JPH04173939A - Ferritic stainless steel excellent in high temperature strength and toughness - Google Patents

Ferritic stainless steel excellent in high temperature strength and toughness

Info

Publication number
JPH04173939A
JPH04173939A JP29838090A JP29838090A JPH04173939A JP H04173939 A JPH04173939 A JP H04173939A JP 29838090 A JP29838090 A JP 29838090A JP 29838090 A JP29838090 A JP 29838090A JP H04173939 A JPH04173939 A JP H04173939A
Authority
JP
Japan
Prior art keywords
toughness
stainless steel
ferritic stainless
steel
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29838090A
Other languages
Japanese (ja)
Inventor
Atsuro Iseda
敦朗 伊勢田
Yoshiatsu Sawaragi
椹木 義淳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP29838090A priority Critical patent/JPH04173939A/en
Publication of JPH04173939A publication Critical patent/JPH04173939A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To improve the high temp. strength and toughness of a stainless steel by preparing a ferritic stainless steel contg. specified ratios of C, Si, Mn, Ni, Cr, Al, Ti, Nb, V, Mo, N and Mg and in which the content of O as impurities is prescribed. CONSTITUTION:A ferritic stainless steel contg., by weight, <=0.02% C, 1.1 to 2.5% Si, <=1% Mn, <=1% Ni, 20 to 30% Cr, 0.5 to 3% Al, 0.01 to 0.4% Ti, 0.01 to 0.7% Nb, 0.01 to 0.5% V, 0.01 to 3% Mo, 0.001 to 0.05% N, 0.0001 to 0.05% Mg and the balance Fe with inevitable impurities and in which the content of O is regulated to 0.005% is prepd. In this way, the stainless steel having high temp. strength and excellent cold toughness and ductility and furthermore excellent in oxidation resistance can be obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、高温強度が高く、常温靭性および高温延性に
優れ、ボイラ、原子力、化学工業などの分野で使用され
る各種耐酸化部材、および自動車排ガス用耐食・耐酸化
部材の材料に好適なフェライト系ステンレス鋼に関する
Detailed Description of the Invention (Field of Industrial Application) The present invention is applicable to various oxidation-resistant members that have high high-temperature strength, excellent room-temperature toughness and high-temperature ductility, and are used in fields such as boilers, nuclear power, and the chemical industry; This invention relates to ferritic stainless steel suitable as a material for corrosion-resistant and oxidation-resistant parts for automobile exhaust gas.

(従来の技術) フェライト系ステンレス鋼は、−gにオーステナイト系
ステンレス鋼に比べ、次のような特性を有している。
(Prior Art) Ferritic stainless steel has the following characteristics in -g compared to austenitic stainless steel.

1)熱伝導性が高く、熱膨張係数が小さい、2)酸化ス
ケールの剥離を起こしにくい、3)熱疲労特性に優れて
いる。4)応力腐食割れを起こしにくい。
1) High thermal conductivity and low coefficient of thermal expansion; 2) Resistant to peeling of oxide scale; 3) Excellent thermal fatigue properties. 4) Resistant to stress corrosion cracking.

このような特性を有するフェライト系ステンレス鋼は、
従来からボイラ、原子力、化学工業などの産業分野にお
いて、耐熱鋼、耐食鋼、耐酸化綱として、板、管などに
加工されて広く利用されている。その中でも、AnとS
iを含みCr量が20〜30%のCr−3i−AI!系
のフェライト系ステンレス鋼は、鋼表面にCr酸化物よ
り安定な^1201、SiO□の保護皮膜を生成するこ
とから、耐熱・耐酸化性は一段と優れており、およそ1
000°Cの高温酸化雰囲気にて使用される部材、例え
ばガス配管、熱交換器管、自動車排ガス浄化装置用管な
どの材料として用いられている。
Ferritic stainless steel with these characteristics is
It has been widely used as heat-resistant steel, corrosion-resistant steel, and oxidation-resistant steel in industrial fields such as boilers, nuclear power, and chemical industries, where it is processed into plates, pipes, etc. Among them, An and S
Cr-3i-AI containing i and having a Cr content of 20 to 30%! Ferritic stainless steels produce a protective film of ^1201 and SiO□, which is more stable than Cr oxide, on the steel surface, so they have much better heat resistance and oxidation resistance, and are approximately 1.
It is used as a material for members used in a high-temperature oxidizing atmosphere of 1,000°C, such as gas piping, heat exchanger pipes, and pipes for automobile exhaust gas purification equipment.

しかしながら、Cr−5i−AI!系のフェライト系ス
テンレス鋼は、常温靭性および延性に乏しく、管や板な
どに加工するのが難しい上に、構造材としての使用上も
加工性および耐衝撃性に劣るために問題がある。また、
1000°C以上の温度では急激な強度低下を起こし、
オーステナイト系ステンレス鋼と比べて強度は格段に低
くなるため、使用分野に大きな制約がある。
However, Cr-5i-AI! Ferritic stainless steels have poor room-temperature toughness and ductility, making them difficult to process into pipes and plates, and they also have problems when used as structural materials because they have poor processability and impact resistance. Also,
Temperatures above 1000°C cause a rapid decrease in strength,
Since its strength is much lower than that of austenitic stainless steel, there are major restrictions on the fields in which it can be used.

ところで、従来からCr−5i−Aj!系のフェライト
系ステンレス鋼の常温靭性や高温強度を改善する方法は
いくつか知られている。例えば、常温靭性については、
鋼中のCおよびNを低く押さえた上で、T1、Nb、■
を添加するのが有効であることが知られている。高温強
度については、Nb、■を適量添加するのが有効である
ことが特開平1−287253号公報に開示されている
。しかし、このような方法を採用しても、後述する実施
例に示す如く、常温靭性および高温強度の改善効果はさ
ほど大きくなく、本発明が対象とするような耐熱鋼管な
どの大型部材として使用するためには十分な常温靭性と
xooo″Cにおける高温強度を有していないことが、
本発明者らの試験結果より判明した。このような常温靭
性と高温強度の乏しい鋼は、例えば製管ができなくなっ
たり、製管することができてもこれを耐熱鋼管などの大
型部材として使用しているあいだに問題が発生する。具
体的には、熱間加工後の管を更に冷間抽伸のような冷間
加工を行う場合、十分な常温靭性を有していなければ管
に割れが発生して製管ができなくなる。高温強度が乏し
いと、1000°C程度での使用中に部材の変形や噴破
が生じやすくなる。また、高温強度が乏しいと、部材の
軽量化を図ることが難しくなる。近年、ボイラ、原子力
、化学工業などの分野では、エネルギー効率の向上、機
器や装置の軽量化およびコンパクト化が図られており、
肉厚を薄くすることができる高温強度に優れたフェライ
ト系ステンレス鋼が求められているが、従来のフェライ
ト系ステンレス鋼では部材の肉厚を薄くすると、高温強
度が低くなってしまう。
By the way, Cr-5i-Aj! Several methods are known to improve the room temperature toughness and high temperature strength of ferritic stainless steels. For example, regarding room temperature toughness,
After keeping C and N in the steel low, T1, Nb, ■
It is known that it is effective to add Regarding high-temperature strength, it is disclosed in JP-A-1-287253 that it is effective to add appropriate amounts of Nb and (2). However, even if such a method is adopted, the effect of improving room temperature toughness and high temperature strength is not so great, as shown in the examples described later, and it is difficult to use the method for large members such as heat-resistant steel pipes, which are the object of the present invention. The reason for this is that it does not have sufficient room temperature toughness and high temperature strength at xoooo''C.
This was revealed from the test results conducted by the present inventors. Such steels with poor room temperature toughness and high temperature strength, for example, may not be able to be made into pipes, or even if they can be made into pipes, problems will occur when they are used as large components such as heat-resistant steel pipes. Specifically, when a tube after hot working is further subjected to cold working such as cold drawing, if the tube does not have sufficient room temperature toughness, cracks will occur in the tube, making it impossible to manufacture the tube. If the high-temperature strength is poor, the member is likely to deform or explode during use at about 1000°C. Furthermore, if the high-temperature strength is poor, it becomes difficult to reduce the weight of the member. In recent years, efforts have been made to improve energy efficiency and make equipment and equipment lighter and more compact in fields such as boilers, nuclear power, and the chemical industry.
There is a demand for ferritic stainless steel with excellent high-temperature strength that can be made thinner, but with conventional ferritic stainless steel, when the wall thickness of a member is made thinner, the high-temperature strength decreases.

(発明が解決しようとする課題) この発明の!IBは、上記のA2とSiを含みCr量が
20〜30%のCr−3i−Al系のフェライト系ステ
ンレス鋼のもつ優れた特性を損なうことなく、常温靭性
と高温強度を改善することにある0本発明の具体的な目
標は、既存のフェライト系ステンレス鋼より高温耐酸化
性に優れ、1000”Cでの高温引張強さは2 kgf
/mm”以上、伸びは30%以上、常温テノ衝li値は
2 kgf−m/cm”以上の特性を有するフェライト
系ステンレス鋼を提供することにある。
(Problem to be solved by the invention) This invention! IB aims to improve the room temperature toughness and high temperature strength without impairing the excellent properties of the Cr-3i-Al ferritic stainless steel containing A2 and Si and having a Cr content of 20 to 30%. 0 The specific goal of the present invention is to have better high-temperature oxidation resistance than existing ferritic stainless steels, and a high-temperature tensile strength of 2 kgf at 1000"C.
The object of the present invention is to provide a ferritic stainless steel having properties of 2 kgf-m/cm" or more, an elongation of 30% or more, and a normal temperature tensile strength value of 2 kgf-m/cm" or more.

(課題を解決するための手段) 本発明者らは、AlとSiを含みCr量が20〜30%
程度のフェライト系ステンレス鋼の常温靭性および高温
強度に及ぼす合金成分の影響を詳細に検討した結果、下
記の知見を得た。
(Means for Solving the Problems) The present inventors have developed a method that contains Al and Si and has a Cr content of 20 to 30%.
As a result of a detailed study of the influence of alloy components on the room temperature toughness and high temperature strength of ferritic stainless steels, the following findings were obtained.

■ Mgは常温靭性の改善に有効な成分であり、鋼中の
0(酸素)を0.0050%以下に抑えた上で、Mgを
添加すると、常温靭性は著しく向上する。
(2) Mg is an effective component for improving room-temperature toughness, and when Mg is added after suppressing 0 (oxygen) in steel to 0.0050% or less, room-temperature toughness is significantly improved.

■ しかし、Mgの効果は■、Ti、 Nbおよび一〇
の存在下によってはじめて得られるものであり、これら
成分の一つでも欠けると十分な常温靭性の向上が得られ
ないので、Mgは■、Ti、 NbおよびMoと複合添
加する必要がある。
■ However, the effect of Mg can only be obtained in the presence of ■, Ti, Nb, and It is necessary to add Ti, Nb and Mo in combination.

■ また、MgとV、 Tr、 NbおよびMoの複合
添加は、延性および熱疲労特性を何ら阻害することなく
、高温強度をも改善する。
(2) Further, the combined addition of Mg, V, Tr, Nb and Mo also improves high temperature strength without impairing ductility and thermal fatigue properties.

この発明は、上記知見を基に完成したものであり、下記
のフェライト系ステンレス鋼を要旨とする。
This invention was completed based on the above knowledge, and its gist is the following ferritic stainless steel.

(i)重量%で、C: 0.02%以下、Si : 1
.1〜2.5%、Mrz1%以下、Ni:1%以下、C
r:20〜30%、Aj!:0.5〜3%、Ti : 
0.01〜0.4%、Nb : 0.01〜0.7%、
V : 0.01〜0.5%、Mo二〇、01〜3%、
N:0.001〜0.05%、Mg : 0.0001
〜0.05%を含み、残部はFeおよび不可避不純物か
らなり、不純物としてのO(酸素)が0.005%以下
である高温強度および靭性に優れたフェライト系ステン
レス鋼。
(i) In weight%, C: 0.02% or less, Si: 1
.. 1 to 2.5%, Mrz 1% or less, Ni: 1% or less, C
r: 20-30%, Aj! : 0.5-3%, Ti:
0.01-0.4%, Nb: 0.01-0.7%,
V: 0.01-0.5%, Mo20, 01-3%,
N: 0.001-0.05%, Mg: 0.0001
A ferritic stainless steel with excellent high-temperature strength and toughness, containing up to 0.05%, the remainder consisting of Fe and unavoidable impurities, and containing 0.005% or less of O (oxygen) as an impurity.

(ii )上記(i)の成分に加えて更に、0.000
1〜0.02重量%のBを含有する高温強度および靭性
に優れたフェライト系ステンレス鋼。
(ii) In addition to the component (i) above, further 0.000
A ferritic stainless steel containing 1 to 0.02% by weight of B and having excellent high-temperature strength and toughness.

(ij )上記(i)または(ii)の成分に加えて更
に、0.01〜1%のCuを含有する高温強度および靭
性に優れたフェライト系ステンレス鋼。
(ij) A ferritic stainless steel having excellent high-temperature strength and toughness, which further contains 0.01 to 1% of Cu in addition to the components (i) or (ii) above.

(iv )上記(i)、(11)または(山)の成分に
加えて更に、それぞれ0.01〜0.2重量%のLa5
Ce、 Zr、Y、 Ta、 Caから選択した1種以
上を含有する高温強度および靭性に優れたフェライト系
ステンレス鋼。
(iv) In addition to the above components (i), (11) or (mountain), 0.01 to 0.2% by weight of La5
A ferritic stainless steel containing one or more selected from Ce, Zr, Y, Ta, and Ca and having excellent high-temperature strength and toughness.

(作用) 以下、本発明鋼の各合金成分の作用効果とそれらの含有
量の限定理由について説明する。
(Function) Hereinafter, the function and effect of each alloy component of the steel of the present invention and the reasons for limiting their content will be explained.

C: Cは、オーステナイト安定化成分であり、Crと結合し
て炭化物を形成し、耐酸化性に有効な固溶Cr量を減少
させるので、その含有量は極力低くすることが望ましい
、Cの含有量が0.02%を超えると、炭化物の析出が
多くなるばかりか、特に高温でオーステナイト変態した
後、冷却中に鋼がマルテンサイト化すると、靭性、溶接
性および加工性を著しく損なうことから、0.02%を
上限とした。
C: C is an austenite stabilizing component, and it combines with Cr to form carbides and reduces the amount of solid solution Cr, which is effective for oxidation resistance, so it is desirable to keep its content as low as possible. If the content exceeds 0.02%, not only will carbide precipitation increase, but also toughness, weldability, and workability will be significantly impaired, especially if the steel becomes martensite during cooling after austenite transformation at high temperatures. , the upper limit was 0.02%.

Si : Siは、鋼表面に安定なSiO□の保護皮膜を形成し、
耐酸化性を高める効果がある。また、SiはAN添加鋼
ではA/!、0.の保護皮膜の剥離を防止する効果もあ
る。その含有量が1.1%未満では前記の効果が得られ
ず、2.5%を超えると靭性、溶接性、加工性を損なう
ことから、1.1〜2.5%の含有量とした。
Si: Si forms a stable protective film of SiO□ on the steel surface,
It has the effect of increasing oxidation resistance. In addition, Si is A/! in AN-added steel! ,0. It also has the effect of preventing the protective film from peeling off. If the content is less than 1.1%, the above effects cannot be obtained, and if it exceeds 2.5%, toughness, weldability, and workability are impaired, so the content was set at 1.1 to 2.5%. .

Mn: Mnは、綱の脱酸および脱硫のために適量添加されるが
、過度に添加すると耐酸化性を損なうことから、その含
有量の上限を1%とした。
Mn: Mn is added in an appropriate amount for deoxidizing and desulfurizing the steel, but since excessive addition impairs oxidation resistance, the upper limit of its content is set at 1%.

Ni : Niは、オーステナイト安定化成分であるが、微量であ
れば靭性改善に寄与する。しかし、1%を超えて含有さ
せると、残留オーステナイトを生成して靭性および強度
を損なうことから、1%を上限とした。
Ni: Ni is an austenite stabilizing component, and if it is in a small amount, it contributes to improving toughness. However, if the content exceeds 1%, residual austenite will be generated and the toughness and strength will be impaired, so the upper limit was set at 1%.

Cr: Crは、耐酸化性、高温耐食性を確保する上で不可欠な
成分である。しかし、その含有量が20%未満では10
00℃程度の使用に対して十分な耐酸化性が得られず、
一方、30%を超えてもより一層の向上効果が現れず、
むしろ加工性および靭性の低下をきたすようになること
から、その含有量を20〜30%とした。
Cr: Cr is an essential component for ensuring oxidation resistance and high temperature corrosion resistance. However, if the content is less than 20%, 10
Sufficient oxidation resistance cannot be obtained for use at temperatures around 00℃,
On the other hand, even if it exceeds 30%, no further improvement effect appears,
On the contrary, since it causes a decrease in workability and toughness, its content was set at 20 to 30%.

A2: ^lは、CrおよびStと同様に耐酸化性を確保する上
で不可欠な成分である。A1は鋼表面にAIl、O,の
保護皮膜を形成して高温耐酸化性を改善する。その効果
は、特に900″C以上の高温において顕著で、高温に
なるほどCr単独添加鋼に比べて優れた耐酸化性を示す
、しかし、その含有量が0.5%より少ないと前記の効
果が十分に得られず、3%を超えると加工性、靭性を損
なうことがら、0.5〜3%の含有量とした。
A2: Like Cr and St, ^l is an essential component for ensuring oxidation resistance. A1 forms a protective film of Al, O, on the steel surface to improve high temperature oxidation resistance. Its effect is particularly noticeable at high temperatures of 900"C or higher, and the higher the temperature, the better the oxidation resistance compared to steel with only Cr added. However, if the content is less than 0.5%, the above effect is lost. If it exceeds 3%, workability and toughness are impaired, so the content was set at 0.5 to 3%.

Ti : Tiハ、CおよびNと結合し、Ti(C,N)(7)析
出物を形成して靭性および強度を高める。これはTi(
C,N)の析出により、母相中のCおよびNが安定化さ
れるとともに結晶粒が微細化されることによる。しかし
、その含有量が0.01%未満では前記の効果が得られ
ず、0.4%を超えると介在物が増加して靭性低下が大
きくなることがら、その含有量を0.01〜0.4%と
した。
Ti: Ti combines with C and N to form Ti(C,N)(7) precipitates to increase toughness and strength. This is Ti(
This is because the precipitation of C, N) stabilizes C and N in the matrix and refines the crystal grains. However, if the content is less than 0.01%, the above effect cannot be obtained, and if it exceeds 0.4%, inclusions will increase and the toughness will decrease significantly. .4%.

Nb: Nbは、Tiと同様にCおよびNと結合してNb(C,
N)の析出物を形成し、結晶粒を微細化するとともに母
相中の固溶CおよびNを低減して靭性および強度を高め
る。しかし、その含有量が0.01%未満では前記の効
果が得られず、0.7%を超えると金属間化合物が多量
に析出して靭性を損なうことから、0.01〜0.7%
の含有量とした。
Nb: Like Ti, Nb combines with C and N to form Nb(C,
N) precipitates are formed to refine crystal grains and reduce solid solution C and N in the matrix to increase toughness and strength. However, if the content is less than 0.01%, the above effects cannot be obtained, and if the content exceeds 0.7%, a large amount of intermetallic compounds will precipitate, impairing toughness.
The content of

V ; ■は、高温強度を確保する上から重要な成分であり、T
iおよびNbと比べ、V(C,N)として析出しにくい
、しかし、微量のTiおよびNbを添加し、Nをやや多
めに添加した鋼においては、VNの微細析出物を形成し
、高温強度を著しく改善することがわかった。特に、こ
のVNは600〜800°Cの加熱処理により微細析出
するので、加工中にTi(C,N)、Nb(C,N)と
してNがほぼ固定されてしまうTiおよびNbの添加鋼
とは異なる。前記■の効果は、0.01%未満では小さ
く、一方、0.5%を超えてもその効果は飽和し、むし
ろ靭性を損なうことから、0.01〜0.5%の含有量
としたMO: Moは、固溶強化成分であり、特に1000″Cの高温
強度に対して有効である。 Moは鋼の延性、加工性を
損なうことなく強度を高める他に、熱疲労特性の向上に
極めて有効な成分である。しかし、その含有量が0.0
1%未満では前記の効果が十分に得られず、3%を超え
ると多量の金属間化合物が析出して靭性、加工性および
溶接性を損なうことから、0.01〜3%の含有量とし
た。
V; ■ is an important component from the viewpoint of ensuring high temperature strength, and T
Compared to i and Nb, it is difficult to precipitate as V(C,N), but in steels with trace amounts of Ti and Nb added and a slightly larger amount of N, fine precipitates of VN are formed and the high-temperature strength is improved. was found to significantly improve. In particular, this VN is finely precipitated by heat treatment at 600 to 800°C, so it cannot be used with Ti and Nb-added steels in which N is almost fixed as Ti(C,N) and Nb(C,N) during processing. is different. The effect of the above (■) is small if it is less than 0.01%, but on the other hand, if it exceeds 0.5%, the effect is saturated and the toughness is actually impaired, so the content was set at 0.01 to 0.5%. MO: Mo is a solid solution strengthening component, and is particularly effective for high-temperature strength at 1000"C. Mo not only increases the strength of steel without impairing its ductility and workability, but also improves its thermal fatigue properties. It is an extremely effective ingredient. However, its content is 0.0
If the content is less than 1%, the above effects cannot be obtained sufficiently, and if it exceeds 3%, a large amount of intermetallic compounds will precipitate, impairing toughness, workability and weldability. did.

N: 固溶Nを少なくすると靭性が向上する。またNb(C,
N)、Ti(C,N)として安定化される以上の過剰N
がVNを形成し、高温強度を改善する。
N: Reducing solid solution N improves toughness. Also, Nb(C,
N), excess N above that stabilized as Ti(C,N)
forms VN and improves high temperature strength.

本発明では通常Ti、 Nbで安定化されるNを考慮し
、それ以上の過剰のNを添加する。Nの含有量が0.0
01%未満ではVNの微細析出強化は得られず、0.0
5%を超えると靭性を著しく損なうことから、0.00
1〜0.05%の含有量とした。望ましい含を量は、0
.02〜0.03%である。
In the present invention, an excess of N is added in consideration of N which is normally stabilized by Ti and Nb. N content is 0.0
If it is less than 0.01%, fine precipitation strengthening of VN cannot be obtained;
If it exceeds 5%, the toughness will be significantly impaired, so 0.00
The content was set at 1 to 0.05%. The desired amount is 0
.. 02-0.03%.

Mg: Mgは、本発明では特に重要な成分である。MgはOや
Sと結合して鋼を清浄化する効果があることは従来から
知られているが、この効果に加えて、M、は常温靭性、
高温強度、延性および熱疲労特性を改善する効果もあっ
て、これらの効果はV、Ti、NbおよびMoと複合添
加し、且つ酸素量を0.005%以下に調整した場合の
みに得られることがわかった。しかし、Moの含有量が
0.0001%未満では前記の効果が得られず、0.0
5%を超えて含有させると加工性、靭性を損なうことか
ら、0.0001〜0.05%の含有量とした。
Mg: Mg is a particularly important component in the present invention. It has long been known that Mg has the effect of cleaning steel by combining with O and S, but in addition to this effect, M increases the room temperature toughness,
It also has the effect of improving high-temperature strength, ductility, and thermal fatigue properties, and these effects can only be obtained when it is added in combination with V, Ti, Nb, and Mo, and the amount of oxygen is adjusted to 0.005% or less. I understand. However, if the Mo content is less than 0.0001%, the above effect cannot be obtained;
If the content exceeds 5%, workability and toughness will be impaired, so the content was set at 0.0001 to 0.05%.

0 (酸素): 0は、Mgの効果を損なうので、その含有量は低くする
ほどよい、0.005%を超える0が含まれていると、
添加したMgがMgOとして消費され、Mgの効果が得
られなくなるばかりか、介在物が増加して強度、靭性、
溶接性を損なうことから、0.005%を上限とした。
0 (oxygen): Since 0 impairs the effect of Mg, the lower the content, the better.If more than 0.005% of 0 is contained,
The added Mg is consumed as MgO, and not only does the effect of Mg become impossible to obtain, but also inclusions increase and the strength, toughness,
Since it impairs weldability, the upper limit was set at 0.005%.

上記の各成分の外に、次の成分を必要に応して添加する
ことができる。
In addition to the above-mentioned components, the following components can be added as necessary.

B: Bは、微量添加により炭窒化物を微細分散させるととも
に粒界を強化して高温強度を高める。しかし、その含有
量が0.0001%未満では前記の効果が小さく 、0
.02%を超えると靭性および加工性を損なうことから
、Bを添加する場合はその含有量を0.0001〜0.
02%の範囲にするのがよい。
B: When added in a small amount, B finely disperses carbonitrides, strengthens grain boundaries, and increases high-temperature strength. However, if the content is less than 0.0001%, the above effect is small, and 0.
.. If B exceeds 0.02%, toughness and workability will be impaired, so when adding B, the content should be 0.0001 to 0.02%.
It is preferable to set it in the range of 0.02%.

Cu: Cuは、高温強度と耐食性を高める効果がある。Cu: Cu has the effect of increasing high temperature strength and corrosion resistance.

0.01%未満の含有量ではこの効果がなく、1%を超
えて含有させると、熱間加工性、高温延性を損なうこと
から、添加する場合はその含有量を0.01〜1%の範
囲にするのがよい。
A content of less than 0.01% does not have this effect, and a content of more than 1% impairs hot workability and high-temperature ductility. It is better to have a range.

La、 Ces Zr、 Y、 TaおよびCa:これ
らの成分は、C,S、N、0と結合して鋼の靭性を改善
する。しかし、それぞれ0.01%未満の含有量では前
記の効果がなく、それぞれ0.2%を超えて含有すると
介在物が増加し、かえって靭性および加工性を損なうこ
とから、これらの成分を添加する場合はそれぞれの含有
量を0.01〜1%とするのがよい。
La, Ces, Zr, Y, Ta and Ca: These components combine with C, S, N, 0 to improve the toughness of steel. However, if the content is less than 0.01% of each, the above-mentioned effects will not be obtained, and if the content exceeds 0.2% of each, inclusions will increase and the toughness and workability will be impaired, so these components are added. In this case, the content of each is preferably 0.01 to 1%.

本発明の鋼は、前述の成分のほか、残部はFeと不可避
不純物である。不純物として代表的なものはPとSであ
り、これらはいずれも靭性、高温延性に有害な成分であ
るので、Pについては0.025%以下、Sについては
0.01%以下の範囲で、でできるだけ少なくするのが
よい。
In addition to the above-mentioned components, the steel of the present invention contains Fe and unavoidable impurities as the remainder. Typical impurities are P and S, both of which are components harmful to toughness and high-temperature ductility, so P should be in the range of 0.025% or less and S in the range of 0.01% or less. It is best to minimize it as much as possible.

(実施例) 第1表に示す化学組成の鋼を150kg真空溶解炉で溶
解し、インゴットをll50〜950°Cで鍛造して厚
さ25論の板とした。これらの板をさらに1150°C
に加熱後、熱間圧延により厚さ7mの板とした。
(Example) Steel having the chemical composition shown in Table 1 was melted in a 150 kg vacuum melting furnace, and the ingot was forged at 50 to 950°C to form a plate with a thickness of 25 mm. These plates were further heated to 1150°C.
After heating, it was hot rolled into a plate with a thickness of 7 m.

熱間圧延は、その終了温度は1000”Cであり、圧延
後の板は室温まで空冷した。
The finishing temperature of hot rolling was 1000''C, and the plate after rolling was air cooled to room temperature.

A鋼はJISに規定されている5US430のフェライ
ト系ステンレス鋼、BおよびC綱は18(:r系でSi
およびAl2を添加した比較鋼、D綱〜F綱は24Cr
−1,55i−1,5Al系の比較鋼、G鋼〜Z綱は本
発明鋼である。
A steel is 5US430 ferritic stainless steel specified by JIS, B and C are 18 (:r series and Si
and Comparative steels with addition of Al2, Classes D to F are 24Cr
-1,55i-1,5Al comparative steels, G steel to Z class are steels of the present invention.

熱間圧延後のそれぞれの板から、丸棒引張試験片(φ6
 +u+ X GL30mm)、シャルピー衝撃試験片
(2+++w■ノツチ、t5 X 10 X (! 5
5mm)および板状の耐酸化性試験片(t2X 2 X
 1125mm)を切り出して、試験を行った。
A round bar tensile test piece (φ6
+u+
5mm) and a plate-shaped oxidation resistance test piece (t2X 2
1125 mm) was cut out and tested.

引張試験は、1000°Cにおいて、JISの高温引張
試験法により行い、その温度における引張強さ、0.2
%耐力および伸びを測定した。シャルピー衝撃試験は、
室温(20°C)における衝撃値を測定した。耐酸化性
試験は、試験片を大気中で1000°Cの温度に1時間
加熱して空冷することを500回繰り返す、繰り返し試
験を行い、試験後、脱スケール処理し、重量減を測定し
て耐酸化性を評価した。
The tensile test was conducted at 1000°C using the JIS high temperature tensile test method, and the tensile strength at that temperature was 0.2.
% proof stress and elongation were measured. Charpy impact test
The impact value at room temperature (20°C) was measured. The oxidation resistance test was conducted by repeatedly heating the specimen to 1000°C in the atmosphere for 1 hour and cooling it in the air 500 times. After the test, the specimen was descaled and the weight loss was measured. Oxidation resistance was evaluated.

第2表にこれらの試験結果をまとめて示す。Table 2 summarizes the results of these tests.

(以下、余白) 第2表(試験結果) 第2表より、G鋼〜zw4の本発明鋼はいずれの特性も
A鋼〜Flの比較鋼より優れていることがわかる。即ち
、1000°Cでの引張強さは、比較鋼は2 kgf/
sm2未満であるのに対して、本発明鋼は2kgf/m
m”以上である。1000°Cでの引張破断伸びは、比
較鋼は30%未満であるのに対して、本発明鋼は30%
以上である。常温靭性は比較鋼はいずれも11tgf−
m7cm”未満であるのに対して、本発明鋼はいずれも
2 kgf−m7cm”以上である。耐酸化性は、本発
明鋼はいずれも50mg/cm”以下の酸化減量で、鋼
種AのSUS 430鋼より耐酸化性は改善されており
、既存鋼の中でも耐酸化性が最も良好な2dCr系のD
・ 鋼〜F鋼と比べても同等か、もしくはそれ以上であ
る。
(Hereinafter, blank spaces) Table 2 (Test Results) From Table 2, it can be seen that the steels of the present invention from G steel to zw4 are superior in all properties to the comparative steels from A steel to Fl. In other words, the tensile strength at 1000°C of the comparative steel is 2 kgf/
sm2, whereas the steel of the present invention has a
The tensile elongation at break at 1000°C is less than 30% for the comparison steel, while the tensile elongation at break for the invention steel is 30%.
That's all. Room temperature toughness of all comparison steels is 11tgf-
m7cm", whereas the steels of the present invention have a thickness of 2 kgf-m7cm" or more. Regarding oxidation resistance, all of the steels of the present invention have an oxidation loss of 50 mg/cm" or less, which is better than SUS 430 steel of steel type A, and the 2dCr type steel has the best oxidation resistance among existing steels. D of
- It is equivalent to or even better than steel to F steel.

(発明の効果) 実施例に示した如く、本発明のフェライト系ステンレス
鋼は、高い高温強度と、優れた常温靭性および延性を有
し、且つ、耐酸化性も従来鋼より優れている。この鋼は
ボイラ、原子力、化学工業などで使用される高温耐熱・
耐酸化部材の材料としての管、板、鍛造品に広く適用す
ることができる。また、繰り返し酸化性や熱衝撃性が求
められる自動車排ガス用耐酸化材料にも応用可能である
(Effects of the Invention) As shown in the examples, the ferritic stainless steel of the present invention has high high temperature strength, excellent room temperature toughness and ductility, and is also superior in oxidation resistance to conventional steel. This steel is high-temperature resistant and used in boilers, nuclear power, chemical industries, etc.
It can be widely applied to pipes, plates, and forged products as materials for oxidation-resistant members. It can also be applied to oxidation-resistant materials for automobile exhaust gas, which require repeated oxidation resistance and thermal shock resistance.

Claims (4)

【特許請求の範囲】[Claims] (1)重量%で、C:0.02%以下、Si:1.1〜
2.5%、Mn:1%以下、Ni:1%以下、Cr:2
0〜30%、Al:0.5〜3%、Ti:0.01〜0
.4%、Nb:0.01〜0.7%、V:0.01〜0
.5%、Mo:0.01〜3%、N:0.001〜0.
05%、Mg:0.0001〜0.05%を含み、残部
はFeおよび不可避不純物からなり、不純物としてのO
(酸素)が0.005%以下である高温強度および靭性
に優れたフェライト系ステンレス鋼。
(1) In weight%, C: 0.02% or less, Si: 1.1~
2.5%, Mn: 1% or less, Ni: 1% or less, Cr: 2
0-30%, Al: 0.5-3%, Ti: 0.01-0
.. 4%, Nb: 0.01-0.7%, V: 0.01-0
.. 5%, Mo: 0.01-3%, N: 0.001-0.
05%, Mg: 0.0001 to 0.05%, the remainder consists of Fe and inevitable impurities, and O as an impurity.
Ferritic stainless steel with an oxygen content of 0.005% or less and excellent high-temperature strength and toughness.
(2)請求項(1)の成分に加えて更に、0.0001
〜0.02重量%のBを含有する高温強度および靭性に
優れたフェライト系ステンレス鋼。
(2) In addition to the components of claim (1), further 0.0001
A ferritic stainless steel containing ~0.02% by weight of B and having excellent high-temperature strength and toughness.
(3)請求項(1)または(2)の成分に加えて更に、
0.01〜1%のCuを含有する高温強度および靭性に
優れたフェライト系ステンレス鋼。
(3) In addition to the components of claim (1) or (2),
A ferritic stainless steel containing 0.01-1% Cu and having excellent high-temperature strength and toughness.
(4)請求項(1)、(2)または(3)の成分に加え
て更に、それぞれ0.01〜0.2重量%のLa、Ce
、Zr、Y、Ta、Caから選択した1種以上を含有す
る高温強度および靭性に優れたフェライト系ステンレス
鋼。
(4) In addition to the components of claim (1), (2) or (3), each of 0.01 to 0.2% by weight of La and Ce
A ferritic stainless steel containing one or more selected from , Zr, Y, Ta, and Ca and having excellent high-temperature strength and toughness.
JP29838090A 1990-11-03 1990-11-03 Ferritic stainless steel excellent in high temperature strength and toughness Pending JPH04173939A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29838090A JPH04173939A (en) 1990-11-03 1990-11-03 Ferritic stainless steel excellent in high temperature strength and toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29838090A JPH04173939A (en) 1990-11-03 1990-11-03 Ferritic stainless steel excellent in high temperature strength and toughness

Publications (1)

Publication Number Publication Date
JPH04173939A true JPH04173939A (en) 1992-06-22

Family

ID=17858952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29838090A Pending JPH04173939A (en) 1990-11-03 1990-11-03 Ferritic stainless steel excellent in high temperature strength and toughness

Country Status (1)

Country Link
JP (1) JPH04173939A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11350084A (en) * 1998-06-11 1999-12-21 Nippon Steel Corp Corrosion resistant steel
JP2012211379A (en) * 2011-03-31 2012-11-01 Nisshin Steel Co Ltd FERRITIC STAINLESS STEEL EXCELLENT IN SECONDARY WORKABILITY AND Cr EVAPORATION RESISTANCE
JP2014523967A (en) * 2011-06-21 2014-09-18 オウトクンプ ファオデーエム ゲゼルシャフト ミット ベシュレンクテル ハフツング Heat-resistant iron-chromium-aluminum alloy with low chromium evaporation rate and improved heat resistance
WO2015174078A1 (en) * 2014-05-14 2015-11-19 Jfeスチール株式会社 Ferritic stainless steel
JP5900715B1 (en) * 2014-05-14 2016-04-06 Jfeスチール株式会社 Ferritic stainless steel
JP2017133075A (en) * 2016-01-28 2017-08-03 新日鐵住金ステンレス株式会社 Al-containing ferritic stainless steel excellent in high temperature strength
CN107675075A (en) * 2017-09-05 2018-02-09 王业双 A kind of high-performance high temperature resistant ferritic stainless steel and preparation method thereof
US10179943B2 (en) 2014-07-18 2019-01-15 General Electric Company Corrosion resistant article and methods of making

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11350084A (en) * 1998-06-11 1999-12-21 Nippon Steel Corp Corrosion resistant steel
JP2012211379A (en) * 2011-03-31 2012-11-01 Nisshin Steel Co Ltd FERRITIC STAINLESS STEEL EXCELLENT IN SECONDARY WORKABILITY AND Cr EVAPORATION RESISTANCE
JP2014523967A (en) * 2011-06-21 2014-09-18 オウトクンプ ファオデーエム ゲゼルシャフト ミット ベシュレンクテル ハフツング Heat-resistant iron-chromium-aluminum alloy with low chromium evaporation rate and improved heat resistance
US10196721B2 (en) 2011-06-21 2019-02-05 Vdm Metals International Gmbh Heat-resistant iron-chromium-aluminum alloy with low chromium vaporization rate and elevated thermal stability
WO2015174078A1 (en) * 2014-05-14 2015-11-19 Jfeスチール株式会社 Ferritic stainless steel
JP5900714B1 (en) * 2014-05-14 2016-04-06 Jfeスチール株式会社 Ferritic stainless steel
JP5900715B1 (en) * 2014-05-14 2016-04-06 Jfeスチール株式会社 Ferritic stainless steel
US10415126B2 (en) 2014-05-14 2019-09-17 Jfe Steel Corporation Ferritic stainless steel
US10179943B2 (en) 2014-07-18 2019-01-15 General Electric Company Corrosion resistant article and methods of making
JP2017133075A (en) * 2016-01-28 2017-08-03 新日鐵住金ステンレス株式会社 Al-containing ferritic stainless steel excellent in high temperature strength
CN107675075A (en) * 2017-09-05 2018-02-09 王业双 A kind of high-performance high temperature resistant ferritic stainless steel and preparation method thereof

Similar Documents

Publication Publication Date Title
US9279172B2 (en) Heat-resistance ferritic stainless steel
JP5609571B2 (en) Ferritic stainless steel with excellent oxidation resistance
JPH0621323B2 (en) High strength and high chrome steel with excellent corrosion resistance and oxidation resistance
JP5540637B2 (en) Ferritic stainless steel with excellent heat resistance
WO2003106722A1 (en) Heat-resistant ferritic stainless steel and method for production thereof
JP5012243B2 (en) Ferritic stainless steel with excellent high-temperature strength, heat resistance and workability
JP5125600B2 (en) Ferritic stainless steel with excellent high-temperature strength, steam oxidation resistance and workability
JP2970955B2 (en) High chromium ferritic heat resistant steel with excellent copper checking resistance
JPH02217439A (en) High strength low alloy steel having excellent corrosion resistance and oxidation resistance
JPH04173939A (en) Ferritic stainless steel excellent in high temperature strength and toughness
JP3591486B2 (en) High Cr ferritic heat resistant steel
JP3004784B2 (en) High toughness ferritic stainless steel for high temperatures
JPH08239737A (en) Heat resistant austentic stainlss steel excellent in hot workability and sigma-embrittlement resistance
JPH0762497A (en) High cr ferritic heat resistant steel having excellent high temperature strength and toughness
JP4940844B2 (en) Method for producing Cr-containing steel pipe excellent in high-temperature strength and toughness, and Cr-containing steel pipe
JPH0397832A (en) High-strength high chromium steel excellent in oxidation resistance and weldability
JPH09184043A (en) Low alloy heat resistant steel excellent in high temperature strength and weldability
JP3051274B2 (en) Clad steel and method for manufacturing clad steel
JPH0741905A (en) Steel for automotive exhaust system
JPH0372053A (en) Ferritic stainless steel excellent in thermal fatigue resistance
JPH0959746A (en) High chromium ferritic steel excellent in high temperature strength
JPH101737A (en) Low alloy heat resistant steel, excellent in high temperature strength and toughness, and its production
JP2021070857A (en) Ferritic stainless steel having high temperature creep strength and excellent workability
JPH04165043A (en) High strength ferritic heat resistant steel excellent in oxidation resistance
JPH05279804A (en) Steel for automobile exhaust manifold