JP6971185B2 - Ferritic stainless steel welded joints and fuel cell components - Google Patents

Ferritic stainless steel welded joints and fuel cell components Download PDF

Info

Publication number
JP6971185B2
JP6971185B2 JP2018060887A JP2018060887A JP6971185B2 JP 6971185 B2 JP6971185 B2 JP 6971185B2 JP 2018060887 A JP2018060887 A JP 2018060887A JP 2018060887 A JP2018060887 A JP 2018060887A JP 6971185 B2 JP6971185 B2 JP 6971185B2
Authority
JP
Japan
Prior art keywords
less
stainless steel
weld metal
welded joint
ferritic stainless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018060887A
Other languages
Japanese (ja)
Other versions
JP2019173076A (en
Inventor
三月 菅生
正治 秦野
工 西本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Stainless Steel Corp
Original Assignee
Nippon Steel Stainless Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Stainless Steel Corp filed Critical Nippon Steel Stainless Steel Corp
Priority to JP2018060887A priority Critical patent/JP6971185B2/en
Publication of JP2019173076A publication Critical patent/JP2019173076A/en
Application granted granted Critical
Publication of JP6971185B2 publication Critical patent/JP6971185B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

本発明は、フェライト系ステンレス鋼溶接接手および燃料電池用部材に関する。 The present invention relates to a ferrite stainless steel welded joint and a member for a fuel cell.

最近、石油を代表とする化石燃料の枯渇化、CO2排出による地球温暖化現象等の問題から、従来の発電システムに替わる新しいシステムの普及が加速している。その1つとして、分散電源,自動車の動力源としても実用的価値が高い「燃料電池」が注目されている。燃料電池にはいくつかの種類があるが、その中でも固体高分子型燃料電池(PEFC)や固体酸化物型燃料電池(SOFC)はエネルギー効率が高く、将来の普及拡大が有望視されている。 Recently, due to problems such as the depletion of fossil fuels such as petroleum and the phenomenon of global warming due to CO 2 emissions, the spread of new systems that replace conventional power generation systems is accelerating. As one of them, "fuel cells", which have high practical value as distributed power sources and power sources for automobiles, are attracting attention. There are several types of fuel cells, but among them, polymer electrolyte fuel cells (PEFC) and solid oxide fuel cells (SOFC) are highly energy efficient, and their widespread use is expected in the future.

燃料電池は、水の電気分解と逆の反応過程を経て電力を発生する装置であり、燃料となる水素(燃料水素)を必要とする。燃料水素は、都市ガス(LNG)、メタン、天然ガス、プロパン、灯油、ガソリン等の炭化水素系燃料を触媒の存在下で改質反応させることにより製造される。中でも都市ガスを原燃料とする燃料電池は、都市ガス配管が整備された地区において水素を製造できる利点がある。 A fuel cell is a device that generates electric power through a reaction process opposite to the electrolysis of water, and requires hydrogen (fuel hydrogen) as a fuel. Fuel hydrogen is produced by reforming a hydrocarbon fuel such as city gas (LNG), methane, natural gas, propane, kerosene, and gasoline in the presence of a catalyst. Among them, a fuel cell using city gas as a raw material has an advantage that hydrogen can be produced in an area where city gas piping is installed.

燃料改質器は、水素の改質反応に必要な熱量を確保するため、通常、200〜900℃の高温で運転される。また、燃料改質器以外でも、改質器を加熱する燃焼器や、熱交換器、電池本体部等も運転温度が非常に高温となる。
更に、このような高温運転下の燃料電池において、多量の水蒸気、二酸化炭素、一酸化炭素に加え、多量の水素や、炭化水素系燃料由来の硫化水素を微量含んだ雰囲気(以下、浸炭性/還元性/硫化性環境、という。)の下に曝されることとなる。このような雰囲気中に、例えば鋼材料が曝されると、材料表面の浸炭、硫化による腐食が進行する状況になり、動作環境としては過酷な状況となる。
The fuel reformer is usually operated at a high temperature of 200 to 900 ° C. in order to secure the amount of heat required for the hydrogen reforming reaction. In addition to the fuel reformer, the operating temperature of the combustor that heats the reformer, the heat exchanger, the battery body, and the like becomes extremely high.
Further, in such a fuel cell under high temperature operation, an atmosphere containing a large amount of water vapor, carbon dioxide, carbon monoxide, a large amount of hydrogen, and a trace amount of hydrogen sulfide derived from a hydrocarbon fuel (hereinafter, carburizing property / It will be exposed to a reducing / sulfurizing environment). When, for example, a steel material is exposed to such an atmosphere, the surface of the material is carburized and corroded by sulfurization, which makes the operating environment harsh.

また、高Cr含有ステンレス鋼では、400〜500℃程度の温度域に長時間曝されると、高Cr濃度相と低Cr濃度相のスピノーダル分解に起因した硬質化が生じる可能性が考えられる。いわゆる475℃脆性である。したがって、SOFCシステムやPEFCシステムにおける高温使用環境においては、475℃脆性に起因した材料劣化が生じる可能性が考えられる。 Further, in the case of high Cr-containing stainless steel, if it is exposed to a temperature range of about 400 to 500 ° C. for a long time, it is considered that hardening due to spinodal decomposition of the high Cr concentration phase and the low Cr concentration phase may occur. It is so-called 475 ° C brittle. Therefore, in a high temperature use environment in an SOFC system or PEFC system, it is conceivable that material deterioration due to brittleness at 475 ° C. may occur.

ここで、燃料電池における高温部材用途では、良好な耐酸化性を有するAl含有フェライト系ステンレス鋼の適用が推奨されている。しかしながら、Al含有フェライト系ステンレス鋼は他のフェライト系ステンレス鋼と比べ強度が高いため低靭性であり、例えば非特許文献1で開示されている通り、鉄鋼材料の延性脆性遷移温度はAl添加により増大することが知られている。また、Al含有ステンレス鋼は、高温域での金属間化合物σ相析出による脆性(σ脆性)に起因した劣化が生じる問題も抱えている。
さらに、将来、燃料電池システムの普及拡大に向けて、コスト低減は必要不可欠であり、使用材料の最適化による合金コストの低減は重要な課題である。
Here, it is recommended to use Al-containing ferritic stainless steel having good oxidation resistance for high temperature member applications in fuel cells. However, the Al-containing ferritic stainless steel has higher strength than other ferritic stainless steels and therefore has low toughness. For example, as disclosed in Non-Patent Document 1, the ductile brittle transition temperature of the steel material is increased by the addition of Al. It is known to do. Further, the Al-containing stainless steel has a problem that deterioration due to brittleness (σ brittleness) due to precipitation of the intermetallic compound σ phase in a high temperature range occurs.
Furthermore, cost reduction is indispensable for the widespread use of fuel cell systems in the future, and reduction of alloy costs by optimizing the materials used is an important issue.

特許文献1には、高温水蒸気含有雰囲気での耐酸化性とクリープ破断寿命を兼備する燃料電池用フェライト系ステンレス鋼が開示されている。本ステンレス鋼のCr量は13〜20%であるが、Cr量が475℃脆性を示さない15%以下の場合、耐酸化性確保のために4%以上のAl添加が必要となるが、このように多量のAlを含む鋼板の靭性は著しく低下するため、実製造が困難となる。 Patent Document 1 discloses a ferrite-based stainless steel for a fuel cell, which has both oxidation resistance in a high-temperature steam-containing atmosphere and creep rupture life. The Cr content of this stainless steel is 13 to 20%, but if the Cr content is 15% or less that does not show brittleness at 475 ° C, it is necessary to add 4% or more of Al to ensure oxidation resistance. As described above, the toughness of the steel sheet containing a large amount of Al is significantly reduced, which makes actual production difficult.

特許文献2には、耐酸化性、二次加工性に優れ、自動車排ガス経路に設置されるセンサの素子カバーなどの耐酸化性と高成形加工性が要求される用途に好適なフェライト系ステンレス鋼が開示されている。本ステンレス鋼の場合、実質18%程度のCrを含有するため、475℃脆性が発現する可能性が考えられる。 Patent Document 2 describes ferrite stainless steel, which has excellent oxidation resistance and secondary workability, and is suitable for applications that require oxidation resistance and high moldability, such as element covers for sensors installed in automobile exhaust gas paths. Is disclosed. In the case of this stainless steel, since it contains about 18% Cr, it is considered that brittleness at 475 ° C. may develop.

特許文献3には、表面性状に優れた高Al含有フェライト系ステンレス鋼板、その製造方法、ステンレス箔が開示されている。本ステンレス鋼の場合、実質18%程度のCrおよび3%以上のAlを含有するため、475℃脆性の発現および高Al含有による靭性低下が生じると考えられる。 Patent Document 3 discloses a high Al-containing ferritic stainless steel sheet having excellent surface properties, a method for producing the same, and a stainless foil. In the case of this stainless steel, since it contains about 18% Cr and 3% or more Al, it is considered that brittleness at 475 ° C. and a decrease in toughness due to a high Al content occur.

特許文献4には、溶接性と加工性に優れた触媒担持用耐熱フェライト系ステンレス鋼が開示されている。本ステンレス鋼はAlを1〜2.5%程度含有し、溶接後も優れた成形加工性を有している点に特徴がある。 Patent Document 4 discloses a heat-resistant ferrite-based stainless steel for supporting a catalyst, which has excellent weldability and workability. This stainless steel is characterized in that it contains about 1 to 2.5% of Al and has excellent formability even after welding.

特開2014−139342号公報Japanese Unexamined Patent Publication No. 2014-139342 特開2012−12674号公報Japanese Unexamined Patent Publication No. 2012-12674 特開2015−78415号公報Japanese Unexamined Patent Publication No. 2015-78415 特開2001−316773号公報Japanese Unexamined Patent Publication No. 2001-316673

”The Increase in a Brittle−to−ductile Transition Temperature in Fe−Al Single crystal”,ISIJ International,Vol.51 No.6,pp.999−1004"The Increase in a Brittle-to-ductile Transition Temperature in Fe-Al Single crystal", ISIJ International, Vol. 51 No. 6, pp. 999-1004

前記した都市ガス等を原燃料とした燃料電池の改質ガスは、水蒸気、二酸化炭素、一酸化炭素に加えて、多量の水素、ならびに不純物もしくは付臭剤として添加された硫化成分を含む場合がある。しかし従来では、フェライト系ステンレス鋼の耐酸化性について、水蒸気と二酸化炭素を主成分とする雰囲気、あるいは水蒸気と酸素を主成分とする雰囲気、または大気中といった環境下でしか評価・検討されていない。すなわち、二酸化炭素、一酸化炭素、多量の水素、ならびに硫化成分を含む過酷な環境(浸炭性/還元性/硫化性環境)の下でのフェライト系ステンレス鋼の酸化特性については不明である。
また、SOFCシステムやPEFCシステムの場合、燃料電池の運転温度が高温となるため、高温強度のさらなる向上が求められる。
さらには、燃料電池用部材として溶接構造を採用する場合には、475℃脆性やσ脆性に起因した溶接部の脆性破壊が回避可能な溶接構造であることも求められる。
The reformed gas of a fuel cell using the city gas or the like as a raw material may contain a large amount of hydrogen and a sulfide component added as an impurity or an odorant in addition to water vapor, carbon dioxide and carbon monoxide. be. However, conventionally, the oxidation resistance of ferritic stainless steel has been evaluated and examined only in an atmosphere containing water vapor and carbon dioxide as main components, an atmosphere containing water vapor and oxygen as main components, or an environment such as the atmosphere. .. That is, the oxidation characteristics of ferritic stainless steel under a harsh environment (carburizing / reducing / sulphurizing environment) containing carbon dioxide, carbon monoxide, a large amount of hydrogen, and a sulfide component are unknown.
Further, in the case of an SOFC system or a PEFC system, the operating temperature of the fuel cell becomes high, so that further improvement in high temperature strength is required.
Further, when a welded structure is adopted as a member for a fuel cell, it is also required to have a welded structure in which brittle fracture of a welded portion due to brittleness at 475 ° C. or σ brittleness can be avoided.

特許文献1〜4のステンレス鋼においては、多量の水素、硫化水素を含む浸炭性/還元性/硫化性環境といったさらに厳しい環境下における酸化特性や高温強度については何ら言及されていない上、475℃脆性やσ脆性に起因した溶接部における脆化特性は認識されていない。すなわち、溶接部における脆化特性を向上させ、かつ酸化特性および高温強度に優れた高性能のフェライト系ステンレス鋼溶接接手は未だ実現していない。 In the stainless steels of Patent Documents 1 to 4, no mention is made of oxidation characteristics and high temperature strength under more severe environment such as embrittlement / reducing / sulfurizing environment containing a large amount of hydrogen and hydrogen sulfide, and 475 ° C. The embrittlement characteristics of welds due to brittleness and σ brittleness have not been recognized. That is, a high-performance ferrite stainless steel weld joint that improves the embrittlement characteristics of the welded portion and has excellent oxidation characteristics and high-temperature strength has not yet been realized.

本発明は、上述した課題を解消すべく案出されたものであり、二酸化炭素、一酸化炭素、多量の水素、ならびに硫化成分を含む環境(浸炭性/還元性/硫化性環境)下であっても、高い耐酸化性と優れた高温強度、ならびに優れた脆性特性を兼備したフェライト系ステンレス鋼溶接接手および燃料電池用部材を提供するものである。 The present invention has been devised to solve the above-mentioned problems, and is in an environment containing carbon dioxide, carbon monoxide, a large amount of hydrogen, and a sulfide component (carburizing / reducing / sulfide environment). However, it provides a ferritic stainless steel welded joint and a member for a fuel cell, which has high oxidation resistance, excellent high temperature strength, and excellent brittleness.

本発明の要旨は、以下のとおりである。
[1]フェライト系ステンレス鋼母材と溶接金属部とからなる溶接継手であって、
前記溶接金属部の化学成分が、質量%にて、
Cr:12.0〜16.0%、
C:0.030%以下、
Si:2.50%以下、
Mn:1.00%以下、
P:0.050%以下、
S:0.0030%以下、
Al:1.00〜2.50%、
N:0.030%以下、
Nb:1.00%以下、
V:0〜1.00%、
Ni:0〜1.0%、
Cu:0〜1.0%、
Mo:0〜1.0%、
W:0〜1.0%、
Co:0〜0.50%、
As:0〜0.05%、
Pb:0〜0.005%、
Zr:0〜0.10%、
Zn:0〜0.03%、
Y:0〜0.10%、
La:0〜0.10%、
Hf:0〜0.10%、
Sb:0〜0.10%、
Ta:0〜0.5%
REM:0〜0.10%
を含み、更に、
B:0.0200%以下、
Sn:0.20%以下、
Ga:0.0200%以下、
Mg:0.0200%以下、
Ca:0.0100%以下
の1種または2種以上を含み、且つ下記式(1)を満たし、残部がFeおよび不純物からなることを特徴とするフェライト系ステンレス鋼溶接継手。
10(B+Ga)+Sn+Mg+Ca>0.020 ・・・(1)
なお、式(1)中の各元素記号は、溶接金属部中の各元素の含有量(質量%)を示す。
[2]前記溶接金属部の化学成分が、Nb:0.001〜1.0%、およびV:0.001〜1.0%を含み、かつ下記式(2)を満たすことを特徴とする上記[1]に記載のフェライト系ステンレス鋼溶接継手。
(Nb+V)/{2×(C+N)}≧5.0 ・・・(2)
なお、式(2)中の各元素記号は、溶接金属部中の各元素の含有量(質量%)を示す。
[3]前記溶接金属部の化学成分が、更に、質量%にて、
Ni:0.02〜1.0%、Cu:0.02〜1.0%、Mo:0.02〜1.0%、W:0.02〜1.0%の1種または2種以上からなる第1群、および、
Co:0.10〜0.50%、As:0.001〜0.05%、Pb:0.0001〜0.005%、Zr:0.0001〜0.10%、Zn:0.01〜0.03%、Y:0.0001〜0.10%、La:0.0001〜0.10%、Hf:0.0001〜0.10%、Sb:0.003〜0.10%、Ta:0.002〜0.5%、REM:0.001〜0.10%の1種または2種以上からなる第2群のうち、少なくともいずれかの群を含有することを特徴とする上記[1]または[2]に記載のフェライト系ステンレス鋼溶接継手。
[4]前記溶接金属部における結晶粒径の大きさが600μm以下であることを特徴とする上記[1]〜[3]の何れか一項に記載のフェライト系ステンレス鋼溶接継手。
[5]燃料改質器、熱交換器あるいは燃料電池部材に適用されることを特徴とする上記[1]〜[4]の何れか1項に記載のフェライト系ステンレス鋼溶接継手。
[6]燃焼器、あるいはバーナーの部材に適用されること特徴とする上記[1]〜[5]の何れか一項に記載のフェライト系ステンレス鋼溶接継手。
The gist of the present invention is as follows.
[1] A welded joint composed of a ferritic stainless steel base material and a weld metal part.
The chemical composition of the weld metal part is mass%.
Cr: 12.0 to 16.0%,
C: 0.030% or less,
Si: 2.50% or less,
Mn: 1.00% or less,
P: 0.050% or less,
S: 0.0030% or less,
Al: 1.00 to 2.50%,
N: 0.030% or less,
Nb: 1.00% or less,
V: 0-1.00%,
Ni: 0-1.0%,
Cu: 0-1.0%,
Mo: 0-1.0%,
W: 0-1.0%,
Co: 0-0.50%,
As: 0-0.05%,
Pb: 0 to 0.005%,
Zr: 0-0.10%,
Zn: 0 to 0.03%,
Y: 0 to 0.10%,
La: 0 to 0.10%,
Hf: 0 to 0.10%,
Sb: 0 to 0.10%,
Ta: 0-0.5%
REM: 0 to 0.10%
Including, and further
B: 0.0200% or less,
Sn: 0.20% or less,
Ga: 0.0200% or less,
Mg: 0.0200% or less,
Ca: A ferrite-based stainless steel welded joint containing one or more of 0.0100% or less, satisfying the following formula (1), and having the balance composed of Fe and impurities.
10 (B + Ga) + Sn + Mg + Ca> 0.020 ... (1)
The element symbol in the formula (1) indicates the content (mass%) of each element in the weld metal portion.
[2] The chemical composition of the weld metal portion contains Nb: 0.001 to 1.0% and V: 0.001 to 1.0%, and is characterized by satisfying the following formula (2). The ferritic stainless steel welded joint according to the above [1].
(Nb + V) / {2 × (C + N)} ≧ 5.0 ・ ・ ・ (2)
The element symbol in the formula (2) indicates the content (mass%) of each element in the weld metal part.
[3] The chemical composition of the weld metal portion is further increased by mass%.
One or more of Ni: 0.02 to 1.0%, Cu: 0.02 to 1.0%, Mo: 0.02 to 1.0%, W: 0.02 to 1.0% The first group consisting of and
Co: 0.10 to 0.50%, As: 0.001 to 0.05%, Pb: 0.0001 to 0.005%, Zr: 0.0001 to 0.10%, Zn: 0.01 to 0.03%, Y: 0.0001 to 0.10%, La: 0.0001 to 0.10%, Hf: 0.0001 to 0.10%, Sb: 0.003 to 0.10%, Ta It is characterized by containing at least one of the second group consisting of one or more of 0.002 to 0.5% and REM: 0.001 to 0.10%. The ferrite-based stainless steel welded joint according to 1] or [2].
[4] The ferrite-based stainless steel welded joint according to any one of the above [1] to [3], wherein the size of the crystal grain size in the weld metal portion is 600 μm or less.
[5] The ferritic stainless steel welded joint according to any one of the above [1] to [4], which is applied to a fuel reformer, a heat exchanger or a fuel cell member.
[6] The ferrite-based stainless steel welded joint according to any one of the above [1] to [5], which is applied to a combustor or a burner member.

[7]上記[1]〜[6]のいずれか一項に記載のフェライト系ステンレス鋼溶接継手を用いた燃料電池用部材。 [7] A fuel cell member using the ferrite-based stainless steel welded joint according to any one of the above [1] to [6].

本発明によれば、二酸化炭素、一酸化炭素、多量の水素、ならびに硫化成分を含む環境(浸炭性/還元性/硫化性環境)下であっても、高い耐酸化性と優れた高温強度、ならびに優れた脆性特性を兼備したフェライト系ステンレス鋼溶接接手および燃料電池用部材を提供することができる。 According to the present invention, high oxidation resistance and excellent high temperature strength even in an environment containing carbon dioxide, carbon monoxide, a large amount of hydrogen, and a sulfide component (carburizing / reducing / sulphurizing environment). Further, it is possible to provide a member for a ferrite-based stainless steel welded joint and a fuel cell having excellent brittleness characteristics.

本発明者らは、前記した課題を解決するために、耐酸化性、高温強度、ならびに脆化特性を兼備するAl含有フェライト系ステンレス鋼の溶接継手について鋭意実験と検討を重ね、本発明を完成させた。なお、本実施形態でいう「高温強度」とは、750〜800℃付近の高温域においても優れた0.2%耐力を発揮できる特性であり、「耐酸化性」とは二酸化炭素、一酸化炭素、多量の水素、ならびに硫化成分を含む改質ガス環境(浸炭性/還元性/硫化性環境)下における酸化特性を意味する。また「脆化特性」とは、σ脆性と475℃脆性が抑制可能となる組織の安定性を示す。
以下に本発明で得られた知見について説明する。
In order to solve the above-mentioned problems, the present inventors have completed the present invention by repeating diligent experiments and studies on welded joints of Al-containing ferritic stainless steel having both oxidation resistance, high temperature strength and embrittlement characteristics. I let you. The "high temperature strength" in the present embodiment is a characteristic that can exhibit an excellent 0.2% proof stress even in a high temperature range of around 750 to 800 ° C., and the "oxidation resistance" is carbon dioxide and monoxide. It means the oxidation characteristics in a reformed gas environment (carburizing / reducing / sulfurizing environment) containing carbon, a large amount of hydrogen, and a sulfurizing component. Further, the "embrittlement property" indicates the stability of the structure in which σ brittleness and 475 ° C. brittleness can be suppressed.
The findings obtained in the present invention will be described below.

「脆化特性について」
(a)母材部に対し、溶接部では結晶粒径が大きくなるため、475℃脆性やσ脆性に起因した破壊が生じやすくなる。この破壊の場合、へき開破面を呈する。Al含有フェライト系ステンレス鋼では、Alを含有していないフェライト系ステンレス鋼と比較し溶接時の結晶粒径が粗大化しやすい傾向にある。溶接継手における溶接金属部(本実施形態では溶接施工時に溶融して凝固した領域のことを意味する)の結晶粒径は600μm以下であることが好ましい。
"About embrittlement characteristics"
(A) Since the crystal grain size of the welded portion is larger than that of the base metal portion, fracture due to brittleness at 475 ° C. or σ brittleness is likely to occur. In the case of this fracture, it presents a cleavage plane. In the Al-containing ferritic stainless steel, the crystal grain size at the time of welding tends to be coarser than that in the ferritic stainless steel containing no Al. The crystal grain size of the weld metal portion (meaning a region melted and solidified during welding in the present embodiment) in the welded joint is preferably 600 μm or less.

(b)詳細な組織観察を行った結果、475℃脆性やσ脆性起因の破壊には双晶変形が関与しており、変形双晶導入によりせん断歪が発生する。このせん断歪を解放するため、へき開き裂が生成し、伝播することで破壊に至る。また、上述のせん断歪の解放時、粒界き裂が生じる場合もあることが分かった。この場合、PやS等の粒界偏析による粒界強度低下にともなう粒界破壊がき裂生成の起点となる。 (B) As a result of detailed microstructure observation, twinning deformation is involved in fracture caused by 475 ° C brittleness and σ brittleness, and shear strain occurs due to the introduction of deformed twinning. In order to release this shear strain, a cleft crack is generated and propagates, leading to fracture. It was also found that grain boundary cracks may occur when the above-mentioned shear strain is released. In this case, the grain boundary fracture due to the decrease in grain boundary strength due to the segregation of grain boundaries such as P and S becomes the starting point of crack formation.

(c)溶接部における475℃脆性およびσ脆性起因の破壊を抑制するためには、(i)双晶変形を発現しにくくすること、(ii)溶接時の結晶粒の粗大化を抑制すること、(iii)不純物元素の過剰な粒界偏析による粒界強度の低下を抑制することが重要となる。 (C) In order to suppress the fracture caused by 475 ° C brittleness and σ brittleness in the welded part, (i) it is difficult to develop twinning deformation, and (ii) it is necessary to suppress the coarsening of crystal grains during welding. , (Iii) It is important to suppress the decrease in grain boundary strength due to excessive grain boundary segregation of impurity elements.

(d)Alは従来、フェライト鋼の強度を増加させ、延性脆性遷移温度を増加させる、すなわち脆性破壊を助長させる元素であることが知られていた。しかしながら、溶接部のような結晶粒が粗大で、かつ475℃脆性やσ脆性起因の硬化によりすべり変形が非常に困難な状況において、適量のAl添加は双晶変形応力を高め、相対的にすべり変形を容易にすることが新たに分かった。 (D) Al has conventionally been known to be an element that increases the strength of ferritic steel and increases the ductile brittle transition temperature, that is, promotes brittle fracture. However, in a situation where the crystal grains are coarse like a welded part and slip deformation is very difficult due to hardening due to 475 ° C brittleness or σ brittleness, adding an appropriate amount of Al increases the twin crystal deformation stress and causes relative slip. It was newly found that it facilitates deformation.

(e)通常、Al含有フェライト系ステンレス鋼の溶接組織は柱状晶の成長により構成されるため、Alを含有していないフェライト系ステンレス鋼に対して粗大となる傾向にある。しかしながら、溶接金属中の化学成分の制御により(Nb,V)(C,N)から成る炭窒化物、あるいはMgO、CaOなどから成る介在物を生成させることで等軸晶の形成が助長され、溶接組織が微細化することがわかった。 (E) Since the welded structure of Al-containing ferritic stainless steel is usually composed of the growth of columnar crystals, it tends to be coarser than that of ferritic stainless steel that does not contain Al. However, the formation of equiaxed crystals is promoted by forming carbonitrides composed of (Nb, V) (C, N) or inclusions composed of MgO, CaO, etc. by controlling the chemical components in the weld metal. It was found that the weld structure became finer.

(f)上記(e)で述べた炭窒化物(Nb,V)(C,N)による等軸晶の形成促進効果を得るためには、溶接金属部の化学成分において、10(B+Ga)+Sn+Mg+Caを0.020超とすることが重要であることが分かった。溶接金属の場合、Mg、Ca、Gaは酸化物や硫化物を生成し、結晶粒界の清浄度を高めることができる。加えて、Mg、Ca、GaはNb(C,N)の核生成サイトとしても有効に作用するため、溶接金属の等軸晶の形成を促進させることができる。このような作用効果を効率的に得るために、(Nb+V)/{2×(C+N)}の値を5.0以上とすることが好ましいことも分かった。 (F) In order to obtain the effect of promoting the formation of equiaxed crystals by the carbonitride (Nb, V) (C, N) described in the above (e), the chemical composition of the weld metal portion is 10 (B + Ga) + Sn + Mg + Ca. Was found to be important to be greater than 0.020. In the case of weld metal, Mg, Ca and Ga can generate oxides and sulfides and improve the cleanliness of grain boundaries. In addition, since Mg, Ca, and Ga also effectively act as nucleation sites for Nb (C, N), it is possible to promote the formation of equiaxed crystals of the weld metal. It was also found that it is preferable to set the value of (Nb + V) / {2 × (C + N)} to 5.0 or more in order to efficiently obtain such an action and effect.

(g)また、溶接金属部の成分組成において、Cr、Si、Nb、Alの含有量を調整することが、金属間化合物σ相の析出(σ脆性)と475℃脆性自体の抑制に効果的であることが分かった。σ脆性と475℃脆性は、Crを主体としてSiやAlを含む金属間化合物の生成に由来し、その生成サイトは結晶粒界であることが多い。すなわち、σ脆性と475℃脆性を抑制するには、金属間化合物自体の生成を抑制するとともに、その生成サイトを低減することが効果的といえる。これらについて本発明者らがさらに検討したところ、Cr量の制限によって金属間化合物の生成自体を抑制するとともに、Nbの結晶粒界への偏析によって生成サイトを抑制することで組織を安定化させることができ、その結果、σ脆性と475℃脆性が抑制可能であることを見出した。さらに、Cr量の制限とNbの添加により、SiやAlを含む金属間化合物の生成を抑制できることから、後述する耐酸化性に寄与するSiとAl量を確保できるため、耐酸化性と組織安定性を両立することもできる。 (G) Further, adjusting the content of Cr, Si, Nb, and Al in the composition of the weld metal portion is effective in suppressing the precipitation (σ brittleness) of the intermetallic compound σ phase and the brittleness itself at 475 ° C. It turned out to be. The σ brittleness and the 475 ° C. brittleness are derived from the formation of intermetallic compounds containing Cr as the main component and Si and Al, and the formation sites are often grain boundaries. That is, in order to suppress σ brittleness and 475 ° C. brittleness, it can be said that it is effective to suppress the formation of the intermetallic compound itself and reduce the formation sites thereof. As a result of further studies by the present inventors on these, the formation of the intermetallic compound itself is suppressed by limiting the amount of Cr, and the structure is stabilized by suppressing the formation site by segregation of Nb into the grain boundaries. As a result, it was found that σ brittleness and 475 ° C. brittleness can be suppressed. Furthermore, by limiting the amount of Cr and adding Nb, the formation of intermetallic compounds containing Si and Al can be suppressed, and the amount of Si and Al that contributes to the oxidation resistance described later can be secured, so that oxidation resistance and tissue stability can be secured. It is also possible to achieve both sex.

「高温強度について」
(h)通常、750〜800℃付近の高温域で運転中の構造体で課題となる変形を抑止するには、材料であるフェライト系ステンレス鋼の高温強度、特に750℃付近における0.2%耐力を高め、かつ800℃付近における0.2%耐力の低下を抑制することが有効である。
"About high temperature strength"
(H) In order to suppress deformation, which is usually a problem in structures operating in the high temperature range of around 750 to 800 ° C, the high temperature strength of the material ferrite stainless steel, especially 0.2% at around 750 ° C. It is effective to increase the proof stress and suppress the decrease of 0.2% proof stress at around 800 ° C.

(i)上述した高温域での0.2%耐力の向上および低下の抑制は、B、Nb、Sn、Mg、Ca、Gaの微量添加およびその添加量の調整により著しく向上することを見出した。すなわち、フェライト系ステンレス鋼において、750℃付近における0.2%耐力を高め、かつ800℃付近における0.2%耐力の低下を抑制するという特性は、これら微量元素の添加により達成できるという新たな知見が得られた。このような高温強度の向上作用については未だ不明な点も多いが、実験事実に基づいて以下に述べるような作用機構を推察している。 (I) It was found that the improvement and suppression of the decrease in 0.2% proof stress in the high temperature region described above are remarkably improved by adding a small amount of B, Nb, Sn, Mg, Ca and Ga and adjusting the amount thereof. .. That is, in ferrite stainless steel, the property of increasing the 0.2% proof stress at around 750 ° C and suppressing the decrease in 0.2% proof stress at around 800 ° C can be achieved by adding these trace elements. Findings were obtained. There are still many unclear points about the action of improving the high temperature strength, but the mechanism of action described below is inferred based on the experimental facts.

(j)Bの微量添加は、750〜800℃での耐力や引張強度の上昇に対して少なからず寄与し、特に0.2%耐力を大幅に向上させる作用効果を持つ。Bの微量添加は、Bが粒界偏析することによって、結晶粒界を起点に発生するキャビティ(ナノサイズの隙間)の生成を抑制して粒界すべりを遅延させるとともに、結晶粒内において転位密度の上昇に伴う内部応力を高める作用効果がある。またこれらBの作用効果は、Nb添加鋼で顕著となる新規な知見を見出した。 (J) The addition of a small amount of B contributes not a little to the increase in proof stress and tensile strength at 750 to 800 ° C., and in particular has the effect of significantly improving the proof stress by 0.2%. The addition of a small amount of B suppresses the formation of cavities (nano-sized gaps) generated from the grain boundaries due to the segregation of B at the grain boundaries, delays the grain boundary slip, and causes the dislocation density in the crystal grains. It has the effect of increasing the internal stress associated with the rise of. In addition, we have found new findings that the action and effect of B are remarkable in Nb-added steel.

(k)上述したNb添加鋼で顕著となるBの作用効果は、Mg、Ca、Gaの複合添加により重畳する。Mg、Caは非金属介在物や硫化物を生成し、結晶粒界の清浄度を高めてBの粒界偏析を促進して、前記したBの作用効果をより効率的に発現させる。またGaも鋼の清浄度を向上させるため、Bとの複合添加により前記したBの作用効果を効率的に発現させることができる。 (K) The action and effect of B, which is remarkable in the above-mentioned Nb-added steel, is superimposed by the combined addition of Mg, Ca, and Ga. Mg and Ca generate non-metal inclusions and sulfides, increase the cleanliness of the crystal grain boundaries, promote the segregation of B grain boundaries, and more efficiently express the above-mentioned action and effect of B. Further, since Ga also improves the cleanliness of the steel, the above-mentioned action and effect of B can be efficiently exhibited by the combined addition with B.

(l)更に、前記(j)で述べた、粒内の転位密度の上昇に伴う内部応力を高める作用効果をより発揮させるためには、Snとの複合添加が効果的である。Snは粒界偏析元素ではあるものの、Bとの複合添加において、結晶粒内の固溶強化元素としての作用も大きくなり、内部応力の上昇に伴う高温強度を高めることに効果的である。 (L) Further, in order to further exert the effect of increasing the internal stress accompanying the increase in the dislocation density in the grain described in (j) above, the combined addition with Sn is effective. Although Sn is a grain boundary segregation element, when it is added in combination with B, it also has a large action as a solid solution strengthening element in the crystal grains, and is effective in increasing the high temperature strength with an increase in internal stress.

「耐酸化性について」
(m)また、前述した水素および硫化成分を含む改質ガス環境下の耐酸化性を高めるにはSi、Al、Nb、Mnの含有量を所定の範囲内に調整することで、Al系酸化皮膜の形成の促進と、当該皮膜の保護性を高めることが効果的である。さらに、フェライト系ステンレス鋼におけるB、Nb、Sn、Mg、Ca、Gaの添加は、改質ガス環境下の耐酸化性を損なわせるおそれはなく、むしろMg、Snの微量添加はAl系酸化皮膜の保護性をより高め耐酸化性の効果も奏する。なお、SiはAlと同様に、溶接組織の柱状晶化を促進させる元素でもあるため、Al系酸化皮膜の形成促進の観点からSi量を高めると、一方で溶接金属部の粗大化が懸念される。しかし、Nb、Sn、Mg、Ca、Gaの微量添加によって、溶接組織の柱状晶化を十分に抑制できることから、本実施形態のように、Si量の比較的高い場合でも、Al系酸化皮膜の形成促進と、溶接金属部の粗大化の抑制を両立させることが可能となる。ここで、本実施形態においては、高温の改質ガス環境下に曝される前の表面皮膜を「不働態皮膜」、高温の改質ガス環境下に曝され不働態皮膜が種々の反応によって組成が変化したものを「Al系酸化皮膜」と区別し説明する。
"About oxidation resistance"
(M) Further, in order to enhance the oxidation resistance in the reformed gas environment containing the above-mentioned hydrogen and sulfide components, Al-based oxidation is performed by adjusting the contents of Si, Al, Nb and Mn within a predetermined range. It is effective to promote the formation of a film and enhance the protective property of the film. Furthermore, the addition of B, Nb, Sn, Mg, Ca, and Ga in ferritic stainless steel does not impair the oxidation resistance in a modified gas environment. Rather, the addition of a small amount of Mg and Sn does not impair the oxidation resistance of the Al-based oxide film. It also enhances the protection of stainless steel and has the effect of oxidation resistance. Since Si is also an element that promotes columnar crystallization of the weld structure like Al, if the amount of Si is increased from the viewpoint of promoting the formation of an Al-based oxide film, there is a concern that the weld metal portion may become coarse. NS. However, since columnar crystallization of the welded structure can be sufficiently suppressed by adding a small amount of Nb, Sn, Mg, Ca, and Ga, even when the amount of Si is relatively high as in the present embodiment, the Al-based oxide film can be used. It is possible to achieve both promotion of formation and suppression of coarsening of the weld metal portion. Here, in the present embodiment, the surface film before being exposed to the high temperature reformed gas environment is "passive film", and the passive film exposed to the high temperature reformed gas environment is composed by various reactions. The changed one will be described separately from the "Al-based oxide film".

(n)前記した改質ガス環境(浸炭性/還元性/硫化性環境)は、大気や水素を含まない水蒸気酸化環境と比較して、フェライト系ステンレス鋼におけるAl系酸化皮膜の欠陥を生成し易い。改質ガス環境が酸化皮膜の欠陥生成を容易とする原因は明らかではないが、硫化成分を含む改質ガス下で生成される硫化物が、酸化皮膜に何らかの悪影響を及ぼしていると推測される。改質ガス環境下でAl系酸化皮膜に欠陥が生じると、露出された母材ではCrやFeの酸化が進行するおそれがある。このような改質ガス中における酸化促進に対して、MgはAl系酸化皮膜への固溶、Snは母材表面への偏析作用によりCrやFeの外方拡散を遅延させることにより、Al系酸化皮膜の保護性をより高めることができる。その結果、フェライト系ステンレス鋼の耐酸化性を向上させることができる。 (N) The reformed gas environment (carburizing / reducing / sulphurizing environment) described above produces defects in the Al-based oxide film in the ferritic stainless steel as compared with the steam oxidation environment containing no atmosphere or hydrogen. easy. The reason why the reformed gas environment facilitates the formation of defects in the oxide film is not clear, but it is presumed that the sulfide produced under the reformed gas containing a sulfide component has some adverse effect on the oxide film. .. If a defect occurs in the Al-based oxide film in the reformed gas environment, the oxidation of Cr and Fe may proceed in the exposed base material. In response to the promotion of oxidation in such a reforming gas, Mg dissolves in an Al-based oxide film, and Sn delays the outward diffusion of Cr and Fe by segregation on the surface of the base metal, thereby causing an Al-based solution. The protective property of the oxide film can be further enhanced. As a result, the oxidation resistance of the ferritic stainless steel can be improved.

以下、本発明のフェライト系ステンレス鋼溶接継手の一実施形態について説明する。 Hereinafter, an embodiment of the ferritic stainless steel welded joint of the present invention will be described.

<成分組成>
まず、溶接金属部の化学成分の限定理由を以下に説明する。なお、各元素の含有量の「%」表示は「質量%」を意味する。
<Ingredient composition>
First, the reasons for limiting the chemical composition of the weld metal part will be described below. In addition, "%" display of the content of each element means "mass%".

<Cr:12.0〜16.0%>
Crは、耐食性に加えて、高温強度の向上や表面酸化皮膜の保護性を確保する上で基本となる構成元素であり、これら効果を得るためには12.0%以上のCr量が必要である。好ましくは13.0%以上である。一方、過度にCrを含有させることは、475℃脆性起因の著しい材料硬化に加え、高温雰囲気に曝された際、脆化相であるσ相の生成を助長する。また、合金コストの上昇とCr蒸発を助長する場合があるため上限は16.0%以下とする。好ましくは、15.0%以下とする。
<Cr: 12.0 to 16.0%>
In addition to corrosion resistance, Cr is a basic constituent element for improving high-temperature strength and ensuring the protection of the surface oxide film, and in order to obtain these effects, an amount of Cr of 12.0% or more is required. be. It is preferably 13.0% or more. On the other hand, excessive Cr content promotes the formation of the σ phase, which is an embrittled phase, when exposed to a high temperature atmosphere, in addition to the remarkable hardening of the material due to brittleness at 475 ° C. In addition, the upper limit is set to 16.0% or less because it may promote an increase in alloy cost and Cr evaporation. It is preferably 15.0% or less.

<C:0.030%以下>
Cは、フェライト相に固溶あるいはCr炭化物を形成して耐酸化性を阻害する。また、溶接時の粒界におけるCr炭化物形成を促進させる。このため、C量は少ないほどよく、上限を0.030%以下とする。好ましくは0.020%以下である。但し、過度な低減は精錬コストの上昇に繋がるため、C量の下限は0.001%以上とすることが好ましい。より好ましくは0.002%以上である。
<C: 0.030% or less>
C forms a solid solution or Cr carbide in the ferrite phase and inhibits oxidation resistance. It also promotes the formation of Cr carbides at the grain boundaries during welding. Therefore, the smaller the amount of C, the better, and the upper limit is 0.030% or less. It is preferably 0.020% or less. However, since excessive reduction leads to an increase in refining cost, the lower limit of the amount of C is preferably 0.001% or more. More preferably, it is 0.002% or more.

<Si:2.50%以下>
Siは、耐酸化性を確保する上で重要な元素である。Siは、Al系酸化皮膜中へ僅かに固溶するとともに、酸化皮膜直下/鋼界面にも濃化し、改質ガス環境下の耐酸化性を向上させる。これら効果を得るためには0.50%以上とすることが好ましい。一方、Siを過度に含有させることは、Crのスピノーダル分解を助長させ、耐475℃脆性を低下させる。またSiは、溶接組織の柱状晶化を促進させる元素でもあるため、多量に含有させると溶接金属部の粗大化を招くおそれもある。さらに、鋼の靭性や加工性の低下ならびにAl系酸化皮膜の形成を阻害する場合もあるため、上限は2.50%以下とする。好ましい上限は1.70%以下である。
<Si: 2.50% or less>
Si is an important element for ensuring oxidation resistance. Si slightly dissolves in the Al-based oxide film and also concentrates directly under the oxide film / at the steel interface, improving the oxidation resistance in a modified gas environment. In order to obtain these effects, it is preferably 0.50% or more. On the other hand, excessive inclusion of Si promotes spinodal decomposition of Cr and lowers brittleness resistance at 475 ° C. Further, since Si is also an element that promotes columnar crystallization of the welded structure, if it is contained in a large amount, the weld metal portion may be coarsened. Further, since the toughness and workability of steel may be deteriorated and the formation of an Al-based oxide film may be hindered, the upper limit is set to 2.50% or less. The preferred upper limit is 1.70% or less.

<Mn:1.00%以下>
Mnは、改質ガス環境下でSiとともにAl系酸化皮膜中またはその直下に固溶して保護性を高め耐酸化性の向上に寄与しうる。これら効果を得るために下限は0.10%とすることが好ましい。一方、過度に含有させることは、鋼の耐食性やAl系酸化皮膜の形成を阻害するため、上限は1.00%以下とする。耐酸化性と基本特性の点から、0.90%以下が好ましい。
<Mn: 1.00% or less>
Mn can be dissolved together with Si in the Al-based oxide film or directly under the reformed gas environment to enhance the protection property and contribute to the improvement of the oxidation resistance. In order to obtain these effects, the lower limit is preferably 0.10%. On the other hand, if it is contained excessively, the corrosion resistance of the steel and the formation of the Al-based oxide film are hindered, so the upper limit is set to 1.00% or less. From the viewpoint of oxidation resistance and basic characteristics, 0.90% or less is preferable.

<P:0.050%以下>
Pは、製造性や溶接性を阻害し、溶接部における粒界強度を低下させる元素である。その含有量は少ないほどよいため、上限は0.050%以下とする。但し、過度な低減は精錬コストの上昇に繋がるため、下限は0.003%以上とすることが好ましい。製造性と溶接性の点から、好ましい範囲は0.005〜0.040%である。
<P: 0.050% or less>
P is an element that hinders manufacturability and weldability and lowers the grain boundary strength in the welded portion. The lower the content, the better, so the upper limit is 0.050% or less. However, since excessive reduction leads to an increase in refining cost, the lower limit is preferably 0.003% or more. From the viewpoint of manufacturability and weldability, the preferable range is 0.005 to 0.040%.

<S:0.0030%以下>
Sは、鋼中に不可避に含まれる不純物元素であり、Al系酸化皮膜の保護性を低下させる。特に、Mn系介在物や固溶Sの存在は、高温・長時間使用におけるAl系酸化皮膜の破壊起点としても作用する。また、溶接部における粒界強度を低下させる元素でもある。従って、S量は低いほどよいため、上限は0.0030%以下とする。但し、過度の低減は原料や精錬コストの上昇に繋がるため、下限は0.0001%以上とすることが好ましい。製造性と耐酸化性、耐475℃脆性の観点から、好ましい範囲は0.0001〜0.0020%である。
<S: 0.0030% or less>
S is an impurity element inevitably contained in the steel and lowers the protective property of the Al-based oxide film. In particular, the presence of Mn-based inclusions and solid solution S also acts as a starting point for destruction of the Al-based oxide film at high temperature and long-term use. It is also an element that lowers the grain boundary strength in the weld. Therefore, the lower the amount of S, the better, so the upper limit is 0.0030% or less. However, since excessive reduction leads to an increase in raw materials and refining costs, the lower limit is preferably 0.0001% or more. From the viewpoint of manufacturability, oxidation resistance, and brittleness at 475 ° C., a preferable range is 0.0001 to 0.0020%.

<Al:1.00〜2.50%>
Alは、脱酸元素であることに加えて、Al系酸化皮膜を形成して耐酸化性の向上に寄与するために必須の元素である。また、溶接部における双晶変形発現を抑制し脆化特性の向上に有効な元素でもある。本実施形態においては、Al量が1.00%未満ではこれら効果が得られないため、下限は1.00%以上とする。好ましくは1.50%以上である。しかし、AlはSiと同様に溶接組織の柱状晶化を促進させる元素でもあるため、多量に含有させると溶接金属部の粗大化を招くおそれもある。さらに過度にAlを含有させることは、鋼の靭性の低下や溶接部における脆性破壊を助長するため、上限は、2.50%以下とする。好ましくは2.30%以下である。
<Al: 1.00 to 2.50%>
In addition to being a deoxidizing element, Al is an essential element for forming an Al-based oxide film and contributing to the improvement of oxidation resistance. It is also an element effective in suppressing the occurrence of twinning deformation in welds and improving the embrittlement characteristics. In the present embodiment, since these effects cannot be obtained when the Al amount is less than 1.00%, the lower limit is set to 1.00% or more. It is preferably 1.50% or more. However, since Al is also an element that promotes columnar crystallization of the weld structure like Si, if it is contained in a large amount, the weld metal portion may be coarsened. Further, if Al is contained excessively, the toughness of the steel is lowered and the brittle fracture in the welded portion is promoted. Therefore, the upper limit is set to 2.50% or less. It is preferably 2.30% or less.

<N:0.030%以下>
Nは、Cと同様に耐酸化性を阻害する元素である。このため、N量は少ないほどよく、上限を0.030%以下とする。但し、過度な低減は精錬コストの上昇に繋がるため、下限は0.002%以上とすることが好ましい。耐酸化性と製造性の点から、好ましい範囲は0.005〜0.020%である。
<N: 0.030% or less>
N is an element that inhibits oxidation resistance like C. Therefore, the smaller the amount of N, the better, and the upper limit is 0.030% or less. However, since excessive reduction leads to an increase in refining cost, the lower limit is preferably 0.002% or more. From the viewpoint of oxidation resistance and manufacturability, the preferable range is 0.005 to 0.020%.

<Nb:1.00%以下>
Nbは、C,Nを固定する安定化元素であり、溶接時のCr炭化物生成抑制に寄与する。さらに、σ脆性と475℃脆性の要因となる金属間化合物は、主に結晶粒界を生成サイトとして析出が進行するが、Nbが結晶粒界へ偏析することによってこの生成サイトが低減されるため、組織の安定性が増し、結果、σ脆性と475℃脆性を抑制することができる。これら効果を得るためにNbの下限は0.001%以上とすることが好ましく、より好ましくは0.15%以上とする。一方、Nbを過度に含有させることは合金コストの上昇に加え、脆性破壊を助長するため、Nbの上限は1.00%以下とする。好ましくはともに0.60%以下とする。
<Nb: 1.00% or less>
Nb is a stabilizing element that fixes C and N, and contributes to suppressing the formation of Cr carbides during welding. Furthermore, the intermetallic compound that causes σ brittleness and 475 ° C. brittleness proceeds to precipitate mainly at the grain boundaries, but this formation site is reduced by segregation of Nb into the grain boundaries. , The stability of the structure is increased, and as a result, σ brittleness and 475 ° C. brittleness can be suppressed. In order to obtain these effects, the lower limit of Nb is preferably 0.001% or more, more preferably 0.15% or more. On the other hand, since excessive inclusion of Nb promotes brittle fracture in addition to an increase in alloy cost, the upper limit of Nb is set to 1.00% or less. Both are preferably 0.60% or less.

<B、Sn、Ga、Mg、Ca>
B、Sn、Ga、Mg、Caは、上述したように、高温強度を高める効果をより発現させることができる元素である。またこれらの元素は、Al系酸化皮膜の形成を促進して耐酸化性の向上に寄与する元素でもある。また、Sn、Ga、Mg、Caは、表面近傍に濃化してAlの選択酸化を促進する作用がある。そのため、上記成分組成に加え、B、Sn、Ga、Mg、Caのうちの1種または2種以上を含有する。
Bは、粒界偏析することによって粒界すべりを遅延させるとともに、結晶粒内において転位密度の上昇に伴う内部応力を高め0.2%耐力を向上させることができる。Mg、Caは鋼の清浄度や熱間加工性を高めるのに有効な元素である。また、溶接時にMgO、CaOなどから成る介在物を生成させることで等軸晶の形成が助長され、溶接組織の微細化に寄与する元素でもある。これら効果を得るため、Snは0.005%以上、B、Ga、Mg、Caはそれぞれ0.0002%以上含むことが好ましい。一方、これらの元素を過度に含有させることは、鋼の精錬コスト上昇を招くほか、製造性の低下を招くため、Snは0.20%以下、B、Ga、Mgは0.0200%以下、Caは0.0100%以下とする。
<B, Sn, Ga, Mg, Ca>
As described above, B, Sn, Ga, Mg, and Ca are elements that can further exert the effect of increasing the high temperature strength. In addition, these elements are also elements that promote the formation of an Al-based oxide film and contribute to the improvement of oxidation resistance. Further, Sn, Ga, Mg and Ca have an action of concentrating in the vicinity of the surface and promoting selective oxidation of Al. Therefore, in addition to the above-mentioned component composition, it contains one or more of B, Sn, Ga, Mg, and Ca.
B can delay grain boundary slip by segregating grain boundaries, increase internal stress due to an increase in dislocation density in the crystal grains, and improve 0.2% proof stress. Mg and Ca are effective elements for improving the cleanliness and hot workability of steel. Further, it is an element that promotes the formation of equiaxed crystals by generating inclusions composed of MgO, CaO, etc. at the time of welding, and contributes to the miniaturization of the welded structure. In order to obtain these effects, it is preferable that Sn is 0.005% or more, and B, Ga, Mg, and Ca are 0.0002% or more, respectively. On the other hand, excessive inclusion of these elements causes an increase in steel refining cost and a decrease in manufacturability. Therefore, Sn is 0.20% or less, B, Ga and Mg are 0.0200% or less. Ca is 0.0100% or less.

<10(B+Ga)+Sn+Mg+Ca>
また、本実施形態に係る溶接継手では、B、Sn、Ga、Mg、Caが上記で限定した化学組成を満たしつつ、溶接金属部のB、Sn、Ga、Mg、Caの含有量(質量%)が以下の式(1)を満たすものとする。
<10 (B + Ga) + Sn + Mg + Ca>
Further, in the welded joint according to the present embodiment, the content (% by mass) of B, Sn, Ga, Mg and Ca in the weld metal portion is satisfied while B, Sn, Ga, Mg and Ca satisfy the chemical composition limited above. ) Satisfies the following equation (1).

10(B+Ga)+Sn+Mg+Ca>0.020 ・・・(1)
式(1)の左辺が0.020以下の場合、結晶粒の粗大化を招くおそれがある。そのため、溶接金属部中のB、Sn、Ga、Mg、Caの含有量は、式(1)を満足することものとし、好ましくは、式(1)の左辺は0.035以上とする。
なお、式(1)の上限は、B、Sn、Ga、Mg、Caの上限値で特に規定するものでないが、高温強度と製造性の視点から0.2以下とすることが好ましい。
ここで、式(1)中のB、Sn、Ga、Mg、Caは、溶接金属部におけるそれぞれの元素の含有量(質量%)を示す。
10 (B + Ga) + Sn + Mg + Ca> 0.020 ... (1)
If the left side of the formula (1) is 0.020 or less, the crystal grains may be coarsened. Therefore, the content of B, Sn, Ga, Mg, and Ca in the weld metal portion shall satisfy the formula (1), and preferably the left side of the formula (1) is 0.035 or more.
The upper limit of the formula (1) is not particularly specified by the upper limit values of B, Sn, Ga, Mg, and Ca, but is preferably 0.2 or less from the viewpoint of high temperature strength and manufacturability.
Here, B, Sn, Ga, Mg, and Ca in the formula (1) indicate the content (mass%) of each element in the weld metal portion.

本実施形態に係るフェライト系ステンレス鋼溶接継手の溶接金属部は、上述してきた元素以外(残部)は、Fe及び不純物からなるが、後述する任意元素についても含有させることができる。よって、V、Ni、Cu、Mo、W、Co、As、Pb、Zr、Zn、Y、La、Hf、Sb、Ta、REMの含有量の下限は0%以上である。
なお、本実施形態における「不純物」とは、鋼を工業的に製造する際に鉱石やスクラップ等のような原料をはじめとして製造工程の種々の要因によって混入する成分であり、不可避的に混入する成分も含む。
The weld metal portion of the ferritic stainless steel welded joint according to the present embodiment is composed of Fe and impurities other than the above-mentioned elements (remaining portion), but can also contain arbitrary elements described later. Therefore, the lower limit of the content of V, Ni, Cu, Mo, W, Co, As, Pb, Zr, Zn, Y, La, Hf, Sb, Ta, and REM is 0% or more.
The "impurity" in the present embodiment is a component that is mixed by various factors in the manufacturing process including raw materials such as ore and scrap when industrially manufacturing steel, and is inevitably mixed. Also includes ingredients.

<(Nb+V)/{2×(C+N)}>
本実施形態に係る溶接継手では、Nb:0.001〜1.0%、およびV:0.001〜1.0%を含み、かつ、溶接金属部のNb、V、C、Nの含有量(質量%)が以下の式(2)を満たすことが好ましい。
<(Nb + V) / {2 × (C + N)}>
The welded joint according to the present embodiment contains Nb: 0.001 to 1.0% and V: 0.001 to 1.0%, and contains Nb, V, C, and N in the weld metal portion. It is preferable that (% by mass) satisfies the following formula (2).

Vは、Nbと同様に、C,Nを固定する安定化元素であり、溶接時のCr炭化物生成抑制に寄与する。そのためVは、0.001%以上とすることが好ましく、より好ましくは0.15%以上とする。一方、Vを過度に含有させることは合金コストの上昇に加え、脆性破壊を助長するため、Vの上限は1.00%以下とする。好ましくはともに0.60%以下とする。 Like Nb, V is a stabilizing element that fixes C and N, and contributes to suppressing the formation of Cr carbides during welding. Therefore, V is preferably 0.001% or more, more preferably 0.15% or more. On the other hand, since excessive inclusion of V promotes brittle fracture in addition to an increase in alloy cost, the upper limit of V is set to 1.00% or less. Both are preferably 0.60% or less.

(Nb+V)/{2×(C+N)}≧5.0・・・・式(2)
溶接金属部のNb、V、C、N量が式(2)を満足することにより、炭窒化物が形成されても、高温強度の確保に必要なNb量を十分に確保できる。しかし、上記式(2)の左辺が5.0%未満の場合、高温強度の低下を招くおそれがある。そのため、溶接金属部中のNb、V、C、Nの含有量は、式(2)を満足することが好ましく、より好ましくは、式(2)の左辺は10.0以上とする。
ここで、式(2)中のNb、V、C、Nは、溶接金属部におけるそれぞれの元素の含有量(質量%)を示すが、含有しない場合(含有量が0%の場合)は0を代入して計算する。
(Nb + V) / {2 × (C + N)} ≧ 5.0 ... Equation (2)
When the Nb, V, C, and N amounts of the weld metal portion satisfy the equation (2), even if a carbonitride is formed, the Nb amount required for ensuring the high temperature strength can be sufficiently secured. However, if the left side of the above formula (2) is less than 5.0%, the high temperature strength may decrease. Therefore, the content of Nb, V, C, N in the weld metal portion preferably satisfies the formula (2), and more preferably the left side of the formula (2) is 10.0 or more.
Here, Nb, V, C, and N in the formula (2) indicate the content (mass%) of each element in the weld metal portion, but when they are not contained (when the content is 0%), they are 0. Is substituted and calculated.

さらに本実施形態に係る継手の溶接金属部の化学組成は、必要に応じて、Ni、Cu、Mo、Wの1種または2種以上からなる第1群、および、Co、As、Pb、Zr、Zn、Y、La、Hf、Sb、Ta、REMの1種または2種以上からなる第2群のうち、少なくともいずれかの群を含有してもよい。 Further, the chemical composition of the weld metal portion of the joint according to the present embodiment is, if necessary, the first group consisting of one or more of Ni, Cu, Mo and W, and Co, As, Pb and Zr. , Zn, Y, La, Hf, Sb, Ta, REM may contain at least one of the second group consisting of one or more.

<Ni、Cu、Mo、W:1.0%以下>(第1群)
Ni、Cu、Mo、Wは高温強度と耐食性を高めるのに有効な元素であり、必要に応じて少なくとも1種を含有してもよい。但し、過度に含有させると合金コストの上昇や製造性を阻害することに繋がるため、Ni、Cu、Mo、Wの各含有量の上限は1.0%以下とする。前記効果を発現させるためには、Ni,Co,Mo,Wはそれぞれ0.02%以上が好ましい。更に好ましくは0.08%以上である。
<Ni, Cu, Mo, W: 1.0% or less> (Group 1)
Ni, Cu, Mo, and W are elements effective for increasing high temperature strength and corrosion resistance, and may contain at least one of them if necessary. However, if it is excessively contained, the alloy cost will increase and the manufacturability will be impaired. Therefore, the upper limit of each content of Ni, Cu, Mo and W is set to 1.0% or less. In order to exhibit the above effect, Ni, Co, Mo and W are preferably 0.02% or more, respectively. More preferably, it is 0.08% or more.

<Co、As、Pb、Zr、Zn、Y、La、Hf、Sb、Ta、REM>(第2群)
これらの元素は粒界に偏析して溶接時の結晶粒の粗大化を抑制する。また、Zr、La、Y、Hf、Ta、REMは、熱間加工性や鋼の清浄度の向上ならびに耐酸化性改善に対しても、有効な元素である。Zn、Sbは鋼表面近傍に濃化してAlの選択酸化を促進しCrの酸化を抑制する。
これらの効果を得るため、Co:0.005%以上、As:0.001%以上、Pb:0.0001%以上、Zr:0.0001%以上、Zn:0.01%以上、Y:0.0001%以上、La:0.0001%以上、Hf:0.0001%以上、Sb:0.003%以上、Ta:0.002%以上、REM:0.001%以上のうちの1種類または2種類以上含有し、さらにその合計量が0.010%以上であることが好ましい。本実施形態のAl含有フェライト系ステンレス鋼溶接継手は、その溶接金属部が、前記第1群とともに、或いは、前記第1群の代わりに、第2群を前述の含有量の範囲で含有してもよい。
一方、これらの元素の過度な添加は粒界強度低下による粒界破壊を助長するため、前記第2群は、Co:0.50%以下、As:0.05%以下、Pb:0.005%以下、Zr:0.10%以下、Zn:0.03%以下、Y:0.10%以下、La:0.10%以下、Hf:0.10%以下、Sb:0.10%以下、Ta:0.5%以下、REM:0.10%以下の1種類または2種類以上からなる元素群とする必要がある。
なお、REMはLa、Yを除く原子番号58〜71に帰属する元素およびSc(スカンジウム)とし、例えば、Ce、Pr、Nd等である。また本実施形態でいうREMとは、原子番号58〜71に帰属する元素およびScから選択される1種以上で構成されるものであり、REM量とは、これらの合計量である。
<Co, As, Pb, Zr, Zn, Y, La, Hf, Sb, Ta, REM> (Group 2)
These elements segregate at the grain boundaries and suppress the coarsening of crystal grains during welding. Further, Zr, La, Y, Hf, Ta, and REM are also effective elements for improving hot workability, steel cleanliness, and oxidation resistance. Zn and Sb are concentrated near the steel surface to promote selective oxidation of Al and suppress oxidation of Cr.
In order to obtain these effects, Co: 0.005% or more, As: 0.001% or more, Pb: 0.0001% or more, Zr: 0.0001% or more, Zn: 0.01% or more, Y: 0 One of .0001% or more, La: 0.0001% or more, Hf: 0.0001% or more, Sb: 0.003% or more, Ta: 0.002% or more, REM: 0.001% or more or It is preferable that two or more kinds are contained and the total amount thereof is 0.010% or more. In the Al-containing ferritic stainless steel welded joint of the present embodiment, the weld metal portion contains the second group together with the first group or instead of the first group within the above-mentioned content range. May be good.
On the other hand, excessive addition of these elements promotes grain boundary destruction due to a decrease in grain boundary strength. Therefore, in the second group, Co: 0.50% or less, As: 0.05% or less, Pb: 0.005. % Or less, Zr: 0.10% or less, Zn: 0.03% or less, Y: 0.10% or less, La: 0.10% or less, Hf: 0.10% or less, Sb: 0.10% or less , Ta: 0.5% or less, REM: 0.10% or less, and it is necessary to make an element group consisting of one kind or two or more kinds.
The REM is an element belonging to atomic numbers 58 to 71 excluding La and Y and Sc (scandium), and is, for example, Ce, Pr, Nd and the like. Further, the REM referred to in the present embodiment is composed of one or more selected from the elements belonging to atomic numbers 58 to 71 and Sc, and the REM amount is the total amount of these.

本実施形態に係るフェライト系ステンレス鋼溶接継手は、上述してきた元素以外は、Fe及び不純物(不可避的不純物を含む)からなるが、以上説明した各元素の他にも、本発明の効果を損なわない範囲で含有させることができる。一般的な不純物元素である前述のP、Sを始め、Bi、Se等は可能な限り低減することが好ましい。一方、これらの元素は、本発明の課題を解決する限度において、その含有割合が制御され、必要に応じて、Bi≦100ppm、Se≦100ppmの1種以上を含有していてもよい。 The ferritic stainless steel welded joint according to the present embodiment is composed of Fe and impurities (including unavoidable impurities) other than the elements described above, but the effects of the present invention are impaired in addition to the elements described above. It can be contained in a range that does not exist. It is preferable to reduce Bi, Se and the like as much as possible, including the above-mentioned P and S, which are general impurity elements. On the other hand, the content ratio of these elements is controlled to the extent that the problem of the present invention is solved, and if necessary, one or more of Bi ≦ 100 ppm and Se ≦ 100 ppm may be contained.

ここで、本実施形態のフェライト系ステンレス鋼溶接継手は、フェライト系ステンレス鋼からなる母材(母材部)と溶接金属部とからなる溶接継手であり、母材部、溶接金属部ともに、金属組織はフェライト単相組織よりなる。これはオーステナイト相やマルテンサイト組織を含まないことを意味している。オーステナイト相やマルテンサイト組織を含む場合は、原料コストが高くなることに加えて、製造時に耳割れ等の歩留まり低下が起こりやすくなるため、溶接継手の金属組織はフェライト単相組織とする。なお鋼中に炭窒化物等の析出物が存在するが、本発明の効果を大きく左右するものではないためこれらは考慮せず、上記は主相の組織について述べている。 Here, the ferritic stainless steel welded joint of the present embodiment is a welded joint composed of a base material (base material portion) made of ferritic stainless steel and a welded metal portion, and both the base metal portion and the welded metal portion are made of metal. The structure consists of a ferritic single phase structure. This means that it does not contain the austenite phase or the martensite structure. When an austenite phase or a martensite structure is contained, the raw material cost is high and the yield such as ear cracks is likely to decrease during manufacturing. Therefore, the metal structure of the welded joint is a ferrite single-phase structure. It should be noted that although precipitates such as carbonitrides are present in the steel, they are not considered because they do not greatly affect the effect of the present invention, and the above description describes the structure of the main phase.

また上述したように、母材部に対し、溶接部では結晶粒径が大きくなるため、475℃脆性やσ脆性に起因した破壊が生じやすくなる。そのため、本実施形態においては、溶接金属部の結晶粒径は600μm以下であることが好ましい。 Further, as described above, since the crystal grain size of the welded portion is larger than that of the base metal portion, fracture due to brittleness at 475 ° C. or σ brittleness is likely to occur. Therefore, in the present embodiment, the crystal grain size of the weld metal portion is preferably 600 μm or less.

溶接金属部の粒径は、以下のようにして求めることができる。
溶接継手の溶接部より試料を切り出し、エッチングを行った後、光学顕微鏡により撮影した溶接金属部において、溶接金属部中心の厚さ800μm×幅1600μmの領域内の結晶粒の数をカウントする。なお当該測定領域の1辺をまたいだ結晶粒は0.5個、2辺をまたいだ場合は0.25個とする。そして、(測定領域の面積)/(測定領域内の結晶粒の数)の平方根をその溶接金属部の結晶粒径と定義する。
The particle size of the weld metal portion can be obtained as follows.
A sample is cut out from the welded portion of the welded joint, etched, and then the number of crystal grains in the region of 800 μm in thickness × 1600 μm in width at the center of the weld metal portion is counted in the weld metal portion photographed by an optical microscope. The number of crystal grains straddling one side of the measurement region is 0.5, and the number of crystal grains straddling two sides is 0.25. Then, the square root of (area of measurement area) / (number of crystal grains in measurement area) is defined as the crystal grain size of the weld metal portion.

本実施形態の溶接継手は、上記で説明した溶接金属部とフェライト系ステンレス鋼からなる母材部とから構成される。本実施形態では、当該母材部の成分組成については特に限定しないが、本発明に効果を効率よく発揮することが可能なAl含有フェライト系ステンレス鋼を母材部とすることが好ましい。また、溶接継手の成分制御を容易にする観点から、母材が本発明の溶接継手に近い成分系であることはさらに好ましい。
すなわち、本実施形態の好適な母材部の化学組成は、質量%で、C:0.020%以下、Si:2.50%以下、Mn:1.00%以下、Cr:12.0〜16.0%、Al:2.50%以下、N:0.030%以下、更にNb:1.00%以下、V:1.00%以下を含有し、さらにB:0.0200%以下、Sn:0.20%以下、Ga:0.0200%以下、Mg:0.0200%以下、Ca:0.0100%以下の1種または2種以上を含み、かつ下記式(1´)を満足し、残部がFeおよび不純物である。
The welded joint of the present embodiment is composed of the weld metal portion described above and the base metal portion made of ferritic stainless steel. In the present embodiment, the component composition of the base material portion is not particularly limited, but it is preferable that the base material portion is an Al-containing ferritic stainless steel capable of efficiently exerting the effect in the present invention. Further, from the viewpoint of facilitating the component control of the welded joint, it is more preferable that the base metal has a component system similar to that of the welded joint of the present invention.
That is, the suitable chemical composition of the base material portion of the present embodiment is, in mass%, C: 0.020% or less, Si: 2.50% or less, Mn: 1.00% or less, Cr: 12.0 to 16.0%, Al: 2.50% or less, N: 0.030% or less, Nb: 1.00% or less, V: 1.00% or less, and B: 0.0200% or less, Sn: 0.20% or less, Ga: 0.0200% or less, Mg: 0.0200% or less, Ca: 0.0100% or less containing one or more types, and satisfying the following formula (1'). The balance is Fe and impurities.

10(B+Ga)+Sn+Mg+Ca>0.020 ・・・(1´)
なお、式(1´)中の各元素記号は、母材部中の各元素の含有量(質量%)を示す。
10 (B + Ga) + Sn + Mg + Ca> 0.020 ... (1')
In addition, each element symbol in the formula (1') indicates the content (mass%) of each element in the base metal part.

なお、母材となるフェライト系ステンレス鋼の形状は、板材、管材、線材など、特に限定するものではない。 The shape of the ferrite-based stainless steel as the base material is not particularly limited to plate materials, pipe materials, wire materials, and the like.

<製造方法>
次に、本実施形態のフェライト系ステンレス鋼溶接継手の製造方法について説明する。
本実施形態のフェライト系ステンレス鋼溶接継手は、フェライト系ステンレス鋼をなめ付けあるいは溶接棒を使用した溶接により作製される。本実施形態の溶接継手は、後述する溶接材料を用いて製造することで、実現が容易になるが、当該製造条件に限定されるものでないことは言うまでもない。つまり、溶接する母鋼材、用いる溶接材料、溶接手法、さらに溶接条件を適切に選択することで、最終的な溶接継手における溶接金属の化学組成を本実施形態の範囲内に制御することができる。
溶接材料を使用する場合、燃料電池システム用途では良好な耐酸化性、高温強度、耐脆化特性が求められるため、これら特性を兼ね備えたAl含有フェライト系ステンレス鋼を母材として溶接継手を製造することが好ましく、具体的には上述した化学組成を有するステンレス鋼を母材とすることがより好ましい。また、溶接継手の成分制御を容易にする意味では、母材や溶接材料が本実施形態の溶接継手に近い成分系であることはさらに好ましい。
<Manufacturing method>
Next, a method for manufacturing the ferritic stainless steel welded joint of the present embodiment will be described.
The ferritic stainless steel welded joint of the present embodiment is manufactured by tanning ferritic stainless steel or welding using a welding rod. The welded joint of the present embodiment can be easily realized by manufacturing using a welding material described later, but it goes without saying that the welded joint is not limited to the manufacturing conditions. That is, the chemical composition of the weld metal in the final welded joint can be controlled within the scope of the present embodiment by appropriately selecting the base steel material to be welded, the welding material to be used, the welding method, and the welding conditions.
When welding materials are used, good oxidation resistance, high temperature strength, and embrittlement resistance are required for fuel cell system applications. Therefore, welded joints are manufactured using Al-containing ferritic stainless steel that has these characteristics as a base material. It is preferable, and specifically, it is more preferable to use stainless steel having the above-mentioned chemical composition as a base material. Further, in the sense of facilitating the component control of the welded joint, it is more preferable that the base material and the welded material have a component system similar to that of the welded joint of the present embodiment.

本実施形態の好適な溶接材料の化学組成は、質量%で、Cr:12.0〜16.0%、C:0.020%以下、Si:0.60〜2.50%、Mn:0.30%以下、Al:1.00〜2.50%、Nb:0.001〜1.00%、P:0.020%以下、S:0.0030%以下、O:0.010%以下、N:0.030%以下を含有し、残部がFeおよび不純物である。 The chemical composition of the suitable welding material of this embodiment is Cr: 12.0 to 16.0%, C: 0.020% or less, Si: 0.60 to 2.50%, Mn: 0 in mass%. .30% or less, Al: 1.00 to 2.50%, Nb: 0.001 to 1.00%, P: 0.020% or less, S: 0.0030% or less, O: 0.010% or less , N: Contains 0.030% or less, and the balance is Fe and impurities.

本実施形態によれば、二酸化炭素、一酸化炭素、多量の水素、ならびに硫化成分を含む環境(浸炭性/還元性/硫化性環境)下であっても、高い耐酸化性と優れた高温強度、さらにσ相析出や475℃脆性を抑制可能とする優れた組織安定性を兼備したフェライト系ステンレス鋼溶接継手を提供することができる。
そのため、本実施形態の溶接継手は、都市ガス、メタン、天然ガス、プロパン、灯油、ガソリン等の炭化水素系燃料を水素に改質する際に使用される燃料改質器、熱交換器などの燃料電池部材に好適であり、特に、運転温度が高温となる固体酸化物型燃料電池(SOFC)や固体高分子型燃料電池(PEFC)の高温部材に好適である。さらに、燃料電池の周辺部材、例えばバーナーや当該バーナーを格納する燃焼器等、改質ガスに接しかつ高温の環境下で使用される部材全般において好適に用いることができる。
According to this embodiment, high oxidation resistance and excellent high temperature strength even in an environment containing carbon dioxide, carbon monoxide, a large amount of hydrogen, and a sulfide component (carburizing / reducing / sulphurizing environment). Further, it is possible to provide a ferritic stainless steel welded joint having excellent structure stability capable of suppressing σ phase precipitation and brittleness at 475 ° C.
Therefore, the welded joint of the present embodiment includes a fuel reformer, a heat exchanger, and the like used for reforming hydrocarbon fuels such as city gas, methane, natural gas, propane, kerosene, and gasoline into hydrogen. It is suitable for a fuel cell member, and is particularly suitable for a high temperature member of a solid oxide fuel cell (SOFC) or a solid polymer fuel cell (PEFC) having a high operating temperature. Further, it can be suitably used for all peripheral members of a fuel cell, such as a burner and a combustor for storing the burner, which are in contact with a reforming gas and are used in a high temperature environment.

次に本発明の実施例を示すが、実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、以下の実施例で用いた条件に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。
なお、下記にて示す表中の下線は、本発明の範囲から外れているものを示す。
Next, an example of the present invention will be shown. The conditions in the examples are one condition example adopted for confirming the feasibility and effect of the present invention, and the present invention is used in the following examples. It is not limited to the conditions. The present invention can adopt various conditions as long as the gist of the present invention is not deviated and the object of the present invention is achieved.
The underlined lines in the table below indicate those outside the scope of the present invention.

表1に成分を示す鋼種A〜Oのフェライト系ステンレス鋼を溶製し、熱間圧延、焼鈍酸洗、冷間圧延後、仕上げ焼鈍・酸洗により厚さ0.8mmの冷延焼鈍板を製造した。 Ferritic stainless steels of steel grades A to O whose components are shown in Table 1 are melted, and after hot rolling, annealing pickling, and cold rolling, finish annealing and pickling are performed to obtain a 0.8 mm thick cold-rolled annealed plate. Manufactured.

各鋼種のフェライト系ステンレス鋼板から幅120mm、長さ250mmの試験片を切り出した。次いで、同じ鋼種の試験片同士を母材とし、TIGなめ付け溶接し、鋼種A〜Oのフェライト系ステンレス鋼板毎にフェライト系ステンレス鋼溶接継手A〜Oを製造した。溶接条件は、電流85A、電圧8.5V、溶接速度100cm/minとし、シールドガスとして、流量30l/minに調整したArガスを用いた。溶接位置は板幅中央で、溶接方向は板長手方向とした。得られた溶接継手A〜Oの溶接金属部の組成を表1に示す。なお、前記TIGなめ付け溶接は溶接材料を用いない溶接のため、得られる溶接継手の溶接金属は、母材として用いたフェライト系ステンレス鋼板と同一の組成を有する。 A test piece having a width of 120 mm and a length of 250 mm was cut out from a ferritic stainless steel plate of each steel type. Next, using test pieces of the same steel type as a base material, TIG tanning welding was performed to manufacture ferritic stainless steel welded joints A to O for each of the ferritic stainless steel sheets of steel types A to O. The welding conditions were a current of 85 A, a voltage of 8.5 V, a welding speed of 100 cm / min, and an Ar gas adjusted to a flow rate of 30 l / min was used as the shield gas. The welding position was at the center of the plate width, and the welding direction was the plate longitudinal direction. Table 1 shows the compositions of the weld metal portions of the obtained welded joints A to O. Since the TIG tanning welding does not use a welding material, the obtained weld metal of the welded joint has the same composition as the ferritic stainless steel plate used as the base material.

なお、表1の「発明例の組成」とは、鋼の組成が本発明のAl含有フェライト系ステンレス鋼溶接継手の溶接金属部の組成を満たすことを意味する。また、表1の「比較例の組成」とは、鋼の組成が本発明のAl含有フェライト系ステンレス鋼溶接継手の溶接金属部の組成を満たしていないことを意味する。 The "composition of the example of the invention" in Table 1 means that the composition of the steel satisfies the composition of the weld metal portion of the Al-containing ferritic stainless steel welded joint of the present invention. Further, the "composition of the comparative example" in Table 1 means that the composition of the steel does not satisfy the composition of the weld metal portion of the Al-containing ferritic stainless steel welded joint of the present invention.

次に、表2に示す記号W1のAl含有フェライト系ステンレス鋼溶接材料(溶加材)を溶製し、表1の鋼種B、Cを母材とし、前記記号W1の溶接材料を用いてTIG溶接して溶接継手BW、CWを作製した。溶接条件は電流60A、電圧7.5V、溶接速度60cm/min、溶接材料供給量8g/minとし、シールドガスとして、流量30l/minに調整したArガスを用いた。溶接位置は板幅中央で、溶接方向は板長手方向とした。
次に、得られた溶接継手BW、CWの溶接金属部から化学分析用試料を採取し、成分分析を行った。表3に各溶接継手の溶接金属部の化学成分を示す。ここで、表3の記号について、「BW」は母材として鋼種Bを使用して製造した溶接継手であることを意味し、「CW」は母材として鋼種Cを使用して製造した溶接継手であることを意味する。
Next, the Al-containing ferritic stainless steel welding material (welding material) of the symbol W1 shown in Table 2 is melted, the steel types B and C in Table 1 are used as the base material, and the welding material of the symbol W1 is used for TIG. Welding was performed to produce welded joints BW and CW. Welding conditions were current 60A, voltage 7.5V, welding speed 60cm / min, welding material supply amount 8g / min, and Ar gas adjusted to a flow rate of 30l / min was used as the shield gas. The welding position was at the center of the plate width, and the welding direction was the plate longitudinal direction.
Next, samples for chemical analysis were collected from the weld metal parts of the obtained welded joints BW and CW, and component analysis was performed. Table 3 shows the chemical composition of the weld metal part of each welded joint. Here, regarding the symbols in Table 3, "BW" means a welded joint manufactured by using steel type B as a base material, and "CW" means a welded joint manufactured by using steel type C as a base material. Means that

[結晶粒径の測定]
各溶接継手の溶接金属部より試料を切り出し、樹脂埋めを行った後、王水によるエッチングを行った。エッチング後の試料に対し、光学顕微鏡により撮影した溶接金属部において、溶接金属部中心の厚さ800μm×幅800μmの領域内の結晶粒の数をカウントした。測定領域の1辺をまたいだ結晶粒は0.5個、2辺をまたいだ場合は0.25個とした。(測定領域の面積)/(測定領域内の結晶粒の数)の平方根をその溶接金属部の結晶粒径と定義した。
[Measurement of crystal grain size]
A sample was cut out from the weld metal part of each welded joint, filled with resin, and then etched with aqua regia. For the sample after etching, the number of crystal grains in the region of 800 μm in thickness × 800 μm in width at the center of the weld metal portion was counted in the weld metal portion photographed by an optical microscope. The number of crystal grains straddling one side of the measurement area was 0.5, and the number of crystal grains straddling two sides was 0.25. The square root of (area of measurement area) / (number of crystal grains in measurement area) was defined as the crystal grain size of the weld metal part.

[耐酸化性]
各溶接継手の溶接部から幅20mm、長さ25mmの酸化試験片を切り出した。このとき、酸化試験片の幅中央に溶接線が配置されるよう、すなわち試験片長手方向とビード方向が平行となるよう切り出した。酸化試験の雰囲気は、都市ガスを燃料とした改質ガスを想定し、28体積%HO−10%体積%CO−8体積%CO−0.01%HS−bal.Hの雰囲気とした。当該雰囲気において、酸化試験片を650℃に加熱し、1000時間保持した後に室温まで冷却し、酸化増量ΔW(mg/cm)を測定した。
耐酸化性の評価は以下の通りとした。
◎:重量増加ΔWが0.2mg/cm未満。
〇:重量増加ΔWが0.2〜0.3mg/cm
×:重量増加ΔWが0.3mg/cm超。
なお、耐酸化性は「◎」および「〇」の場合を合格とした。
[Oxidation resistance]
Oxidation test pieces having a width of 20 mm and a length of 25 mm were cut out from the welded portion of each welded joint. At this time, it was cut out so that the welding line was arranged at the center of the width of the oxidation test piece, that is, the longitudinal direction of the test piece and the bead direction were parallel to each other. Atmosphere oxidation test, assuming the reformed gas in which the city gas as fuel, 28 vol% H 2 O-10% by volume% CO-8 vol% CO 2 -0.01% H 2 S -bal. Was an atmosphere of H 2. In the atmosphere, the oxidation test piece was heated to 650 ° C., held for 1000 hours, cooled to room temperature, and the oxidation increase ΔW (mg / cm 2 ) was measured.
The evaluation of oxidation resistance was as follows.
⊚: Weight increase ΔW is less than 0.2 mg / cm 2.
〇: Weight increase ΔW is 0.2 to 0.3 mg / cm 2 .
X: Weight increase ΔW is more than 0.3 mg / cm 2.
As for the oxidation resistance, the cases of "◎" and "○" were regarded as acceptable.

[高温強度]
各溶接継手から板状の高温引張試験片(板厚:0.8mm、平行部幅:10.5mm、平行部長さ:35mm)を切り出した。このとき、引張試験片の長手方向中央(平行部中央)に溶接金属部が配置されるよう切り出した。750℃、および800℃それぞれにて、ひずみ速度は、0.2%耐力まで0.3%/min、以降3mm/minとして高温引張試験を行い、各温度における0.2%耐力(750℃耐力、800℃耐力)を測定した(JIS G 0567に準拠)。
高温強度の評価は、750℃耐力が120MPa超、かつ800℃耐力が40MPa超の場合を合格(「〇」)として評価し、いずか一方でも満たさない場合は不合格(「×」)として評価した。なお、750℃耐力が150MPa超、かつ800℃耐力が60MPa超の場合は高温強度が特に優れているものとして評価した(表中で「◎」表記)。
[High temperature strength]
A plate-shaped high-temperature tensile test piece (plate thickness: 0.8 mm, parallel portion width: 10.5 mm, parallel portion length: 35 mm) was cut out from each welded joint. At this time, the weld metal portion was cut out so as to be arranged at the center of the tensile test piece in the longitudinal direction (center of the parallel portion). At 750 ° C and 800 ° C, high-temperature tensile tests were conducted with a strain rate of 0.3% / min up to 0.2% proof stress and then 3 mm / min, and 0.2% proof stress (750 ° C proof stress) at each temperature. , 800 ° C proof stress) was measured (according to JIS G 0567).
In the evaluation of high temperature strength, when the proof stress of 750 ° C is more than 120 MPa and the proof stress of 800 ° C is more than 40 MPa, it is evaluated as a pass (“〇”), and when any one of them is not satisfied, it is rejected (“×”). evaluated. When the proof stress of 750 ° C. was more than 150 MPa and the proof stress of 800 ° C. was more than 60 MPa, it was evaluated as having particularly excellent high-temperature strength (indicated by "⊚" in the table).

[組織安定性(σ脆性/475℃脆性)]
溶接継手の溶接金属部から、板面と垂直な断面上の中心(板厚中心部:t/2付近)を観察できるよう試料を2つ採取して、一方は、500℃×1000時間の熱処理(500℃熱処理)、もう一方は650℃×1000時間の熱処理(600℃熱処理)を行った。これら熱処理の雰囲気はともに大気中とした。次に、熱処理後の各試料を樹脂に埋め研磨した後、500℃熱処理後のビッカース硬さHv500℃、650℃熱処理後のビッカース硬さHv650℃それぞれをJIS Z 2244に準拠して荷重9.8Nで測定し、熱処理前に予め測定しておいた熱処理前ビッカース硬さからの硬さ上昇量ΔHv500℃、ΔHv650℃を算出した。
組織安定性(σ脆性/475℃脆性)の評価は、ΔHv500℃、ΔHv650℃ともに20未満のものを合格(「〇」)として評価し、いずか一方でも20以上であった場合は熱処理後の硬さ上昇が大きく組織が不安定であるとして不合格(「×」)とした。
[Structural stability (σ brittleness / 475 ° C brittleness)]
Two samples were taken from the weld metal part of the welded joint so that the center on the cross section perpendicular to the plate surface (center of plate thickness: near t / 2) could be observed, and one was heat-treated at 500 ° C for 1000 hours. (500 ° C. heat treatment), and the other was heat-treated at 650 ° C. × 1000 hours (600 ° C. heat treatment). The atmosphere of these heat treatments was set to the atmosphere. Next, after each sample after the heat treatment is embedded in a resin and polished, the Vickers hardness Hv 500 ° C after the heat treatment at 500 ° C. and the Vickers hardness Hv 650 ° C. after the heat treatment at 650 ° C. are loaded according to JIS Z 2244, respectively. The hardness increase amount ΔHv 500 ° C. and ΔHv 650 ° C. from the Vickers hardness before heat treatment, which were measured at 8.N and measured in advance before the heat treatment, were calculated.
For the evaluation of tissue stability (σ brittleness / 475 ° C brittleness), those with ΔHv 500 ° C and ΔHv 650 ° C both less than 20 are evaluated as acceptable (“〇”), and if either one is 20 or more, it is evaluated. It was rejected (“x”) because the hardness increased significantly after the heat treatment and the structure was unstable.

表4に試験結果を示す。溶接継手A〜I、BW、CWは、溶接金属成分が本発明で規定する成分を満たし、すべての特性の評価は「○」あるいは「◎」となったものである。 Table 4 shows the test results. In the welded joints A to I, BW, and CW, the weld metal component satisfies the component specified in the present invention, and the evaluation of all the characteristics is "◯" or "◎".

溶接金属J〜Oは、溶接金属成分が本発明で規定する成分から外れるものであり、本発明の目標とする結晶粒径や各特性を両立することができず、いずれかの評価が「×」となった。 In the weld metals J to O, the weld metal component deviates from the component specified in the present invention, and the crystal grain size and each characteristic targeted by the present invention cannot be compatible with each other. It became.

Figure 0006971185
Figure 0006971185

Figure 0006971185
Figure 0006971185

Figure 0006971185
Figure 0006971185

Figure 0006971185
Figure 0006971185

Claims (7)

フェライト系ステンレス鋼母材と溶接金属部とからなる溶接継手であって、
前記溶接金属部の化学成分が、質量%にて、
Cr:12.0〜16.0%、
C:0.030%以下、
Si:2.50%以下、
Mn:1.00%以下、
P:0.050%以下、
S:0.0030%以下、
Al:1.00〜2.50%、
N:0.030%以下、
Nb:1.00%以下、
V:0〜1.00%、
Ni:0〜1.0%、
Cu:0〜1.0%、
Mo:0〜1.0%、
W:0〜1.0%、
Co:0〜0.50%、
As:0〜0.05%、
Pb:0〜0.005%、
Zr:0〜0.10%、
Zn:0〜0.03%、
Y:0〜0.10%、
La:0〜0.10%、
Hf:0〜0.10%、
Sb:0〜0.10%、
Ta:0〜0.5%
REM:0〜0.10%
を含み、更に、
B:0.0200%以下、
Sn:0.20%以下、
Ga:0.0200%以下、
Mg:0.0200%以下、
Ca:0.0100%以下
の1種または2種以上を含み、且つ下記式(1)を満たし、残部がFeおよび不純物からなることを特徴とするフェライト系ステンレス鋼溶接継手。
10(B+Ga)+Sn+Mg+Ca>0.020 ・・・(1)
なお、式(1)中の各元素記号は、溶接金属部中の各元素の含有量(質量%)を示す。
A welded joint consisting of a ferritic stainless steel base material and a weld metal part.
The chemical composition of the weld metal part is mass%.
Cr: 12.0 to 16.0%,
C: 0.030% or less,
Si: 2.50% or less,
Mn: 1.00% or less,
P: 0.050% or less,
S: 0.0030% or less,
Al: 1.00 to 2.50%,
N: 0.030% or less,
Nb: 1.00% or less,
V: 0-1.00%,
Ni: 0-1.0%,
Cu: 0-1.0%,
Mo: 0-1.0%,
W: 0-1.0%,
Co: 0-0.50%,
As: 0-0.05%,
Pb: 0 to 0.005%,
Zr: 0-0.10%,
Zn: 0 to 0.03%,
Y: 0 to 0.10%,
La: 0 to 0.10%,
Hf: 0 to 0.10%,
Sb: 0 to 0.10%,
Ta: 0-0.5%
REM: 0 to 0.10%
Including, and further
B: 0.0200% or less,
Sn: 0.20% or less,
Ga: 0.0200% or less,
Mg: 0.0200% or less,
Ca: A ferrite-based stainless steel welded joint containing one or more of 0.0100% or less, satisfying the following formula (1), and having the balance composed of Fe and impurities.
10 (B + Ga) + Sn + Mg + Ca> 0.020 ... (1)
The element symbol in the formula (1) indicates the content (mass%) of each element in the weld metal portion.
前記溶接金属部の化学成分が、Nb:0.001〜1.0%、およびV:0.001〜1.0%を含み、かつ下記式(2)を満たすことを特徴とする請求項1に記載のフェライト系ステンレス鋼溶接継手。
(Nb+V)/{2×(C+N)}≧5.0 ・・・(2)
なお、式(2)中の各元素記号は、溶接金属部中の各元素の含有量(質量%)を示す。
Claim 1 is characterized in that the chemical composition of the weld metal portion contains Nb: 0.001 to 1.0% and V: 0.001 to 1.0% and satisfies the following formula (2). Ferritic stainless steel welded joints described in.
(Nb + V) / {2 × (C + N)} ≧ 5.0 ・ ・ ・ (2)
The element symbol in the formula (2) indicates the content (mass%) of each element in the weld metal portion.
前記溶接金属部の化学成分が、更に、質量%にて、
Ni:0.02〜1.0%、Cu:0.02〜1.0%、Mo:0.02〜1.0%、W:0.02〜1.0%の1種または2種以上からなる第1群、および、
Co:0.10〜0.50%、As:0.001〜0.05%、Pb:0.0001〜0.005%、Zr:0.0001〜0.10%、Zn:0.01〜0.03%、Y:0.0001〜0.10%、La:0.0001〜0.10%、Hf:0.0001〜0.10%、Sb:0.003〜0.10%、Ta:0.002〜0.5%、REM:0.001〜0.10%の1種または2種以上からなる第2群のうち、少なくともいずれかの群を含有することを特徴とする請求項1または2に記載のフェライト系ステンレス鋼溶接継手。
The chemical composition of the weld metal portion is further increased by mass%.
One or more of Ni: 0.02 to 1.0%, Cu: 0.02 to 1.0%, Mo: 0.02 to 1.0%, W: 0.02 to 1.0% The first group consisting of and
Co: 0.10 to 0.50%, As: 0.001 to 0.05%, Pb: 0.0001 to 0.005%, Zr: 0.0001 to 0.10%, Zn: 0.01 to 0.03%, Y: 0.0001 to 0.10%, La: 0.0001 to 0.10%, Hf: 0.0001 to 0.10%, Sb: 0.003 to 0.10%, Ta The claim is characterized by containing at least one of a second group consisting of one or more of 0.002 to 0.5% and REM: 0.001 to 0.10%. The ferrite-based stainless steel welded joint according to 1 or 2.
前記溶接金属部における結晶粒径の大きさが600μm以下であることを特徴とする請求項1〜3の何れか一項に記載のフェライト系ステンレス鋼溶接継手。 The ferrite-based stainless steel welded joint according to any one of claims 1 to 3, wherein the size of the crystal grain size in the weld metal portion is 600 μm or less. 燃料改質器、熱交換器あるいは燃料電池部材に適用されることを特徴とする請求項1〜4の何れか1項に記載のフェライト系ステンレス鋼溶接継手。 The ferrite-based stainless steel welded joint according to any one of claims 1 to 4, wherein the joint is applied to a fuel reformer, a heat exchanger, or a fuel cell member. 燃焼器、あるいはバーナーの部材に適用されること特徴とする請求項1〜5の何れか一項に記載のフェライト系ステンレス鋼溶接継手。 The ferrite-based stainless steel welded joint according to any one of claims 1 to 5, which is applied to a member of a combustor or a burner. 請求項1〜6のいずれか一項に記載のフェライト系ステンレス鋼溶接継手を用いた燃料電池用部材。 A fuel cell member using the ferrite-based stainless steel welded joint according to any one of claims 1 to 6.
JP2018060887A 2018-03-27 2018-03-27 Ferritic stainless steel welded joints and fuel cell components Active JP6971185B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018060887A JP6971185B2 (en) 2018-03-27 2018-03-27 Ferritic stainless steel welded joints and fuel cell components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018060887A JP6971185B2 (en) 2018-03-27 2018-03-27 Ferritic stainless steel welded joints and fuel cell components

Publications (2)

Publication Number Publication Date
JP2019173076A JP2019173076A (en) 2019-10-10
JP6971185B2 true JP6971185B2 (en) 2021-11-24

Family

ID=68166518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018060887A Active JP6971185B2 (en) 2018-03-27 2018-03-27 Ferritic stainless steel welded joints and fuel cell components

Country Status (1)

Country Link
JP (1) JP6971185B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02310345A (en) * 1989-05-22 1990-12-26 Sumitomo Metal Ind Ltd Ferritic stainless steel for cold forging having excellent electromagnetic characteristics
JP5588198B2 (en) * 2010-03-02 2014-09-10 日新製鋼株式会社 Ferritic stainless steel with excellent oxidation resistance, secondary work brittleness resistance and weldability
JP6006759B2 (en) * 2014-07-29 2016-10-12 新日鐵住金ステンレス株式会社 Ferritic stainless steel for fuel reformer of fuel cell or heat exchanger of fuel cell and method for producing the same
JP6655962B2 (en) * 2015-11-27 2020-03-04 日鉄ステンレス株式会社 Al-containing ferritic stainless steel welded joint with excellent 475 ° C brittle resistance
JP6300841B2 (en) * 2016-01-28 2018-03-28 新日鐵住金ステンレス株式会社 Al-containing ferritic stainless steel with excellent high-temperature strength
JP6667171B2 (en) * 2016-03-09 2020-03-18 日鉄ステンレス株式会社 Al-containing ferritic stainless steel

Also Published As

Publication number Publication date
JP2019173076A (en) 2019-10-10

Similar Documents

Publication Publication Date Title
US10233523B2 (en) Carburization resistant metal material
CA2711415C (en) Carburization resistant metal material
JP5902253B2 (en) Ferritic stainless steel for fuel cells and method for producing the same
JP6190498B2 (en) Ferritic stainless steel and manufacturing method thereof
JP7224141B2 (en) Ferritic stainless steel sheet, manufacturing method thereof, and fuel cell member
US20210025022A1 (en) Ferritic stainless steel and method for manufacturing same, ferritic stainless steel sheet and method for manufacturing same, and fuel cell member
WO2017073093A1 (en) Ferritic stainless steel for fuel cell with excellent anti-creep strength and manufacturing method therefor
JP6300841B2 (en) Al-containing ferritic stainless steel with excellent high-temperature strength
JP6006759B2 (en) Ferritic stainless steel for fuel reformer of fuel cell or heat exchanger of fuel cell and method for producing the same
JP2016204709A (en) Ferritic stainless steel sheet having excellent carburization resistance and oxidation resistance, and method of manufacturing the same
JP6765287B2 (en) Ferritic stainless steel, its manufacturing method, and fuel cell components
JP6006893B2 (en) Ferritic stainless steel for fuel cells
JP6767831B2 (en) Ferritic stainless steel and welded structures for welded structures with excellent high temperature fatigue characteristics
JP6971184B2 (en) Ferritic stainless steel, its manufacturing method, and fuel cell components
JP6971185B2 (en) Ferritic stainless steel welded joints and fuel cell components
JP7233195B2 (en) Ferritic stainless steel, manufacturing method thereof, and fuel cell member
JP6655962B2 (en) Al-containing ferritic stainless steel welded joint with excellent 475 ° C brittle resistance
JP7076258B2 (en) Ferritic stainless steel sheets and their manufacturing methods, as well as fuel cell components
JP6937717B2 (en) Ferritic stainless steel sheets and their manufacturing methods, as well as fuel cell components
JP7055050B2 (en) Ferritic stainless steel welding filler material
JP6937716B2 (en) Ferritic stainless steel sheets and their manufacturing methods, as well as fuel cell components
JP6429957B1 (en) Austenitic stainless steel, manufacturing method thereof, and fuel reformer and combustor member
JP6053994B1 (en) Ferritic stainless steel for fuel cells with excellent creep resistance and method for producing the same
KR20240007212A (en) Ferritic stainless steel pipe and manufacturing method thereof, and fuel cell
JP6873020B2 (en) Ferritic stainless steel sheets and their manufacturing methods, as well as fuel reformers and combustor components

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211101

R150 Certificate of patent or registration of utility model

Ref document number: 6971185

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150