JP6971184B2 - Ferritic stainless steel, its manufacturing method, and fuel cell components - Google Patents

Ferritic stainless steel, its manufacturing method, and fuel cell components Download PDF

Info

Publication number
JP6971184B2
JP6971184B2 JP2018060883A JP2018060883A JP6971184B2 JP 6971184 B2 JP6971184 B2 JP 6971184B2 JP 2018060883 A JP2018060883 A JP 2018060883A JP 2018060883 A JP2018060883 A JP 2018060883A JP 6971184 B2 JP6971184 B2 JP 6971184B2
Authority
JP
Japan
Prior art keywords
less
stainless steel
ferritic stainless
ferrite
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018060883A
Other languages
Japanese (ja)
Other versions
JP2019173072A (en
Inventor
正治 秦野
三月 菅生
工 西本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Stainless Steel Corp
Original Assignee
Nippon Steel Stainless Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Stainless Steel Corp filed Critical Nippon Steel Stainless Steel Corp
Priority to JP2018060883A priority Critical patent/JP6971184B2/en
Priority to TW108110280A priority patent/TWI801538B/en
Priority to EP23165488.0A priority patent/EP4223888A3/en
Priority to US17/040,870 priority patent/US11667986B2/en
Priority to EP19775851.9A priority patent/EP3778959A4/en
Priority to KR1020207028261A priority patent/KR102444640B1/en
Priority to EP22154962.9A priority patent/EP4036255A1/en
Priority to PCT/JP2019/012843 priority patent/WO2019189174A1/en
Priority to CN201980020968.1A priority patent/CN111902557B/en
Publication of JP2019173072A publication Critical patent/JP2019173072A/en
Application granted granted Critical
Publication of JP6971184B2 publication Critical patent/JP6971184B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Description

本発明は、フェライト系ステンレス鋼およびその製造方法、ならびに燃料電池用部材に関する。 The present invention relates to ferritic stainless steel, a method for producing the same, and a member for a fuel cell.

最近、石油を代表とする化石燃料の枯渇化、CO2排出による地球温暖化現象等の問題から、従来の発電システムに替わる新しいシステムの普及が加速している。その1つとして、分散電源,自動車の動力源としても実用的価値が高い「燃料電池」が注目されている。燃料電池にはいくつかの種類があるが、その中でも固体高分子型燃料電池(PEFC)や固体酸化物型燃料電池(SOFC)はエネルギー効率が高く、将来の普及拡大が有望視されている。 Recently, due to problems such as the depletion of fossil fuels such as petroleum and the phenomenon of global warming due to CO 2 emissions, the spread of new systems that replace conventional power generation systems is accelerating. As one of them, "fuel cells", which have high practical value as distributed power sources and power sources for automobiles, are attracting attention. There are several types of fuel cells, but among them, polymer electrolyte fuel cells (PEFC) and solid oxide fuel cells (SOFC) are highly energy efficient, and their widespread use is expected in the future.

燃料電池は、水の電気分解と逆の反応過程を経て電力を発生する装置であり、燃料となる水素(燃料水素)を必要とする。燃料水素は、都市ガス(LNG)、メタン、天然ガス、プロパン、灯油、ガソリン等の炭化水素系燃料を触媒の存在下で改質反応させることにより製造される。中でも都市ガスを原燃料とする燃料電池は、都市ガス配管が整備された地区において水素を製造できる利点がある。 A fuel cell is a device that generates electric power through a reaction process opposite to the electrolysis of water, and requires hydrogen (fuel hydrogen) as a fuel. Fuel hydrogen is produced by reforming a hydrocarbon fuel such as city gas (LNG), methane, natural gas, propane, kerosene, and gasoline in the presence of a catalyst. Among them, a fuel cell using city gas as a raw material has an advantage that hydrogen can be produced in an area where city gas piping is installed.

燃料改質器は、水素の改質反応に必要な熱量を確保するため、通常、200〜900℃の高温で運転される。また、燃料改質器以外でも、改質器を加熱する燃焼器や、熱交換器、電池本体部等も運転温度が非常に高温となる。
更に、このような高温運転下の燃料電池においては、多量の水蒸気、二酸化炭素、一酸化炭素に加え、多量の水素や、炭化水素系燃料由来の硫化水素を微量含んだ雰囲気(以下、浸炭性/還元性/硫化性環境、という。)の下に曝されることとなる。このような雰囲気中に、例えば鋼材料が曝されると、材料表面の浸炭、硫化による腐食が進行する状況になり、動作環境としては過酷な状況となる。
The fuel reformer is usually operated at a high temperature of 200 to 900 ° C. in order to secure the amount of heat required for the hydrogen reforming reaction. In addition to the fuel reformer, the operating temperature of the combustor that heats the reformer, the heat exchanger, the battery body, and the like becomes extremely high.
Further, in such a fuel cell under high temperature operation, in addition to a large amount of water vapor, carbon dioxide, and carbon monoxide, an atmosphere containing a large amount of hydrogen and a trace amount of hydrogen sulfide derived from a hydrocarbon fuel (hereinafter, carburizing property). It will be exposed under (referred to as / reducing / sulfurizing environment). When, for example, a steel material is exposed to such an atmosphere, the surface of the material is carburized and corroded by sulfurization, which makes the operating environment harsh.

これまで、このような過酷な環境下において十分な耐久性を有する燃料電池の実用材料として、SUS310S(25Cr−20Ni)に代表されるオーステナイト系ステンレス鋼が使用されてきた。しかし、将来、燃料電池システムの普及拡大に向けて、コスト低減は必要不可欠であり、使用材料の最適化による合金コストの低減は重要な課題である。さらに、燃料電池システムでは、比較的高いCr量を含有するステンレス鋼を適用した場合、運転温度が非常に高いことから、Crの蒸発による電極の被毒を防止する課題もある。 So far, austenitic stainless steel typified by SUS310S (25Cr-20Ni) has been used as a practical material for a fuel cell having sufficient durability in such a harsh environment. However, cost reduction is indispensable for the widespread use of fuel cell systems in the future, and reduction of alloy costs by optimizing the materials used is an important issue. Further, in the fuel cell system, when stainless steel containing a relatively high amount of Cr is applied, the operating temperature is very high, so that there is also a problem of preventing electrode poisoning due to evaporation of Cr.

上述した背景から、燃料電池を構成する鋼材として、過酷な改質ガス環境下においても良好な耐久性を発揮させるべく、Al系酸化物層(Al系酸化皮膜)の高い耐酸化性を利用したAl含有フェライト系ステンレス鋼が種々検討されている。 From the above background, the high oxidation resistance of the Al-based oxide layer (Al-based oxide film) was utilized as the steel material constituting the fuel cell in order to exhibit good durability even in a harsh reformed gas environment. Various Al-containing ferritic stainless steels have been studied.

特許文献1には、Cr:13〜20%、C:0.02%未満、N:0.02%以下、Si:0.15超〜0.7%、Mn:0.3%以下、Al:1.5〜6%、Ti:0.03〜0.5%、Nb:0.6%以下を含み、固溶Ti量と固溶Nb量を調整することにより耐酸化性とクリープ破断寿命に良好な燃料電池用Al含有フェライト系ステンレス鋼が開示されている。これらステンレス鋼は、1050℃、大気中の加速酸化試験により良好な耐酸化性が得られることを示している。 Patent Document 1 describes Cr: 13 to 20%, C: less than 0.02%, N: 0.02% or less, Si: more than 0.15 to 0.7%, Mn: 0.3% or less, Al. : 1.5 to 6%, Ti: 0.03 to 0.5%, Nb: 0.6% or less, and by adjusting the amount of solid-dissolved Ti and the amount of solid-dissolved Nb, oxidation resistance and creep break life Discloses a good Al-containing ferritic stainless steel for fuel cells. It has been shown that these stainless steels can obtain good oxidation resistance by an accelerated oxidation test in the atmosphere at 1050 ° C.

特許文献2には、Cr:11〜25%、C:0.03%以下、Si:2%以下、Mn:2%以下、Al:0.5〜4.0%、P:0.05%以下、S:0.01%以下、N:0.03%以下、Ti:1%以下を含み、水素ガスを50体積%以上含み、酸化皮膜中および酸化皮膜直下の鋼表面へTiやAlを濃縮させるとともに、Mg、Ga、Sn、Sbを微量添加することにより、改質ガス環境下の耐酸化性を向上させた燃料電池用フェライト系ステンレス鋼が開示されている。 Patent Document 2 describes Cr: 11 to 25%, C: 0.03% or less, Si: 2% or less, Mn: 2% or less, Al: 0.5 to 4.0%, P: 0.05%. Hereinafter, S: 0.01% or less, N: 0.03% or less, Ti: 1% or less are contained, hydrogen gas is contained in an amount of 50% by volume or more, and Ti and Al are added to the steel surface in the oxide film and directly under the oxide film. A ferritic stainless steel for a fuel cell having improved oxidation resistance in a reformed gas environment by concentrating and adding a small amount of Mg, Ga, Sn, and Sb is disclosed.

特許文献3には、Cr:11.0〜25.0%、C:0.030%以下、Si:2.00%以下、Mn:2.00%以下、Al:0.90〜4.00%、P:0.050%以下、S:0.0100%以下、N:0.030%以下、Ti:0.500%以下を含み、B、Mg、Caの微量添加ならびにSnとの複合添加により、改質ガス環境下の耐酸化性および耐クリープ強さを向上させた燃料電池用フェライト系ステンレス鋼が開示されている。 Patent Document 3 describes Cr: 11.0 to 25.0%, C: 0.030% or less, Si: 2.00% or less, Mn: 2.00% or less, Al: 0.90 to 4.00. %, P: 0.050% or less, S: 0.0100% or less, N: 0.030% or less, Ti: 0.500% or less, with a small amount of B, Mg, Ca added and a combined addition with Sn. Discloses a ferritic stainless steel for fuel cells with improved oxidation resistance and creep resistance in a reformed gas environment.

特許文献4には、Cr:11〜25%、C:0.03%以下、Si:2%以下、Mn:2%以下、Al:0.5〜4.0%、P:0.05%以下、S:0.01%以下、N:0.03%以下、Ti:0.5%以下を含み、更にGa:0.1%以下、Mg:0.01%以下、Zn:0.05%以下の1種または2種以上を含み、Mg、Ga、Zn、更にはSn、Sbの微量添加によってTi及び/又はAlを濃縮させた表面皮膜を形成することで、耐酸化性を向上させたフェライト系ステンレス鋼が開示されている。 Patent Document 4 describes Cr: 11 to 25%, C: 0.03% or less, Si: 2% or less, Mn: 2% or less, Al: 0.5 to 4.0%, P: 0.05%. Hereinafter, S: 0.01% or less, N: 0.03% or less, Ti: 0.5% or less, Ga: 0.1% or less, Mg: 0.01% or less, Zn: 0.05. % Or less, and by forming a surface film in which Ti and / or Al is concentrated by adding a small amount of Mg, Ga, Zn, and Sn, Sb, the oxidation resistance is improved. Ferritic stainless steel is disclosed.

特開2010−222638号公報Japanese Unexamined Patent Publication No. 2010-22638 特許第6006893号公報Japanese Patent No. 6006893 特許第6053994号公報Japanese Patent No. 6053994 特開2016−211076号公報Japanese Unexamined Patent Publication No. 2016-21176

前記した都市ガス等を原燃料とした燃料電池の改質ガスは、水蒸気、二酸化炭素、一酸化炭素に加えて、多量の水素、ならびに不純物もしくは付臭剤として添加された硫化成分を含む場合がある。しかし従来では、フェライト系ステンレス鋼の耐酸化性について、水蒸気と二酸化炭素を主成分とする雰囲気、あるいは水蒸気と酸素を主成分とする雰囲気、または大気中といった環境下でしか評価・検討されていない。すなわち、二酸化炭素、一酸化炭素、多量の水素、ならびに硫化成分を含む過酷な環境(浸炭性/還元性/硫化性環境)の下でのフェライト系ステンレス鋼の酸化特性については不明である。
更に、SOFCシステムやPEFCシステムの場合、燃料電池の運転温度が高温となるため、前記の酸化特性に加え、高温強度のさらなる向上も求められる。
The reformed gas of a fuel cell using the city gas or the like as a raw material may contain a large amount of hydrogen and a sulfide component added as an impurity or an odorant in addition to water vapor, carbon dioxide and carbon monoxide. be. However, conventionally, the oxidation resistance of ferritic stainless steel has been evaluated and examined only in an atmosphere containing water vapor and carbon dioxide as main components, an atmosphere containing water vapor and oxygen as main components, or an environment such as the atmosphere. .. That is, the oxidation characteristics of ferritic stainless steel under a harsh environment (carburizing / reducing / sulphurizing environment) containing carbon dioxide, carbon monoxide, a large amount of hydrogen, and a sulfide component are unknown.
Further, in the case of SOFC system or PEFC system, since the operating temperature of the fuel cell becomes high, further improvement of high temperature strength is required in addition to the above-mentioned oxidation characteristics.

特許文献1〜4のフェライト系ステンレス鋼は、酸化性環境下の耐久性について検討されているものの、多量の水素、硫化水素を含む浸炭性/還元性/硫化性環境といったさらに厳しい環境下における耐久性については何ら言及されていない。 Although the ferritic stainless steels of Patent Documents 1 to 4 have been studied for durability in an oxidizing environment, they are durable in a more severe environment such as carburizing / reducing / sulfurizing environment containing a large amount of hydrogen and hydrogen sulfide. No mention is made of sex.

本発明は、上述した課題を解消すべく案出されたものであり、二酸化炭素、一酸化炭素、多量の水素、ならびに硫化成分を含む環境(浸炭性/還元性/硫化性環境)下であっても、高い耐酸化性と優れた高温強度を兼備したフェライト系ステンレス鋼およびその製造方法を提供するものである。 The present invention has been devised to solve the above-mentioned problems, and is in an environment containing carbon dioxide, carbon monoxide, a large amount of hydrogen, and a sulfide component (carburizing / reducing / sulfide environment). However, it provides a ferrite-based stainless steel having both high oxidation resistance and excellent high-temperature strength, and a method for producing the same.

本発明の要旨は、以下のとおりである。
[1]質量%にて、
Cr:12.0〜16.0%、
C:0.020%以下、
Si:2.50%以下、
Mn:1.00%以下、
P:0.050%以下、
S:0.0030%以下、
Al:0.90%以上、2.50%以下、
N:0.030%以下、
Nb:0.001〜1.00%、
Ni:0〜1.0%、
Cu:0〜1.0%、
Mo:0〜1.0%、
Sb:0〜0.5%、
W:0〜1.0%、
Co:0〜0.5%、
V:0〜0.5%、
Ti:0〜0.5%、
Zr:0〜0.5%、
La:0〜0.1%、
Y:0〜0.1%、
Hf:0〜0.1%、
REM:0〜0.1%
を含み、さらに、
B:0.0200%以下、
Sn:0.20%以下、
Ga:0.0200%以下、
Mg:0.0200%以下、
Ca:0.0100%以下
の1種または2種以上を含み、かつ下記式(1)を満たし、残部がFeおよび不純物からなることを特徴とするフェライト系ステンレス鋼。
10(B+Ga)+Sn+Mg+Ca>0.020 ・・・(1)
なお、式(1)中の各元素記号は、鋼中の各元素の含有量(質量%)を示す。
[2]質量%にて、前記B:0.0002%以上であることを特徴とする上記[1]に記載のフェライト系ステンレス鋼。
[3]質量%にて、結晶粒界のNb濃度が3.0〜10%の範囲であることを特徴とする上記[1]又は[2]に記載のフェライト系ステンレス鋼。
[4]質量%にて、前記Sn:0.005%以上であり、結晶粒界のSn濃度が1.0〜5.0%であることを特徴とする上記[1]〜[3]の何れか一項に記載のフェライト系ステンレス鋼。
[5]質量%にて、前記Si:0.5%以上、前記Al:1%以上、前記Nb:0.15%以上であることを特徴とする上記[1]〜[4]の何れか一項に記載のフェライト系ステンレス鋼。
[6]質量%にて、更に、Ni:0.10〜1.0%、Cu:0.10〜1.0%、Mo:0.10〜1.0%、Sb:0.01〜0.5%、W:0.10〜1.0%、Co:0.10〜0.5%、V:0.10〜0.5%、Ti:0.01〜0.5%、Zr:0.01〜0.5%、La:0.001〜0.1%以下、Y:0.001〜0.1%、Hf:0.001〜0.1%、REM:0.001〜0.1%の1種または2種以上含有していることを特徴とする上記[1]〜[5]の何れか一項に記載のフェライト系ステンレス鋼。
[7]燃料改質器、熱交換器あるいは燃料電池部材に適用されることを特徴とする上記[1]〜[6]の何れか一項に記載のフェライト系ステンレス鋼。
[8]燃焼器、あるいはバーナーの部材に適用されることを特徴とする上記[1]〜[7]の何れか一項に記載のフェライト系ステンレス鋼。
The gist of the present invention is as follows.
[1] By mass%
Cr: 12.0 to 16.0%,
C: 0.020% or less,
Si: 2.50% or less,
Mn: 1.00% or less,
P: 0.050% or less,
S: 0.0030% or less,
Al: 0.90% or more, 2.50% or less,
N: 0.030% or less,
Nb: 0.001-1.00%,
Ni: 0-1.0%,
Cu: 0-1.0%,
Mo: 0-1.0%,
Sb: 0-0.5%,
W: 0-1.0%,
Co: 0-0.5%,
V: 0-0.5%,
Ti: 0-0.5%,
Zr: 0-0.5%,
La: 0-0.1%,
Y: 0-0.1%,
Hf: 0-0.1%,
REM: 0-0.1%
Including,
B: 0.0200% or less,
Sn: 0.20% or less,
Ga: 0.0200% or less,
Mg: 0.0200% or less,
Ca: A ferritic stainless steel containing one or more of 0.0100% or less, satisfying the following formula (1), and having the balance composed of Fe and impurities.
10 (B + Ga) + Sn + Mg + Ca> 0.020 ... (1)
The element symbol in the formula (1) indicates the content (mass%) of each element in the steel.
[2] The ferrite-based stainless steel according to the above [1], wherein the B: 0.0002% or more in terms of mass%.
[3] The ferrite-based stainless steel according to the above [1] or [2], wherein the Nb concentration at the grain boundaries is in the range of 3.0 to 10% in terms of mass%.
[4] The above-mentioned [1] to [3], wherein the Sn is 0.005% or more in mass%, and the Sn concentration at the grain boundaries is 1.0 to 5.0%. The ferritic stainless steel according to any one of the items.
[5] Any of the above [1] to [4], wherein the Si: 0.5% or more, the Al: 1% or more, and the Nb: 0.15% or more in mass%. The ferritic stainless steel described in item 1.
[6] In terms of mass%, Ni: 0.10 to 1.0%, Cu: 0.10 to 1.0%, Mo: 0.10 to 1.0%, Sb: 0.01 to 0. .5%, W: 0.10 to 1.0%, Co: 0.10 to 0.5%, V: 0.10 to 0.5%, Ti: 0.01 to 0.5%, Zr: 0.01 to 0.5%, La: 0.001 to 0.1% or less, Y: 0.001 to 0.1%, Hf: 0.001 to 0.1%, REM: 0.001 to 0 The ferritic stainless steel according to any one of the above [1] to [5], which contains 1% or 2 or more of the above.
[7] The ferrite-based stainless steel according to any one of the above [1] to [6], which is applied to a fuel reformer, a heat exchanger or a fuel cell member.
[8] The ferrite-based stainless steel according to any one of the above [1] to [7], which is applied to a member of a combustor or a burner.

[9]上記[1]、[2]、[5]、または[6]のいずれか一項に記載の組成を有するステンレス鋼材を熱間加工した後、熱処理を省略もしくは700℃超で熱処理し、次いで冷間加工を行い、700℃超の仕上げ焼鈍を行うことを特徴とする上記[1]〜[6]のいずれか一項に記載のフェライト系ステンレス鋼の製造方法。
[10]前記仕上げ焼鈍の後に、600〜700℃の温度範囲内で1分超、3時間以下保持する熱処理を施すことを特徴とする上記[9]に記載のフェライト系ステンレス鋼の製造方法。
[11]前記仕上げ焼鈍において、700℃超に加熱し冷却する際、600〜700℃の温度域での保持時間を1分超とすることを特徴とする上記[9]に記載のフェライト系ステンレス鋼の製造方法。
[9] After hot-working a stainless steel material having the composition according to any one of the above [1], [2], [5], or [6], heat treatment is omitted or heat treatment is performed at over 700 ° C. The method for producing a ferritic stainless steel according to any one of the above [1] to [6], wherein the cold working is then performed and the finish annealing is performed at a temperature of more than 700 ° C.
[10] The method for producing a ferritic stainless steel according to the above [9], wherein after the finish annealing, a heat treatment is performed in a temperature range of 600 to 700 ° C. for more than 1 minute and for 3 hours or less.
[11] The ferrite-based stainless steel according to the above [9], which has a holding time of more than 1 minute in a temperature range of 600 to 700 ° C. when heated and cooled to more than 700 ° C. in the finish annealing. Steel manufacturing method.

[12]上記[1]〜[6]のいずれか一項に記載のフェライト系ステンレス鋼を用いた燃料電池用部材。 [12] A fuel cell member using the ferrite-based stainless steel according to any one of the above [1] to [6].

本発明によれば、二酸化炭素、一酸化炭素、多量の水素、ならびに硫化成分を含む環境(浸炭性/還元性/硫化性環境)下であっても、高い耐酸化性と優れた高温強度を兼備したフェライト系ステンレス鋼およびその製造方法、ならびに燃料電池用部材を提供することができる。 According to the present invention, high oxidation resistance and excellent high temperature strength are provided even in an environment containing carbon dioxide, carbon monoxide, a large amount of hydrogen, and a sulfide component (carburizing / reducing / sulphurizing environment). It is possible to provide a ferritic stainless steel having a combination, a method for manufacturing the same, and a member for a fuel cell.

本発明者らは、前記した課題を解決するために、高温強度、耐酸化性を兼備するAl含有フェライト系ステンレス鋼について鋭意実験と検討を重ね、本発明を完成させた。なお、本実施形態でいう「高温強度」とは、750〜800℃付近の高温域においても優れた0.2%耐力を発揮できる特性であり、「耐酸化性」とは二酸化炭素、一酸化炭素、多量の水素、ならびに硫化成分を含む改質ガス環境(以下、浸炭性/還元性/硫化性環境、ともいう)下における酸化特性を意味する。
以下に本発明で得られた知見について説明する。
In order to solve the above-mentioned problems, the present inventors have completed the present invention by repeating diligent experiments and studies on an Al-containing ferritic stainless steel having both high temperature strength and oxidation resistance. The "high temperature strength" in the present embodiment is a characteristic that can exhibit an excellent 0.2% proof stress even in a high temperature range of around 750 to 800 ° C., and the "oxidation resistance" is carbon dioxide and monoxide. It means the oxidation characteristics under a modified gas environment containing carbon, a large amount of hydrogen, and a sulfurizing component (hereinafter, also referred to as carburizing / reducing / sulfurizing environment).
The findings obtained in the present invention will be described below.

(a)通常、750〜800℃付近の高温域で運転中の構造体で課題となる変形を抑止するには、材料であるフェライト系ステンレス鋼の高温強度、特に750℃付近における0.2%耐力を高め、かつ800℃付近における0.2%耐力の低下を抑制することが有効である。 (A) In order to suppress deformation, which is usually a problem in structures operating in the high temperature range of around 750 to 800 ° C, the high temperature strength of the material ferrite stainless steel, especially 0.2% at around 750 ° C. It is effective to increase the proof stress and suppress the decrease of 0.2% proof stress at around 800 ° C.

(b)上述した高温域での0.2%耐力の向上および低下の抑制は、Alの過度な添加や、固溶・析出強化に寄与するMo、Cu等の添加によらず、B、Nb、Sn、Mg、Ca、Gaの微量添加およびその添加量の調整により著しく向上することを見出した。すなわち、フェライト系ステンレス鋼において、750℃付近における0.2%耐力を高め、かつ800℃付近における0.2%耐力の低下を抑制するという特性は、これら微量元素の添加により達成できるという新たな知見が得られた。このような高温強度の向上作用については未だ不明な点も多いが、実験事実に基づいて以下に述べるような作用機構を推察している。 (B) The improvement and suppression of the decrease in 0.2% proof stress in the high temperature range described above are not due to the excessive addition of Al or the addition of Mo, Cu, etc. that contribute to solid solution / precipitation strengthening, but B and Nb. , Sn, Mg, Ca, Ga were found to be significantly improved by adding a small amount and adjusting the amount of the addition. That is, in ferrite stainless steel, the property of increasing the 0.2% proof stress at around 750 ° C and suppressing the decrease in 0.2% proof stress at around 800 ° C can be achieved by adding these trace elements. Findings were obtained. There are still many unclear points about the action of improving the high temperature strength, but the mechanism of action described below is inferred based on the experimental facts.

(c)Bの微量添加は、750〜800℃での耐力や引張強度の上昇に対して少なからず寄与し、特に0.2%耐力を大幅に向上させる作用効果を持つ。Bの微量添加は、Bが粒界偏析することによって、結晶粒界を起点に発生するキャビティ(ナノサイズの隙間)の生成を抑制して粒界すべりを遅延させるとともに、結晶粒内において転位密度の上昇に伴う内部応力を高める作用効果がある。またこれらBの作用効果は、Nb添加鋼で顕著となる新規な知見を見出した。 (C) The addition of a small amount of B contributes not a little to the increase in proof stress and tensile strength at 750 to 800 ° C., and in particular has the effect of significantly improving the proof stress by 0.2%. The addition of a small amount of B suppresses the formation of cavities (nano-sized gaps) generated from the grain boundaries due to the segregation of B at the grain boundaries, delays the grain boundary slip, and causes the dislocation density in the crystal grains. It has the effect of increasing the internal stress associated with the rise of. In addition, we have found new findings that the action and effect of B are remarkable in Nb-added steel.

(d)Nbの添加は、固溶強化により750℃までの温度域における強度上昇に有効であることはよく知られている。Nbの析出は750〜800℃においてラーベス相(FeNb)と呼ばれる金属間化合物などを形成して開始するが、NbとBは結晶粒界において共偏析することで前記(c)のBの作用効果を顕在化させることができる。 (D) It is well known that the addition of Nb is effective in increasing the strength in the temperature range up to 750 ° C. by strengthening the solid solution. Precipitation of Nb starts at 750 to 800 ° C. by forming an intermetallic compound called a Laves phase (Fe 2 Nb), but Nb and B are co-segregated at the grain boundaries to form B in (c) above. The action and effect can be manifested.

(e)また、上述した、Nb添加鋼で顕著となるBの作用効果は、Mg、Ca、Gaの複合添加により重畳する。 (E) Further, the above-mentioned action and effect of B, which is remarkable in the Nb-added steel, is superimposed by the combined addition of Mg, Ca, and Ga.

(f)更に、前記(c)で述べた、粒内の転位密度の上昇に伴う内部応力を高める作用効果をより発揮させるためには、Snとの複合添加が効果的である。Snは粒界偏析元素ではあるものの、B及びNbとの複合添加において、結晶粒内の固溶強化元素としての作用も大きくなり、内部応力の上昇に伴う高温強度を高めることに効果的である。 (F) Further, in order to further exert the effect of increasing the internal stress accompanying the increase in the dislocation density in the grain described in the above (c), the combined addition with Sn is effective. Although Sn is a grain boundary segregation element, when it is added in combination with B and Nb, its action as a solid solution strengthening element in the crystal grains is increased, and it is effective in increasing the high temperature strength with the increase in internal stress. ..

(g)また、前述した水素および硫化成分を含む改質ガス環境下の耐酸化性を高めるにはSi、Al、Nb、Mnの含有量を所定の範囲内に調整することで、高温かつ改質ガス環境下におけるAl系酸化皮膜の形成の促進と、当該皮膜の保護性を高めることが効果的である。さらに、フェライト系ステンレス鋼におけるB、Nb、Sn、Mg、Ca、Gaの添加は、改質ガス環境下の耐酸化性を損なわせるおそれはなく、むしろMg、Snの微量添加はAl系酸化皮膜の保護性をより高め耐酸化性の効果も奏する。なお本実施形態において、高温の改質ガス環境下に曝される前の表面皮膜を「不働態皮膜」、高温の改質ガス環境下に曝され不働態皮膜が種々の反応によって組成が変化したものを「Al系酸化皮膜」と区別し説明する。 (G) Further, in order to enhance the oxidation resistance in the reformed gas environment containing the above-mentioned hydrogen and sulfide components, the content of Si, Al, Nb and Mn is adjusted within a predetermined range to improve the temperature and temperature. It is effective to promote the formation of an Al-based oxide film in a quality gas environment and to enhance the protective property of the film. Furthermore, the addition of B, Nb, Sn, Mg, Ca, and Ga in ferritic stainless steel does not impair the oxidation resistance in a modified gas environment. Rather, the addition of a small amount of Mg and Sn does not impair the oxidation resistance of the Al-based oxide film. It also enhances the protection of stainless steel and has the effect of oxidation resistance. In the present embodiment, the surface film before being exposed to the high temperature reformed gas environment is the "passive film", and the composition of the passive film is changed by various reactions when exposed to the high temperature reformed gas environment. The thing will be described separately from the "Al-based oxide film".

(h)前記した改質ガス環境(浸炭性/還元性/硫化性環境)は、大気や水素を含まない水蒸気酸化環境と比較して、フェライト系ステンレス鋼におけるAl系酸化皮膜の欠陥を生成し易い。改質ガス環境が酸化皮膜の欠陥生成を容易とする原因は明らかではないが、硫化成分を含む改質ガス下で生成される硫化物が、酸化皮膜に何らかの悪影響を及ぼしていると推測される。改質ガス環境下でAl系酸化皮膜に欠陥が生じると、露出された母材ではCrやFeの酸化が進行するおそれがある。このような改質ガス中における酸化促進に対して、MgはAl系酸化皮膜への固溶、Snは母材表面への偏析作用によりCrやFeの外方拡散を遅延させることにより、Al系酸化皮膜の保護性をより高めることができる。その結果、フェライト系ステンレス鋼の耐酸化性を向上させることができる。 (H) The reformed gas environment (carburizing / reducing / sulphurizing environment) described above produces defects in the Al-based oxide film in the ferritic stainless steel as compared with the steam oxidation environment containing no atmosphere or hydrogen. easy. The reason why the reformed gas environment facilitates the formation of defects in the oxide film is not clear, but it is presumed that the sulfide produced under the reformed gas containing a sulfide component has some adverse effect on the oxide film. .. If a defect occurs in the Al-based oxide film in the reformed gas environment, the oxidation of Cr and Fe may proceed in the exposed base material. In response to the promotion of oxidation in such a reforming gas, Mg dissolves in an Al-based oxide film, and Sn delays the outward diffusion of Cr and Fe by segregation on the surface of the base metal, thereby causing an Al-based solution. The protective property of the oxide film can be further enhanced. As a result, the oxidation resistance of the ferritic stainless steel can be improved.

(i)さらに、従来のAl、Si含有ステンレス鋼の欠点であった、高温での金属間化合物σ相の析出(σ脆性)と475℃脆性については、成分組成において、Cr、Nb、Si、Alの含有量を調整することが効果的であることが分かった。σ脆性と475℃脆性は、Crを主体としてSiやAlを含む金属間化合物の生成に由来し、その生成サイトは結晶粒界であることが多い。すなわち、σ脆性と475℃脆性を抑制するには、金属間化合物自体の生成を抑制するとともに、その生成サイトを低減することが効果的といえる。これらについて本発明者らがさらに検討したところ、Cr量の制限によって金属間化合物の生成自体を抑制するとともに、Nbの結晶粒界への偏析によって生成サイトを抑制することで組織を安定化させることができ、その結果、σ脆性と475℃脆性が抑制可能であることを見出した。さらに、Cr量の制限とNbの添加により、SiやAlを含む金属間化合物の生成を抑制できることから、前記(h)で述べた耐酸化性に寄与するSiとAl量を確保できるため、耐酸化性と組織安定性を両立することもできる。 (I) Furthermore, regarding the precipitation (σ brittleness) of the intermetallic compound σ phase and brittleness at 475 ° C., which were the drawbacks of the conventional Al and Si-containing stainless steel, Cr, Nb, Si, in the component composition, It was found that adjusting the Al content was effective. The σ brittleness and the 475 ° C. brittleness are derived from the formation of intermetallic compounds containing Cr as the main component and Si and Al, and the formation sites are often grain boundaries. That is, in order to suppress σ brittleness and 475 ° C. brittleness, it can be said that it is effective to suppress the formation of the intermetallic compound itself and reduce the formation sites thereof. As a result of further studies by the present inventors on these, the formation of the intermetallic compound itself is suppressed by limiting the amount of Cr, and the structure is stabilized by suppressing the formation site by segregation of Nb into the grain boundaries. As a result, it was found that σ brittleness and 475 ° C. brittleness can be suppressed. Furthermore, since the formation of intermetallic compounds containing Si and Al can be suppressed by limiting the amount of Cr and adding Nb, the amounts of Si and Al that contribute to the oxidation resistance described in (h) above can be secured, and thus acid resistance. It is also possible to achieve both chemical properties and organizational stability.

上述したように、フェライト系ステンレス鋼において、B、Nb、Sn、Mg、Ca、Gaの複合添加により、浸炭性/還元性/硫化性環境下の耐久性として重要な高温強度と改質ガス中の耐酸化性を兼備できる、という新たな知見が得られた。さらにフェライト系ステンレス鋼において、Cr、Nb、Si、Alの含有量の適正化によって、組織安定性の向上によるσ脆性と475℃脆性の抑制が可能となる上、耐酸化性の両立も達成できる、という知見も新たに得られた。 As described above, in ferrite stainless steel, due to the combined addition of B, Nb, Sn, Mg, Ca and Ga, the high temperature strength and the reformed gas, which are important for durability in a carburizing / reducing / sulphurizing environment, are used. We have obtained a new finding that it can also have the oxidation resistance of stainless steel. Furthermore, in ferrite stainless steel, by optimizing the content of Cr, Nb, Si, and Al, it is possible to suppress σ brittleness and 475 ° C brittleness by improving the structure stability, and it is also possible to achieve both oxidation resistance. , Was also newly obtained.

以下、本発明のフェライト系ステンレス鋼の一実施形態について説明する。 Hereinafter, an embodiment of the ferritic stainless steel of the present invention will be described.

<成分組成>
まず、成分の限定理由を以下に説明する。なお、各元素の含有量の「%」表示は「質量%」を意味する。
<Ingredient composition>
First, the reasons for limiting the components will be described below. In addition, "%" display of the content of each element means "mass%".

Crは、耐食性に加えて、高温強度を確保する上で基本となる構成元素である。本実施形態においては、12.0%未満では目標とする高温強度と耐酸化性が十分に確保されない。従って、Cr含有量の下限は12.0%以上とする。好ましくは13.0%以上である。しかし、過度にCrを含有することは高温雰囲気に曝された際、脆化相であるσ相(Fe−Crの金属間化合物)の生成を促進して製造時の割れを助長する場合がある。したがってCr含有量の上限は、基本特性や製造性の視点から16.0%以下とする。好ましくは15.0%以下である。 Cr is a constituent element that is basic for ensuring high-temperature strength in addition to corrosion resistance. In the present embodiment, if it is less than 12.0%, the target high-temperature strength and oxidation resistance cannot be sufficiently secured. Therefore, the lower limit of the Cr content is 12.0% or more. It is preferably 13.0% or more. However, excessive inclusion of Cr may promote the formation of the σ phase (intermetallic compound of Fe-Cr), which is an embrittlement phase, and promote cracking during production when exposed to a high temperature atmosphere. .. Therefore, the upper limit of the Cr content is 16.0% or less from the viewpoint of basic characteristics and manufacturability. It is preferably 15.0% or less.

Cは、フェライト相に固溶あるいはCr炭化物を形成して耐酸化性を阻害する。このため、C量の上限が0.020%以下とする。好ましくは0.015%以下である。但し、C量の過度な低減は精錬コストの上昇に繋がるため、下限は0.001%以上とすることが好ましい。耐酸化性と製造性の点から、さらに好ましくは0.005%以上である。 C forms a solid solution or Cr carbide in the ferrite phase and inhibits oxidation resistance. Therefore, the upper limit of the amount of C is set to 0.020% or less. It is preferably 0.015% or less. However, since an excessive reduction in the amount of C leads to an increase in the refining cost, the lower limit is preferably 0.001% or more. From the viewpoint of oxidation resistance and manufacturability, it is more preferably 0.005% or more.

Siは、耐酸化性を確保する上で重要な元素である。Siは、Al系酸化皮膜中へ僅かに固溶するとともに、Al系酸化皮膜直下/鋼界面にも濃化し、改質ガス環境下の耐酸化性を向上させる。これら効果を得るために下限は0.50%以上とすることが好ましい。より好ましくは0.70%以上である。一方、Siを過度に含有させることは、鋼の靭性や加工性の低下ならびにAl系酸化皮膜の形成を阻害する場合もあるため、上限は2.50%以下%とする。耐酸化性と基本特性の点から、1.70%以下が好ましい。 Si is an important element for ensuring oxidation resistance. Si slightly dissolves in the Al-based oxide film and also concentrates directly under the Al-based oxide film / at the steel interface, improving the oxidation resistance in a modified gas environment. In order to obtain these effects, the lower limit is preferably 0.50% or more. More preferably, it is 0.70% or more. On the other hand, if Si is excessively contained, the toughness and workability of the steel may be deteriorated and the formation of an Al-based oxide film may be hindered. Therefore, the upper limit is 2.50% or less. From the viewpoint of oxidation resistance and basic characteristics, 1.70% or less is preferable.

Mnは、改質ガス環境下でSiとともにAl系酸化皮膜中またはその直下に固溶して当該皮膜の保護性を高め耐酸化性の向上に寄与しうる。これら効果を得るために下限は0.10%以上とすることが好ましい。より好ましくは0.20%以上である。一方、Mnを過度に含有させることは、鋼の耐食性やTiやAl系酸化皮膜の形成を阻害するため、上限は1.00%以下とする。耐酸化性と基本特性の点から、0.90%以下が好ましい。 Mn can be dissolved together with Si in or directly under the Al-based oxide film in a reformed gas environment to enhance the protection of the film and contribute to the improvement of oxidation resistance. In order to obtain these effects, the lower limit is preferably 0.10% or more. More preferably, it is 0.20% or more. On the other hand, excessive inclusion of Mn inhibits the corrosion resistance of steel and the formation of Ti and Al oxide films, so the upper limit is set to 1.00% or less. From the viewpoint of oxidation resistance and basic characteristics, 0.90% or less is preferable.

Alは、脱酸元素であることに加えて、本実施形態においては、改質ガス中でAl系酸化皮膜を形成して耐酸化性の向上に寄与する必須の元素である。本実施形態において、良好な耐酸化性を得るには1.00%以上とすることが好ましく、より好ましくは1.50%以上である。しかし、過度にAlを含有させることは、鋼の靭性や溶接性の低下を招き生産性を阻害するため、合金コストの上昇とともに経済性にも課題がある。そのためAl量の上限は、基本特性と経済性の視点から2.50%以下とする。より好ましくは、2.30%以下である。 In addition to being a deoxidizing element, Al is an essential element that forms an Al-based oxide film in the reformed gas and contributes to the improvement of oxidation resistance in the present embodiment. In the present embodiment, it is preferably 1.00% or more, and more preferably 1.50% or more in order to obtain good oxidation resistance. However, if Al is excessively contained, the toughness and weldability of the steel are lowered and the productivity is impaired, so that there is a problem in terms of economy as well as an increase in alloy cost. Therefore, the upper limit of the amount of Al is 2.50% or less from the viewpoint of basic characteristics and economic efficiency. More preferably, it is 2.30% or less.

Pは、製造性や溶接性を阻害する元素であり、その含有量は少ないほどよいため上限は0.050%以下とする。但し、Pの過度な低減は精錬コストの上昇に繋がるため、下限は0.003%とすることが好ましい。製造性と溶接性の点から、好ましい範囲は0.005〜0.040%、より好ましくは0.010〜0.030%である。 P is an element that impairs manufacturability and weldability, and the smaller the content, the better, so the upper limit is 0.050% or less. However, since an excessive reduction of P leads to an increase in refining cost, the lower limit is preferably 0.003%. From the viewpoint of manufacturability and weldability, the preferable range is 0.005 to 0.040%, more preferably 0.010 to 0.030%.

Sは、鋼中に不可避に含まれる不純物元素であり、高温強度および耐酸化性を低下させる。特に、Sの粒界偏析やMn系介在物や固溶Sの存在は、高温強度と耐酸化性を低下させる作用を持つ。従って、S量は低いほどよいため、上限は0.0030%以下とする。但し、Sの過度の低減は原料や精錬コストの上昇に繋がるため、下限は0.0001%以上とすることが好ましい。製造性と耐酸化性の点から、好ましい範囲は0.0001〜0.0020%、より好ましくは0.0002〜0.0010%である。 S is an impurity element inevitably contained in steel, which lowers high temperature strength and oxidation resistance. In particular, the presence of grain boundary segregation of S, Mn-based inclusions, and solid solution S has an effect of lowering high-temperature strength and oxidation resistance. Therefore, the lower the amount of S, the better, so the upper limit is 0.0030% or less. However, since excessive reduction of S leads to an increase in raw materials and refining costs, the lower limit is preferably 0.0001% or more. From the viewpoint of manufacturability and oxidation resistance, a preferable range is 0.0001 to 0.0020%, and more preferably 0.0002 to 0.0010%.

Nは、Cと同様に耐酸化性を阻害する元素である。このため、N量は少ないほどよく、上限を0.030%以下とする。但し、Nの過度な低減は精錬コストの上昇に繋がるため、下限は0.002%以上とすることが好ましい。耐酸化性と製造性の点から、N量の好ましい範囲は0.005〜0.020%である。 N is an element that inhibits oxidation resistance like C. Therefore, the smaller the amount of N, the better, and the upper limit is 0.030% or less. However, since an excessive reduction of N leads to an increase in refining cost, the lower limit is preferably 0.002% or more. From the viewpoint of oxidation resistance and manufacturability, the preferable range of the amount of N is 0.005 to 0.020%.

Nbは、C,Nを固定する安定化元素であって、この作用による鋼の高純度化を通じて耐酸化性や耐食性を向上させることができる。また本実施形態においては、Bとの粒界における共偏析の作用効果により高温強度の向上にも有効に作用する元素である。さらに、σ脆性と475℃脆性の要因となる金属間化合物は、主に結晶粒界を生成サイトとして析出が進行するが、Nbが結晶粒界へ偏析することによってこの生成サイトが低減されるため、組織の安定性が増し、結果、σ脆性と475℃脆性を抑制することができる。これら効果を得るためにNb量の下限は0.001%以上とし、好ましくは0.15%以上とする。一方、Nbを過度に含有させることは合金コストの上昇や製造性を阻害することに繋がるため、Nb量の上限は1.00%以下とする。好ましくは0.60%以下とする。 Nb is a stabilizing element that fixes C and N, and oxidation resistance and corrosion resistance can be improved by increasing the purity of steel by this action. Further, in the present embodiment, it is an element that effectively acts to improve the high temperature strength due to the action and effect of co-segregation at the grain boundary with B. Furthermore, the intermetallic compound that causes σ brittleness and 475 ° C. brittleness proceeds to precipitate mainly at the grain boundaries, but this formation site is reduced by segregation of Nb into the grain boundaries. , The stability of the structure is increased, and as a result, σ brittleness and 475 ° C. brittleness can be suppressed. In order to obtain these effects, the lower limit of the amount of Nb is 0.001% or more, preferably 0.15% or more. On the other hand, since excessive inclusion of Nb leads to an increase in alloy cost and hindering manufacturability, the upper limit of the amount of Nb is set to 1.00% or less. It is preferably 0.60% or less.

B、Sn、Ga、Mg、Caは、上記の知見(e)および(f)でも述べたように、高温強度を高める効果をより発現させることができる元素である。さらにこれらの元素は、Al系酸化皮膜の形成を促進して耐酸化性の向上に寄与する元素でもある。そのため、上記成分組成に加え、B、Sn、Ga、Mg、Caのうちの1種または2種以上を含有する。
Bは、粒界偏析することによって粒界すべりを遅延させるとともに、結晶粒内において転位密度の上昇に伴う内部応力を高め0.2%耐力を向上させることができる。Sn、Ga、Mg、Caは、表面近傍に濃化してAlの選択酸化を促進する作用がある。このような効果を得るために、B、Ga、Mg、Caそれぞれの含有量の下限は0.0002%以上、Snの下限は0.005%以上とすることが好ましい。一方、これら元素を過度に含有させることは、鋼の精錬コスト上昇を招くほか、製造性と鋼の耐食性を低下させる。このため、Caの含有量の上限は0.0100%以下、Snの上限は0.20%以下、B、Ga、Mgの上限はいずれも0.0200%以下とする。
B, Sn, Ga, Mg, and Ca are elements that can further exhibit the effect of increasing the high temperature strength, as described in the above findings (e) and (f). Further, these elements are also elements that promote the formation of an Al-based oxide film and contribute to the improvement of oxidation resistance. Therefore, in addition to the above-mentioned component composition, it contains one or more of B, Sn, Ga, Mg, and Ca.
B can delay grain boundary slip by segregating grain boundaries, increase internal stress due to an increase in dislocation density in the crystal grains, and improve 0.2% proof stress. Sn, Ga, Mg, and Ca have the effect of concentrating in the vicinity of the surface and promoting the selective oxidation of Al. In order to obtain such an effect, it is preferable that the lower limit of the content of each of B, Ga, Mg and Ca is 0.0002% or more, and the lower limit of Sn is 0.005% or more. On the other hand, excessive inclusion of these elements leads to an increase in steel refining cost and a decrease in manufacturability and corrosion resistance of steel. Therefore, the upper limit of the Ca content is 0.0100% or less, the upper limit of Sn is 0.20% or less, and the upper limit of B, Ga, and Mg is 0.0200% or less.

さらに、本実施形態の成分組成では、以下の式(1)を満たすものとする。
10(B+Ga)+Sn+Mg+Ca>0.020% ・・・式(1)
なお、式(1)中の各元素記号は、鋼中の各元素の含有量(質量%)を示す。
Further, the component composition of the present embodiment shall satisfy the following formula (1).
10 (B + Ga) + Sn + Mg + Ca> 0.020% ・ ・ ・ Equation (1)
The element symbol in the formula (1) indicates the content (mass%) of each element in the steel.

高温強度および耐酸化性を向上させる視点から、式(1)は、0.025%以上が好ましく、より好ましくは0.035%以上とする。なお、式(1)の上限は、B、Sn、Ga、Mg、Caの上限値で特に規定するものでないが、高温強度と製造性の視点から0.2%とすることが好ましい。 From the viewpoint of improving high temperature strength and oxidation resistance, the formula (1) is preferably 0.025% or more, more preferably 0.035% or more. The upper limit of the formula (1) is not particularly specified by the upper limit values of B, Sn, Ga, Mg, and Ca, but is preferably 0.2% from the viewpoint of high temperature strength and manufacturability.

次に、結晶粒界における偏析元素の濃度(質量%)について説明する。
上記の知見(c)および(d)でも述べたように、本実施形態においては、NbとBが結晶粒界において共偏析することによって高温強度の向上を図ることができる。また、Snも同様に、粒界へ偏析することによって、粒界すべりを抑制し高温強度の向上を図ることができる。これらの観点から、本実施形態に係るフェライト系ステンレス鋼において、Nbの結晶粒界における濃度(粒界濃度)は、3.0%以上とすることが好ましい。Snを含有する場合には、Snの粒界濃度は1.0%以上とすることが好ましい。一方、NbとSnの過度な粒界偏析は結晶粒界が破壊起点となって製造性を阻害することに加え、高温強度の低下をもたらす場合もある。そのため、Nbの粒界濃度は10.0%以下であることが好ましく、Snの粒界濃度は5.0%以下であることが好ましい。
なお、結晶粒界におけるNb濃度とSn濃度の調整は、仕上げ焼鈍後さらに、所定の条件下で熱処理を行うことで可能である。詳細については後述する。
Next, the concentration (mass%) of the segregating element at the grain boundary will be described.
As described in the above findings (c) and (d), in the present embodiment, the high temperature strength can be improved by co-segregating Nb and B at the grain boundaries. Similarly, by segregating Sn into the grain boundaries, it is possible to suppress the grain boundary slip and improve the high temperature strength. From these viewpoints, in the ferritic stainless steel according to the present embodiment, the concentration of Nb at the grain boundaries (grain boundary concentration) is preferably 3.0% or more. When Sn is contained, the grain boundary concentration of Sn is preferably 1.0% or more. On the other hand, excessive grain boundary segregation of Nb and Sn may cause a decrease in high-temperature strength in addition to impairing manufacturability with the crystal grain boundaries as the starting point of fracture. Therefore, the grain boundary concentration of Nb is preferably 10.0% or less, and the grain boundary concentration of Sn is preferably 5.0% or less.
The Nb concentration and Sn concentration at the grain boundaries can be adjusted by further performing heat treatment under predetermined conditions after finish annealing. Details will be described later.

結晶粒界におけるNb濃度、Sn濃度は、オージェ電子分光法(Auger Electron Spectrometry,AES)によって測定することができる。
まず、酸化皮膜以外の母相の任意箇所から、ノッチ付き試験片(0.8t×4w×20L(mm))を採取する。次に、ノッチ付き試験片を、真空中(真空度:10−6MPa)において液体窒素で冷却したのちに、その場でノッチ部から試験片を破断して破面をを露出させる。露出させた破面における結晶粒界についてAES分析を行い、0〜1000eVのエネルギー範囲でオージェ電子スペクトルを測定し、検出される元素を同定(定性分析)する。さらに、得られたピーク強度比を用いて(相対感度係数法)、検出元素を定量(定量分析)する。以上の方法によって、結晶粒界に偏析した元素(Nb、Sn)の濃度を求めることができる。
The Nb concentration and Sn concentration at the grain boundaries can be measured by Auger electron spectroscopy (AES).
First, a notched test piece (0.8t × 4w × 20L (mm)) is collected from an arbitrary part of the matrix other than the oxide film. Next, the notched test piece is cooled with liquid nitrogen in vacuum (vacuum degree: 10-6 MPa), and then the test piece is broken from the notch portion on the spot to expose the fracture surface. AES analysis is performed on the grain boundaries on the exposed fracture surface, Auger electron spectra are measured in the energy range of 0 to 1000 eV, and the detected elements are identified (qualitative analysis). Furthermore, the detected elements are quantified (quantitative analysis) using the obtained peak intensity ratio (relative sensitivity coefficient method). By the above method, the concentration of the element (Nb, Sn) segregated at the grain boundary can be obtained.

本実施形態に係るフェライト系ステンレス鋼は、上述してきた元素以外(残部)は、Fe及び不純物からなるが、後述する任意元素についても含有させることができる。よって、Ni、Cu、Mo、Sb、W、Co、V、Ti、Zr、La、Y、Hf、REMの含有量の下限は0%以上である。
なお、本実施形態における「不純物」とは、鋼を工業的に製造する際に鉱石やスクラップ等のような原料をはじめとして製造工程の種々の要因によって混入する成分であり、不可避的に混入する成分も含む。
The ferrite-based stainless steel according to the present embodiment is composed of Fe and impurities other than the elements described above (residue), but can also contain arbitrary elements described later. Therefore, the lower limit of the content of Ni, Cu, Mo, Sb, W, Co, V, Ti, Zr, La, Y, Hf, and REM is 0% or more.
The "impurity" in the present embodiment is a component that is mixed by various factors in the manufacturing process including raw materials such as ore and scrap when industrially manufacturing steel, and is inevitably mixed. Also includes ingredients.

本実施形態のフェライト系ステンレス鋼は、必要に応じて、Ni:1.0%以下、Cu:1.0%以下、Mo:1.0%以下、Sb:0.5%以下、W:1.0%以下、Co:0.5%以下、V:0.5%以下、Ti:0.5%以下、Zr:0.5%以下、La:0.1%以下、Y:0.1%以下、Hf:0.1%以下、REM:0.1%以下の1種または2種以上を含有しているものであってもよい。 The ferrite-based stainless steel of the present embodiment has Ni: 1.0% or less, Cu: 1.0% or less, Mo: 1.0% or less, Sb: 0.5% or less, W: 1 as necessary. .0% or less, Co: 0.5% or less, V: 0.5% or less, Ti: 0.5% or less, Zr: 0.5% or less, La: 0.1% or less, Y: 0.1 % Or less, Hf: 0.1% or less, REM: 0.1% or less may be contained in one kind or two or more kinds.

Ni、Cu、Mo、Sb、W、Co、V、Tiは、鋼の高温強度と耐食性を高めるのに有効な元素であり、必要に応じて含有してよい。但し、過度に含有させると合金コストの上昇や製造性を阻害することに繋がるため、Ni、Cu、Wの上限は1.0%以下とする。Moは熱膨張係数の低下による高温変形の抑制にも有効な元素であることから、上限は1.0%以下とした上で含有することが好ましい。Sbは、鋼表面近傍に濃化してAlの選択酸化を促進し耐食性の向上効果を持つ元素であるため、上限は0.5%以下とした上で含有することが好ましい。Co、Ti、Vの上限は0.5%以下とする。Ni、Cu、Mo、W、Co、Vのいずれの元素も好ましい含有量の下限は0.10%以上とする。Sb、Tiの好ましい含有量の下限は0.01%以上とする。 Ni, Cu, Mo, Sb, W, Co, V, and Ti are elements effective for increasing the high temperature strength and corrosion resistance of steel, and may be contained as necessary. However, if it is contained in an excessive amount, the alloy cost will increase and the manufacturability will be hindered. Therefore, the upper limit of Ni, Cu and W is set to 1.0% or less. Since Mo is an element that is also effective in suppressing high-temperature deformation due to a decrease in the coefficient of thermal expansion, it is preferable that Mo is contained after setting the upper limit to 1.0% or less. Since Sb is an element that concentrates in the vicinity of the steel surface to promote selective oxidation of Al and has an effect of improving corrosion resistance, it is preferable that Sb is contained after setting the upper limit to 0.5% or less. The upper limit of Co, Ti, and V is 0.5% or less. The lower limit of the preferable content of any of the elements Ni, Cu, Mo, W, Co and V is 0.10% or more. The lower limit of the preferable contents of Sb and Ti is 0.01% or more.

Zr、La、Y、Hf、REMは、熱間加工性や鋼の清浄度を向上ならびに耐酸化性改善に対しても、従来から有効な元素であり、必要に応じて含有させてよい。但し、本発明の技術思想と合金コストの低減から、これら元素の添加効果に頼るものではい。Zr、La、Y、Hf、REMを含有させる場合、Zrの上限は0.5%、La、Y、Hf、REMの上限はそれぞれ0.1%とする。Zrのより好ましい下限は0.01%、La、Y、Hf、REMの好ましい下限は0.001%とする。ここで、REMはLa、Yを除く原子番号58〜71に帰属する元素およびSc(スカンジウム)とし、例えば、Ce、Pr、Nd等である。また本実施形態でいうREMとは、原子番号58〜71に帰属する元素およびScから選択される1種以上で構成されるものであり、REM量とは、これらの合計量である。 Zr, La, Y, Hf, and REM are conventionally effective elements for improving hot workability, cleanliness of steel, and improving oxidation resistance, and may be contained as necessary. However, due to the technical idea of the present invention and the reduction of alloy cost, the effect of adding these elements cannot be relied on. When Zr, La, Y, Hf, and REM are contained, the upper limit of Zr is 0.5%, and the upper limit of La, Y, Hf, and REM is 0.1%, respectively. The more preferable lower limit of Zr is 0.01%, and the preferable lower limit of La, Y, Hf, and REM is 0.001%. Here, REM is an element and Sc (scandium) belonging to atomic numbers 58 to 71 excluding La and Y, and are, for example, Ce, Pr, Nd and the like. Further, the REM referred to in the present embodiment is composed of one or more selected from the elements belonging to atomic numbers 58 to 71 and Sc, and the REM amount is the total amount of these.

本実施形態に係るフェライト系ステンレス鋼は、上述してきた元素以外は、Fe及び不純物(不可避的不純物を含む)からなるが、以上説明した各元素の他にも、本発明の効果を損なわない範囲で含有させることができる。一般的な不純物元素である前述のP、Sを始め、Bi、Se等は可能な限り低減することが好ましい。一方、これらの元素は、本発明の課題を解決する限度において、その含有割合が制御され、必要に応じて、Bi≦100ppm、Se≦100ppmの1種以上を含有してもよい。 The ferritic stainless steel according to the present embodiment is composed of Fe and impurities (including unavoidable impurities) other than the elements described above, but in addition to the above-mentioned elements, the effect of the present invention is not impaired. Can be contained in. It is preferable to reduce Bi, Se and the like as much as possible, including the above-mentioned P and S, which are general impurity elements. On the other hand, the content ratio of these elements is controlled to the extent that the problem of the present invention is solved, and one or more of Bi ≦ 100 ppm and Se ≦ 100 ppm may be contained, if necessary.

本実施形態のフェライト系ステンレス鋼の金属組織はフェライト単相組織よりなる。これはオーステナイト相やマルテンサイト組織を含まないことを意味している。オーステナイト相やマルテンサイト組織を含む場合は、原料コストが高くなることに加えて、製造時に耳割れ等の歩留まり低下が起こりやすくなるため、金属組織はフェライト単相組織とする。なお鋼中に炭窒化物等の析出物が存在するが、本発明の効果を大きく左右するものではないためこれらは考慮せず、上記は主相の組織について述べている。 The metal structure of the ferritic stainless steel of the present embodiment has a ferrite single-phase structure. This means that it does not contain the austenite phase or the martensite structure. When an austenite phase or a martensite structure is contained, the raw material cost is high and the yield such as ear cracks is likely to decrease during production. Therefore, the metal structure is a ferrite single-phase structure. It should be noted that although precipitates such as carbonitrides are present in the steel, they are not considered because they do not greatly affect the effect of the present invention, and the above description describes the structure of the main phase.

なお、本実施形態のフェライト系ステンレス鋼の形状は特に限定せず、板状、管状、棒状等であってよく、適用する部材のサイズや形態、形状に合わせて適宜決定してよい。 The shape of the ferrite-based stainless steel of the present embodiment is not particularly limited, and may be plate-shaped, tubular, rod-shaped, or the like, and may be appropriately determined according to the size, shape, and shape of the member to be applied.

<製造方法>
次に、上述してきた本実施形態のフェライト系ステンレス鋼の製造方法であるが、熱間加工、冷間加工及び各熱処理(焼鈍)を組み合わせることで製造でき、必要に応じて、適宜、酸洗やデスケーリングを行ってよい。製造方法の一例として、製鋼−熱間圧延−焼鈍−冷間圧延−焼鈍(仕上げ焼鈍)の各工程を有する製法を採用でき、熱間圧延後の熱処理は700℃超とすることが好ましい。
例えば、熱間圧延後の熱処理を700℃超で行い、デスケ−リングの後に冷間圧延し、続いて700℃超の仕上げ焼鈍とデスケ−リングを施して冷延焼鈍板としてもよい。また、冷間圧延の圧延率は特に規定するものでないが、30〜80%の範囲内が好ましい。
さらに、フェライト系ステンレス鋼をガス配管の用途に適用する場合は、鋼板から製造した溶接菅も含まれるが、配管は、溶接菅に限定するものでなく,熱間加工により製造した継ぎ目無し菅でもよい。
<Manufacturing method>
Next, the above-mentioned method for producing a ferritic stainless steel according to the present embodiment can be produced by combining hot working, cold working, and each heat treatment (annealing), and is appropriately pickled as necessary. And descaling may be performed. As an example of the manufacturing method, a manufacturing method having each step of steelmaking-hot rolling-annealing-cold rolling-annealing (finish annealing) can be adopted, and the heat treatment after hot rolling is preferably over 700 ° C.
For example, a heat treatment after hot rolling may be performed at a temperature of over 700 ° C., a cold rolling may be performed after descaling, and then finish annealing and descaling at a temperature of over 700 ° C. may be performed to obtain a cold-rolled annealed plate. The rolling ratio for cold rolling is not particularly specified, but is preferably in the range of 30 to 80%.
Furthermore, when ferritic stainless steel is applied to gas piping applications, welded pipes manufactured from steel plates are also included, but the pipes are not limited to welded pipes, and seamless pipes manufactured by hot working are also included. good.

熱間加工後の熱処理(熱延板焼鈍)や冷間圧延後の仕上げ焼鈍の温度を700℃超とするのは、鋼を再結晶させて高温強度の上昇に有効なNbやSnを固溶させるためである。しかし、熱間加工後の熱処理や冷間圧延後の仕上げ焼鈍の各処理温度の過度な温度上昇は、結晶粒径が粗大化し、肌荒れなど表面品位の低下に繋がる。したがって、熱間加工後の熱処理や冷間圧延後の仕上げ焼鈍の各処理温度について、好ましくは上限を1050℃以下とする。 The temperature of heat treatment after hot working (hot-rolled sheet annealing) and finish annealing after cold rolling is set to over 700 ° C to recrystallize the steel and dissolve Nb and Sn, which are effective for increasing high-temperature strength. To make it happen. However, excessive temperature rise of each treatment temperature of heat treatment after hot working and finish annealing after cold rolling leads to coarsening of crystal grain size and deterioration of surface quality such as rough skin. Therefore, the upper limit of each treatment temperature of heat treatment after hot working and finish annealing after cold rolling is preferably 1050 ° C. or lower.

仕上げ焼鈍をした後、NbとSnの結晶粒界における濃度を上述した範囲内に調整して高温強度を上昇させるために、さらに熱処理(仕上げ焼鈍後熱処理)を行うことが望ましい。具体的には、仕上げ焼鈍後に、600〜700℃へ再加熱して1分超、3h以下保持する熱処理を施しても構わない。なお、本実施形態でいう「保持」とは、600〜700℃の範囲内であれば、一定の温度を保った状態でもよいし、当該範囲内を変動していても構わない。すなわち、鋼板が600〜700℃間に存在している時間が1分超、3時間以下であれば、その間の鋼板温度の変動の有無は問わない。また本実施形態でいう鋼板の温度とは、鋼板表面の温度を指す。 After finish annealing, it is desirable to further perform heat treatment (heat treatment after finish annealing) in order to adjust the concentrations of Nb and Sn at the grain boundaries within the above range to increase the high temperature strength. Specifically, after finish annealing, heat treatment may be performed by reheating to 600 to 700 ° C. and holding for more than 1 minute and for 3 hours or less. The term "holding" as used in the present embodiment may be a state in which a constant temperature is maintained as long as it is within the range of 600 to 700 ° C., or may be varied within the range. That is, as long as the time that the steel sheet exists between 600 and 700 ° C. is more than 1 minute and 3 hours or less, it does not matter whether or not the temperature of the steel sheet fluctuates during that time. Further, the temperature of the steel sheet in the present embodiment refers to the temperature of the surface of the steel sheet.

仕上げ焼鈍後の熱処理温度が700℃を超える、もしくは仕上げ焼鈍後の熱処理の保持時間が3時間を超えると、長辺1μmを超える粗大なラーベス相(FeNb)が析出しやすく、高温強度の低下を招く場合がある。そのため、仕上げ焼鈍後の熱処理温度の上限は700℃以下、保持時間は3時間以下とする。一方、仕上げ焼鈍後の熱処理温度が600℃未満、もしくは仕上げ焼鈍後の熱処理の保持時間が1分以下では、NbとSnの粒界偏析が進行せずに、十分な高温強度を得られないほか、粒界強度の低下、組織の不安定化によるσ相析出や475℃脆性を生じる場合もある。そのため、仕上げ焼鈍後の熱処理温度の下限は600℃以上、保持時間は1分超とする。 If the heat treatment temperature after finish annealing exceeds 700 ° C., or if the heat treatment holding time after finish annealing exceeds 3 hours, a coarse Laves phase (Fe 2 Nb) having a long side of more than 1 μm is likely to precipitate, and the high temperature strength is high. May lead to a decline. Therefore, the upper limit of the heat treatment temperature after finish annealing is 700 ° C. or less, and the holding time is 3 hours or less. On the other hand, if the heat treatment temperature after finish annealing is less than 600 ° C., or if the heat treatment holding time after finish annealing is 1 minute or less, grain boundary segregation of Nb and Sn does not proceed and sufficient high-temperature strength cannot be obtained. In some cases, the grain boundary strength is lowered, σ phase precipitation due to structural instability, and brittleness at 475 ° C. occur. Therefore, the lower limit of the heat treatment temperature after finish annealing is 600 ° C. or higher, and the holding time is more than 1 minute.

なお、NbとSnの粒界濃度の制御は、仕上げ焼鈍後の熱処理は行わずに仕上げ焼鈍の工程内で調整することも可能である。その際は、仕上げ焼鈍の冷却の際、すなわち700℃超に加熱した後に冷却する際、600〜700℃の温度域の通過時間(冷却所要時間)が1分超となるよう制御する。具体的には、600〜700℃の温度間における冷却速度を調整することで当該温度間の通過時間を制御することができる。 The control of the grain boundary concentrations of Nb and Sn can also be adjusted in the process of finish annealing without performing the heat treatment after finish annealing. In that case, when cooling the finish annealing, that is, when cooling after heating to over 700 ° C., the passage time (cooling required time) in the temperature range of 600 to 700 ° C. is controlled to be over 1 minute. Specifically, the transit time between the temperatures can be controlled by adjusting the cooling rate between the temperatures of 600 to 700 ° C.

熱間加工後の熱処理や仕上げ焼鈍、仕上げ焼鈍後熱処理時の雰囲気は特に規定するものではないが、大気中、LNG燃料雰囲気、水素や窒素、アルゴン等を用いた無酸化性雰囲気(光輝焼鈍)であることが好ましい。 The atmosphere during heat treatment after hot working, finish annealing, and heat treatment after finish annealing is not particularly specified, but it is an atmosphere, an LNG fuel atmosphere, and a non-oxidizing atmosphere using hydrogen, nitrogen, argon, etc. (brilliant annealing). Is preferable.

以上説明した製造方法により、本実施形態に係るフェライト系ステンレス鋼を得ることができる。 The ferrite-based stainless steel according to the present embodiment can be obtained by the manufacturing method described above.

本実施形態によれば、二酸化炭素、一酸化炭素、多量の水素、ならびに硫化成分を含む環境(浸炭性/還元性/硫化性環境)下であっても、高い耐酸化性と優れた高温強度を兼備したフェライト系ステンレス鋼を提供することができる。
またさらに、本実施形態によれば、成分組成の適正化を図ることで、σ相析出や475℃脆性を抑制可能とする優れた組織安定性をも享受することが可能となる。
そのため、都市ガス、メタン、天然ガス、プロパン、灯油、ガソリン等の炭化水素系燃料を水素に改質する際に使用される燃料改質器、熱交換器などの燃料電池部材に好適であり、特に、運転温度が高温となる固体酸化物型燃料電池(SOFC)や固体高分子型燃料電池(PEFC)の高温部材に好適である。さらに、燃料電池の周辺部材、例えばバーナーや当該バーナーを格納する燃焼器等、改質ガスに接しかつ高温の環境下で使用される部材全般において好適に用いることができる。
According to this embodiment, high oxidation resistance and excellent high temperature strength even in an environment containing carbon dioxide, carbon monoxide, a large amount of hydrogen, and a sulfide component (carburizing / reducing / sulphurizing environment). It is possible to provide a ferritic stainless steel that also has the above.
Furthermore, according to the present embodiment, by optimizing the composition of the components, it is possible to enjoy excellent tissue stability that can suppress σ phase precipitation and 475 ° C. brittleness.
Therefore, it is suitable for fuel cell members such as fuel reformers and heat exchangers used when reforming hydrocarbon fuels such as city gas, methane, natural gas, propane, kerosene, and gasoline into hydrogen. In particular, it is suitable for high temperature members of solid oxide fuel cells (SOFC) and solid polymer fuel cells (PEFC) whose operating temperature is high. Further, it can be suitably used for all peripheral members of a fuel cell, such as a burner and a combustor for storing the burner, which are in contact with a reforming gas and are used in a high temperature environment.

次に本発明の実施例を示すが、実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、以下の実施例で用いた条件に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。
なお、下記にて示す表中の下線は、本発明の範囲から外れているものを示す。
Next, an example of the present invention will be shown. The conditions in the examples are one condition example adopted for confirming the feasibility and effect of the present invention, and the present invention is used in the following examples. It is not limited to the conditions. The present invention can adopt various conditions as long as the gist of the present invention is not deviated and the object of the present invention is achieved.
The underlined lines in the table below indicate those outside the scope of the present invention.

表1に成分を示す各種フェライト系ステンレス鋼を溶製し(鋼A〜O)、熱間圧延によって4mm厚の熱延板とした後、熱処理(熱延板焼鈍)、酸洗、冷間圧延を行い板厚0.8mmの冷延鋼板を製造した。なお、熱延板焼鈍は、900〜1000℃の範囲において行った。
冷間圧延後、900〜1000℃で仕上げ焼鈍を行った。なお一部の鋼板(鋼B、E、F及びI)に対しては、仕上げ焼鈍後、さらに表2に示す条件にて熱処理(仕上げ焼鈍後熱処理)を施した。
得られた冷延鋼板(No.1〜19)について、粒界濃度の測定、ならびに各種特性について評価した。
Various ferritic stainless steels whose components are shown in Table 1 are melted (steels A to O), hot-rolled to a 4 mm thick hot-rolled plate, then heat-treated (hot-rolled plate annealing), pickled, and cold-rolled. To produce a cold-rolled steel sheet having a plate thickness of 0.8 mm. The hot-rolled plate was annealed in the range of 900 to 1000 ° C.
After cold rolling, finish annealing was performed at 900 to 1000 ° C. Some steel sheets (steels B, E, F and I) were subjected to heat treatment (heat treatment after finish annealing) under the conditions shown in Table 2 after finish annealing.
The obtained cold-rolled steel sheets (Nos. 1 to 19) were evaluated for grain boundary concentration measurement and various characteristics.

[粒界濃度の測定]
結晶粒系におけるNb濃度、Sn濃度は、オージェ電子分光法によって測定した。
まず冷延鋼板から、ノッチ付き試験片(0.8t×4w×20L(mm))を採取した。次に、ノッチ付き試験片を、真空中(真空度:10−6MPa)において液体窒素で冷却したのちに、破断面が大気に暴露されないようその場でノッチ部を破断し結晶粒界を露出させた。露出させた結晶粒界についてAES分析を行い、0〜1000eVのエネルギー範囲でオージェ電子スペクトルを測定し、Nb元素および、Sn元素を同定(定性分析)した。さらに、得られたピーク強度比を用いて(相対感度係数法)、Nb量、Sn量を定量分析し、結晶粒界に偏析したNb濃度、Sn濃度(ともに質量%)を求めた。表2に求めたNb濃度、Sn濃度を示すが、表中の「<3.0」、「<1.0」は、検出値が3.0%未満、1.0%未満であったことを意味する。
[Measurement of grain boundary concentration]
The Nb concentration and Sn concentration in the crystal grain system were measured by Auger electron spectroscopy.
First, a notched test piece (0.8t × 4w × 20L (mm)) was collected from a cold-rolled steel sheet. Next, the notched test piece is cooled with liquid nitrogen in a vacuum (vacuum degree: 10-6 MPa), and then the notch portion is broken on the spot so that the fracture surface is not exposed to the atmosphere to expose the grain boundaries. I let you. AES analysis was performed on the exposed grain boundaries, Auger electron spectra were measured in the energy range of 0 to 1000 eV, and Nb elements and Sn elements were identified (qualitative analysis). Further, the amount of Nb and the amount of Sn were quantitatively analyzed using the obtained peak intensity ratio (relative sensitivity coefficient method), and the Nb concentration and Sn concentration (both mass%) segregated at the grain boundaries were determined. Table 2 shows the Nb concentration and Sn concentration obtained, and "<3.0" and "<1.0" in the table indicate that the detected values were less than 3.0% and less than 1.0%. Means.

[耐酸化性]
まず冷延鋼板から幅20mm、長さ25mmの酸化試験片を切り出し酸化試験に供した。酸化試験の雰囲気は、都市ガスを燃料とした改質ガスを想定し、28体積%HO−10%体積%CO−8体積%CO−0.01%HS−bal.Hの雰囲気とした。当該雰囲気において、酸化試験片を650℃に加熱し、1000時間保持した後に室温まで冷却し、酸化増量ΔW(mg/cm)を測定した。
耐酸化性の評価は以下の通りとした。
◎:重量増加ΔWが0.2mg/cm未満。
〇:重量増加ΔWが0.2〜0.3mg/cm
×:重量増加ΔWが0.3mg/cm超。
なお、耐酸化性は「◎」および「〇」の場合を合格とした。
[Oxidation resistance]
First, an oxidation test piece having a width of 20 mm and a length of 25 mm was cut out from a cold-rolled steel sheet and subjected to an oxidation test. Atmosphere oxidation test, assuming the reformed gas in which the city gas as fuel, 28 vol% H 2 O-10% by volume% CO-8 vol% CO 2 -0.01% H 2 S -bal. Was an atmosphere of H 2. In the atmosphere, the oxidation test piece was heated to 650 ° C., held for 1000 hours, cooled to room temperature, and the oxidation increase ΔW (mg / cm 2 ) was measured.
The evaluation of oxidation resistance was as follows.
⊚: Weight increase ΔW is less than 0.2 mg / cm 2.
〇: Weight increase ΔW is 0.2 to 0.3 mg / cm 2 .
X: Weight increase ΔW is more than 0.3 mg / cm 2.
As for the oxidation resistance, the cases of "◎" and "○" were regarded as acceptable.

[高温強度]
冷延鋼板から、圧延方向を長手方向とする板状の高温引張試験片(板厚:0.8mm、平行部幅:10.5mm、平行部長さ:35mm)を作製し、750℃、および800℃それぞれにて、ひずみ速度は、0.2%耐力まで0.3%/min、以降3mm/minとして高温引張試験を行い、各温度における0.2%耐力(750℃耐力、800℃耐力)を測定した(JIS G 0567に準拠)。
高温強度の評価は、750℃耐力が120MPa超、かつ800℃耐力が40MPa超の場合を合格(「〇」)として評価し、いずか一方でも満たさない場合は不合格(「×」)として評価した。なお、750℃耐力が150MPa超、かつ800℃耐力が60MPa超の場合は高温強度が特に優れているものとして評価した(表2中で「◎」表記)。
[High temperature strength]
Plate-shaped high-temperature tensile test pieces (plate thickness: 0.8 mm, parallel portion width: 10.5 mm, parallel portion length: 35 mm) were prepared from cold-rolled steel sheets in the longitudinal direction, and 750 ° C. and 800 ° C. A high-temperature tensile test was conducted with the strain rate set to 0.3% / min up to 0.2% proof stress and then 3 mm / min at each ° C, and 0.2% proof stress (750 ° C proof stress, 800 ° C proof stress) at each temperature. Was measured (according to JIS G 0567).
In the evaluation of high temperature strength, when the proof stress of 750 ° C is more than 120 MPa and the proof stress of 800 ° C is more than 40 MPa, it is evaluated as a pass (“〇”), and when any one of them is not satisfied, it is rejected (“×”). evaluated. When the proof stress of 750 ° C. was more than 150 MPa and the proof stress of 800 ° C. was more than 60 MPa, it was evaluated as having particularly excellent high-temperature strength (indicated by "◎" in Table 2).

[組織安定性(σ脆性/475℃脆性)]
冷延鋼板から、板面と垂直な断面上の中心(板厚中心部:t/2付近)を観察できるよう試料を2つ採取して、一方は、500℃×1000時間の熱処理(500℃熱処理)、もう一方は650℃×1000時間の熱処理(600℃熱処理)を行った。これら熱処理の雰囲気はともに大気中とした。次に、熱処理後の各試料を樹脂に埋め研磨した後、500℃熱処理後のビッカース硬さHv500℃、650℃熱処理後のビッカース硬さHv650℃それぞれをJIS Z 2244に準拠して荷重9.8Nで測定し、熱処理前に予め測定しておいた熱処理前ビッカース硬さからの硬さ上昇量ΔHv500℃、ΔHv650℃を算出した。
組織安定性(σ脆性/475℃脆性)の評価は、ΔHv500℃、ΔHv650℃ともに20未満のものを合格(「〇」)として評価し、いずか一方でも20以上であった場合は熱処理後の硬さ上昇が大きく組織が不安定であるとして不合格(「×」)とした。
[Structural stability (σ brittleness / 475 ° C brittleness)]
Two samples were taken from the cold-rolled steel sheet so that the center on the cross section perpendicular to the plate surface (center of plate thickness: near t / 2) could be observed, and one was heat-treated at 500 ° C for 1000 hours (500 ° C). Heat treatment), and the other was heat-treated at 650 ° C. × 1000 hours (heat treatment at 600 ° C.). The atmosphere of these heat treatments was set to the atmosphere. Next, after each sample after the heat treatment is embedded in a resin and polished, the Vickers hardness Hv 500 ° C after the heat treatment at 500 ° C. and the Vickers hardness Hv 650 ° C. after the heat treatment at 650 ° C. are loaded according to JIS Z 2244, respectively. The hardness increase amount ΔHv 500 ° C. and ΔHv 650 ° C. from the Vickers hardness before heat treatment, which were measured at 8.N and measured in advance before the heat treatment, were calculated.
For the evaluation of tissue stability (σ brittleness / 475 ° C brittleness), those with ΔHv 500 ° C and ΔHv 650 ° C both less than 20 are evaluated as acceptable (“〇”), and if either one is 20 or more, it is evaluated. It was rejected (“x”) because the hardness increased significantly after the heat treatment and the structure was unstable.

得られた評価結果(粒界濃度の測定、各種特性)は表2の通りである。
No.1〜13は、本発明で規定する成分を満たし、すべての特性の評価は「○」あるいは「◎」となったものである。中でも、No.3、7、9、13は、本発明の好適な粒界濃度を満たしている場合であり、顕著な高温強度の向上効果を発現し、その評価は「◎」となった。また、No.2、3、8、9、11は、本発明の好適な成分組成(特に、Cr、Si、Al)を満たしている場合であり、顕著な耐酸化性の向上効果を発現し、その評価は「◎」となった。
The obtained evaluation results (measurement of grain boundary concentration, various characteristics) are shown in Table 2.
No. 1 to 13 satisfy the components specified in the present invention, and the evaluation of all the characteristics is "◯" or "◎". Above all, No. In the cases of 3, 7, 9 and 13, which satisfy the suitable grain boundary concentration of the present invention, a remarkable effect of improving the high temperature strength was exhibited, and the evaluation was “⊚”. In addition, No. Nos. 2, 3, 8, 9 and 11 are cases where the suitable component composition of the present invention (particularly Cr, Si, Al) is satisfied, and a remarkable effect of improving the oxidation resistance is exhibited, and the evaluation thereof is evaluated. It became "◎".

鋼No.14〜19は、本発明で規定する鋼成分から外れるものであり、本発明の目標とする各特性を両立することができず、いずれかの評価が「×」となった。 Steel No. Nos. 14 to 19 deviate from the steel components specified in the present invention, and the respective characteristics targeted by the present invention could not be compatible with each other, and one of the evaluations was "x".

Figure 0006971184
Figure 0006971184

Figure 0006971184
Figure 0006971184

Claims (12)

質量%にて、
Cr:12.0〜16.0%、
C:0.020%以下、
Si:2.50%以下、
Mn:1.00%以下、
P:0.050%以下、
S:0.0030%以下、
Al:0.90%以上、2.50%以下、
N:0.030%以下、
Nb:0.001〜1.00%、
Ni:0〜1.0%、
Cu:0〜1.0%、
Mo:0〜1.0%、
Sb:0〜0.5%、
W:0〜1.0%、
Co:0〜0.5%、
V:0〜0.5%、
Ti:0〜0.5%、
Zr:0〜0.5%、
La:0〜0.1%、
Y:0〜0.1%、
Hf:0〜0.1%、
REM:0〜0.1%
を含み、さらに、
B:0.0200%以下、
Sn:0.20%以下、
Ga:0.0200%以下、
Mg:0.0200%以下、
Ca:0.0100%以下
の1種または2種以上を含み、かつ下記式(1)を満たし、残部がFeおよび不純物からなることを特徴とするフェライト系ステンレス鋼。
10(B+Ga)+Sn+Mg+Ca>0.020 ・・・(1)
なお、式(1)中の各元素記号は、鋼中の各元素の含有量(質量%)を示す。
By mass%
Cr: 12.0 to 16.0%,
C: 0.020% or less,
Si: 2.50% or less,
Mn: 1.00% or less,
P: 0.050% or less,
S: 0.0030% or less,
Al: 0.90% or more, 2.50% or less,
N: 0.030% or less,
Nb: 0.001-1.00%,
Ni: 0-1.0%,
Cu: 0-1.0%,
Mo: 0-1.0%,
Sb: 0-0.5%,
W: 0-1.0%,
Co: 0-0.5%,
V: 0-0.5%,
Ti: 0-0.5%,
Zr: 0-0.5%,
La: 0-0.1%,
Y: 0-0.1%,
Hf: 0-0.1%,
REM: 0-0.1%
Including,
B: 0.0200% or less,
Sn: 0.20% or less,
Ga: 0.0200% or less,
Mg: 0.0200% or less,
Ca: A ferritic stainless steel containing one or more of 0.0100% or less, satisfying the following formula (1), and having the balance composed of Fe and impurities.
10 (B + Ga) + Sn + Mg + Ca> 0.020 ... (1)
The element symbol in the formula (1) indicates the content (mass%) of each element in the steel.
質量%にて、前記B:0.0002%以上であることを特徴とする請求項1に記載のフェライト系ステンレス鋼。 The ferrite-based stainless steel according to claim 1, wherein the B: 0.0002% or more in terms of mass%. 質量%にて、結晶粒界のNb濃度が3.0〜10%の範囲であることを特徴とする請求項1又は2に記載のフェライト系ステンレス鋼。 The ferrite-based stainless steel according to claim 1 or 2, wherein the Nb concentration at the grain boundaries is in the range of 3.0 to 10% in terms of mass%. 質量%にて、前記Sn:0.005%以上であり、結晶粒界のSn濃度が1.0〜5.0%であることを特徴とする請求項1〜3の何れか一項に記載のフェライト系ステンレス鋼。 The invention according to any one of claims 1 to 3, wherein the Sn is 0.005% or more in terms of mass%, and the Sn concentration at the grain boundaries is 1.0 to 5.0%. Ferritic stainless steel. 質量%にて、前記Si:0.5%以上、前記Al:1%以上、前記Nb:0.15%以上であることを特徴とする請求項1〜4の何れか一項に記載のフェライト系ステンレス鋼。 The ferrite according to any one of claims 1 to 4, wherein the Si: 0.5% or more, the Al: 1% or more, and the Nb: 0.15% or more in terms of mass%. Ferritic stainless steel. 質量%にて、更に、Ni:0.10〜1.0%、Cu:0.10〜1.0%、Mo:0.10〜1.0%、Sb:0.01〜0.5%、W:0.10〜1.0%、Co:0.10〜0.5%、V:0.10〜0.5%、Ti:0.01〜0.5%、Zr:0.01〜0.5%、La:0.001〜0.1%以下、Y:0.001〜0.1%、Hf:0.001〜0.1%、REM:0.001〜0.1%の1種または2種以上含有していることを特徴とする請求項1〜5の何れか一項に記載のフェライト系ステンレス鋼。 By mass%, Ni: 0.10 to 1.0%, Cu: 0.10 to 1.0%, Mo: 0.10 to 1.0%, Sb: 0.01 to 0.5%. , W: 0.10 to 1.0%, Co: 0.10 to 0.5%, V: 0.10 to 0.5%, Ti: 0.01 to 0.5%, Zr: 0.01 ~ 0.5%, La: 0.001 to 0.1% or less, Y: 0.001 to 0.1%, Hf: 0.001 to 0.1%, REM: 0.001 to 0.1% The ferrite-based stainless steel according to any one of claims 1 to 5, which contains one or more of the above. 燃料改質器、熱交換器あるいは燃料電池部材に適用されることを特徴とする請求項1〜6の何れか一項に記載のフェライト系ステンレス鋼。 The ferritic stainless steel according to any one of claims 1 to 6, wherein the ferritic stainless steel is applied to a fuel reformer, a heat exchanger, or a fuel cell member. 燃焼器、あるいはバーナーの部材に適用されることを特徴とする請求項1〜7の何れか一項に記載のフェライト系ステンレス鋼。 The ferrite-based stainless steel according to any one of claims 1 to 7, wherein the ferrite-based stainless steel is applied to a member of a combustor or a burner. 請求項1、2、5、または6のいずれか一項に記載の組成を有するステンレス鋼材を熱間加工した後、700℃超で熱処理し、次いで冷間加工を行い、700℃超の仕上げ焼鈍を行うことを特徴とする請求項1〜6のいずれか一項に記載のフェライト系ステンレス鋼の製造方法。 A stainless steel material having the composition according to any one of claims 1, 2, 5, or 6 is hot-worked, then heat-treated at over 700 ° C., then cold-worked, and finish-annealed at over 700 ° C. The method for producing a ferritic stainless steel according to any one of claims 1 to 6, wherein the method is described in 1. 前記仕上げ焼鈍の後に、600〜700℃の温度範囲内で1分超、3時間以下保持する熱処理を施すことを特徴とする請求項9に記載のフェライト系ステンレス鋼の製造方法。 The method for producing a ferritic stainless steel according to claim 9, wherein after the finish annealing, a heat treatment is performed in a temperature range of 600 to 700 ° C. for more than 1 minute and for 3 hours or less. 前記仕上げ焼鈍において、700℃超に加熱し冷却する際、600〜700℃の温度域での保持時間を1分超とすることを特徴とする請求項9に記載のフェライト系ステンレス鋼の製造方法。 The method for producing a ferritic stainless steel according to claim 9, wherein in the finish annealing, the holding time in the temperature range of 600 to 700 ° C. is set to more than 1 minute when heated to over 700 ° C. and cooled. .. 請求項1〜6のいずれか一項に記載のフェライト系ステンレス鋼を用いた燃料電池用部材。 A fuel cell member using the ferrite-based stainless steel according to any one of claims 1 to 6.
JP2018060883A 2018-03-27 2018-03-27 Ferritic stainless steel, its manufacturing method, and fuel cell components Active JP6971184B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2018060883A JP6971184B2 (en) 2018-03-27 2018-03-27 Ferritic stainless steel, its manufacturing method, and fuel cell components
TW108110280A TWI801538B (en) 2018-03-27 2019-03-25 Ferritic stainless steel, method for producing the same, ferritic stainless steel sheet, method for producing the same, and members for fuel cell
US17/040,870 US11667986B2 (en) 2018-03-27 2019-03-26 Ferritic stainless steel and method for manufacturing same, ferritic stainless steel sheet and method for manufacturing same, and fuel cell member
EP19775851.9A EP3778959A4 (en) 2018-03-27 2019-03-26 Ferritic stainless steel and method for manufacturing same, ferritic stainless steel plate and method for manufacturing same, and fuel cell member
EP23165488.0A EP4223888A3 (en) 2018-03-27 2019-03-26 Ferritic stainless steel and method for manufacturing same, ferritic stainless steel sheet and method for manufacturing same, and fuel cell member
KR1020207028261A KR102444640B1 (en) 2018-03-27 2019-03-26 Ferritic stainless steel and manufacturing method thereof, ferritic stainless steel sheet and manufacturing method thereof, and member for fuel cell
EP22154962.9A EP4036255A1 (en) 2018-03-27 2019-03-26 Ferritic stainless steel and method for manufacturing same, ferritic stainless steel sheet and method for manufacturing same, and fuel cell member
PCT/JP2019/012843 WO2019189174A1 (en) 2018-03-27 2019-03-26 Ferritic stainless steel and method for manufacturing same, ferritic stainless steel plate and method for manufacturing same, and fuel cell member
CN201980020968.1A CN111902557B (en) 2018-03-27 2019-03-26 Ferritic stainless steel and method for producing same, ferritic stainless steel sheet and method for producing same, and fuel cell member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018060883A JP6971184B2 (en) 2018-03-27 2018-03-27 Ferritic stainless steel, its manufacturing method, and fuel cell components

Publications (2)

Publication Number Publication Date
JP2019173072A JP2019173072A (en) 2019-10-10
JP6971184B2 true JP6971184B2 (en) 2021-11-24

Family

ID=68166537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018060883A Active JP6971184B2 (en) 2018-03-27 2018-03-27 Ferritic stainless steel, its manufacturing method, and fuel cell components

Country Status (1)

Country Link
JP (1) JP6971184B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7172934B2 (en) 2019-09-24 2022-11-16 いすゞ自動車株式会社 vehicle controller

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5704823B2 (en) * 2010-02-25 2015-04-22 日新製鋼株式会社 Ferritic stainless steel with no rare earth metals and excellent oxidation resistance at high temperatures
JP2011202838A (en) * 2010-03-25 2011-10-13 Nisshin Steel Co Ltd Stainless steel refrigerant piping for heat exchanger
MX346735B (en) * 2012-01-30 2017-03-30 Jfe Steel Corp Ferritic stainless steel foil.
WO2014157578A1 (en) * 2013-03-27 2014-10-02 新日鐵住金ステンレス株式会社 Ferritic stainless steel with excellent surface corrosion resistance after polishing, and process for producing same
JP6302690B2 (en) * 2014-02-04 2018-03-28 新日鐵住金ステンレス株式会社 Ferritic stainless steel with excellent corrosion resistance after polishing
JP5908936B2 (en) * 2014-03-26 2016-04-26 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet for flange, manufacturing method thereof and flange part
US20170314093A1 (en) * 2014-10-31 2017-11-02 Nippon Steel & Sumikin Stainless Steel Corporation Ferrite-based stainless steel plate, steel pipe, and production method therefor
WO2017073093A1 (en) * 2015-10-29 2017-05-04 新日鐵住金ステンレス株式会社 Ferritic stainless steel for fuel cell with excellent anti-creep strength and manufacturing method therefor

Also Published As

Publication number Publication date
JP2019173072A (en) 2019-10-10

Similar Documents

Publication Publication Date Title
US11667986B2 (en) Ferritic stainless steel and method for manufacturing same, ferritic stainless steel sheet and method for manufacturing same, and fuel cell member
JP5902253B2 (en) Ferritic stainless steel for fuel cells and method for producing the same
JP7224141B2 (en) Ferritic stainless steel sheet, manufacturing method thereof, and fuel cell member
WO2017073093A1 (en) Ferritic stainless steel for fuel cell with excellent anti-creep strength and manufacturing method therefor
EP3369832A1 (en) Al-CONTAINING FERRITIC STAINLESS STEEL WITH EXCELLENT CREEP CHARACTERISTICS, MANUFACTURING METHOD THEREFOR, AND FUEL CELL MEMBER
JP2016204709A (en) Ferritic stainless steel sheet having excellent carburization resistance and oxidation resistance, and method of manufacturing the same
JP6765287B2 (en) Ferritic stainless steel, its manufacturing method, and fuel cell components
JP6643906B2 (en) Ferritic stainless steel with excellent heat resistance for solid oxide fuel cells and method for producing the same
JP6937717B2 (en) Ferritic stainless steel sheets and their manufacturing methods, as well as fuel cell components
JP2015001008A (en) Austenitic stainless steel for fuel reformer excellent in adhesion of oxide film and production method thereof
JP6971184B2 (en) Ferritic stainless steel, its manufacturing method, and fuel cell components
JP6006893B2 (en) Ferritic stainless steel for fuel cells
JP7233195B2 (en) Ferritic stainless steel, manufacturing method thereof, and fuel cell member
JP6498263B2 (en) Austenitic stainless steel for fuel reformer with excellent adhesion of oxide film and method for producing the same
JP7076258B2 (en) Ferritic stainless steel sheets and their manufacturing methods, as well as fuel cell components
JP6937716B2 (en) Ferritic stainless steel sheets and their manufacturing methods, as well as fuel cell components
JP2019031717A (en) Austenitic stainless steel and method for producing the same, and members of fuel reformer and combustor
JP6971185B2 (en) Ferritic stainless steel welded joints and fuel cell components
JP6655962B2 (en) Al-containing ferritic stainless steel welded joint with excellent 475 ° C brittle resistance
JP6053994B1 (en) Ferritic stainless steel for fuel cells with excellent creep resistance and method for producing the same
JP7055050B2 (en) Ferritic stainless steel welding filler material
JP6873020B2 (en) Ferritic stainless steel sheets and their manufacturing methods, as well as fuel reformers and combustor components
KR20240007212A (en) Ferritic stainless steel pipe and manufacturing method thereof, and fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211101

R150 Certificate of patent or registration of utility model

Ref document number: 6971184

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150