと、燃焼ガスの温度が高くなり、排ガス浄化システム
などの周辺部材の温度が高くなる。この結果、これらの
部材は、一層優れた耐熱性および耐食性が要求されるよ
うになってくる。
2. Description of the Related Art In recent years, there has been a demand for an automobile engine capable of meeting strict exhaust gas regulations due to increasing interest in global environmental problems. If measures are taken to satisfy these requirements, the temperature of the combustion gas increases, and the temperature of peripheral members such as the exhaust gas purification system increases. As a result, these members are required to have even better heat resistance and corrosion resistance.

【0003】オーステナイト系ステンレス鋼は、フェラ
イト系ステンレス鋼と比較して高温強度は高いが、熱膨
張が大きいため熱ひずみが大きく、加熱および冷却を繰
り返した場合に熱疲労が懸念される。また、オーステナ
イト系ステンレス鋼は、Cr、Niを多く含むため、製
造コストも高くなる。これらの理由から、自動車の排ガ
ス経路部用材料には、フェライト系ステンレス鋼が使用
されることが多い。
[0003] Austenitic stainless steel has higher high-temperature strength than ferritic stainless steel, but has a large thermal expansion due to large thermal expansion, and there is a concern that thermal fatigue may occur when heating and cooling are repeated. Further, austenitic stainless steel contains a large amount of Cr and Ni, so that the manufacturing cost also increases. For these reasons, ferrite-based stainless steel is often used as the material for the exhaust gas path of automobiles.

【0004】排ガス経路部用材料は、鋼板もしくは溶接
鋼管(高周波溶接、TIG溶接、レーザー溶接などの方
法により製造した鋼管を指す。以下、単に鋼管と記す)
を所定の形状に加工した後に溶接を行って製品となる。
この排気管の形状は、非常に複雑であるため、成形の
際、鋼板もしくは鋼管は過酷な加工を受ける部分が出て
くる。鋼板の場合、冷延焼鈍板の伸びは36%程度、冷
延焼鈍板の破面遷移温度は−60℃程度であり、延性限
界範囲内で加工を行えば、遷移温度が加工温度よりも低
いため、加工によって脆性的な割れを生じることはほと
んどない。しかしながら、鋼管は、鋼帯を管状に成形し
て両端を溶接しているため、成形時のひずみや溶接部を
含んでおり、靱性は鋼板よりも本質的に低い。このた
め、上述した開示鋼を用いた鋼管であっても、曲げ加工
の後の拡管加工などにおいては、加工温度の低い冬期や
加工速度が速い条件で成形を行うと、管を製造する際に
接合した部分、すなわち溶接部で脆性的な割れを生じる
場合が希にある。
The material for the exhaust gas passage portion is a steel plate or a welded steel pipe (refers to a steel pipe manufactured by a method such as high-frequency welding, TIG welding, laser welding, etc .; hereinafter, simply referred to as a steel pipe).
Is processed into a predetermined shape and then welded to obtain a product.
Since the shape of the exhaust pipe is very complicated, a part of the steel plate or the steel pipe undergoes severe processing during forming. In the case of a steel sheet, the elongation of the cold-rolled annealed sheet is about 36%, and the fracture surface transition temperature of the cold-rolled annealed sheet is about −60 ° C. If the processing is performed within the ductility limit range, the transition temperature is lower than the processing temperature. Therefore, brittle cracks hardly occur during processing. However, since a steel strip is formed into a tubular shape and the both ends are welded, the steel pipe includes a strain at the time of forming and a welded portion, and has substantially lower toughness than a steel plate. For this reason, even in the case of a steel pipe using the disclosed steel described above, in the case of pipe expansion after bending, for example, when forming is performed under a low processing temperature in the winter or at a high processing speed, when manufacturing a pipe, Rarely, brittle cracks occur at the joined portion, that is, at the weld.

【0005】このような割れに対しては、鋼管の焼鈍を
行って、溶接部近傍のひずみを除去するのが最も効果的
である。本発明者らは、特開平9−125209にて溶
接により造管された鋼管を850〜1000℃の温度範
囲で焼鈍し、1℃/sec以上の冷却速度で冷却する方
法を開示している。この方法によると、管の加工性およ
び靱性を冷延焼鈍板のレベルにまで向上させることが可
能である。しかしながら、焼鈍を行うことによる製造コ
ストの上昇は避けられず、また、耐熱性や耐食性を高い
水準で確保するために高合金化した鋼管の場合には、焼
鈍によって十分な靱性を得られないことがあり得る。靱
性を改善する方法として、特公平5−79748には、
溶接部にマルテンサイト相を生成させる手法が提案され
ている。しかし、溶接部にマルテンサイトを生成させな
い完全フェライト系ステンレス鋼には本手法は適用でき
ない。また、当該公報には、従来技術として入熱量の低
減は溶接欠陥の発生、温間加工はコスト増大を招くた
め、問題があると記載されている。
[0005] For such cracks, it is most effective to perform annealing of the steel pipe to remove strain near the welded portion. The present inventors have disclosed in Japanese Patent Application Laid-Open No. 9-125209 a method in which a steel pipe formed by welding is annealed in a temperature range of 850 to 1000 ° C. and cooled at a cooling rate of 1 ° C./sec or more. According to this method, the workability and toughness of the tube can be improved to the level of a cold-rolled annealed sheet. However, an increase in manufacturing costs due to annealing is inevitable, and in the case of steel pipes that have been made highly alloyed to ensure high levels of heat resistance and corrosion resistance, sufficient toughness cannot be obtained by annealing. There can be. As a method of improving toughness,
A technique for generating a martensite phase in a weld has been proposed. However, this method cannot be applied to a completely ferritic stainless steel that does not generate martensite in a weld. In addition, this publication describes that there is a problem in the prior art because a reduction in the amount of heat input causes welding defects and a warm working causes an increase in cost.

【0006】一方、靱性を著しく損なわないように合金
成分を調整することによっても脆性割れを回避すること
が可能である。靱性を改善するためには、C、N、C
r、Si、Mo、Al、Ti、Nbなどの合金元素の低
減やNi、Cuなどの微量添加が行われる。しかし、
C、Nの低減およびCu、Niの添加は、製造コストの
上昇をまねき、Cr、Mo、Al、Ti、Nb等の低減
は、耐熱性および耐食性を劣化させる。そこで、耐熱性
および耐食性を有し、合金元素の調整を行うことなく、
所定の形状に加工することが可能な、フェライト系ステ
ンレス鋼管の加工方法が望まれている。
On the other hand, it is also possible to avoid brittle cracking by adjusting alloy components so as not to significantly impair toughness. To improve toughness, C, N, C
Reduction of alloying elements such as r, Si, Mo, Al, Ti, and Nb and addition of trace amounts of Ni, Cu, and the like are performed. But,
The reduction of C and N and the addition of Cu and Ni increase the production cost, and the reduction of Cr, Mo, Al, Ti, Nb and the like deteriorates the heat resistance and the corrosion resistance. Therefore, it has heat resistance and corrosion resistance, without adjusting the alloy elements,
There is a demand for a method of processing a ferritic stainless steel pipe that can be processed into a predetermined shape.

【0007】[0007]

【発明が解決しようとする課題】本発明はこのような現
状に対応すべく、自動車排気ガス経路部材として要求さ
れる耐熱性および耐食性を確保し、第三元素の添加もし
くは低減を行うことなしに、なおかつ製造コストの上昇
を招くことなく、所定の形状に加工することが可能なフ
ェライト系ステンレス鋼管の加工方法を提供することに
ある。
SUMMARY OF THE INVENTION In order to cope with such a current situation, the present invention secures the heat resistance and corrosion resistance required for a vehicle exhaust gas path member, without adding or reducing a third element. It is still another object of the present invention to provide a method of processing a ferritic stainless steel pipe that can be processed into a predetermined shape without increasing the manufacturing cost.

【0008】[0008]

【課題を解決するための手段】本発明の目的は、質量%
で、C:0.03%以下、Si:2.0%以下、Mn:
2.0%以下、Cr:10.0〜35.0%、N:0.
03%以下、を含み、さらに、Cu:1.0%以下、M
o:3.0%以下、Nb:0.8%以下、Ti:0.5
%以下、Al:0.3%以下、の1種以上を含み、残部
がFeおよび製造上の不可避的不純物からなるフェライ
ト系ステンレス鋼を、TIG溶接、レーザー溶接もしく
は高周波溶接にて造管した後に、さらに場合によって
は、造管後ひずみ取り焼鈍を行った後に、15℃以上の
温度で温間加工することによって達成される。
SUMMARY OF THE INVENTION The object of the present invention is to provide a method for producing
And C: 0.03% or less, Si: 2.0% or less, Mn:
2.0% or less, Cr: 10.0 to 35.0%, N: 0.
Cu: 1.0% or less, M
o: 3.0% or less, Nb: 0.8% or less, Ti: 0.5
% Or less, Al: 0.3% or less, and after forming a ferritic stainless steel composed of Fe and unavoidable impurities in production by TIG welding, laser welding or high frequency welding, Further, in some cases, it is attained by performing strain relief annealing after pipe forming, and then performing warm working at a temperature of 15 ° C. or more.

【0009】[0009]

【発明の実施の形態】本発明者らは、管の加工方法を改
善することを目的とし、種々の条件下で管の加工性を詳
細に検討した結果、加工開始時の鋼管の温度を厳密に調
整することによって脆性割れを抑制することが可能であ
ることを明らかにし、本発明に達した。
BEST MODE FOR CARRYING OUT THE INVENTION The present inventors have studied the workability of a pipe under various conditions in order to improve the method of processing the pipe. It has been clarified that it is possible to suppress brittle cracking by adjusting to, and the present invention has been achieved.

【0010】図1は、Fe−14Cr−1.2Mn−
1.2Si−0.6Nbを基本成分とする、外径38.
1mm、厚さ2.0mmの鋼管の偏平試験における割れ
発生率に及ぼす偏平試験温度の影響を示したものであ
る。なお、偏平試験は、「JISG3459」の配管用
ステンレス鋼管に記載されている偏平試験方法に準拠し
て低温まで行った。すなわち、長さ1250mmの試験片を冷
却もしくは加熱媒体に浸漬し、15分保持後に溶接部を
圧縮方向に垂直になるように置いて圧下速度250mm
/minにて密着まで偏平した。各温度にて合計8本
(総長10m)づつ試験を行い、割れが発生した本数を
試験数で除して割れ発生率とした。また、試験は、割れ
が発生した時点で中止し、試験後の管の高さ(偏平高
さ)を測定した。割れ材の試験後の偏平高さを平均(母
数は割れ本数)して割れ材の平均偏平高さとし、図中に
数字で示した。
FIG. 1 shows Fe-14Cr-1.2Mn-
Outer diameter 38.1.2Si-0.6Nb as a basic component;
FIG. 4 shows the effect of the flat test temperature on the crack occurrence rate in a flat test of a steel pipe having a thickness of 1 mm and a thickness of 2.0 mm. The flatness test was performed at a low temperature according to the flatness test method described in “JIS G3449” for stainless steel pipes for piping. That is, a test piece having a length of 1250 mm was immersed in a cooling or heating medium, and after holding for 15 minutes, the welded portion was placed so as to be perpendicular to the compression direction, and the rolling speed was reduced by 250 mm.
/ Min flattened to close contact. At each temperature, a total of eight cracks (total length 10 m) were tested, and the number of cracks generated was divided by the number of tests to obtain a crack occurrence rate. In addition, the test was stopped when cracks occurred, and the height (flat height) of the tube after the test was measured. The flat height after the test of the cracked material was averaged (the parameter was the number of cracks) to obtain the average flat height of the cracked material, which was indicated by a number in the figure.

【0011】図1によると、割れ発生率は、加工温度に
強く依存しており、加工温度が低いほど割れ発生率が高
いことがわかる。しかし、15℃以上の加工では、割れ
の発生率は約10%と非常に少なくなり、しかも割れは
密着までの偏平でのみ発生する。さらに、30℃以上で
あれば、密着偏平試験という、溶接部には非常に過酷な
変形が加わっても、脆性的な破壊を生じないことが明ら
かとなった。なお、割れが発生した材料の破面は、全て
脆性破面を呈していることから、これらの割れは、材料
の延性脆性遷移温度以下の脆性破壊領域で加工されたと
いえる。上述したように、冷延焼鈍板のシャルピー衝撃
試験における破面遷移温度は、−60℃程度であるのに
もかかわらず、本試験条件においては、割れは−10℃
から10℃の温度範囲で多く発生することが以上の結果
から明らかになった。そこで、次に、管の靱性を冷延焼
鈍板と比較するために、管を押し開いて溶接部および溶
接部以外の母材部にVノッチを入れたシャルピー衝撃試
験を実施した。
FIG. 1 shows that the crack generation rate strongly depends on the processing temperature, and the lower the processing temperature, the higher the crack generation rate. However, in the processing at 15 ° C. or higher, the rate of occurrence of cracks is very small, about 10%, and cracks occur only in flatness up to close contact. Further, when the temperature was 30 ° C. or higher, it was clarified that brittle destruction did not occur even when a very severe deformation was applied to the welded portion, which is referred to as an adhesion flatness test. In addition, since all fracture surfaces of the material in which cracks occurred exhibit brittle fracture surfaces, it can be said that these fractures were processed in a brittle fracture region equal to or lower than the ductile brittle transition temperature of the material. As described above, the fracture surface transition temperature in the Charpy impact test of the cold-rolled annealed sheet is about −60 ° C., but under the test conditions, the crack is −10 ° C.
From the above results, it has been clarified that a large amount is generated in the temperature range from to 10 ° C. Then, next, in order to compare the toughness of the pipe with that of the cold-rolled annealed sheet, a Charpy impact test was performed in which the pipe was pushed open and a V-notch was formed in the welded portion and the base material other than the welded portion.

【0012】図2は、図1と同様な成分系にて、管のシ
ャルピー衝撃試験を実施し、シャルピー衝撃値と試験温
度の関係で整理したものである。なお、シャルピー衝撃
試験は、「JISZ2202」に準拠した板厚2.0mmの
Vノッチ試験片を作製して、「JISZ2242」に規
定される金属材料試験方法(シャルピー衝撃試験)を行
い、シャルピー衝撃値を求めた。
FIG. 2 is a graph showing the relationship between the Charpy impact value and the test temperature when a Charpy impact test was performed on a pipe in the same component system as in FIG. In the Charpy impact test, a V-notch test piece having a thickness of 2.0 mm according to “JISZ2202” was prepared, and a metal material test method (Charpy impact test) specified in “JISZ2242” was performed. I asked.

【0013】図2によると、管母材部の延性脆性遷移温
度は、0℃付近であり、冷延焼鈍板の靱性と比較して劣
っている。この原因としては、管母材部は、造管時のひ
ずみおよび試験片加工時のひずみをうけていることが挙
げられる。このことから、1次加工を受けた後の2次加
工において、0℃以下の低温で衝撃的な加工を受ける
と、切り欠きを有する場合には、管母材部でも破壊する
可能性がある。一方、管溶接部の延性脆性遷移温度は、
0〜15℃付近であり、母材よりもさらに靱性が劣って
いる。一般的な管の加工において、脆性破壊を生じる場
合には、溶接部から破壊することが多いのは、このよう
に、母材に対して溶接部の靱性が低いことによると考え
られる。
According to FIG. 2, the ductile brittle transition temperature of the pipe base material is around 0 ° C., which is inferior to the toughness of the cold-rolled annealed sheet. The cause of this is that the pipe base material is subjected to strain during pipe making and strain during processing of a test piece. From this fact, in the secondary processing after the primary processing, if the pipe is subjected to impact processing at a low temperature of 0 ° C. or less, if there is a notch, the pipe base material may be broken. . On the other hand, the ductile brittle transition temperature of the pipe weld is
The temperature is around 0 to 15 ° C, and the toughness is further inferior to that of the base material. In the processing of a general pipe, when brittle fracture occurs, it is considered that the fact that the brittle fracture often occurs from the welded portion is due to the low toughness of the welded portion relative to the base material.

【0014】なお、本試験結果から、25℃以上であれ
ば、母材部および溶接部のいずれも延性破壊を呈してお
り、シャルピー衝撃値が50J/cm2以上となり、延
性的な破壊を呈するようになる。つまり、シャルピー試
験のような衝撃的な変形を受けても脆性破壊は生じにく
いことがわかる。なお、この脆性破壊が生じにくくなる
温度は、図1で述べた温度(15℃)に近いものとなっ
ており、いずれの変形様式においても材料を加熱するこ
とによって脆性破壊は回避できることが明らかになっ
た。また、実施例で述べるように、種々の排ガス経路部
材用フェライト系ステンレス鋼についても同様な試験を
実施した結果、15℃以上の温間にて加工を行えば、脆
性的な破壊の発生率を低いレベルに抑制できることを明
らかにし、本発明に至った。
According to the results of this test, if the temperature is 25 ° C. or more, both the base material and the welded part exhibit ductile fracture, and the Charpy impact value becomes 50 J / cm 2 or more, indicating ductile fracture. become. That is, it is understood that brittle fracture hardly occurs even when subjected to an impact deformation such as the Charpy test. The temperature at which the brittle fracture hardly occurs is close to the temperature (15 ° C.) described in FIG. 1, and it is apparent that brittle fracture can be avoided by heating the material in any of the deformation modes. became. Further, as described in the examples, similar tests were performed on various ferrite stainless steels for exhaust gas path members. As a result, if the processing was performed at a temperature of 15 ° C. or more, the incidence of brittle fracture was reduced. It has been clarified that it can be suppressed to a low level, leading to the present invention.

【0015】以下に本発明における各成分の作用とそれ
らの含有量の範囲を限定した理由を述べる。
Hereinafter, the action of each component in the present invention and the reason for limiting the range of the content thereof will be described.

【0016】CとNは、一般にはクリープ特性を向上さ
せる元素として有効ではあるが、フェライト系ステンレ
ス鋼では、粒界腐食感受性や靱性に対して悪影響を及ぼ
すことが古くから知られている。ステンレス鋼管の靱性
に対してもCとNは可能な限り低いことが好ましい。こ
のため、CとNの含有量は、いずれも0.03質量%以
下とした。より高い水準で靱性を確保するには、それぞ
れ0.02質量%以下とするのが好ましい。
C and N are generally effective as elements for improving the creep characteristics, but it has long been known that ferritic stainless steels have a bad influence on intergranular corrosion susceptibility and toughness. C and N are also preferably as low as possible with respect to the toughness of the stainless steel pipe. For this reason, the contents of C and N are each set to 0.03% by mass or less. In order to ensure toughness at a higher level, it is preferable to set each to 0.02% by mass or less.

【0017】Siは、高温酸化特性、高温塩害特性およ
び高温疲労特性の向上の改善に有効な元素である。しか
し、過剰に添加すると、鋼管の靱性低下を招く。このた
め、Siの含有量は2.0質量%以下とした。
Si is an element effective for improving high-temperature oxidation characteristics, high-temperature salt damage characteristics, and high-temperature fatigue characteristics. However, an excessive addition causes a decrease in toughness of the steel pipe. For this reason, the content of Si is set to 2.0% by mass or less.

【0018】Mnを適量添加すると、高温酸化特性、と
くに表層酸化物の密着性を著しく改善する。しかし、過
剰に含有すると、硬質となり、靱性や加工性の低下を招
く。そこで、Mnの含有量は、2.0質量%以下とし
た。
Addition of an appropriate amount of Mn significantly improves the high-temperature oxidation characteristics, particularly the adhesion of the surface oxide. However, if it is contained excessively, it becomes hard and causes a decrease in toughness and workability. Therefore, the content of Mn is set to 2.0% by mass or less.

【0019】Crは、耐食性および耐高温酸化性を確保
するのに非常に有効な元素であり、それぞれの特性を維
持するためには10質量%以上の添加を必要とする。一
方、過剰に添加するとσ相などの脆化相を生成し、鋼の
脆化を招く。また硬質となって加工性を劣化させる他、
原料価格が高くなる。したがって、Crの範囲は10.
0質量%〜35.0質量%とした。
Cr is a very effective element for securing corrosion resistance and high-temperature oxidation resistance, and it is necessary to add 10% by mass or more to maintain each characteristic. On the other hand, if it is added excessively, an embrittlement phase such as a σ phase is generated, resulting in embrittlement of steel. In addition to becoming hard and deteriorating workability,
Raw material prices increase. Therefore, the range of Cr is 10.
0 mass% to 35.0 mass%.

【0020】Cuは、適量の添加で耐食性、靱性および
加工性の改善に有効な元素である。しかし、Cuを過剰
に添加すると加工性に支障を来たす。そこで、Cuの含
有量は、1.0質量%以下とした。
Cu is an element effective for improving corrosion resistance, toughness and workability when added in an appropriate amount. However, when Cu is added excessively, workability is impaired. Therefore, the content of Cu is set to 1.0% by mass or less.

【0021】Moは、耐食性や高温強度の改善に非常に
有効であり、より高い水準でこれらの特性を満足させる
ために適宜添加される元素である。しかし、Moを過剰
に添加すると、靱性や加工性を低下させる。そこで、M
oの含有量は、3.0質量%以下とした。
Mo is a very effective element for improving corrosion resistance and high-temperature strength, and is an element appropriately added to satisfy these characteristics at a higher level. However, when Mo is added excessively, toughness and workability are reduced. Then, M
The content of o was 3.0% by mass or less.

【0022】Nbはフェライト系ステンレス鋼の高温強
度を改善するのに最も有効な合金元素の1つである。ま
た、鋼中のCやNと結合することにより、Cr炭窒化物
の生成を抑制し、耐粒界腐食性を向上させる。一方、N
bを過剰に添加すると鋼の脆化や加工性の低下を招く。
加工性および靱性にさほど影響を及ぼさないようにNb
の上限を0.8質量%とした。
Nb is one of the most effective alloying elements for improving the high-temperature strength of ferritic stainless steel. Further, by binding to C and N in steel, the formation of Cr carbonitride is suppressed, and the intergranular corrosion resistance is improved. On the other hand, N
Excessive addition of b leads to embrittlement of steel and deterioration of workability.
Nb should not affect the workability and toughness so much.
Was set to 0.8% by mass.

【0023】Tiは、Nbと同様に鋼中のCやNと結合
することにより、Cr炭窒化物の生成を抑制し、耐粒界
腐食性を向上させる。しかし、Tiを過剰に添加する
と、造管時に酸化することにより、溶接部に酸化物が残
存しやすくなり、溶接部の靱性を低下させる。そこで、
Tiの上限を0.5質量%とした。
Ti, like Nb, combines with C and N in steel to suppress the formation of Cr carbonitride and improve intergranular corrosion resistance. However, if Ti is added excessively, it is oxidized at the time of pipe making, so that an oxide is apt to remain in the welded portion, and the toughness of the welded portion is reduced. Therefore,
The upper limit of Ti was set to 0.5% by mass.

【0024】Alは、鋼の溶製時に残存酸素を除去する
脱酸材として有効である。すなわち、鋼中に酸素が残存
すると溶接性が悪くなるのでAl脱酸は有効であるが、
Alが過剰に残存すると、Tiと同様に、造管時に酸化
物を生成し、溶接部の靱性を劣化させる。このため、A
lの含有量は、0.3質量%以下とした。
Al is effective as a deoxidizing agent for removing residual oxygen during smelting of steel. In other words, if oxygen remains in the steel, the weldability deteriorates, so Al deoxidation is effective,
If Al remains excessively, an oxide is generated at the time of pipe-forming similarly to Ti, and the toughness of the weld is deteriorated. Therefore, A
The content of 1 was 0.3% by mass or less.

【0025】これらの合金成分を含有するフェライト系
ステンレス鋼管の種類は、主として、TIG溶接、レー
ザー溶接、高周波溶接によって造管された溶接管を指
す。また、溶接管を製造した後の処理、例えば、矯正加
工、ひずみ取り焼鈍、酸洗、研磨、めっきなどを施した
溶接管にも適用可能である。なお、シームレス管は、溶
接部を含まないため本発明の請求範囲にはとくに含めな
い。
The type of ferritic stainless steel pipe containing these alloy components mainly refers to a welded pipe formed by TIG welding, laser welding, or high-frequency welding. Further, the present invention can be applied to a welded pipe that has been subjected to processing after manufacturing the welded pipe, such as straightening, strain relief annealing, pickling, polishing, and plating. Since the seamless pipe does not include a welded portion, it is not particularly included in the claims of the present invention.

【0026】上記フェライト系ステンレス鋼管を、脆性
割れによる不良率を低くするように加工するためには、
上述したように、15℃以上の温度で加工すればよい。
より好ましくは、加工温度を30℃以上とするのがよ
い。また、加工形態は、特に規定するものでなく、曲
げ、偏平、縮管、拡管およびこれらの複合加工など、い
ずれの加工にも適用可能である。なお、フェライト系ス
テンレス鋼管の延性脆性遷移温度は、鋼の合金組成、造
管方法、焼鈍の有無および加工形態によって変化する。
不良率の低減という観点では、上述した15℃以上の加
工で十分であるが、割れを完全に抑制するためには、個
々の管について遷移温度を求め、完全な延性破壊温度域
で加工を行うことが好ましい。
In order to process the ferritic stainless steel pipe so as to reduce the defective rate due to brittle cracking,
As described above, processing may be performed at a temperature of 15 ° C. or higher.
More preferably, the processing temperature is 30 ° C. or higher. Further, the processing form is not particularly limited, and can be applied to any processing such as bending, flattening, contraction, expansion, and a combination thereof. The ductile-brittle transition temperature of a ferritic stainless steel pipe changes depending on the alloy composition of the steel, the pipe-forming method, the presence or absence of annealing, and the processing form.
From the viewpoint of reducing the defective rate, the above-mentioned processing at 15 ° C. or more is sufficient, but in order to completely suppress cracking, a transition temperature is determined for each pipe, and processing is performed in a complete ductile fracture temperature range. Is preferred.

【0027】加工温度の上限値は特に規定しないが、加
工作業および作業コストを考慮すると、80℃以下での
加工が好ましく、金属組織の変化を生じる可能性が出て
くる400℃以上の加熱は避けるべきである。鋼管の加
熱方法については、水や油等の浸漬、バッチ式炉等によ
る雰囲気加熱、通電等による直接加熱、また冬期であれ
ば作業場所の暖房など、いずれの方法を用いてもよく、
特に規定しない。また、加熱時間や加工後の冷却方法に
ついても、特に規定しない。
Although the upper limit of the processing temperature is not particularly specified, the processing is preferably performed at 80 ° C. or lower in consideration of the processing operation and the operation cost. Should be avoided. Regarding the heating method of the steel pipe, any method such as immersion in water or oil, atmosphere heating by a batch furnace or the like, direct heating by energization, or heating of a work place in winter may be used.
Not specified. The heating time and the cooling method after processing are not particularly specified.

【0028】[0028]

【実施例】以下に本願の実施例を示す。表1に供試材の
化学成分を示した。表中のNo.1〜No.11の鋼が
本発明方法の範囲に含まれる鋼である。また、No.1
2は本発明の方法に含まれない比較鋼である。これら
は、400kgまたは70ton溶解し、熱延後焼鈍を行い熱延鋼
帯としたのち、2.0mmに冷間圧延し、焼鈍を施した
のちに造管を行い、φ38.1×2.0mmの鋼管とし
た。
Embodiments of the present invention will be described below. Table 1 shows the chemical components of the test materials. No. in the table. 1 to No. Steel No. 11 is included in the scope of the method of the present invention. In addition, No. 1
2 is a comparative steel not included in the method of the present invention. These are melted in a weight of 400 kg or 70 tons, and then annealed after hot rolling to form a hot-rolled steel strip, then cold-rolled to 2.0 mm, annealed, and then pipe-formed to obtain φ38.1 × 2.0 mm Steel pipe.

【0029】[0029]

【表1】 [Table 1]

【0030】表2に密着偏平試験結果を示す。偏平試験
は、上述の図1の試験方法にて行い、脆性割れが発生し
ないものを○、1本以上発生したものを×とした。な
お、造管は、高周波造管、TIG造管、レーザー造管の
いずれかの方法で行い、一部の試料についてはひずみ取
り焼鈍を実施している。造管方法および焼鈍実施の有無
についても表2にあわせて記した。
Table 2 shows the results of the adhesion flattening test. The flattening test was performed by the test method shown in FIG. 1 described above. In addition, the pipe making is performed by any of a high-frequency pipe making, a TIG pipe making, and a laser pipe making, and some of the samples are subjected to strain relief annealing. Table 2 also shows the pipe forming method and whether or not annealing was performed.

【0031】[0031]

【表2】 [Table 2]

【0032】本発明方法である、15℃以上の温間加工
を行うと、No.1〜No.11の鋼は、いずれの造管
方法においても、脆性的な割れは発生しなかった。一
方、15℃未満、正確には、各鋼の溶接部の延性破壊領
域未満の温度域で密着偏平試験を行うと、1本以上の割
れを生じた。これは、溶接部の延性脆性遷移温度域以下
の温度では、厳しい加工や衝撃が加わる加工を行うと、
脆性破壊が起こりうることを示唆している。なお、比較
鋼のNo.12は、管の靱性が低く、延性脆性遷移温度
が15℃以上であったため、15℃の偏平試験を行って
も、脆性割れが発生した。
When the hot working of 15 ° C. or more, which is the method of the present invention, is performed, 1 to No. Steel No. 11 did not undergo brittle cracking in any of the pipe forming methods. On the other hand, when the adhesion flatness test was performed in a temperature range lower than 15 ° C., more precisely, lower than the ductile fracture range of the welded portion of each steel, one or more cracks occurred. This is because at temperatures below the ductile brittle transition temperature range of the weld, severe processing and processing with impact are performed.
It suggests that brittle fracture can occur. In addition, the comparative steel No. In No. 12, since the ductility was low and the ductile-brittle transition temperature was 15 ° C. or higher, brittle cracking occurred even in the flat test at 15 ° C.

【0033】表3に実加工を想定した加工試験結果を示
す。加工方法としては、1次加工として曲げ内側半径を
管外径(φ38.1mm)とした90°曲げを5sec
の時間で行い、その後に最大減肉部に沿って切断し、2
次加工として管端部分を3%拡管した。1次加工と2次
加工の加工温度を同一とし、割れ発生率(割れ本数/加
工本数)で評価した。
Table 3 shows the processing test results assuming actual processing. As the processing method, 90 ° bending with the inside radius of the pipe being the outside diameter of the pipe (φ38.1 mm) was performed as primary processing for 5 seconds.
And then cut along the maximum thickness reduction,
The tube end was expanded by 3% as the next processing. The processing temperatures of the primary processing and the secondary processing were set to be the same, and the crack occurrence rate (number of cracks / number of processing) was evaluated.

【0034】[0034]

【表3】 [Table 3]

【0035】割れ発生率は、上述した密着偏平試験より
も小さいものの、加工温度の影響は明確に現われてい
る。本発明方法によれば、割れ発生率は1%以下である
が、比較法である15℃未満の加工では、割れ発生率は
数%に達する。
Although the cracking rate is smaller than that of the above-mentioned flattening test, the influence of the processing temperature clearly appears. According to the method of the present invention, the crack generation rate is 1% or less, but the crack generation rate reaches several% in the processing under 15 ° C. which is the comparative method.

【0036】[0036]

【発明の効果】本発明方法によれば、フェライト系ステ
ンレス鋼管の加工時に発生しやすい脆性割れの発生頻度
を低くすることができる。このため、本発明方法は、厳
しい加工を行う自動車排気経路部材の加工、特に加工温
度が低い冬期の加工に適している。
According to the method of the present invention, it is possible to reduce the frequency of occurrence of brittle cracks which are likely to occur during the processing of ferritic stainless steel pipes. For this reason, the method of the present invention is suitable for machining of automobile exhaust path members that perform severe machining, particularly in winter in which the machining temperature is low.

【図面の簡単な説明】[Brief description of the drawings]

【図1】密着偏平試験における割れ発生率に及ぼす試験
温度の影響を示す。
FIG. 1 shows the effect of test temperature on the crack generation rate in the adhesion flatness test.

【図2】母材および溶接部のシャルピー衝撃試験値に及
ぼす試験温度の影響を示す。
FIG. 2 shows the effect of test temperature on Charpy impact test values of a base material and a weld.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C21D 1/26 C21D 1/26 A // C22C 38/00 302 C22C 38/00 302Z 38/38 38/38 (72)発明者 平松 直人 山口県新南陽市野村南町4976番地 日新製 鋼株式会社技術研究所内──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification symbol FI C21D 1/26 C21D 1/26 A // C22C 38/00 302 C22C 38/00 302Z 38/38 38/38 (72) Inventor Naoto Hiramatsu 4976 Nomura Minamicho, Shinnanyo City, Yamaguchi Prefecture Inside Nisshin Steel Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】質量%で、C:0.03%以下、Si:
2.0%以下、Mn:2.0%以下、Cr:10.0〜
35.0%、N:0.03%以下、を含み、さらに、C
u:1.0%以下、Mo:3.0%以下、Nb:0.8
%以下、Ti:0.5%以下、Al:0.3%以下、の
1種以上を含み、残部がFeおよび製造上の不可避的不
純物からなるフェライト系ステンレス鋼を、TIG溶
接、レーザー溶接もしくは高周波溶接にて造管した後
に、15℃以上の温度で温間加工することを特徴とす
る、フェライト系ステンレス鋼管の加工方法。
(1) In mass%, C: 0.03% or less, Si:
2.0% or less, Mn: 2.0% or less, Cr: 10.0 to
35.0%, N: 0.03% or less.
u: 1.0% or less, Mo: 3.0% or less, Nb: 0.8
% Or less, Ti: 0.5% or less, Al: 0.3% or less, and a balance of ferrite stainless steel composed of Fe and inevitable impurities in production by TIG welding, laser welding or A method for processing a ferritic stainless steel pipe, comprising forming a pipe by high-frequency welding and then warm-working the pipe at a temperature of 15 ° C. or higher.
【請求項2】請求項1に記載のフェライト系ステンレス
鋼を、TIG溶接、レーザー溶接もしくは高周波溶接に
て造管後、さらにひずみ取り焼鈍を行った後に、15℃
以上の温度で温間加工することを特徴とする、フェライ
ト系ステンレス鋼管の加工方法。
2. The ferritic stainless steel according to claim 1 is pipe-formed by TIG welding, laser welding, or high-frequency welding, and is further subjected to strain relief annealing.
A method for working a ferritic stainless steel pipe, comprising warm working at the above temperature.
JP04295498A 1998-02-10 1998-02-10 Processing method of ferritic stainless steel pipe Expired - Fee Related JP3937369B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04295498A JP3937369B2 (en) 1998-02-10 1998-02-10 Processing method of ferritic stainless steel pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04295498A JP3937369B2 (en) 1998-02-10 1998-02-10 Processing method of ferritic stainless steel pipe

Publications (2)

Publication Number Publication Date
JPH11229034A true JPH11229034A (en) 1999-08-24
JP3937369B2 JP3937369B2 (en) 2007-06-27

Family

ID=12650426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04295498A Expired - Fee Related JP3937369B2 (en) 1998-02-10 1998-02-10 Processing method of ferritic stainless steel pipe

Country Status (1)

Country Link
JP (1) JP3937369B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003027191A (en) * 2001-07-23 2003-01-29 Nisshin Steel Co Ltd Decorative tube made of ferrite stainless steel having excellent weather resistance and bending workability
JP2003334626A (en) * 2002-05-17 2003-11-25 Jfe Steel Kk Method and apparatus for rotary molding of metal tube
JP2007270290A (en) * 2006-03-31 2007-10-18 Jfe Steel Kk Ferritic stainless steel excellent in corrosion resistance of weld zone
JP2007277698A (en) * 2006-03-16 2007-10-25 Jfe Steel Kk METHOD FOR PRODUCING Cr-CONTAINING STEEL TUBE HAVING EXCELLENT HIGH TEMPERATURE STRENGTH AND TOUGHNESS AND Cr-CONTAINING STEEL TUBE
WO2013058321A1 (en) * 2011-10-19 2013-04-25 大陽日酸株式会社 Tig welding method for ferrite-based stainless steel plates

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003027191A (en) * 2001-07-23 2003-01-29 Nisshin Steel Co Ltd Decorative tube made of ferrite stainless steel having excellent weather resistance and bending workability
JP2003334626A (en) * 2002-05-17 2003-11-25 Jfe Steel Kk Method and apparatus for rotary molding of metal tube
JP2007277698A (en) * 2006-03-16 2007-10-25 Jfe Steel Kk METHOD FOR PRODUCING Cr-CONTAINING STEEL TUBE HAVING EXCELLENT HIGH TEMPERATURE STRENGTH AND TOUGHNESS AND Cr-CONTAINING STEEL TUBE
JP2007270290A (en) * 2006-03-31 2007-10-18 Jfe Steel Kk Ferritic stainless steel excellent in corrosion resistance of weld zone
WO2013058321A1 (en) * 2011-10-19 2013-04-25 大陽日酸株式会社 Tig welding method for ferrite-based stainless steel plates
CN103889633A (en) * 2011-10-19 2014-06-25 大阳日酸株式会社 Tig welding method for ferrite-based stainless steel plates
US9505075B2 (en) 2011-10-19 2016-11-29 Taiyo Nippon Sanso Corporation TIG welding method of ferrite stainless steel sheet
CN103889633B (en) * 2011-10-19 2017-01-18 大阳日酸株式会社 Tig welding method for ferrite-based stainless steel plates

Also Published As

Publication number Publication date
JP3937369B2 (en) 2007-06-27

Similar Documents

Publication Publication Date Title
EP1930461B1 (en) Ferritic stainless steel for automobile exhaust gas passage components and welded steel pipe
EP2474635B1 (en) Ferritic stainless steel having excellent heat resistance
JP5320034B2 (en) Mo-type ferritic stainless steel for automotive exhaust system parts with excellent corrosion resistance after heating
WO2011111871A1 (en) Highly oxidation-resistant ferrite stainless steel plate, highly heat-resistant ferrite stainless steel plate, and manufacturing method therefor
JP5904306B2 (en) Ferritic stainless steel hot-rolled annealed steel sheet, manufacturing method thereof, and ferritic stainless steel cold-rolled annealed steel sheet
EP2857538A1 (en) Ferritic stainless steel
TWI548758B (en) Fat iron stainless steel
JP3269799B2 (en) Ferritic stainless steel for engine exhaust parts with excellent workability, intergranular corrosion resistance and high-temperature strength
JP5428396B2 (en) Ferritic stainless steel with excellent heat resistance and weldability
JP3937369B2 (en) Processing method of ferritic stainless steel pipe
JP6814678B2 (en) Ferritic stainless steel pipes for thickening pipe ends and ferritic stainless steel pipes for automobile exhaust system parts
JP3501573B2 (en) Ferritic stainless steel pipe excellent in secondary work crack resistance and method for producing the same
JP3533548B2 (en) Ferritic stainless steel pipe for heat resistance with excellent workability
JP2923825B2 (en) Ferritic stainless steel sheet for heat resistance with excellent high-temperature strength and weldability
JP6665936B2 (en) Ferritic stainless steel
JP5428397B2 (en) Ferritic stainless steel with excellent heat resistance and workability
JP2002080943A (en) Ferritic stainless steel having excellent secondary processing brittleness resistance and high temperature fatigue characteristic in weld zone
JP7468470B2 (en) Ferritic stainless steel sheet and its manufacturing method
JP6624347B1 (en) Ferritic stainless steel
JP4277726B2 (en) Cr-containing alloy with excellent corrosion resistance of welds
JP3844662B2 (en) Martensitic stainless steel sheet and manufacturing method thereof
JP2005264269A (en) Ferritic stainless steel having excellent toughness in weld zone
JP2004010967A (en) Ferritic stainless steel pipe with excellent fabrication quality
JP4254583B2 (en) Cr-containing alloy with excellent strain aging resistance of welds
JP2622516B2 (en) Welding material for heat resistant steel with excellent creep strength

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070316

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070316

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100406

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110406

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110406

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120406

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees