JP2017133075A - Al-containing ferritic stainless steel excellent in high temperature strength - Google Patents

Al-containing ferritic stainless steel excellent in high temperature strength Download PDF

Info

Publication number
JP2017133075A
JP2017133075A JP2016014698A JP2016014698A JP2017133075A JP 2017133075 A JP2017133075 A JP 2017133075A JP 2016014698 A JP2016014698 A JP 2016014698A JP 2016014698 A JP2016014698 A JP 2016014698A JP 2017133075 A JP2017133075 A JP 2017133075A
Authority
JP
Japan
Prior art keywords
less
stainless steel
ferritic stainless
temperature strength
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016014698A
Other languages
Japanese (ja)
Other versions
JP6300841B2 (en
Inventor
松本 和久
Kazuhisa Matsumoto
和久 松本
秦野 正治
Masaharu Hatano
正治 秦野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Stainless Steel Corp
Original Assignee
Nippon Steel and Sumikin Stainless Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Stainless Steel Corp filed Critical Nippon Steel and Sumikin Stainless Steel Corp
Priority to JP2016014698A priority Critical patent/JP6300841B2/en
Publication of JP2017133075A publication Critical patent/JP2017133075A/en
Application granted granted Critical
Publication of JP6300841B2 publication Critical patent/JP6300841B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide an Al-containing ferritic stainless steel excellent in high temperature strength upon high temperature high speed deformation without relying on excess Nb, Ni, Cu, Mo, W addition and suitable for a fuel cell high temperature member.SOLUTION: The Al-containing ferritic stainless steel is provided that contains, by mass%, C:0.03% or less, Si:2.0% or less, Mn:2.0% or less, P:0.050% or less, S:0.01% or less, Cr:11 to 25%, Al:1.3 to 4.0% and N:0.03% or less, further containing one or two or more kind of Ti:0.5% or less, Nb:0.5% or less and V:0.5% or less, satisfying the following (a) and/or (b) and having the balance Fe with inevitable impurities. (a) containing Sn:0.20% or less. (b) containing one or two or more kind of B:0.005% or less, Mg:0.015% or less and Ca:0.005% or less in the range of 10×[B]+[Mg]+[Ca]≥0.004%.SELECTED DRAWING: None

Description

本発明は、過剰なNb、Ni、Cu、Mo、W添加に頼ることなく、高温高速変形時の高温強度に優れた鋼構造体用、中でも燃料電池高温部材に好適な、Al含有フェライト系ステンレス鋼に関する。   The present invention is an Al-containing ferritic stainless steel suitable for a steel structure excellent in high-temperature strength during high-temperature and high-speed deformation, especially for a fuel cell high-temperature member, without relying on excessive Nb, Ni, Cu, Mo, W addition. Related to steel.

最近、石油を代表とする化石燃料の枯渇化、CO2排出による地球温暖化現象等の問題から、従来の発電システムに替わる新しいシステムの普及が加速している。その1つとして、分散電源,自動車の動力源としても実用的価値が高い「燃料電池」が注目されている。燃料電池にはいくつかの種類があるが、その中でも固体高分子型燃料電池(PEFC)や固体酸化物型燃料電池(SOFC)はエネルギー効率が高く、将来の普及拡大が有望視されている。 Recently, the spread of new systems replacing conventional power generation systems is accelerating due to problems such as depletion of fossil fuels such as petroleum and global warming due to CO 2 emissions. As one of them, “fuel cell”, which has high practical value as a distributed power source and a power source for automobiles, is attracting attention. There are several types of fuel cells. Among them, polymer electrolyte fuel cells (PEFC) and solid oxide fuel cells (SOFC) have high energy efficiency, and are expected to expand in the future.

燃料電池は、水の電気分解と逆の反応過程を経て電力を発生する装置であり、水素を必要とする。水素は、都市ガス(LNG)、メタン、天然ガス、プロパン、灯油、ガソリン等の炭化水素系燃料を触媒の存在下で改質反応させることにより製造される。中でも都市ガスを原燃料とする燃料電池は、都市ガス配管が整備された地区において水素を製造できる利点がある。   A fuel cell is a device that generates electric power through a reaction process opposite to that of water electrolysis, and requires hydrogen. Hydrogen is produced by a reforming reaction of hydrocarbon fuels such as city gas (LNG), methane, natural gas, propane, kerosene, and gasoline in the presence of a catalyst. Above all, a fuel cell using city gas as a raw fuel has an advantage that hydrogen can be produced in an area where city gas piping is provided.

燃料改質器は、水素の改質反応に必要な熱量を確保するため、通常、200〜700℃までの高温で運転される。このような高温運転下において、多量の水蒸気、二酸化炭素、一酸化炭素等を含む酸化性の雰囲気に曝され、水素の需要に応じて起動・停止による加熱・冷却サイクルが繰り返される。また、SOFCシステムでは、高Cr含有ステンレス鋼を適用した場合、SOFC動作温度においてCrの蒸発によるセラミックス電極の被毒を防止する課題がある。
これまで、このような過酷な環境下において十分な耐久性を有する実用材料として、SUS310S(25Cr−20Ni)に代表されるオーステナイト系ステンレス鋼が使用されてきた。将来、燃料電池システムの普及拡大に向けて、コスト低減は必要不可欠であり、使用材料の最適化による合金コストの低減は重要な課題である。また、SOFCシステムでは、高Cr含有ステンレス鋼を適用する場合、SOFC動作温度においてCrの蒸発によるセラミックス電極の被毒を防止できる鋼種を選定しなければならない。合わせて、このような高温環境に置いて、構造体の信頼性を確保するため、クリープ特性や高温強度も重要となる。
The fuel reformer is usually operated at a high temperature of 200 to 700 ° C. in order to ensure the amount of heat necessary for the hydrogen reforming reaction. Under such a high temperature operation, it is exposed to an oxidizing atmosphere containing a large amount of water vapor, carbon dioxide, carbon monoxide and the like, and the heating / cooling cycle by starting and stopping is repeated according to the demand for hydrogen. Further, in the SOFC system, when high Cr content stainless steel is applied, there is a problem of preventing poisoning of the ceramic electrode due to Cr evaporation at the SOFC operating temperature.
Until now, austenitic stainless steel represented by SUS310S (25Cr-20Ni) has been used as a practical material having sufficient durability under such a severe environment. In the future, cost reduction is indispensable for the spread of fuel cell systems, and reduction of alloy costs by optimizing the materials used is an important issue. Further, in the SOFC system, when applying high Cr content stainless steel, a steel type that can prevent poisoning of the ceramic electrode due to Cr evaporation at the SOFC operating temperature must be selected. In addition, in order to ensure the reliability of the structure in such a high temperature environment, the creep characteristics and the high temperature strength are also important.

上述した背景から、アルミナの高い耐酸化性を有するAl含有フェライト系ステンレス鋼の燃料改質器への適用が開示されている。
特許文献1には、Cr:8〜35%、C:0.03%以下、N:0.03%以下、Mn:1.5%以下、Si:0.8〜2.5%及び/又はAl:0.6〜6.0%であり、更にNb:0.05〜0.80%、Ti:0.03〜0.50%、Mo:0.1〜4%、Cu:0.1〜4%の1種又は2種以上を含み、Si及びAlの合計量が1.5%以上に調整された組成を有する石油系燃料改質器用フェライト系ステンレス鋼が開示されている。これらのステンレス鋼は、200〜900℃の温度域で材料を繰り返し加熱・冷却する熱疲労試験において(拘束率50%)、初期の最大引張応力が3/4まで低下する破損繰り返しが500cyc以上であることを特徴としている。
From the background described above, application of Al-containing ferritic stainless steel having high oxidation resistance to alumina to a fuel reformer is disclosed.
In Patent Document 1, Cr: 8-35%, C: 0.03% or less, N: 0.03% or less, Mn: 1.5% or less, Si: 0.8-2.5% and / or Al: 0.6 to 6.0%, Nb: 0.05 to 0.80%, Ti: 0.03 to 0.50%, Mo: 0.1 to 4%, Cu: 0.1 A ferritic stainless steel for a petroleum fuel reformer is disclosed that contains one or two or more of -4% and has a composition in which the total amount of Si and Al is adjusted to 1.5% or more. In these stainless steels, in a thermal fatigue test in which the material is repeatedly heated and cooled in a temperature range of 200 to 900 ° C. (restraint rate 50%), the repeated repetition of damage in which the initial maximum tensile stress is reduced to 3/4 is 500 cyc or more. It is characterized by being.

特許文献2には、Cr:8〜25%、C:0.03%以下、N:0.03%以下、Si:0.1〜2.5%、Mn:1.5%以下、Al:0.1〜4%を含み、更にNb:0.05〜0.80%、Ti:0.03〜0.5%、Mo:0.1〜4%、Cu:0.1〜4%の1種又は2種以上を含むアルコール系燃料改質器用フェライト系ステンレス鋼が開示されている。これらのステンレス鋼は、200〜900℃の温度域で材料を繰り返し加熱・冷却する熱疲労試験において(拘束率100%)、初期の最大引張応力が3/4まで低下する破損繰り返しが1000cyc以上であることを特徴としている。   In Patent Document 2, Cr: 8 to 25%, C: 0.03% or less, N: 0.03% or less, Si: 0.1 to 2.5%, Mn: 1.5% or less, Al: Including 0.1 to 4%, Nb: 0.05 to 0.80%, Ti: 0.03 to 0.5%, Mo: 0.1 to 4%, Cu: 0.1 to 4% Ferritic stainless steel for alcohol-based fuel reformers containing one or more types is disclosed. In these stainless steels, in a thermal fatigue test in which the material is repeatedly heated and cooled in a temperature range of 200 to 900 ° C. (restraint rate 100%), the repetition of breakage in which the initial maximum tensile stress is reduced to 3/4 is 1000 cyc or more. It is characterized by being.

特許文献3には、Cr:12〜20%、C:0.03%以下、N:0.03%以下、Si:0.1〜1.5%、Mn:0.95〜1.5%、Al:1.5%以下とし、Nb:0.1〜0.8、Mo:0.1〜4%、Cu:0.1〜4.0の1種又は2種以上を含み、A=Cr+Mn+5(Si+Al)で定義されるA値が15〜25の範囲に調整された炭化水素系燃料改質器用フェライト系ステンレス鋼が開示されている。これらのステンレス鋼は、200〜900℃の温度域で材料を繰り返し加熱・冷却する熱疲労試験において(拘束率100%)、初期の最大引張応力が3/4まで低下する破損繰り返しが800cyc以上であることを特徴としている。   In Patent Document 3, Cr: 12 to 20%, C: 0.03% or less, N: 0.03% or less, Si: 0.1 to 1.5%, Mn: 0.95 to 1.5% Al: 1.5% or less, including Nb: 0.1 to 0.8, Mo: 0.1 to 4%, Cu: 0.1 to 4.0 or more, A = A ferritic stainless steel for a hydrocarbon fuel reformer in which an A value defined by Cr + Mn + 5 (Si + Al) is adjusted to a range of 15 to 25 is disclosed. In these stainless steels, in a thermal fatigue test in which the material is repeatedly heated and cooled in a temperature range of 200 to 900 ° C. (restraint rate: 100%), the initial repetition of failure at which the maximum tensile stress is reduced to 3/4 is 800 cyc or more. It is characterized by being.

特許文献4には、C:0.02%未満、Si:0.15超〜0.7%、Mn:0.3%以下、P:0.035%以下、S:0.003%以下、Cr:13〜20%、Al:1.5〜6%、N:0.02%以下、Ti:0.03〜0.5%、Nb:0.001〜0.1%以下、鋼中の固溶Ti量を[Ti]、鋼中の固溶Nb量を[Nb]とし、13≦Cr≦16の場合は0≦[Ti]≦[Nb]+0.05、0<[Nb]≦0.10を満たし、16<Cr≦20の場合は0≦[Ti]≦1/2×[Nb]+0.15、[Ti]≦0.12、0<[Nb]≦0.1を満足することを特徴とする燃料電池用Al含有フェライト系ステンレス鋼が開示されている。これらのステンレス鋼は、750℃、初期応力10MPaのクリープ破断時間が4000h以上であることを特徴としている。   In Patent Document 4, C: less than 0.02%, Si: more than 0.15 to 0.7%, Mn: 0.3% or less, P: 0.035% or less, S: 0.003% or less, Cr: 13-20%, Al: 1.5-6%, N: 0.02% or less, Ti: 0.03-0.5%, Nb: 0.001-0.1% or less, in steel When the solid solution Ti amount is [Ti] and the solid solution Nb amount in the steel is [Nb], and 13 ≦ Cr ≦ 16, 0 ≦ [Ti] ≦ [Nb] +0.05, 0 <[Nb] ≦ 0 .10 and 16 <Cr ≦ 20, 0 ≦ [Ti] ≦ 1/2 × [Nb] +0.15, [Ti] ≦ 0.12, and 0 <[Nb] ≦ 0.1 are satisfied. An Al-containing ferritic stainless steel for fuel cells is disclosed. These stainless steels are characterized by a creep rupture time of 4000 h or more at 750 ° C. and an initial stress of 10 MPa.

特許文献5には、C:0.001〜0.03%、Si:0.01〜2%、Mn:0.01〜1.5%、P:0.005〜0.05%、S:0.0001〜0.01%、Cr:16〜30%、N:0.001〜0.03%、Al:0.8〜3%、Sn:0.01〜1%を含み、800℃での0.2%耐力が40MPa以上、引張強さ60MPa以上であることを特徴とする耐酸化性と高温強度に優れた高純度フェライト系ステンレス鋼板が開示されている。   In Patent Document 5, C: 0.001 to 0.03%, Si: 0.01 to 2%, Mn: 0.01 to 1.5%, P: 0.005 to 0.05%, S: 0.0001-0.01%, Cr: 16-30%, N: 0.001-0.03%, Al: 0.8-3%, Sn: 0.01-1% A high-purity ferritic stainless steel sheet excellent in oxidation resistance and high-temperature strength is disclosed, in which the 0.2% proof stress is 40 MPa or more and the tensile strength is 60 MPa or more.

前記した通り、燃料改質器、熱交換器などの部品は200〜700℃の温度域で連続運転される。しかしながら、SOFCシステムの安全性を考慮する場合、異常昇温に対する構造体の信頼性を加味した材料選定を行うことが好ましい。フェライト系ステンレス鋼の場合、700℃を超える高温においては著しい強度の低下が生じる。また、例えば、SOFCシステムの異常により急激な昇温が生じた場合、鋼材には各部位の温度分布に起因した熱応力が急激に付与される。すなわち、新たな鋼材課題として、700℃を超える800℃程度の高温域において、高速変形に優れた変形抵抗を有することが新たに求められている。
しかしながら、Cr被毒に優れたAl含有フェライト系ステンレス鋼で、さらに700℃を超える温度での高速変形を検討した先行技術は確認されない。
As described above, components such as the fuel reformer and the heat exchanger are continuously operated in a temperature range of 200 to 700 ° C. However, when considering the safety of the SOFC system, it is preferable to select a material in consideration of the reliability of the structure against abnormal temperature rise. In the case of ferritic stainless steel, a significant decrease in strength occurs at a high temperature exceeding 700 ° C. In addition, for example, when a sudden temperature increase occurs due to an abnormality in the SOFC system, a thermal stress due to the temperature distribution of each part is suddenly applied to the steel material. That is, as a new steel material problem, it is newly required to have deformation resistance excellent in high-speed deformation in a high temperature range of about 800 ° C. exceeding 700 ° C.
However, the prior art which examined high-speed deformation in the temperature exceeding 700 degreeC by Al containing ferritic stainless steel excellent in Cr poisoning is not confirmed.

特許第3886785号公報Japanese Patent No. 3886785 特許第3910419号公報Japanese Patent No. 3910419 特許第3942876号公報Japanese Patent No. 3942876 特許第5544106号公報Japanese Patent No. 5544106 特許第5709570号公報Japanese Patent No. 5709570

本発明は、800℃までの異常昇温を想定した場合の鋼構造体、中でもSOFC構造体の信頼性を高めるために開発されたものである。高速変形時の高温強度に優れたAl含有フェライト系ステンレス鋼を提供するものであり、その中でも特に温度が高くなる燃料改質器への適用が好ましい。   The present invention has been developed to increase the reliability of steel structures, particularly SOFC structures, when an abnormal temperature rise to 800 ° C. is assumed. The present invention provides an Al-containing ferritic stainless steel excellent in high-temperature strength during high-speed deformation, and among these, application to a fuel reformer having a particularly high temperature is preferable.

(1)質量%にて、C:0.03%以下、Si:2.0%以下、Mn:2.0%以下、P:0.050%以下、S:0.01%以下、Cr:11〜25%、Al:1.3〜4.0%、N:0.03%以下を含み、更にTi:0.5%以下、Nb:0.5%以下、V:0.5%以下の1種類または2種以上を含み、さらに下記(a)および/または(b)を満たす、残部がFeおよび不可避的不純物であることを特徴とする高温強度に優れたAl含有フェライト系ステンレス鋼。
(a)Sn:0.20%以下含有
(b)B:0.005%以下、Mg:0.015%以下、Ca:0.005%以下の1種類または2種類以上、10×[B]+[Mg]+[Ca]≧0.004%となる範囲で含有。ここで、[B]、[Mg]、[Ca]は、それぞれの元素の含有量(質量%)を示す。
(2)Ni:1.0%以下、Cu:1.0%以下、Mo:1.0%以下、W:1.0%以下、Co:1.0%以下の1種または2種以上を含有することを特徴とする(1)に記載の高温強度に優れたAl含有フェライト系ステンレス鋼。
(3)Zr:0.50%以下、Ga:0.10%以下、Sb:0.50%以下、La:0.10%以下、Y:0.10%以下、Hf:0.10%以下、Ta:0.1%以下、REM:0.10%以下の1種または2種以上を含有することを特徴とする(1)又は(2)に記載の高温強度に優れたAl含有フェライト系ステンレス鋼。
(4)800℃において、ひずみ速度が0.3min-1の場合の引張強さが50MPa以上であることを特徴とする(1)〜(3)のいずれかに記載の高温強度に優れたAl含有フェライト系ステンレス鋼。
(5)燃料改質器、熱交換器あるいは燃料電池高温部材に適用されることを特徴とする(1)〜(4)のいずれかに記載の高温強度に優れたAl含有フェライト系ステンレス鋼。
(6)ガスタービンおよび発電システムの少なくともいずれかに用いられる高温部材に適用されることを特徴とする(1)〜(4)のいずれかに記載の高温強度に優れたAl含有フェライト系ステンレス鋼。
(7)エキゾーストマニホールド、コンバータ、マフラー、ターボチャージャー、EGRクーラー、フロントパイプおよびセンターパイプの少なくともいずれかの自動車用部材に適用されることを特徴とする(1)〜(4)のいずれかに記載の高温強度に優れたAl含有フェライト系ステンレス鋼。
(8)ストーブおよびファンヒータの少なくともいずれかの燃焼機器に用いられる高温部材に適用されることを特徴とする(1)〜(4)のいずれかに記載の高温強度に優れたAl含有フェライト系ステンレス鋼。
以下、上記(1)〜(8)の鋼に係わる発明をそれぞれ本発明という。
(1) In mass%, C: 0.03% or less, Si: 2.0% or less, Mn: 2.0% or less, P: 0.050% or less, S: 0.01% or less, Cr: 11 to 25%, Al: 1.3 to 4.0%, N: 0.03% or less, Ti: 0.5% or less, Nb: 0.5% or less, V: 0.5% or less An Al-containing ferritic stainless steel excellent in high-temperature strength, characterized in that it contains one or more of the following, further satisfies the following (a) and / or (b), and the balance is Fe and inevitable impurities.
(A) Sn: 0.20% or less (b) B: 0.005% or less, Mg: 0.015% or less, Ca: 0.005% or less, 1 type or 2 types or more 10 × [B] + [Mg] + [Ca] ≥ 0.004% contained. Here, [B], [Mg], and [Ca] indicate the content (% by mass) of each element.
(2) One or more of Ni: 1.0% or less, Cu: 1.0% or less, Mo: 1.0% or less, W: 1.0% or less, Co: 1.0% or less The Al-containing ferritic stainless steel having excellent high-temperature strength as described in (1).
(3) Zr: 0.50% or less, Ga: 0.10% or less, Sb: 0.50% or less, La: 0.10% or less, Y: 0.10% or less, Hf: 0.10% or less , Ta: 0.1% or less, REM: 0.10% or less, Al-containing ferrite system having excellent high-temperature strength as described in (1) or (2) Stainless steel.
(4) Al having excellent high-temperature strength according to any one of (1) to (3), wherein the tensile strength when the strain rate is 0.3 min −1 at 800 ° C. is 50 MPa or more. Contains ferritic stainless steel.
(5) The Al-containing ferritic stainless steel having excellent high-temperature strength according to any one of (1) to (4), which is applied to a fuel reformer, a heat exchanger, or a fuel cell high-temperature member.
(6) The Al-containing ferritic stainless steel excellent in high-temperature strength according to any one of (1) to (4), which is applied to a high-temperature member used in at least one of a gas turbine and a power generation system .
(7) The high temperature according to any one of (1) to (4), wherein the high temperature is applied to at least one member for an automobile of an exhaust manifold, a converter, a muffler, a turbocharger, an EGR cooler, a front pipe, and a center pipe. Al-containing ferritic stainless steel with excellent strength.
(8) The Al-containing ferrite system having excellent high-temperature strength according to any one of (1) to (4), which is applied to a high-temperature member used in a combustion device of at least one of a stove and a fan heater Stainless steel.
Hereinafter, the inventions related to the steels (1) to (8) are referred to as the present invention.

本発明により、高速変形時の高温強度に優れた鋼構造体用、中でも燃料電池高温部材に好適なAl含有フェライト系ステンレス鋼を提供することができる。   According to the present invention, it is possible to provide an Al-containing ferritic stainless steel suitable for a steel structure excellent in high-temperature strength during high-speed deformation, and particularly suitable for a fuel cell high-temperature member.

本発明者らは、前記した課題を解決するため、フェライト系ステンレス鋼に対し、800℃までの異常昇温を想定した場合の破壊機構の解明および高温強度増加におよぼす各種合金元素の影響について実験と検討を重ね、本発明を完成させた。以下に本発明で得られた知見について説明する。   In order to solve the above-mentioned problems, the present inventors conducted experiments on the influence of various alloy elements on the elucidation of the fracture mechanism and the increase in the high-temperature strength when an abnormal temperature rise to 800 ° C. is assumed for ferritic stainless steel. The present invention was completed through repeated studies. The knowledge obtained by the present invention will be described below.

(a)800℃までの異常昇温を想定したシミュレーション解析を実施した結果、構造部材には最大で0.25min-1のひずみ速度による変形が付与されることが新たに分かった。したがって、このような条件下におけるAl含有フェライト系ステンレス鋼の引張強さを高めることが、構造部材として重要となる。
(b)通常、フェライト系ステンレス鋼の高温強度を高めるためには固溶強化が有効となる。0.25min-1のひずみ速度における高温変形の場合、より多量のひずみが付与され、付与されたひずみは動的な回復により、亜結晶粒界を形成しながら変形が進行する。
(c)このような条件に於いて高温強度を高めるには、前述の合金元素添加による固溶強化に加え、亜結晶粒界の成長を抑制し、微細な組織を維持することが重要であることを知見した。
(d)過度なAlおよび固溶・析出強化に寄与するNb、Mo、Cuなどの添加によらずとも、高温強度はSnの微量添加により著しく向上することを新たに見出した。Snは、固溶強化はもちろんであるが、さらに800℃の変形時に鋼中に形成される亜結晶粒界に特に偏析しやすく、亜結晶粒界の移動を著しく抑制することが分かった。ただし、過剰のSn添加は結晶粒界強度を低下させるため、高速変形時は粒界を起点として早期破壊が生じてしまう。
(e)BもSnと同様、固溶強化に加え、さらに高温変形時に形成される亜結晶粒界に偏析し、亜結晶粒界の移動を顕著に抑制する。さらに、Bをより亜結晶粒界に偏析させるためには、Ca、Mgの適量添加によって、結晶粒界に偏析しやすいSやOを非金属介在物や硫化物として生成させ、Bの粒界への偏析サイトを確保することが効果的である。
(f)その他、Ti、Nb、V、Ni、Cu、Mo、W、Co、Zr、Ga、Sb、La、Y、Hf、Ta、REMも固溶強化により高速変形時の高温強度増加に有効な添加元素である。
(A) As a result of carrying out a simulation analysis assuming an abnormal temperature rise up to 800 ° C., it was newly found that the structural member is deformed at a maximum strain rate of 0.25 min −1 . Therefore, it is important for the structural member to increase the tensile strength of the Al-containing ferritic stainless steel under such conditions.
(B) Usually, solid solution strengthening is effective in increasing the high temperature strength of ferritic stainless steel. In the case of high-temperature deformation at a strain rate of 0.25 min −1 , a larger amount of strain is applied, and the applied strain progresses while forming subgrain boundaries by dynamic recovery.
(C) In order to increase the high temperature strength under such conditions, it is important to suppress the growth of subgrain boundaries and maintain a fine structure in addition to the solid solution strengthening by addition of the alloy elements described above. I found out.
(D) It has been newly found that the high-temperature strength is remarkably improved by adding a small amount of Sn, regardless of addition of excessive Al and Nb, Mo, Cu, etc. contributing to solid solution / precipitation strengthening. Sn, of course, is not only solid solution strengthened, but is also particularly segregated at the subgrain boundaries formed in the steel at the time of deformation at 800 ° C., and it has been found that the movement of the subgrain boundaries is remarkably suppressed. However, excessive addition of Sn decreases the grain boundary strength, so that early fracture occurs at the grain boundary as the starting point during high-speed deformation.
(E) B, as well as Sn, segregates at the sub-grain boundaries formed during high-temperature deformation in addition to solid solution strengthening, and remarkably suppresses the movement of the sub-crystal grain boundaries. Further, in order to segregate B to the sub-grain boundaries, by adding appropriate amounts of Ca and Mg, S and O that are easily segregated at the grain boundaries are generated as non-metallic inclusions and sulfides, It is effective to secure segregation sites.
(F) In addition, Ti, Nb, V, Ni, Cu, Mo, W, Co, Zr, Ga, Sb, La, Y, Hf, Ta, and REM are also effective for increasing high-temperature strength during high-speed deformation by solid solution strengthening. Is an additive element.

以下、本発明の各要件について詳しく説明する。なお、各元素の含有量の「%」表示は「質量%」を意味する。   Hereinafter, each requirement of the present invention will be described in detail. In addition, "%" display of the content of each element means "mass%".

化学成分の限定理由を以下に説明する。   The reasons for limiting the chemical components will be described below.

<C:0.030%以下>
Cは、フェライト相に固溶あるいはCr236を形成して耐酸化性を阻害する。また、溶接時の粒界におけるCr236の析出を促進させる。このため、C量は少ないほど良く、上限を0.03%とする。但し、過度な低減は精錬コストの上昇に繋がるため、下限は0.001%とすることが好ましい。より好ましい範囲は0.002〜0.020%である。
<C: 0.030% or less>
C inhibits oxidation resistance by forming a solid solution or forming Cr 23 C 6 in the ferrite phase. Further, it promotes the precipitation of Cr 23 C 6 at the grain boundaries during welding. For this reason, the smaller the amount of C, the better. The upper limit is made 0.03%. However, excessive reduction leads to an increase in refining costs, so the lower limit is preferably 0.001%. A more preferable range is 0.002 to 0.020%.

<Si:2.0%以下>
Siは、耐酸化性を確保する上で重要な元素である。また、固溶強化により高温強度を高める元素である。これらの効果を得るために下限は0.2%とすることが好ましい。一方、過度な添加は、鋼の靭性や加工性の低下ならびにAl系酸化皮膜の形成を阻害する場合があるため、上限は2.0%とする。好ましい上限は1.2%である。
<Si: 2.0% or less>
Si is an important element in securing oxidation resistance. Moreover, it is an element which raises high temperature strength by solid solution strengthening. In order to obtain these effects, the lower limit is preferably 0.2%. On the other hand, excessive addition may impair the toughness and workability of steel and inhibit the formation of an Al-based oxide film, so the upper limit is made 2.0%. A preferable upper limit is 1.2%.

<Mn:2.0%以下>
Mnは、改質ガス環境下でSiとともに酸化皮膜中に固溶して保護性を高める。これらの効果を得るために下限は0.1%とすることが好ましい。一方、過度な添加は、鋼の耐食性やAl系酸化皮膜の形成を阻害するため、上限は2.0%以下とする。耐酸化性と基本特性の点から、1.2%以下が好ましい。
<Mn: 2.0% or less>
Mn is dissolved in the oxide film together with Si in the reformed gas environment to enhance the protection. In order to obtain these effects, the lower limit is preferably 0.1%. On the other hand, excessive addition inhibits the corrosion resistance of steel and the formation of an Al-based oxide film, so the upper limit is made 2.0% or less. From the viewpoint of oxidation resistance and basic characteristics, 1.2% or less is preferable.

<P:0.050%以下>
Pは、製造性や溶接性を阻害する。また、粒界に偏析しやすい元素であるため、SnおよびBの粒界偏析を阻害する元素である。その含有量は少ないほど良いため、上限は0.050%とする。但し、過度な低減は精錬コストの上昇に繋がるため、下限は0.003%とすることが好ましい。製造性と溶接性の点から、好ましい範囲は0.004〜0.035%である。
<P: 0.050% or less>
P hinders manufacturability and weldability. Further, since it is an element that easily segregates at grain boundaries, it is an element that inhibits grain boundary segregation of Sn and B. The lower the content, the better, so the upper limit is made 0.050%. However, excessive reduction leads to an increase in refining costs, so the lower limit is preferably 0.003%. From the viewpoint of manufacturability and weldability, the preferred range is 0.004 to 0.035%.

<S:0.010%以下>
Sは、鋼中に含まれる不可避的不純物元素であり、Al系皮膜の保護性を低下させる。特に、Mn系介在物や固溶Sの存在は、高温・長時間使用におけるAl系酸化皮膜の破壊起点としても作用する。また、粒界に偏析しやすい元素であるため、SnおよびBの粒界偏析を阻害する元素である。従って、S量は低いほど良いため、上限は0.010%とする。但し、過度の低減は原料や精錬コストの上昇に繋がるため、下限は0.0001%とする。製造性と耐酸化性、耐475℃脆性の観点から、好ましい範囲は0.0001〜0.0050%である。
<S: 0.010% or less>
S is an inevitable impurity element contained in the steel, and lowers the protective properties of the Al-based film. In particular, the presence of Mn-based inclusions and solute S also acts as a fracture starting point for Al-based oxide films when used at high temperatures for long periods of time. Further, since it is an element that easily segregates at grain boundaries, it is an element that inhibits grain boundary segregation of Sn and B. Therefore, the lower the amount of S, the better. Therefore, the upper limit is made 0.010%. However, excessive reduction leads to an increase in raw materials and refining costs, so the lower limit is made 0.0001%. From the viewpoint of manufacturability, oxidation resistance, and 475 ° C. brittleness, the preferred range is 0.0001 to 0.0050%.

<Cr:11.0〜25.0%>
Crは、耐食性に加えて、表面酸化皮膜の保護性を確保する上で基本となる構成元素であり、これらの効果を得るためには11.0%以上のCr量が必要である。一方、過度なCrの添加は、Cr236の析出を促進させる。また、脆化相であるσ相の生成を助長する。合金コストの上昇とCr蒸発を助長する場合があるため上限は25.0%とする。好ましい範囲は13.0〜20.0%である。
<Cr: 11.0 to 25.0%>
In addition to corrosion resistance, Cr is a basic constituent element for ensuring the protection of the surface oxide film, and in order to obtain these effects, an amount of Cr of 11.0% or more is required. On the other hand, excessive addition of Cr promotes the precipitation of Cr 23 C 6 . Moreover, it promotes the generation of the σ phase which is an embrittlement phase. The upper limit is set to 25.0% because it may promote an increase in alloy costs and Cr evaporation. A preferable range is 13.0 to 20.0%.

<Al:1.3〜4.0%>
Alは、脱酸元素に加えて、Al系酸化皮膜を形成してCr蒸発を抑止するために必須の添加元素である。また、固溶強化により高温強度を高める元素である。これらの効果を得るため、下限は1.3%とする。しかし、過度なAlの添加は、鋼の靭性や溶接部における脆性破壊を助長するため、上限は、4.0%とする。好ましい範囲は1.5〜3.5%である。
<Al: 1.3-4.0%>
In addition to the deoxidizing element, Al is an additional element essential for forming an Al-based oxide film and suppressing Cr evaporation. Moreover, it is an element which raises high temperature strength by solid solution strengthening. In order to obtain these effects, the lower limit is made 1.3%. However, excessive addition of Al promotes the toughness of steel and brittle fracture in welds, so the upper limit is made 4.0%. A preferable range is 1.5 to 3.5%.

<N:0.030%以下>
Nは、Cと同様に本発明の目標とする耐酸化性を阻害する。このため、N量は少ないほど良く、上限を0.030%とする。但し、過度な低減は精錬コストの上昇に繋がるため、下限は0.001%とする。好ましい範囲は0.002〜0.020%である。
<N: 0.030% or less>
N, like C, inhibits the target oxidation resistance of the present invention. For this reason, the smaller the amount of N, the better. The upper limit is made 0.030%. However, excessive reduction leads to an increase in refining costs, so the lower limit is made 0.001%. A preferred range is 0.002 to 0.020%.

<Sn:0.20%以下>
Snは固溶強化により高温強度を高める元素である。また、700℃乃至800℃に於ける高速変形時、亜結晶粒界に偏析し、亜結晶粒界の移動を抑制することで高温強度を高める元素である。これらの効果を得るため、下限は0.005%とする。一方、過剰なSnの添加は逆に粒界強度を弱め、高速変形時の粒界破壊を助長する。また、製造性の低下も招くため、上限を0.20%とする必要がある。好ましいSnの含有量は0.01〜0.15%である。
<Sn: 0.20% or less>
Sn is an element that increases the high temperature strength by solid solution strengthening. Further, it is an element that increases the high temperature strength by segregating at the sub-crystal grain boundary during high-speed deformation at 700 ° C. to 800 ° C. and suppressing the movement of the sub-crystal grain boundary. In order to obtain these effects, the lower limit is made 0.005%. On the other hand, excessive addition of Sn conversely weakens the grain boundary strength and promotes grain boundary fracture during high-speed deformation. In addition, since the manufacturability is also reduced, the upper limit needs to be 0.20%. The preferred Sn content is 0.01 to 0.15%.

<Ti、Nb、V:各々0.50%以下>
Ti、Nb、Vは、C,Nを固定する安定化元素の作用により、溶接時のCr236生成抑制に寄与する元素である。さらに、高温強度の増加にも寄与する元素である。これらの効果を得るために下限は0.01%とすることが好ましい。一方、過度な添加は合金コストの上昇や再結晶温度上昇に伴う製造性の低下や耐酸化性の低下にも繋がるため、上限は各々0.50%とする。好ましい範囲は0.10〜0.40%である。
<Ti, Nb, V: 0.50% or less each>
Ti, Nb, and V are elements that contribute to the suppression of Cr 23 C 6 production during welding by the action of a stabilizing element that fixes C and N. Furthermore, it is an element that contributes to an increase in high-temperature strength. In order to obtain these effects, the lower limit is preferably 0.01%. On the other hand, excessive addition leads to a decrease in manufacturability and a decrease in oxidation resistance due to an increase in alloy cost and a recrystallization temperature, so the upper limit is 0.50%. A preferable range is 0.10 to 0.40%.

<B:0.005%以下、Mg:0.015%以下、Ca:0.005%以下>
<10×[B]+[Mg]+[Ca]≧0.005%>
B、Mg、Caは、本発明の目標とする800℃における引張強さを増加させるために必須の添加元素である。この効果を得るため、B:0.0005%以上、Mg:0.001%以上、Ca:0.0005%以上含有させ、これらの元素を1種または2種以上を含み、10×[B]+[Mg]+[Ca]≧0.0040%を満たすものとする。一方、これらの元素の過度な添加は、製造性と鋼の耐食性を低下させるため、B:0.005%以下、Mg:0.015%以下、Ca:0.005%以下であることが好ましい。
<B: 0.005% or less, Mg: 0.015% or less, Ca: 0.005% or less>
<10 × [B] + [Mg] + [Ca] ≧ 0.005%>
B, Mg, and Ca are additive elements essential for increasing the tensile strength at 800 ° C., which is a target of the present invention. In order to obtain this effect, B: 0.0005% or more, Mg: 0.001% or more, Ca: 0.0005% or more is contained, and these elements are included in one or more kinds, and 10 × [B] + [Mg] + [Ca] ≧ 0.0040% shall be satisfied. On the other hand, excessive addition of these elements lowers manufacturability and corrosion resistance of steel, so B is preferably 0.005% or less, Mg: 0.015% or less, and Ca: 0.005% or less. .

<Ni、Cu、Mo、W、Co>
これらの元素は固溶強化により高温強度を増加させる。この効果を得るため、Ni:0.020%以上、Cu:0.010%以上、Mo:0.010%以上、W:0.001%以上、Co:0.005%以上で、これらの元素を1種類または2種類以上含有することが好ましい。一方、これらの元素の過度な添加は、製造性の低下および合金コストの増加に繋がるため、Ni:1.0%以下、Cu:1.0%以下、Mo:1.0%以下、W:1.0%以下、Co:1.0%以下で、これらの元素の合計含有量を2.0%以下とすることが好ましい。
<Ni, Cu, Mo, W, Co>
These elements increase the high temperature strength by solid solution strengthening. To obtain this effect, Ni: 0.020% or more, Cu: 0.010% or more, Mo: 0.010% or more, W: 0.001% or more, Co: 0.005% or more, these elements It is preferable to contain 1 type or 2 types or more. On the other hand, excessive addition of these elements leads to a decrease in manufacturability and an increase in alloy cost, so Ni: 1.0% or less, Cu: 1.0% or less, Mo: 1.0% or less, W: It is preferable that 1.0% or less, Co: 1.0% or less, and the total content of these elements be 2.0% or less.

<Zr、Ga、Zn、Sb、La、Y、Hf、Ta、REM>
これらの元素は固溶強化により高温強度を増加させる。また、Zr、La、Y、Hf、Ta、REMは、熱間加工性や鋼の清浄度を向上ならびに耐酸化性改善に対しても、従来から有効な元素である。Ga、Zn、Sbは表面近傍に濃化してCrの酸化を抑制する。これらの効果を得るため、Zr:0.0001%以上、Ga:0.001%以上、Zn:0.01%以上、Sb:0.003%以上、La:0.0001%以上、Y:0.0001%以上、Hf:0.0001%以上、Ta:0.002%以上、REM:0.001%以上で、これらの元素を1種類または2種類以上含有することが好ましい。一方、これらの元素の過度な添加は、製造性の低下および合金コストの増加に繋がるため、Zr:0.50%以下、Ga:0.10%以下、Zn:0.1%以下、Sb:0.50%以下、La:0.10%以下、Y:0.10%以下、Hf:0.10%以下、Ta:0.50%以下、REM:0.10%以下で、これらの元素を1種類または2種類以上含有する必要がある。これらの元素の合計含有量は、0.20%以下とすることが好ましい。
<Zr, Ga, Zn, Sb, La, Y, Hf, Ta, REM>
These elements increase the high temperature strength by solid solution strengthening. Zr, La, Y, Hf, Ta, and REM are elements that are conventionally effective for improving hot workability, steel cleanliness, and improving oxidation resistance. Ga, Zn, and Sb are concentrated near the surface to suppress the oxidation of Cr. In order to obtain these effects, Zr: 0.0001% or more, Ga: 0.001% or more, Zn: 0.01% or more, Sb: 0.003% or more, La: 0.0001% or more, Y: 0 It is preferable to contain one or more of these elements at 0.0001% or more, Hf: 0.0001% or more, Ta: 0.002% or more, and REM: 0.001% or more. On the other hand, excessive addition of these elements leads to a decrease in manufacturability and an increase in alloy cost, so Zr: 0.50% or less, Ga: 0.10% or less, Zn: 0.1% or less, Sb: These elements are 0.50% or less, La: 0.10% or less, Y: 0.10% or less, Hf: 0.10% or less, Ta: 0.50% or less, REM: 0.10% or less. It is necessary to contain 1 type or 2 types or more. The total content of these elements is preferably 0.20% or less.

以下に、本発明の実施例について述べる。
表1に成分を示す記号A1〜A14および記号B1〜B11のフェライト系ステンレス鋼を溶製し、熱間圧延、焼鈍酸洗、冷間圧延後、仕上げ焼鈍・酸洗により厚さ1.0mmの冷延焼鈍鋼板を製造した。
Examples of the present invention will be described below.
The ferritic stainless steels represented by symbols A1 to A14 and symbols B1 to B11 whose components are shown in Table 1 are melted, and after hot rolling, annealing pickling, cold rolling, a thickness of 1.0 mm is obtained by finish annealing and pickling. A cold-rolled annealed steel sheet was produced.

Figure 2017133075
Figure 2017133075

各フェライト系ステンレス鋼板から図1に示す厚さ1.0mmの引張試験片を採取した。冷延焼鈍鋼板の圧片方向と引張試験片の長手方向が一致するように試験片を採取した。
800℃の引張強さは高温引張試験により測定した。試験片を室温から800℃まで100℃/minで昇温および800℃で10分間保持した後、引張試験を開始した。ひずみ速度は0.3/minで一定であり、ストローク変位制御により試験を実施した。引張強さは試験時の最大荷重から算出した。
A tensile test piece having a thickness of 1.0 mm shown in FIG. 1 was taken from each ferritic stainless steel sheet. The test piece was sampled so that the direction of the pressed piece of the cold-rolled annealed steel plate coincided with the longitudinal direction of the tensile test piece.
The tensile strength at 800 ° C. was measured by a high temperature tensile test. The test piece was heated from room temperature to 800 ° C. at 100 ° C./min and held at 800 ° C. for 10 minutes, and then a tensile test was started. The strain rate was constant at 0.3 / min, and the test was performed by stroke displacement control. The tensile strength was calculated from the maximum load during the test.

表2に800℃における引張強さを示す。同試験条件におけるSUH21の引張強さ(50MPa)を超えることを本発明の目標とした。
記号A1〜A14は本発明で規定する成分範囲を満たしている。その結果、800℃において目標とするSUH21の引張強さを上回った。
Table 2 shows the tensile strength at 800 ° C. The target of the present invention was to exceed the tensile strength (50 MPa) of SUH21 under the same test conditions.
Symbols A1 to A14 satisfy the component ranges defined in the present invention. As a result, it exceeded the target tensile strength of SUH21 at 800 ° C.

Figure 2017133075
Figure 2017133075

記号B1はSn含有量が本発明で規定する上限を超過している。その結果、粒界への過剰なSn偏析が生じ、粒界強度低下による粒界破壊を招いて目標とする引張強さを下回った。   Symbol B1 has Sn content exceeding the upper limit prescribed | regulated by this invention. As a result, excessive Sn segregation to the grain boundary occurred, causing the grain boundary fracture due to a decrease in grain boundary strength, which was below the target tensile strength.

記号B2はMg含有量および10×[B]+[Mg]+[Ca]が本発明で規定する上限を超過している。その結果、介在物を起点とした破壊により延性低下が生じ、目標とする引張強さを下回った。   The symbol B2 indicates that the Mg content and 10 × [B] + [Mg] + [Ca] exceed the upper limit defined in the present invention. As a result, the ductility decreased due to the fracture starting from inclusions, which was lower than the target tensile strength.

記号B3はSn含有量および10×[B]+[Mg]+[Ca]の両方が本発明で規定する下限を下回っている。その結果、これらの元素による十分な高温強度の増加効果を得ることができず、目標とする引張強さを下回った。   The symbol B3 indicates that both the Sn content and 10 × [B] + [Mg] + [Ca] are below the lower limit defined in the present invention. As a result, it was not possible to obtain a sufficient effect of increasing the high-temperature strength by these elements, which was lower than the target tensile strength.

記号B4はAl含有量が本発明で規定する上限を超過している。その結果、鋼材の延性低下による早期破断が生じ、目標とする引張強さを下回った。   The symbol B4 indicates that the Al content exceeds the upper limit defined in the present invention. As a result, an early fracture occurred due to a decrease in the ductility of the steel material, which was below the target tensile strength.

記号B5はC含有量が本発明で規定する上限を超過している。その結果、炭化物の生成に起因した延性低下による早期破断が生じ、目標とする引張強さを下回った。   The symbol B5 indicates that the C content exceeds the upper limit defined in the present invention. As a result, early fracture due to ductility reduction due to the formation of carbide occurred, which was below the target tensile strength.

記号B6はTi含有量が本発明で規定する上限を超過している。その結果、鋼材の延性低下による早期破断が生じ、目標とする引張強さを下回った。   Symbol B6 exceeds the upper limit which Ti content prescribes | regulates by this invention. As a result, an early fracture occurred due to a decrease in the ductility of the steel material, which was below the target tensile strength.

記号B7はCu含有量が本発明で規定する上限を超過している。その結果、試験片製造時の試験片内部欠陥が起点となり鋼材の延性が低下し、早期破断が生じたことで目標とする引張強さを下回った。   Symbol B7 has Cu content exceeding the upper limit prescribed | regulated by this invention. As a result, the internal defect of the test piece at the time of manufacture of the test piece was the starting point, the ductility of the steel material was reduced, and the early tensile fracture occurred, which was below the target tensile strength.

記号B8はMo含有量およびCo含有量の両方が本発明で規定する上限を超過している。その結果、試験片製造時の試験片内部欠陥が起点となり鋼材の延性が低下し、早期破断が生じたことで目標とする引張強さを下回った。   In symbol B8, both the Mo content and the Co content exceed the upper limit defined in the present invention. As a result, the internal defect of the test piece at the time of manufacture of the test piece was the starting point, the ductility of the steel material was reduced, and the early tensile fracture occurred, which was below the target tensile strength.

記号B9はCr含有量が本発明で規定する上限を超過している。その結果、σ相生成に起因した早期破断が生じ、目標とする引張強さを下回った。   Symbol B9 indicates that the Cr content exceeds the upper limit defined in the present invention. As a result, premature rupture due to the generation of σ phase occurred, which was below the target tensile strength.

記号B10はB含有量が本発明で規定する上限を超過している。その結果、B系析出物の生成が促進され、亜結晶粒径に偏析するB量が減少したため、目標とする引張強さを下回ったと推定される。   In the symbol B10, the B content exceeds the upper limit defined in the present invention. As a result, the formation of B-based precipitates was promoted, and the amount of B segregated to the subcrystal grain size was reduced, so that it was estimated that the target tensile strength was exceeded.

記号B11はSb含有量が本発明で規定する上限を超過している。その結果、粒界への過剰なSb偏析が生じ、粒界強度低下による粒界破壊を招いて目標とする引張強さを下回った。   In the symbol B11, the Sb content exceeds the upper limit defined in the present invention. As a result, excessive Sb segregation to the grain boundary occurred, resulting in grain boundary breakage due to a decrease in grain boundary strength and lowering the target tensile strength.

本発明によれば、過剰なNb、Ni、Cu、Mo、W添加に頼ることなく高温高速変形時の高温強度に優れたAl含有フェライト系ステンレス鋼を高温部材に対して適用することができる。特に、燃料電池用として、燃料改質器等の燃料電池の高温部材に対する適用が好適であり、他にも、熱交換器あるいはガスタービンおよび発電システム、エキゾーストマニホールド、コンバータ、マフラー、ターボチャージャー、EGRクーラー、フロントパイプおよびセンターパイプ、ストーブおよびファンヒータの燃焼機器へも好適に適用可能である。   According to the present invention, Al-containing ferritic stainless steel having excellent high-temperature strength during high-temperature high-speed deformation can be applied to a high-temperature member without relying on excessive addition of Nb, Ni, Cu, Mo, and W. In particular, for fuel cells, it is suitable for application to high-temperature members of fuel cells such as fuel reformers. In addition, heat exchangers or gas turbines and power generation systems, exhaust manifolds, converters, mufflers, turbochargers, EGR The present invention can also be suitably applied to combustion equipment such as a cooler, a front pipe and a center pipe, a stove, and a fan heater.

(1)質量%にて、C:0.03%以下、Si:2.0%以下、Mn:2.0%以下、P:0.050%以下、S:0.01%以下、Cr:11〜25%、Al:1.3〜4.0%、N:0.03%以下を含み、更にTi:0.5%以下、Nb:0.5%以下、V:0.5%以下の1種類または2種以上を含み、さらに下記(a)および(b)を満たす、残部がFeおよび不可避的不純物であることを特徴とする高温強度に優れたAl含有フェライト系ステンレス鋼。
(a)Sn:0.005〜0.20%以下含有
(b)B:0.005%以下、Mg:0.015%以下のいずれか1種、またはB:0.005%以下、Mg:0.015%以下、Ca:0.005%以下から選択される2種以を、0.062%>10×[B]+[Mg]+[Ca]≧0.004%範囲で含有。ここで、[B]、[Mg]、[Ca]は、それぞれの元素の含有量(質量%)を示す。
(2)質量%にて、C:0.03%以下、Si:2.0%以下、Mn:2.0%以下、P:0.050%以下、S:0.01%以下、Cr:11〜25%、Al:1.3〜4.0%、N:0.03%以下を含み、更にTi:0.5%以下、Nb:0.5%以下、V:0.5%以下の1種類または2種以上を含み、さらに下記(a)および(b)を満たす、残部がFeおよび不可避的不純物であることを特徴とする高温強度に優れたAl含有フェライト系ステンレス鋼。
(a)Sn:0.005〜0.180%以下含有
(b)B:0.005%以下、Mg:0.015%以下のいずれか1種、またはB:0.005%以下、Mg:0.015%以下、Ca:0.005%以下から選択される2種以上を、0.062%>10×[B]+[Mg]+[Ca]≧0.004%の範囲で含有。ここで、[B]、[Mg]、[Ca]は、それぞれの元素の含有量(質量%)を示す。
(3)質量%にて、C:0.03%以下、Si:2.0%以下、Mn:2.0%以下、P:0.050%以下、S:0.01%以下、Cr:11〜25%、Al:1.3〜4.0%、N:0.03%以下を含み、更にTi:0.5%以下、Nb:0.5%以下、V:0.5%以下の1種類または2種以上を含み、さらに下記(a)および(b)を満たす、残部がFeおよび不可避的不純物であることを特徴とする高温強度に優れたAl含有フェライト系ステンレス鋼。
(a)Sn:0.005〜0.056%以下含有
(b)B:0.005%以下、Mg:0.015%以下のいずれか1種、またはB:0.005%以下、Mg:0.015%以下、Ca:0.005%以下から選択される2種以上を、0.062%>10×[B]+[Mg]+[Ca]≧0.004%の範囲で含有。ここで、[B]、[Mg]、[Ca]は、それぞれの元素の含有量(質量%)を示す。
)Ni:1.0%以下、Cu:1.0%以下、Mo:1.0%以下、W:1.0%以下、Co:1.0%以下の1種または2種以上を含有することを特徴とする(1)〜(3)のいずれかに記載の高温強度に優れたAl含有フェライト系ステンレス鋼。
)Zr:0.50%以下、Ga:0.10%以下、Sb:0.50%以下、La:0.10%以下、Y:0.10%以下、Hf:0.10%以下、Ta:0.1%以下、REM:0.10%以下の1種または2種以上を含有することを特徴とする(1)のいずれかに記載の高温強度に優れたAl含有フェライト系ステンレス鋼。
)800℃において、ひずみ速度が0.3min-1の場合の引張強さが50MPa以上であることを特徴とする(1)〜()のいずれかに記載の高温強度に優れたAl含有フェライト系ステンレス鋼。
)燃料改質器、熱交換器あるいは燃料電池高温部材に適用されることを特徴とする(1)〜()のいずれかに記載の高温強度に優れたAl含有フェライト系ステンレス鋼。
)ガスタービンおよび発電システムの少なくともいずれかに用いられる高温部材に適用されることを特徴とする(1)〜()のいずれかに記載の高温強度に優れたAl含有フェライト系ステンレス鋼。
)エキゾーストマニホールド、コンバータ、マフラー、ターボチャージャー、EGRクーラー、フロントパイプおよびセンターパイプの少なくともいずれかの自動車用部材に適用されることを特徴とする(1)〜()のいずれかに記載の高温強度に優れたAl含有フェライト系ステンレス鋼。
10)ストーブおよびファンヒータの少なくともいずれかの燃焼機器に用いられる高温部材に適用されることを特徴とする(1)〜()のいずれかに記載の高温強度に優れたAl含有フェライト系ステンレス鋼。
以下、上記(1)〜(10)の鋼に係わる発明をそれぞれ本発明という。
(1) In mass%, C: 0.03% or less, Si: 2.0% or less, Mn: 2.0% or less, P: 0.050% or less, S: 0.01% or less, Cr: 11 to 25%, Al: 1.3 to 4.0%, N: 0.03% or less, Ti: 0.5% or less, Nb: 0.5% or less, V: 0.5% or less one or comprise two or more, further the following (a) and (b) meet, Al-containing ferritic stainless steel balance excellent in high temperature strength, which is a Fe and unavoidable impurities.
(A) Sn: 0.005 to 0.20% or less (b) B: 0.005% or less, Mg: 0.015% or less, or B: 0.005% or less, Mg: 0.015% or less, Ca: over 2 or more kinds selected from 0.005% or less, containing at 0.062%> 10 × [B] + [Mg] + [Ca] ≧ 0.004% range . Here, [B], [Mg], and [Ca] indicate the content (% by mass) of each element.
(2) In mass%, C: 0.03% or less, Si: 2.0% or less, Mn: 2.0% or less, P: 0.050% or less, S: 0.01% or less, Cr: 11 to 25%, Al: 1.3 to 4.0%, N: 0.03% or less, Ti: 0.5% or less, Nb: 0.5% or less, V: 0.5% or less An Al-containing ferritic stainless steel excellent in high-temperature strength, characterized in that it contains one or more of the following, further satisfies the following (a) and (b), and the balance is Fe and inevitable impurities.
(A) Sn: 0.005 to 0.180% or less
(B) B: 0.005% or less, Mg: 0.015% or less, or B: 0.005% or less, Mg: 0.015% or less, Ca: 0.005% or less 2 types or more are contained in the range of 0.062%> 10 × [B] + [Mg] + [Ca] ≧ 0.004%. Here, [B], [Mg], and [Ca] indicate the content (% by mass) of each element.
(3) In mass%, C: 0.03% or less, Si: 2.0% or less, Mn: 2.0% or less, P: 0.050% or less, S: 0.01% or less, Cr: 11 to 25%, Al: 1.3 to 4.0%, N: 0.03% or less, Ti: 0.5% or less, Nb: 0.5% or less, V: 0.5% or less An Al-containing ferritic stainless steel excellent in high-temperature strength, characterized in that it contains one or more of the following, further satisfies the following (a) and (b), and the balance is Fe and inevitable impurities.
(A) Sn: 0.005 to 0.056% or less
(B) B: 0.005% or less, Mg: 0.015% or less, or B: 0.005% or less, Mg: 0.015% or less, Ca: 0.005% or less 2 types or more are contained in the range of 0.062%> 10 × [B] + [Mg] + [Ca] ≧ 0.004%. Here, [B], [Mg], and [Ca] indicate the content (% by mass) of each element.
( 4 ) One or more of Ni: 1.0% or less, Cu: 1.0% or less, Mo: 1.0% or less, W: 1.0% or less, Co: 1.0% or less The Al-containing ferritic stainless steel excellent in high-temperature strength according to any one of (1) to (3) .
( 5 ) Zr: 0.50% or less, Ga: 0.10% or less, Sb: 0.50% or less, La: 0.10% or less, Y: 0.10% or less, Hf: 0.10% or less , Ta: 0.1% or less, REM: 0.10% or less, or one or more of (1) to ( 4 ) , which is excellent in high temperature strength Contains ferritic stainless steel.
( 6 ) The tensile strength at a strain rate of 0.3 min −1 at 800 ° C. is 50 MPa or more, and Al having excellent high-temperature strength according to any one of (1) to ( 5 ) Contains ferritic stainless steel.
( 7 ) The Al-containing ferritic stainless steel having excellent high-temperature strength according to any one of (1) to ( 6 ), which is applied to a fuel reformer, a heat exchanger, or a fuel cell high-temperature member.
( 8 ) The Al-containing ferritic stainless steel excellent in high-temperature strength according to any one of (1) to ( 6 ), which is applied to a high-temperature member used in at least one of a gas turbine and a power generation system. .
( 9 ) The high temperature according to any one of (1) to ( 6 ), characterized in that the high temperature is applied to at least one member for an automobile of an exhaust manifold, a converter, a muffler, a turbocharger, an EGR cooler, a front pipe, and a center pipe. Al-containing ferritic stainless steel with excellent strength.
( 10 ) The Al-containing ferrite system having excellent high-temperature strength according to any one of (1) to ( 6 ), which is applied to a high-temperature member used in a combustion device of at least one of a stove and a fan heater Stainless steel.
Hereinafter, the inventions related to the steels (1) to ( 10 ) are referred to as the present invention.

B:0.005%以下、Mg:0.015%以下のいずれか1種、またはB:0.005%以下、Mg:0.015%以下、Ca:0.005%以下から選択される2種類以上
0.062%>10×[B]+[Mg]+[Ca]≧0.005%>
B、Mg、Caは、本発明の目標とする800℃における引張強さを増加させるために必須の添加元素である。この効果を得るため、B:0.0005%以上、Mg:0.001%以上のいずれか1種、またはB:0.0005%以上、Mg:0.001%以上、Ca:0.0005%以上から選択される2種以上を含有させ、これらの元素の含有量が、10×[B]+[Mg]+[Ca]≧0.0040%を満たすものとする。一方、これらの元素の過度な添加は、製造性と鋼の耐食性を低下させるため、0.062>10×[B]+[Mg]+[Ca]とし、夫々の含有量の上限は、B:0.005%以下、Mg:0.015%以下、Ca:0.005%以下である
<B: 0.005% or less, Mg: 0.015% or less of any one, or B: 0.005% or less, Mg: 0.015% or less, Ca: is selected from 0.005% or less More than 2 types >
<0.062%> 10 × [B] + [Mg] + [Ca] ≧ 0.005%>
B, Mg, and Ca are additive elements essential for increasing the tensile strength at 800 ° C., which is a target of the present invention. To obtain this effect, B: 0.0005% or more, Mg: 0.001% or more, or B: 0.0005% or more, Mg: 0.001% or more, Ca: 0.0005% to contain two or more selected from the above, the content of these elements is, shall meet the 10 × [B] + [Mg ] + [Ca] ≧ 0.0040%. On the other hand, excessive addition of these elements decreases manufacturability and corrosion resistance of steel, so 0.062> 10 × [B] + [Mg] + [Ca], and the upper limit of each content is B : 0.005% or less, Mg: 0.015% or less, Ca: 0.005% or less .

表2に800℃における引張強さを示す。同試験条件におけるSUH21の引張強さ(50MPa)を超えることを本発明の目標とした。
記号A1、A3〜A8、A10〜A11、及びA14は本発明で規定する成分範囲を満たしている。その結果、800℃において目標とするSUH21の引張強さを上回った。
Table 2 shows the tensile strength at 800 ° C. The target of the present invention was to exceed the tensile strength (50 MPa) of SUH21 under the same test conditions.
Symbols A1 , A3 to A8, A10 to A11, and A14 satisfy the component ranges defined in the present invention. As a result, it exceeded the target tensile strength of SUH21 at 800 ° C.

Claims (8)

質量%にて、C:0.03%以下、Si:2.0%以下、Mn:2.0%以下、P:0.050%以下、S:0.01%以下、Cr:11〜25%、Al:1.3〜4.0%、N:0.03%以下を含み、更にTi:0.5%以下、Nb:0.5%以下、V:0.5%以下の1種類または2種以上を含み、さらに下記(1)および/または(2)を満たす、残部がFeおよび不可避的不純物であることを特徴とする高温強度に優れたAl含有フェライト系ステンレス鋼。
(1)Sn:0.20%以下含有
(2)B:0.005%以下、Mg:0.015%以下、Ca:0.005%以下の1種類または2種類以上、10×[B]+[Mg]+[Ca]≧0.004%の範囲で含有。ここで、[B]、[Mg]、[Ca]は、それぞれの元素の含有量(質量%)を示す。
In mass%, C: 0.03% or less, Si: 2.0% or less, Mn: 2.0% or less, P: 0.050% or less, S: 0.01% or less, Cr: 11-25 %, Al: 1.3-4.0%, N: 0.03% or less, Ti: 0.5% or less, Nb: 0.5% or less, V: 0.5% or less Alternatively, an Al-containing ferritic stainless steel excellent in high-temperature strength, including two or more, and further satisfying the following (1) and / or (2), the balance being Fe and inevitable impurities.
(1) Sn: 0.20% or less (2) B: 0.005% or less, Mg: 0.015% or less, Ca: 0.005% or less, one or two or more 10 × [B] + [Mg] + [Ca] ≧ 0.004%. Here, [B], [Mg], and [Ca] indicate the content (% by mass) of each element.
Ni:1.0%以下、Cu:1.0%以下、Mo:1.0%以下、W:1.0%以下、Co:1.0%以下の1種または2種以上を含有することを特徴とする請求項1に記載の高温強度に優れたAl含有フェライト系ステンレス鋼。   Ni: 1.0% or less, Cu: 1.0% or less, Mo: 1.0% or less, W: 1.0% or less, Co: 1.0% or less The Al-containing ferritic stainless steel having excellent high-temperature strength according to claim 1. Zr:0.50%以下、Ga:0.10%以下、Sb:0.50%以下、La:0.10%以下、Y:0.10%以下、Hf:0.10%以下、Ta:0.1%以下、REM:0.10%以下の1種または2種以上を含有することを特徴とする請求項1又は2のいずれかに記載の高温強度に優れたAl含有フェライト系ステンレス鋼。   Zr: 0.50% or less, Ga: 0.10% or less, Sb: 0.50% or less, La: 0.10% or less, Y: 0.10% or less, Hf: 0.10% or less, Ta: The Al-containing ferritic stainless steel excellent in high-temperature strength according to any one of claims 1 and 2, characterized by containing one or more of 0.1% or less and REM: 0.10% or less. . 800℃において、ひずみ速度が0.3/minの場合の引張強さが50MPa以上であることを特徴とする請求項1〜3のいずれか1項に記載の高温強度に優れたAl含有フェライト系ステンレス鋼。   The Al-containing ferrite system having excellent high-temperature strength according to any one of claims 1 to 3, wherein the tensile strength at a strain rate of 0.3 / min at 800 ° C is 50 MPa or more. Stainless steel. 燃料改質器、熱交換器あるいは燃料電池高温部材に適用されることを特徴とする請求項1〜4のいずれか1項に記載の高温強度に優れたAl含有フェライト系ステンレス鋼。   The Al-containing ferritic stainless steel excellent in high-temperature strength according to any one of claims 1 to 4, which is applied to a fuel reformer, a heat exchanger, or a fuel cell high-temperature member. ガスタービンおよび発電システムの少なくともいずれかに用いられる高温部材に適用されることを特徴とする請求項1〜4のいずれか1項に記載の高温強度に優れたAl含有フェライト系ステンレス鋼。   The Al-containing ferritic stainless steel excellent in high-temperature strength according to any one of claims 1 to 4, which is applied to a high-temperature member used in at least one of a gas turbine and a power generation system. エキゾーストマニホールド、コンバータ、マフラー、ターボチャージャー、EGRクーラー、フロントパイプおよびセンターパイプの少なくともいずれかの自動車用部材に適用されることを特徴とする請求項1〜4のいずれか1項に記載の高温強度に優れたAl含有フェライト系ステンレス鋼。   The high-temperature strength according to any one of claims 1 to 4, wherein the high-temperature strength is applied to at least one of an automobile member of an exhaust manifold, a converter, a muffler, a turbocharger, an EGR cooler, a front pipe, and a center pipe. Al-containing ferritic stainless steel. ストーブおよびファンヒータの少なくともいずれかの燃焼機器に用いられる高温部材に適用されることを特徴とする請求項1〜4のいずれか1項に記載の高温強度に優れたAl含有フェライト系ステンレス鋼。   5. The Al-containing ferritic stainless steel excellent in high-temperature strength according to claim 1, wherein the Al-containing ferritic stainless steel is excellent in high-temperature strength, which is applied to a high-temperature member used in at least one of a stove and a fan heater.
JP2016014698A 2016-01-28 2016-01-28 Al-containing ferritic stainless steel with excellent high-temperature strength Active JP6300841B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016014698A JP6300841B2 (en) 2016-01-28 2016-01-28 Al-containing ferritic stainless steel with excellent high-temperature strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016014698A JP6300841B2 (en) 2016-01-28 2016-01-28 Al-containing ferritic stainless steel with excellent high-temperature strength

Publications (2)

Publication Number Publication Date
JP2017133075A true JP2017133075A (en) 2017-08-03
JP6300841B2 JP6300841B2 (en) 2018-03-28

Family

ID=59502528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016014698A Active JP6300841B2 (en) 2016-01-28 2016-01-28 Al-containing ferritic stainless steel with excellent high-temperature strength

Country Status (1)

Country Link
JP (1) JP6300841B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019173073A (en) * 2018-03-27 2019-10-10 日鉄ステンレス株式会社 Ferritic stainless steel and manufacturing method therefor, and fuel battery member
JP2019173076A (en) * 2018-03-27 2019-10-10 日鉄ステンレス株式会社 Ferritic stainless steel welding joint, and fuel battery member
JP2020066792A (en) * 2018-10-26 2020-04-30 日鉄ステンレス株式会社 Ferritic stainless steel and method for producing the same, and fuel cell member
JP2020066794A (en) * 2018-10-26 2020-04-30 日鉄ステンレス株式会社 Ferritic stainless steel and method for producing the same, and fuel cell member
CN114585754A (en) * 2019-09-17 2022-06-03 株式会社Posco Low-CR ferritic stainless steel with improved pipe expansion workability and method for producing same
JP7475205B2 (en) 2020-06-10 2024-04-26 日鉄ステンレス株式会社 Ferritic stainless steel sheet, method for producing the same, and automobile exhaust system part

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04173939A (en) * 1990-11-03 1992-06-22 Sumitomo Metal Ind Ltd Ferritic stainless steel excellent in high temperature strength and toughness
JP2001316773A (en) * 2000-05-02 2001-11-16 Nippon Steel Corp Heat resistant ferritic stainless steel for catalyst carrier excellent in weldability and workability
JP2009167443A (en) * 2008-01-11 2009-07-30 Nisshin Steel Co Ltd Ferritic stainless steel and manufacturing method therefor
JP2010248620A (en) * 2009-03-24 2010-11-04 Nippon Steel & Sumikin Stainless Steel Corp Ferritic stainless steel plate excellent in heat resistance and workability
JP2011179088A (en) * 2010-03-02 2011-09-15 Nisshin Steel Co Ltd Ferritic stainless steel having excellent oxidation resistance, secondary working brittleness resistance and weldability
JP2012012674A (en) * 2010-07-01 2012-01-19 Nisshin Steel Co Ltd Ferritic stainless steel having excellent oxidation resistance and secondary workability
US20150345361A1 (en) * 2012-12-24 2015-12-03 Posco Ferritic Stainless Steel for Automotive Exhaust System, Which Have Excellent Corrosion Resistance Against Condensate, Moldability, and High-Temperature Oxidation Resistance, and Method for Manufacturing Same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04173939A (en) * 1990-11-03 1992-06-22 Sumitomo Metal Ind Ltd Ferritic stainless steel excellent in high temperature strength and toughness
JP2001316773A (en) * 2000-05-02 2001-11-16 Nippon Steel Corp Heat resistant ferritic stainless steel for catalyst carrier excellent in weldability and workability
JP2009167443A (en) * 2008-01-11 2009-07-30 Nisshin Steel Co Ltd Ferritic stainless steel and manufacturing method therefor
JP2010248620A (en) * 2009-03-24 2010-11-04 Nippon Steel & Sumikin Stainless Steel Corp Ferritic stainless steel plate excellent in heat resistance and workability
JP2011179088A (en) * 2010-03-02 2011-09-15 Nisshin Steel Co Ltd Ferritic stainless steel having excellent oxidation resistance, secondary working brittleness resistance and weldability
JP2012012674A (en) * 2010-07-01 2012-01-19 Nisshin Steel Co Ltd Ferritic stainless steel having excellent oxidation resistance and secondary workability
US20150345361A1 (en) * 2012-12-24 2015-12-03 Posco Ferritic Stainless Steel for Automotive Exhaust System, Which Have Excellent Corrosion Resistance Against Condensate, Moldability, and High-Temperature Oxidation Resistance, and Method for Manufacturing Same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Z.H.JIANG、外3名: "High temperature ductility and corrosion resistance property of novel tin-bearing economic 17Cr-xSn", IRONMAKING & STEELMAKING, vol. 42, no. 7, JPN6017024279, 4 November 2015 (2015-11-04), GB, pages 504 - 511, ISSN: 0003589934 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019173073A (en) * 2018-03-27 2019-10-10 日鉄ステンレス株式会社 Ferritic stainless steel and manufacturing method therefor, and fuel battery member
JP2019173076A (en) * 2018-03-27 2019-10-10 日鉄ステンレス株式会社 Ferritic stainless steel welding joint, and fuel battery member
JP7076258B2 (en) 2018-03-27 2022-05-27 日鉄ステンレス株式会社 Ferritic stainless steel sheets and their manufacturing methods, as well as fuel cell components
JP2020066792A (en) * 2018-10-26 2020-04-30 日鉄ステンレス株式会社 Ferritic stainless steel and method for producing the same, and fuel cell member
JP2020066794A (en) * 2018-10-26 2020-04-30 日鉄ステンレス株式会社 Ferritic stainless steel and method for producing the same, and fuel cell member
JP7224141B2 (en) 2018-10-26 2023-02-17 日鉄ステンレス株式会社 Ferritic stainless steel sheet, manufacturing method thereof, and fuel cell member
JP7233195B2 (en) 2018-10-26 2023-03-06 日鉄ステンレス株式会社 Ferritic stainless steel, manufacturing method thereof, and fuel cell member
CN114585754A (en) * 2019-09-17 2022-06-03 株式会社Posco Low-CR ferritic stainless steel with improved pipe expansion workability and method for producing same
JP7475205B2 (en) 2020-06-10 2024-04-26 日鉄ステンレス株式会社 Ferritic stainless steel sheet, method for producing the same, and automobile exhaust system part

Also Published As

Publication number Publication date
JP6300841B2 (en) 2018-03-28

Similar Documents

Publication Publication Date Title
JP6300841B2 (en) Al-containing ferritic stainless steel with excellent high-temperature strength
RU2567144C2 (en) Heat resisting iron-chrome-aluminium alloy with low speed of chrome evaporation and increased heat resistance
WO2017073093A1 (en) Ferritic stainless steel for fuel cell with excellent anti-creep strength and manufacturing method therefor
JP6113359B1 (en) Al-containing ferritic stainless steel with excellent creep characteristics and fuel cell components
JP2008240143A (en) Ferritic stainless steel sheet having excellent heat resistance
JP2020007644A (en) Ferritic stainless steel, steel sheet thereof, and manufacturing method therefor
JP4123934B2 (en) Fuel reformer
JP6765287B2 (en) Ferritic stainless steel, its manufacturing method, and fuel cell components
JP6423138B2 (en) Austenitic stainless steel for fuel reformer with excellent adhesion of oxide film and method for producing the same
JP7224141B2 (en) Ferritic stainless steel sheet, manufacturing method thereof, and fuel cell member
JPWO2015064739A1 (en) Ferritic stainless steel for fuel reformer and manufacturing method thereof
JP2008156692A (en) Ferritic stainless steel for high-temperature device of fuel cell
JP6006893B2 (en) Ferritic stainless steel for fuel cells
JP2003286005A (en) Fuel reformer
JP6767831B2 (en) Ferritic stainless steel and welded structures for welded structures with excellent high temperature fatigue characteristics
JP3942876B2 (en) Ferritic stainless steel for hydrocarbon fuel reformer
JP6498263B2 (en) Austenitic stainless steel for fuel reformer with excellent adhesion of oxide film and method for producing the same
JP6053994B1 (en) Ferritic stainless steel for fuel cells with excellent creep resistance and method for producing the same
JP6971184B2 (en) Ferritic stainless steel, its manufacturing method, and fuel cell components
JP6655962B2 (en) Al-containing ferritic stainless steel welded joint with excellent 475 ° C brittle resistance
JP6429957B1 (en) Austenitic stainless steel, manufacturing method thereof, and fuel reformer and combustor member
JP3918443B2 (en) Austenitic alloy for reformer, heat-resistant steel, and reformer using the same
JP6937716B2 (en) Ferritic stainless steel sheets and their manufacturing methods, as well as fuel cell components
JP4757686B2 (en) Ferritic stainless steel for hot water storage tanks with excellent workability, weldability and crevice corrosion resistance
JP6971185B2 (en) Ferritic stainless steel welded joints and fuel cell components

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180227

R150 Certificate of patent or registration of utility model

Ref document number: 6300841

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250