JP6767831B2 - Ferritic stainless steel and welded structures for welded structures with excellent high temperature fatigue characteristics - Google Patents

Ferritic stainless steel and welded structures for welded structures with excellent high temperature fatigue characteristics Download PDF

Info

Publication number
JP6767831B2
JP6767831B2 JP2016188795A JP2016188795A JP6767831B2 JP 6767831 B2 JP6767831 B2 JP 6767831B2 JP 2016188795 A JP2016188795 A JP 2016188795A JP 2016188795 A JP2016188795 A JP 2016188795A JP 6767831 B2 JP6767831 B2 JP 6767831B2
Authority
JP
Japan
Prior art keywords
less
stainless steel
high temperature
ferritic stainless
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016188795A
Other languages
Japanese (ja)
Other versions
JP2018053290A (en
Inventor
松本 和久
和久 松本
秦野 正治
正治 秦野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Stainless Steel Corp
Original Assignee
Nippon Steel Stainless Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Stainless Steel Corp filed Critical Nippon Steel Stainless Steel Corp
Priority to JP2016188795A priority Critical patent/JP6767831B2/en
Publication of JP2018053290A publication Critical patent/JP2018053290A/en
Application granted granted Critical
Publication of JP6767831B2 publication Critical patent/JP6767831B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

本発明は、都市ガス、メタン、天然ガス、プロパン、灯油、ガソリン等の炭化水素系燃料を水素に改質する際に使用される改質器、熱交換器などの燃料電池高温部材に好適なAl含有フェライト系ステンレス鋼に関する。特に、改質ガス環境を含む高温環境下において熱疲労特性が要求される固体酸化物型燃料電池(SOFC)の溶接構造体における高温部材に好適である。 The present invention is suitable for fuel cell high temperature members such as reformers and heat exchangers used when reforming hydrocarbon fuels such as city gas, methane, natural gas, propane, kerosene and gasoline into hydrogen. Regarding Al-containing ferrite-based stainless steel. In particular, it is suitable for a high temperature member in a welded structure of a solid oxide fuel cell (SOFC), which requires thermal fatigue characteristics in a high temperature environment including a reformed gas environment.

最近、石油を代表とする化石燃料の枯渇化、CO排出による地球温暖化現象等の問題から、従来の発電システムに替わる新しいシステムの普及が加速している。その1つとして、分散電源,自動車の動力源としても実用的価値が高い「燃料電池」が注目されている。燃料電池にはいくつかの種類があるが、その中でも固体高分子型燃料電池(PEFC)や固体酸化物型燃料電池(SOFC)はエネルギー効率が高く、将来の普及拡大が有望視されている。 Recently, due to problems such as the depletion of fossil fuels such as petroleum and the phenomenon of global warming due to CO 2 emissions, the spread of new systems that replace conventional power generation systems is accelerating. As one of them, "fuel cells", which have high practical value as distributed power sources and power sources for automobiles, are attracting attention. There are several types of fuel cells, but among them, polymer electrolyte fuel cells (PEFC) and solid oxide fuel cells (SOFC) are highly energy efficient, and their widespread use is expected in the future.

燃料電池は、水の電気分解と逆の反応過程を経て電力を発生する装置であり、水素を必要とする。水素は、都市ガス(LNG)、メタン、天然ガス、プロパン、灯油、ガソリン等の炭化水素系燃料を触媒の存在下で改質反応させることにより製造される。中でも都市ガスを原燃料とする燃料電池は、都市ガス配管が整備された地区において水素を製造できる利点がある。 A fuel cell is a device that generates electric power through a reaction process opposite to the electrolysis of water, and requires hydrogen. Hydrogen is produced by reforming a hydrocarbon fuel such as city gas (LNG), methane, natural gas, propane, kerosene, and gasoline in the presence of a catalyst. Among them, a fuel cell using city gas as a raw material has an advantage that hydrogen can be produced in an area where city gas piping is installed.

燃料改質器は、水素の改質反応に必要な熱量を確保するため、通常、200〜700℃までの高温で運転される。更に、このような高温運転下において、多量の水蒸気、二酸化炭素、一酸化炭素等を含む酸化性の雰囲気に曝され、水素の需要に応じて起動・停止による加熱・冷却サイクルが繰り返される。これまで、このような過酷な環境下において十分な耐久性を有する実用材料として、SUS310S(25Cr−20Ni)に代表されるオーステナイト系ステンレス鋼が使用されてきた。将来、燃料電池システムの普及拡大に向けて、コスト低減は必要不可欠であり、使用材料の最適化による合金コストの低減は重要な課題である。また、SOFCシステムでは、高Cr含有ステンレス鋼を適用する場合、SOFC動作温度においてCrの蒸発によるセラミックス電極の被毒を防止できる鋼種を選定しなければならない。 上述した背景から、アルミナの高い耐酸化性を有するAl含有フェライト系ステンレス鋼の燃料改質器への適用が開示されている。 The fuel reformer is usually operated at a high temperature of 200 to 700 ° C. in order to secure the amount of heat required for the hydrogen reforming reaction. Further, under such high temperature operation, it is exposed to an oxidizing atmosphere containing a large amount of water vapor, carbon dioxide, carbon monoxide, etc., and a heating / cooling cycle of starting / stopping is repeated according to the demand for hydrogen. So far, austenitic stainless steel represented by SUS310S (25Cr-20Ni) has been used as a practical material having sufficient durability in such a harsh environment. Cost reduction is indispensable for the widespread use of fuel cell systems in the future, and reduction of alloy costs by optimizing the materials used is an important issue. Further, in the SOFC system, when applying a high Cr-containing stainless steel, it is necessary to select a steel type capable of preventing the ceramic electrode from being poisoned by the evaporation of Cr at the SOFC operating temperature. From the above background, the application of Al-containing ferritic stainless steel having high oxidation resistance of alumina to a fuel reformer is disclosed.

特許文献1には、Cr:8〜35%、C:0.03%以下、N:0.03%以下、Mn:1.5%以下、Si:0.8〜2.5%及び/又はAl:0.6〜6.0%であり、更にNb:0.05〜0.80%、Ti:0.03〜0.50%、Mo:0.1〜4%、Cu:0.1〜4%の1種又は2種以上を含み、Si及びAlの合計量が1.5%以上に調整された組成を有する石油系燃料改質器用フェライト系ステンレス鋼が開示されている。これらステンレス鋼は、200〜900℃の温度域で材料を繰り返し加熱・冷却する熱疲労試験において(拘束率50%)、初期の最大引張応力が3/4まで低下する破損繰り返しが500cyc(サイクル)以上であることを特徴としている。 Patent Document 1 describes Cr: 8 to 35%, C: 0.03% or less, N: 0.03% or less, Mn: 1.5% or less, Si: 0.8 to 2.5% and / or Al: 0.6 to 6.0%, Nb: 0.05 to 0.80%, Ti: 0.03 to 0.50%, Mo: 0.1 to 4%, Cu: 0.1. Ferritic stainless steels for petroleum fuel reformers are disclosed, which contain 1 or 2 or more of ~ 4% and have a composition in which the total amount of Si and Al is adjusted to 1.5% or more. In a thermal fatigue test in which the material is repeatedly heated and cooled in a temperature range of 200 to 900 ° C. (restraint rate 50%), these stainless steels have 500 cycls (cycles) of repeated breakage in which the initial maximum tensile stress drops to 3/4. It is characterized by the above.

特許文献2には、Cr:8〜25%、C:0.03%以下、N:0.03%以下、Si:0.1〜2.5%、Mn:1.5%以下、Al:0.1〜4%を含み、更にNb:0.05〜0.80%、Ti:0.03〜0.5%、Mo:0.1〜4%、Cu:0.1〜4%の1種又は2種以上を含むアルコール系燃料改質器用フェライト系ステンレス鋼が開示されている。これらステンレス鋼は、200〜900℃の温度域で材料を繰り返し加熱・冷却する熱疲労試験において(拘束率100%)、初期の最大引張応力が3/4まで低下する破損繰り返しが1000cyc以上であることを特徴としている。 Patent Document 2 describes Cr: 8 to 25%, C: 0.03% or less, N: 0.03% or less, Si: 0.1 to 2.5%, Mn: 1.5% or less, Al: Contains 0.1 to 4%, and further contains Nb: 0.05 to 0.80%, Ti: 0.03 to 0.5%, Mo: 0.1 to 4%, Cu: 0.1 to 4%. Ferrite-based stainless steels for alcohol-based fuel reformers, including one or more, are disclosed. In a thermal fatigue test in which the material is repeatedly heated and cooled in a temperature range of 200 to 900 ° C. (restraint rate 100%), these stainless steels have a failure repetition rate of 1000 cyc or more in which the initial maximum tensile stress is reduced to 3/4. It is characterized by that.

特許文献3には、Cr:12〜20%、C:0.03%以下、N:0.03%以下、Si:0.1〜1.5%、Mn:0.95〜1.5%、Al:1.5%以下とし、Nb:0.1〜0.8、Mo:0.1〜4%、Cu:0.1〜4.0の1種又は2種以上を含み、A=Cr+Mn+5(Si+Al)で定義されるA値が15〜25の範囲に調整された炭化水素系燃料改質器用フェライト系ステンレス鋼が開示されている。これらステンレス鋼は、200〜900℃の温度域で材料を繰り返し加熱・冷却する熱疲労試験において(拘束率100%)、初期の最大引張応力が3/4まで低下する破損繰り返しが800cyc以上であることを特徴としている。 Patent Document 3 describes Cr: 12 to 20%, C: 0.03% or less, N: 0.03% or less, Si: 0.1 to 1.5%, Mn: 0.95 to 1.5%. , Al: 1.5% or less, Nb: 0.1 to 0.8, Mo: 0.1 to 4%, Cu: 0.1 to 4.0, including one or more, A = A ferritic stainless steel for a hydrocarbon fuel reformer in which the A value defined by Cr + Mn + 5 (Si + Al) is adjusted in the range of 15 to 25 is disclosed. In a thermal fatigue test in which the material is repeatedly heated and cooled in a temperature range of 200 to 900 ° C. (restraint rate 100%), these stainless steels have 800 cyc or more of repeated breakage in which the initial maximum tensile stress is reduced to 3/4. It is characterized by that.

特許文献4には、C:0.02%未満、Si:0.15〜0.7%、Mn:0.3%以下、P:0.035%以下、S:0.003%以下、Cr:13〜20%、Al:1.5〜6%、N:0.02%以下、Ti:0.03〜0.5%、Nb:0.001〜0.1%以下、鋼中の固溶Ti量を[Ti]、鋼中の固溶Nb量を[Nb]とし、13≦Cr≦16の場合は0≦[Ti]≦[Nb]+0.05、0<[Nb]≦0.10を満たし、16<Cr≦20の場合は0≦[Ti]≦1/2×[Nb]+0.15、[Ti]≦0.12、0<[Nb]≦0.1を満足することを特徴とする燃料電池用Al含有フェライト系ステンレス鋼が開示されている。これらステンレス鋼は、750℃、初期応力10MPaのクリープ破断時間が4000h以上であることを特徴としている。 Patent Document 4 describes C: less than 0.02%, Si: 0.15 to 0.7%, Mn: 0.3% or less, P: 0.035% or less, S: 0.003% or less, Cr. : 13 to 20%, Al: 1.5 to 6%, N: 0.02% or less, Ti: 0.03 to 0.5%, Nb: 0.001 to 0.1% or less, solid in steel The amount of molten Ti is [Ti], the amount of solid-melt Nb in steel is [Nb], and when 13 ≦ Cr ≦ 16, 0 ≦ [Ti] ≦ [Nb] +0.05, 0 <[Nb] ≦ 0. When 10 is satisfied and 16 <Cr ≦ 20, 0 ≦ [Ti] ≦ 1/2 × [Nb] +0.15, [Ti] ≦ 0.12, and 0 <[Nb] ≦ 0.1 are satisfied. Al-containing ferritic stainless steel for fuel cells, characterized by the above, is disclosed. These stainless steels are characterized by having a creep rupture time of 4000 h or more at 750 ° C. and an initial stress of 10 MPa.

特許文献5には、C:0.001〜0.03%、Si:0.01〜2%、Mn:0.01〜1.5%、P:0.005〜0.05%、S:0.0001〜0.01%、Cr:16〜30%、N:0.001〜0.03%、Al:0.8〜3%、Sn:0.01〜1%を含み、800℃での0.2%耐力が40MPa以上、引張強さ60MPa以上であることを特徴とする耐酸化性と高温強度に優れた高純度フェライト系ステンレス鋼板が開示されている。 Patent Document 5 describes C: 0.001 to 0.03%, Si: 0.01 to 2%, Mn: 0.01 to 1.5%, P: 0.005 to 0.05%, S: Containing 0.0001 to 0.01%, Cr: 16 to 30%, N: 0.001 to 0.03%, Al: 0.8 to 3%, Sn: 0.01 to 1%, at 800 ° C. A high-purity ferrite-based stainless steel plate having excellent oxidation resistance and high-temperature strength, which is characterized by having a 0.2% strength of 40 MPa or more and a tensile strength of 60 MPa or more, is disclosed.

特許文献6には、燃料改質器やガス配管は溶接により繋ぎ合わせる場合があり、Al含有フェライト系ステンレス鋼の溶接材料が開示されている。即ち、特許文献6には、C:0.02%以下、Si:0.5%以下、Mn:1.0%以下、P:0.04%以下、S:0.005%以下、Ni:0.5%以下、Cr:15〜20%、N:0.03%以下、NbおよびTi:1種以上を合計で0.1〜0.5%、Al:1.5〜3.5%未満含み、残部がFeおよび不可避的不純物からなるFeCrAl合金溶接ワイヤーが開示されている。 Patent Document 6 discloses a welding material for Al-containing ferritic stainless steel, in which a fuel reformer and a gas pipe may be connected by welding. That is, in Patent Document 6, C: 0.02% or less, Si: 0.5% or less, Mn: 1.0% or less, P: 0.04% or less, S: 0.005% or less, Ni: 0.5% or less, Cr: 15 to 20%, N: 0.03% or less, Nb and Ti: 1 or more in total 0.1 to 0.5%, Al: 1.5 to 3.5% FeCrAl alloy welded wires are disclosed that contain less than or equal to Fe and the balance consisting of Fe and unavoidable impurities.

特開2003−160840号公報Japanese Unexamined Patent Publication No. 2003-160840 特開2003−160844号公報Japanese Unexamined Patent Publication No. 2003-160844 特開2003−160842号公報Japanese Unexamined Patent Publication No. 2003-160842 特開2010−222638号公報Japanese Unexamined Patent Publication No. 2010-22638 特開2012−172160号公報Japanese Unexamined Patent Publication No. 2012-172160 特開2015−199107号公報JP-A-2015-199107

前記した通り、燃料改質器、熱交換器などの部品は200〜800℃の温度域で連続運転される。しかしながら、SOFCシステムの安全性を考慮する場合、構造体において最も強度の低い部位を考慮した材料選定を行うことが好ましい。溶接部は母材部と比較して粗粒であるため、一般的に強度が低い。さらに、フェライト系ステンレス鋼の場合、700℃を超える高温においては著しい強度の低下を生じることが知られている。本発明者らは、長期間の運転を想定した場合に、構造体中の熱応力に起因した疲労特性が耐久性を確保するにあたり最重要であると知見した。すなわち、溶接部を含む燃料電池構造体において、溶接部が、母材部と比較して高温強度が低いことが問題の所在であり、高温疲労特性に劣る溶接部の同特性を向上させることが新たな課題として挙げられる。 As described above, parts such as the fuel reformer and the heat exchanger are continuously operated in the temperature range of 200 to 800 ° C. However, when considering the safety of the SOFC system, it is preferable to select the material in consideration of the part having the lowest strength in the structure. Since the welded portion has coarser grains than the base metal portion, the strength is generally low. Further, in the case of ferritic stainless steel, it is known that a significant decrease in strength occurs at a high temperature exceeding 700 ° C. The present inventors have found that fatigue characteristics due to thermal stress in a structure are of the utmost importance in ensuring durability, assuming long-term operation. That is, in the fuel cell structure including the welded portion, the problem is that the welded portion has a lower high temperature strength than the base metal portion, and it is possible to improve the same characteristics of the welded portion, which is inferior in high temperature fatigue characteristics. It is mentioned as a new issue.

特許文献1〜3は熱疲労試験により材料が破損するサイクル数を増加させる技術思想に、特許文献4はクリープ試験で材料が破断する時間を長くする技術思想に、特許文献5は引張試験で測定される高温強度を上昇させる技術思想に基づいている。これらは母材部の特性に着目したものである。溶接の場合、鋼製品の実機製造とは異なる熱履歴を経るため、溶接部の高温疲労特性の観点から成分検討を行うことが重要であるが、特許文献1〜5ではこのような視点からの検討は行われていない。特許文献6の溶接ワイヤーは溶接部の靭性および耐Cr蒸発性を確保する観点から成分設計を行っているが、高温疲労特性については考慮していない。 Patent Documents 1 to 3 are technical ideas for increasing the number of cycles in which a material is broken by a thermal fatigue test, Patent Document 4 is a technical idea for lengthening the time for a material to break in a creep test, and Patent Document 5 is a tensile test. It is based on the technical idea of increasing the high temperature strength. These focus on the characteristics of the base metal part. In the case of welding, since it undergoes a thermal history different from that of actual manufacturing of steel products, it is important to examine the components from the viewpoint of high temperature fatigue characteristics of the welded part, but in Patent Documents 1 to 5, from this viewpoint. No consideration has been given. The welding wire of Patent Document 6 is component-designed from the viewpoint of ensuring the toughness and Cr evaporation resistance of the welded portion, but the high-temperature fatigue characteristics are not considered.

本発明はこのような状況に鑑みてなされたもので、改質ガスを含む800℃の高温環境下でも耐久性を確保するため、フェライト系ステンレス鋼の溶接部の疲労特性を向上させることを課題とする。 The present invention has been made in view of such a situation, and it is an object of the present invention to improve the fatigue characteristics of the welded portion of ferritic stainless steel in order to secure durability even in a high temperature environment of 800 ° C. containing a reforming gas. And.

本発明者らは上記課題を解決するために鋭意検討し、以下の知見を得た。
・高温疲労特性を高めるには、合金元素添加による固溶強化に加え、亜結晶粒界の成長を抑制し、微細な組織を維持することで、微小き裂の生成と進展の両方を抑制できることを知見した。
・Snは、固溶強化はもちろんであるが、さらに800℃の変形時に鋼中に形成される亜結晶粒界に特に偏析しやすく、亜結晶粒界の移動を著しく抑制することを知見した。
・Bも、固溶強化に加え、さらに高温疲労試験中に形成される亜結晶粒界に偏析し、亜結晶粒界の移動を顕著に抑制することを知見した。
・さらに、Bをより亜結晶粒界に偏析させるために、結晶粒界に偏析しやすいP、SやOを(式1)を満たすように制限することが効果的であることを知見した。
[P]+[S]+5×[O]≦0.080 ・・・(式1)
本発明は、これら知見により成されたものであり、その要旨は以下のとおりである。
The present inventors diligently studied to solve the above problems and obtained the following findings.
・ In order to improve high temperature fatigue characteristics, in addition to solid solution strengthening by adding alloying elements, growth of subgrain boundaries can be suppressed and fine structure can be maintained, thereby suppressing both the formation and growth of fine cracks. Was found.
It was found that Sn is particularly liable to segregate at the subgrain boundaries formed in the steel when deformed at 800 ° C., as well as solid solution strengthening, and significantly suppresses the movement of the subcrystal grain boundaries.
-It was also found that B also segregates at the subgrain boundaries formed during the high temperature fatigue test in addition to the solid solution strengthening, and remarkably suppresses the movement of the subcrystal grain boundaries.
-Furthermore, in order to segregate B at the subgrain boundaries, it was found that it is effective to limit P, S and O, which are likely to segregate at the grain boundaries, so as to satisfy (Equation 1).
[P] + [S] + 5 × [O] ≤ 0.080 ... (Equation 1)
The present invention has been made based on these findings, and the gist thereof is as follows.

(1)
質量%にて、C:0.03%以下、Si:2.0%以下、Mn:2.0%以下、P:0.050%以下、S:0.015%以下、Cr:11.0〜25.0%、Al:1.3〜4.0%、N:0.040%以下、Sn:0.005〜0.5%、B:0.0005〜0.0050%未満、O:0.010%以下を含み、更にTi:0.50%以下、Nb:0.50%以下、V:0.50%以下の1種類または2種以上を含み、さらに下記(式1)を満たし、残部がFeおよび不可避的不純物であることを特徴とする高温疲労特性に優れたフェライト系ステンレス鋼。
[P]+[S]+5×[O]≦0.080%・・・(式1)
ここで、[P]、[S]、[O]は、それぞれの元素の含有量(質量%)を示す。
(2)
さらに、前記フェライト系ステンレス鋼が、質量%で、Mg:0.015%以下、Ca:0.005%以下の1種または2種を含有することを特徴とする(1)に記載の高温疲労特性に優れたフェライト系ステンレス鋼。
(3)
さらに、前記フェライト系ステンレス鋼が、質量%で、Ni:1.0%以下、Cu:1.0%以下、Mo:1.0%以下、W:1.0%以下、Co:1.0%以下の1種または2種以上を含有することを特徴とする(1)または(2)に記載の高温疲労特性に優れたフェライト系ステンレス鋼。
(4)
さらに、前記フェライト系ステンレス鋼が、質量%で、Zr:0.50%以下、Ga:0.10%以下、Zn:0.10%以下、Sb:0.50%以下、La:0.10%以下、Y:0.10%以下、Hf:0.10%以下、Ta:0.1%以下、REM:0.10%以下の1種または2種以上を含有することを特徴とする(1)〜(3)のいずれか1項に記載の高温疲労特性に優れたフェライト系ステンレス鋼。
(5)
前記フェライト系ステンレス鋼が、溶接構造体に用いられることを特徴とする(1)〜(4)のいずれか一項に記載の高温疲労特性に優れたフェライト系ステンレス鋼。
(6)
前記フェライト系ステンレス鋼が、燃料改質器、熱交換器あるいは燃料電池高温部材に適用されることを特徴とする(1)〜(5)に記載の高温疲労特性に優れたフェライト系ステンレス鋼。
(7)
前記フェライト系ステンレス鋼が、燃料電池用溶接構造体に適用されることを特徴とする(1)〜(6)に記載の高温疲労特性に優れたフェライト系ステンレス鋼。
(1)
In terms of mass%, C: 0.03% or less, Si: 2.0% or less, Mn: 2.0% or less, P: 0.050% or less, S: 0.015% or less, Cr: 11.0 ~ 25.0%, Al: 1.3 to 4.0%, N: 0.040% or less, Sn: 0.005 to 0.5%, B: 0.0005 to less than 0.0050%, O: It contains 0.010% or less, and further contains one or more types of Ti: 0.50% or less, Nb: 0.50% or less, V: 0.50% or less, and further satisfies the following (Equation 1). Ferritic stainless steel with excellent high temperature fatigue characteristics, characterized in that the balance is Fe and unavoidable impurities.
[P] + [S] + 5 × [O] ≤ 0.080% ... (Equation 1)
Here, [P], [S], and [O] indicate the content (mass%) of each element.
(2)
Further, the high temperature fatigue according to (1), wherein the ferritic stainless steel contains one or two types of Mg: 0.015% or less and Ca: 0.005% or less in mass%. Ferritic stainless steel with excellent characteristics.
(3)
Further, the ferritic stainless steel is, in terms of mass%, Ni: 1.0% or less, Cu: 1.0% or less, Mo: 1.0% or less, W: 1.0% or less, Co: 1.0. The ferritic stainless steel having excellent high temperature fatigue characteristics according to (1) or (2), which contains 1 type or 2 or more types of% or less.
(4)
Further, the ferritic stainless steel is Zr: 0.50% or less, Ga: 0.10% or less, Zn: 0.10% or less, Sb: 0.50% or less, La: 0.10 in mass%. % Or less, Y: 0.10% or less, Hf: 0.10% or less, Ta: 0.1% or less, REM: 0.10% or less, and one or more of them (. The ferritic stainless steel having excellent high temperature fatigue characteristics according to any one of 1) to (3).
(5)
The ferritic stainless steel having excellent high temperature fatigue characteristics according to any one of (1) to (4), wherein the ferritic stainless steel is used for a welded structure.
(6)
The ferritic stainless steel having excellent high temperature fatigue characteristics according to (1) to (5), wherein the ferritic stainless steel is applied to a fuel reformer, a heat exchanger, or a fuel cell high temperature member.
(7)
The ferritic stainless steel having excellent high temperature fatigue characteristics according to (1) to (6), wherein the ferritic stainless steel is applied to a welded structure for a fuel cell.

本発明により、都市ガス、メタン、天然ガス、プロパン、灯油、ガソリン等の炭化水素系燃料を水素に改質する際に使用される改質器、熱交換器などの燃料電池高温部材に好適で、特に、改質ガス環境を含む高温環境下において熱疲労特性が要求される固体酸化物型燃料電池(SOFC)の溶接構造体における高温部材に好適なフェライト系ステンレス鋼を提供することができる。 INDUSTRIAL APPLICABILITY According to the present invention, it is suitable for a fuel cell high temperature member such as a reformer and a heat exchanger used when reforming hydrocarbon fuels such as city gas, methane, natural gas, propane, kerosene and gasoline into hydrogen. In particular, it is possible to provide a ferrite-based stainless steel suitable for a high temperature member in a welded structure of a solid oxide fuel cell (SOFC), which is required to have thermal fatigue characteristics in a high temperature environment including a reformed gas environment.

本発明者らは、前記した課題を解決するために、フェライト系ステンレス鋼の成分組成とそれを用いて作製した溶接継手の高温疲労特性の関係について鋭意実験と検討を重ね、本発明を完成させた。以下に本発明で得られた知見について説明する。 In order to solve the above-mentioned problems, the present inventors have completed the present invention by repeating diligent experiments and studies on the relationship between the composition of ferritic stainless steel and the high temperature fatigue characteristics of welded joints produced using the same. It was. The findings obtained in the present invention will be described below.

(a)母材と比べ溶接部の結晶粒径は粗大である。これにより、溶接部の高温強度は母材よりも低くなる。 (A) The crystal grain size of the welded portion is coarser than that of the base metal. As a result, the high temperature strength of the welded portion is lower than that of the base metal.

(b)定置型燃料電池システムの作動を想定した熱応力解析の結果、800℃で最大40MPaの応力が繰り返し付与される。 (B) As a result of thermal stress analysis assuming the operation of a stationary fuel cell system, a maximum stress of 40 MPa is repeatedly applied at 800 ° C.

(c)このような応力下において、付与されたひずみは動的な回復により亜結晶粒界を形成しながら変形が進行する。亜結晶粒は徐々に粗大化し、微小き裂の核生成サイトとなる。この微小き裂は亜結晶粒内を進展していき、やがては溶接部の破断に至る。ここで、亜結晶粒界は微小き裂進展を阻害する。したがって、高温疲労特性を高めるには、合金元素添加による固溶強化に加え、亜結晶粒界の成長を抑制し、微細な組織を維持することで、微小き裂の生成と進展の両方を抑制できることを知見した。 (C) Under such stress, the applied strain undergoes deformation while forming subcrystal grain boundaries due to dynamic recovery. Subcrystal grains gradually coarsen and become nucleation sites for microcracks. These microcracks propagate in the subcrystal grains and eventually lead to breakage of the weld. Here, the subgrain boundaries inhibit the growth of microcracks. Therefore, in order to enhance the high temperature fatigue characteristics, in addition to strengthening the solid solution by adding alloying elements, the growth of subgrain boundaries is suppressed and the fine structure is maintained, thereby suppressing both the formation and growth of fine cracks. I found out that I can do it.

(d)過度なAlおよび固溶・析出強化に寄与するNb、Mo、Cuなどの添加によらずSnの微量添加により、高温疲労特性は著しく向上することを新たに見出した。Snは、固溶強化はもちろんであるが、さらに800℃の変形時に鋼中に形成される亜結晶粒界に特に偏析しやすく、亜結晶粒界の移動を著しく抑制することが分かった。ただし、過剰のSn添加は結晶粒界強度を低下させ、高温疲労特性低下の原因となる。 (D) It has been newly found that the high temperature fatigue characteristics are remarkably improved by adding a small amount of Sn regardless of the addition of excessive Al and Nb, Mo, Cu, etc. that contribute to solid solution / precipitation strengthening. It was found that Sn is particularly liable to segregate at the subcrystal grain boundaries formed in the steel when deformed at 800 ° C., as well as solid solution strengthening, and significantly suppresses the movement of the subcrystal grain boundaries. However, excessive Sn addition lowers the grain boundary strength and causes a decrease in high temperature fatigue characteristics.

(e)BもSnと同様、固溶強化に加え、さらに高温疲労試験中に形成される亜結晶粒界に偏析し、亜結晶粒界の移動を顕著に抑制する。さらに、Bをより亜結晶粒界に偏析させるためには、結晶粒界に偏析しやすいP、SやOを(式1)式を満たすように制限することが効果的である。また、Ca、Mgの適量添加によって、結晶粒界に偏析しやすいP、SやOを非金属介在物や硫化物として生成させ、Bの粒界への偏析サイトを確保することも効果的である。
[P]+[S]+5×[O]≦0.080 ・・・(式1)
一方で、過剰にBを添加した場合、BはBNとして溶接部の粒界に析出し、高温疲労試験時に粒界を起点とした破壊を助長する。したがって、適切なB添加量の見極めが重要となる。
Similar to Sn, (e) B also segregates into the subcrystal grain boundaries formed during the high temperature fatigue test in addition to solid solution strengthening, and remarkably suppresses the movement of the subcrystal grain boundaries. Further, in order to segregate B at the subgrain boundaries, it is effective to limit P, S and O, which are likely to segregate at the grain boundaries, so as to satisfy the formula (Equation 1). It is also effective to generate P, S and O, which are easily segregated at the grain boundaries, as non-metal inclusions and sulfides by adding appropriate amounts of Ca and Mg, and to secure segregation sites for B at the grain boundaries. is there.
[P] + [S] + 5 × [O] ≤ 0.080 ... (Equation 1)
On the other hand, when B is added in excess, B is deposited as BN at the grain boundaries of the welded portion, and promotes fracture starting from the grain boundaries during the high temperature fatigue test. Therefore, it is important to determine an appropriate amount of B added.

(f)その他、Ti、Nb、V、Ni、Cu、Mo、W、Co、Zr、Ga、Sb、La、Y、Hf、Ta、REMは固溶強化により、高温疲労特性の向上に有効な添加元素である。 (F) In addition, Ti, Nb, V, Ni, Cu, Mo, W, Co, Zr, Ga, Sb, La, Y, Hf, Ta, and REM are effective in improving high temperature fatigue characteristics by strengthening solid solution. It is an additive element.

(g)上記(b)〜(f)に記載の知見を溶接部に適用することができ、800℃の高温環境下でも耐久性を確保すること、すなわち、フェライト系ステンレス鋼の溶接部の疲労特性を向上できることを新たに見出した。 (G) The findings described in (b) to (f) above can be applied to the welded portion, and durability can be ensured even in a high temperature environment of 800 ° C., that is, fatigue of the welded portion of ferritic stainless steel. We have newly found that the characteristics can be improved.

以下、本発明の各要件について詳しく説明する。なお、各元素の含有量の「%」表示は、特に断りのない限り「質量%」を意味する。 Hereinafter, each requirement of the present invention will be described in detail. The "%" indication of the content of each element means "mass%" unless otherwise specified.

化学成分の限定理由を以下に説明する。 The reasons for limiting the chemical components will be described below.

<C:0.03%以下>
Cは、フェライト相に固溶あるいはCr23C6を形成して耐酸化性を阻害する。また、溶接時の粒界におけるCr23C6の析出を促進させる。このため、C量は少ないほど良く、上限を0.030%とする。但し、過度な低減は精錬コストの上昇に繋がるため、下限は0.001%とすることが好ましい。より好ましくは、下限は0.002%、上限は0.020%にするとよい。
<C: 0.03% or less>
C forms a solid solution or Cr23C6 in the ferrite phase and inhibits oxidation resistance. It also promotes the precipitation of Cr23C6 at the grain boundaries during welding. Therefore, the smaller the amount of C, the better, and the upper limit is 0.030%. However, since excessive reduction leads to an increase in refining cost, the lower limit is preferably 0.001%. More preferably, the lower limit is 0.002% and the upper limit is 0.020%.

<Si:2.0%以下>
Siは、耐酸化性を確保する上で重要な元素である。また、固溶強化により高温強度を高める元素である。これら効果を得るために下限は0.01%とすることが好ましい。一方、過度な添加は、鋼の靭性や加工性の低下ならびにAl系酸化皮膜の形成を阻害する場合があるため、上限は2.0%とする。Siの効果を積極的に活用する場合、Siの含有量の下限は、0.3%、上限は1.0%にすることが好ましい。
<Si: 2.0% or less>
Si is an important element for ensuring oxidation resistance. It is also an element that enhances high-temperature strength by strengthening solid solution. In order to obtain these effects, the lower limit is preferably 0.01%. On the other hand, excessive addition may hinder the deterioration of steel toughness and workability and the formation of Al-based oxide film, so the upper limit is set to 2.0%. When the effect of Si is positively utilized, it is preferable that the lower limit of the Si content is 0.3% and the upper limit is 1.0%.

<Mn:2.0%以下>
Mnは、改質ガス環境下でSiとともに酸化皮膜中に固溶して保護性を高める。これら効果を得るために下限は0.1%とすることが好ましい。一方、過度な添加は、鋼の耐食性やAl系酸化皮膜の形成を阻害するため、上限は2.0%以下とする。耐酸化性と基本特性の点から、Mnの含有量の下限は、0.2%、上限は1.2%の範囲が好ましい。
<Mn: 2.0% or less>
Mn dissolves in the oxide film together with Si in a reformed gas environment to enhance the protective property. In order to obtain these effects, the lower limit is preferably 0.1%. On the other hand, excessive addition inhibits the corrosion resistance of steel and the formation of an Al-based oxide film, so the upper limit is set to 2.0% or less. From the viewpoint of oxidation resistance and basic characteristics, the lower limit of the Mn content is preferably 0.2% and the upper limit is preferably 1.2%.

<P:0.050%以下>
Pは、製造性や溶接性を阻害する。また、溶接時に粒界に偏析しやすい元素であるため、SnおよびBの粒界偏析を阻害する元素である。その含有量は少ないほど良いため、上限は0.050%とする。但し、過度な低減は精錬コストの上昇に繋がるため、下限は0.003%とすることが好ましい。製造性と溶接性の点から、好ましい範囲は、下限は0.010%、上限は0.035%にするとよい。
<P: 0.050% or less>
P inhibits manufacturability and weldability. Further, since it is an element that easily segregates at the grain boundaries during welding, it is an element that inhibits the grain boundary segregation of Sn and B. The lower the content, the better, so the upper limit is 0.050%. However, since excessive reduction leads to an increase in refining cost, the lower limit is preferably 0.003%. From the viewpoint of manufacturability and weldability, the preferable range is preferably 0.010% at the lower limit and 0.035% at the upper limit.

<S:0.015%以下>
Sは、鋼中に含まれる不可避的不純物元素であり、Al系皮膜の保護性を低下させる。特に、Mn系介在物や固溶Sの存在は、高温・長時間使用におけるAl系酸化皮膜の破壊起点としても作用する。また、溶接時に粒界に偏析しやすい元素であるため、SnおよびBの粒界偏析を阻害する元素である。従って、S量は低いほど良いため、上限は0.015%とする。但し、過度の低減は原料や精錬コストの上昇に繋がるため、下限は0.0001%とする。製造性と耐酸化性の観点から、好ましい範囲は0.0001〜0.0050%である。
<S: 0.015% or less>
S is an unavoidable impurity element contained in the steel and lowers the protective property of the Al-based film. In particular, the presence of Mn-based inclusions and solid solution S also acts as a starting point for destruction of the Al-based oxide film during high-temperature, long-term use. Further, since it is an element that easily segregates at the grain boundaries during welding, it is an element that inhibits the grain boundary segregation of Sn and B. Therefore, the lower the amount of S, the better, so the upper limit is set to 0.015%. However, since excessive reduction leads to an increase in raw materials and refining costs, the lower limit is set to 0.0001%. From the viewpoint of manufacturability and oxidation resistance, the preferable range is 0.0001 to 0.0050%.

<Cr:11.0〜25.0%>
Crは、耐食性に加えて、表面酸化皮膜の保護性を確保する上で基本となる構成元素であり、これら効果を得るためには11.0%以上のCr量が必要である。一方、過度なCrの添加は、Cr23C6の析出を促進させる。また、脆化相であるσ相の生成を助長する。合金コストの上昇とCr蒸発を助長する場合があるため上限は25.0%とする。好ましい範囲は、下限は13.0%、上限は20.0%にするとよい。
<Cr: 11.0 to 25.0%>
Cr is a constituent element that is basic for ensuring the protection of the surface oxide film in addition to corrosion resistance, and an amount of Cr of 11.0% or more is required to obtain these effects. On the other hand, excessive addition of Cr promotes precipitation of Cr23C6. It also promotes the formation of the σ phase, which is the embrittled phase. The upper limit is set to 25.0% because it may promote an increase in alloy cost and Cr evaporation. The preferable range is that the lower limit is 13.0% and the upper limit is 20.0%.

<Al:1.3〜4.0%>
Alは、脱酸元素に加えて、Al系酸化皮膜を形成してCr蒸発を抑止するために必須の添加元素である。また、固溶強化により高温強度を高める元素である。これら効果を得るため、下限は1.3%とする。しかし、過度なAlの添加は、鋼の靭性や溶接部における脆性破壊を助長するため、上限は、4.0%とする。好ましい範囲は、下限は1.5%、上限は3.0%にするとよい。
<Al: 1.3 to 4.0%>
In addition to the deoxidizing element, Al is an essential additive element for forming an Al-based oxide film and suppressing Cr evaporation. It is also an element that enhances high-temperature strength by strengthening solid solution. In order to obtain these effects, the lower limit is set to 1.3%. However, since excessive addition of Al promotes toughness of steel and brittle fracture in welds, the upper limit is set to 4.0%. The preferable range is that the lower limit is 1.5% and the upper limit is 3.0%.

<N:0.040%以下>
Nは、Cと同様に耐酸化性を阻害する。このため、N量は少ないほど良く、上限を0.040%とする。但し、過度な低減は精錬コストの上昇に繋がるため、下限は0.001%とする。好ましい範囲は、下限は0.002%、上限は0.020%にするとよい。
<N: 0.040% or less>
N inhibits oxidation resistance like C. Therefore, the smaller the amount of N, the better, and the upper limit is 0.040%. However, since excessive reduction leads to an increase in refining cost, the lower limit is set to 0.001%. The preferable range is that the lower limit is 0.002% and the upper limit is 0.020%.

<O:0.010%以下>
Oは、不可避的な不純物であり、過剰のOを含有する場合、溶接時にSi、Mn、Alを酸化し、剥離しやすいスラグを形成し、耐酸化性を劣化させる。また、高温疲労試験時、スラグと溶接金属界面の剥離によって微小き裂の核生成サイトとなる。したがって、上限を0.010%以下とする必要がある。好ましくは、上限は0.008%でにするとよい。
<O: 0.010% or less>
O is an unavoidable impurity, and when excess O is contained, Si, Mn, and Al are oxidized during welding to form slag that is easily peeled off, and the oxidation resistance is deteriorated. In addition, during the high temperature fatigue test, the slag and the weld metal interface are peeled off, resulting in a nucleation site for microcracks. Therefore, the upper limit needs to be 0.010% or less. Preferably, the upper limit is 0.008%.

<Sn:0.005〜0.5%>
Snは亜結晶粒界に偏析し、粒界移動を著しく抑制することで高温疲労特性を高める元素である。この効果を得るため、下限は0.005%とする。一方、過剰なSnの添加は鋼材の粒界強度を弱め、粒界破壊を助長して製造性の低下を招くため、上限を0.5%とする必要がある。好ましいSnの含有量は、下限は0.01%、上限は0.4%にするとよい。製造性を考慮すると、Snの上限値は0.12%が好ましいく、さらには0.05%であるとなおよい。
<Sn: 0.005-0.5%>
Sn is an element that segregates at subgrain boundaries and remarkably suppresses grain boundary movement to enhance high temperature fatigue characteristics. In order to obtain this effect, the lower limit is set to 0.005%. On the other hand, the addition of excessive Sn weakens the grain boundary strength of the steel material, promotes grain boundary fracture and causes a decrease in manufacturability, so the upper limit needs to be 0.5%. The preferable Sn content is preferably 0.01% at the lower limit and 0.4% at the upper limit. Considering the manufacturability, the upper limit of Sn is preferably 0.12%, more preferably 0.05%.

<B:0.0005〜0.0050%未満>
Bは亜結晶粒界に偏析し、粒界移動を著しく抑制することで高温疲労特性を高める元素である。この効果を得るため、下限は0.0005%とする。一方、過剰なBの添加は鋼材の製造性の低下を招く他、溶接時にBNの析出を助長するため、上限を0.0050%未満とする必要がある。好ましいBの含有量は、下限は0.001%、上限は0.0045%にするとよい。
<B: 0.0005 to less than 0.0050%>
B is an element that segregates at the subgrain boundaries and enhances high temperature fatigue characteristics by remarkably suppressing grain boundary movement. In order to obtain this effect, the lower limit is set to 0.0005%. On the other hand, the addition of excess B causes a decrease in the manufacturability of the steel material and promotes the precipitation of BN during welding, so that the upper limit must be less than 0.0050%. The preferable B content is preferably 0.001% at the lower limit and 0.0045% at the upper limit.

<[P]+[S]+5×[O]≦0.080>
BもSnと同様、固溶強化に加え、高温疲労試験中に形成される亜結晶粒界に偏析し、亜結晶粒界の移動を顕著に抑制する。さらに、Bをより亜結晶粒界に偏析させるためには、結晶粒界に偏析しやすいP、SやOの量を制限することが効果的である。これら元素の中で特にOは鋼中のAlとAl2O3を形成し、この介在物が疲労試験時の微小き裂生成サイトとなりうる。したがって、[P]+[S]+5×[O]を0.080%以下に制御する必要がある。好ましくは、[P]+[S]+5×[O]を0.070%以下にするとよい。
<[P] + [S] + 5 x [O] ≤ 0.080>
Similar to Sn, B also segregates at the subcrystal grain boundaries formed during the high temperature fatigue test in addition to solid solution strengthening, and remarkably suppresses the movement of the subcrystal grain boundaries. Further, in order to segregate B at the subgrain boundaries, it is effective to limit the amounts of P, S and O that are likely to segregate at the grain boundaries. Among these elements, O in particular forms Al and Al2O3 in steel, and these inclusions can serve as microcrack formation sites during fatigue tests. Therefore, it is necessary to control [P] + [S] + 5 × [O] to 0.080% or less. Preferably, [P] + [S] + 5 × [O] should be 0.070% or less.

<Ti、Nb、V:0.5%以下>
Ti、Nb、Vは、C,Nを固定する安定化元素の作用により、溶接時のCr23C6生成抑制に寄与する元素である。さらに、高温強度と疲労特性の向上にも寄与する元素である。これら効果を得るために、それぞれの元素の下限は0.004%とすることが好ましい。一方、過度な添加は合金コストの上昇や再結晶温度上昇に伴う製造性の低下や耐酸化性の低下にも繋がるため、上限は0.5%とする。好ましい範囲は、それぞれの元素で、下限が0.03%、上限が〜0.40%にするとよい。
<Ti, Nb, V: 0.5% or less>
Ti, Nb, and V are elements that contribute to suppressing the formation of Cr23C6 during welding by the action of stabilizing elements that fix C and N. Furthermore, it is an element that contributes to the improvement of high temperature strength and fatigue characteristics. In order to obtain these effects, the lower limit of each element is preferably 0.004%. On the other hand, excessive addition leads to an increase in alloy cost, a decrease in manufacturability and a decrease in oxidation resistance due to an increase in recrystallization temperature, so the upper limit is set to 0.5%. The preferable range is for each element, the lower limit is 0.03% and the upper limit is ~ 0.40%.

<Mg:0.015%以下、Ca:0.005%以下>
Mg、Caは、結晶粒界に偏析しやすいP、SやOを非金属介在物や硫化物として生成させ、高温疲労特性の向上に間接的に寄与する元素である。これら元素を一種または2種以上を含むものとする。これら元素過度な添加は製造性と鋼の耐食性を低下させるため、Mg:0.015%以下、Ca:0.005%以下であることが好ましい。また、この効果を確実に得るため、Mg:0.001%、Ca:0.0005%以上含有させることが好ましい。
<Mg: 0.015% or less, Ca: 0.005% or less>
Mg and Ca are elements that indirectly contribute to the improvement of high temperature fatigue characteristics by forming P, S and O that are easily segregated at the grain boundaries as non-metal inclusions and sulfides. These elements shall contain one or more of these elements. Excessive addition of these elements lowers manufacturability and corrosion resistance of steel, so Mg: 0.015% or less and Ca: 0.005% or less are preferable. Further, in order to surely obtain this effect, it is preferable to contain Mg: 0.001% and Ca: 0.0005% or more.

<Ni、Cu、Mo、W、Co:1.0%以下>
これら元素は固溶強化により高温疲労特性を増加させる。これら元素を1種類または2種類以上含有することが好ましい。一方、これら元素の過度な添加は製造性の低下および合金コストの増加に繋がるため、Ni:1.0%以下、Cu:1.0%以下、Mo:1.0%以下、W:1.0%以下、Co:1.0%以下で、これら元素の合計量を2.0%以下とすることが好ましい。この効果を確実に得るため、Ni:0.020%以上、Cu:0.010%以上、Mo:0.010%以上、W:0.001%以上、Co:0.005%以上含有させることが好ましい。
<Ni, Cu, Mo, W, Co: 1.0% or less>
These elements increase high temperature fatigue properties by strengthening solid solution. It is preferable to contain one or more of these elements. On the other hand, excessive addition of these elements leads to a decrease in manufacturability and an increase in alloy cost. Therefore, Ni: 1.0% or less, Cu: 1.0% or less, Mo: 1.0% or less, W: 1. It is preferable that the total amount of these elements is 2.0% or less, with 0% or less and Co: 1.0% or less. In order to surely obtain this effect, Ni: 0.020% or more, Cu: 0.010% or more, Mo: 0.010% or more, W: 0.001% or more, Co: 0.005% or more should be contained. Is preferable.

<Zr、Ga、Zn、Sb、La、Y、Hf、Ta、REM>
これら元素は固溶強化により高温疲労特性を増加させる。また、Zr、La、Y、Hf、Ta、REMは、熱間加工性や鋼の清浄度を向上ならびに耐酸化性改善に対しても、従来から有効な元素である。Ga、Zn、Sbは表面近傍に濃化してCrの酸化を抑制する。これら元素を1種類または2種類以上含有することが好ましい。一方、これら元素の過度な添加は結晶強度の低下、製造性の低下および合金コストの増加に繋がるため、Zr:0.50%以下、Ga:0.10%以下、Zn:0.1%以下、Sb:0.50%以下、La:0.10%以下、Y:0.10%以下、Hf:0.10%以下、Ta:0.50%以下、REM:0.10%以下でこれら元素を1種類または2種類以上含有する必要がある。これら元素の合計量を0.20%以下とすることが好ましい。これらの効果を確実に得るため、Zr:0.0001%以上、Ga:0.001%以上、Zn:0.01%以上、Sb:0.003%以上、La:0.0001%以上、Y:0.0001%以上、Hf:0.0001%以上、Ta:0.002%以上、REM:0.001%以上含有させることが好ましい。
<Zr, Ga, Zn, Sb, La, Y, Hf, Ta, REM>
These elements increase high temperature fatigue properties by strengthening solid solution. In addition, Zr, La, Y, Hf, Ta, and REM are conventionally effective elements for improving hot workability, steel cleanliness, and oxidation resistance. Ga, Zn, and Sb are concentrated near the surface to suppress the oxidation of Cr. It is preferable to contain one or more of these elements. On the other hand, excessive addition of these elements leads to a decrease in crystal strength, a decrease in manufacturability, and an increase in alloy cost. Therefore, Zr: 0.50% or less, Ga: 0.10% or less, Zn: 0.1% or less. , Sb: 0.50% or less, La: 0.10% or less, Y: 0.10% or less, Hf: 0.10% or less, Ta: 0.50% or less, REM: 0.10% or less. It is necessary to contain one kind or two or more kinds of elements. The total amount of these elements is preferably 0.20% or less. In order to surely obtain these effects, Zr: 0.0001% or more, Ga: 0.001% or more, Zn: 0.01% or more, Sb: 0.003% or more, La: 0.0001% or more, Y : 0.0001% or more, Hf: 0.0001% or more, Ta: 0.002% or more, REM: 0.001% or more is preferable.

表1に成分を示す各種フェライト系ステンレス鋼を溶製し、熱間圧延、焼鈍酸洗、冷間圧延を行い、板厚1.0mmの冷延焼鈍鋼板を製造した。ここで、鋼A1〜A16は、本発明の規定する成分範囲内の鋼であり、鋼B1〜B14は、本発明の規定する成分範囲から外れる鋼である。これら冷延焼鈍鋼板に対し、幅120mm、長さ250mmの溶接用素材を切り出した。次いで、同じ鋼種のフェライト系ステンレス鋼板同士を母材として、電流80〜100A、溶接速度50cm/minにて、Arシールドガスを用いてTIGなめ付け溶接して、表1の各フェライト系ステンレス鋼板の溶接継手を製造した。 Various ferritic stainless steels whose components are shown in Table 1 were melted and hot-rolled, annealed pickled, and cold-rolled to produce a cold-rolled annealed steel sheet having a plate thickness of 1.0 mm. Here, the steels A1 to A16 are steels within the component range specified by the present invention, and the steels B1 to B14 are steels outside the component range specified by the present invention. A welding material having a width of 120 mm and a length of 250 mm was cut out from these cold-rolled annealed steel sheets. Next, using ferritic stainless steel sheets of the same steel type as the base material, TIG tanning welding was performed using Ar shield gas at a current of 80 to 100 A and a welding speed of 50 cm / min to obtain the ferritic stainless steel sheets in Table 1. Manufactured welded joints.

また、表2に成分を示す記号C1、C2のAl含有フェライト系ステンレス鋼溶接材料を溶製した。表1の鋼種A1、B11、B12を母材とし、溶接材料C1、C2を用いて溶接継手を作製した。溶接条件は電流200A、溶接速度50cm/min、溶接材料供給量8g/minであり、Arガスシールドを実施した。得られた溶接継手の溶接金属部から化学分析用試料を採取し、成分分析を行った。表3に各溶接継手の溶接金属部の化学成分を示す。ここで、表3の記号は、例えばA1C1の場合、母材はA1、溶接材料はC1を使用して製造した溶接継手であることを意味する。 Further, Al-containing ferritic stainless steel welding materials having symbols C1 and C2 indicating the components in Table 2 were melted. Welded joints were produced using the steel types A1, B11, and B12 in Table 1 as base materials and the welding materials C1 and C2. The welding conditions were a current of 200 A, a welding speed of 50 cm / min, and a welding material supply amount of 8 g / min, and Ar gas shielding was performed. A sample for chemical analysis was collected from the weld metal part of the obtained welded joint, and component analysis was performed. Table 3 shows the chemical composition of the weld metal part of each welded joint. Here, the symbols in Table 3 mean that, for example, in the case of A1C1, the base metal is A1 and the welding material is a welded joint manufactured using C1.

高温疲労特性は平面曲げ疲労試験により評価した。各溶接継手に対し、平行部幅10mm、標点間距離35mmの板状試験片を、溶接ビードは試験片の幅中央に位置するように採取した。試験条件は、800℃で、応力範囲を40および44MPaとし、周波数1700Hz、応力比−1にて、破断までの試験サイクルを測定した。ここで、試験は10回で打ち切り、応力範囲40MPaで10回までに破断しなかったものを「○」、応力範囲44MPaで10回までに破断しなかったものを「◎」、試験途中で破断したものを「×」として高温疲労特性を評価した。なお、応力範囲40MPaで試験途中に破断したものについては応力範囲44MPaでは疲労試験を実施していない。 The high temperature fatigue characteristics were evaluated by a plane bending fatigue test. For each welded joint, a plate-shaped test piece having a parallel portion width of 10 mm and a distance between gauge points of 35 mm was collected so that the weld bead was located at the center of the width of the test piece. The test conditions were 800 ° C., the stress range was 40 and 44 MPa, the frequency was 1700 Hz, and the stress ratio was -1, and the test cycle until fracture was measured. Here, the test is censored in 10 seven times, "○" the ones that did not break until 10 c times in the stress range 40MPa, the ones that did not break up to 10 seven times in the stress range 44MPa "◎", test The high temperature fatigue characteristics were evaluated by marking the one that broke in the middle as "x". In addition, the fatigue test was not carried out in the stress range of 44 MPa for those that broke in the middle of the test in the stress range of 40 MPa.

得られた結果を表4に示す。 The results obtained are shown in Table 4.

A1〜A16は、本発明で規定する鋼成分を満たしている。その結果、SnおよびBの粒界強化を十分に得ることができ、10回まで疲労破壊が生じず、「○」ないし「◎」の評価となった。 A1 to A16 satisfy the steel components specified in the present invention. As a result, the grain boundary strengthening of Sn and B can be obtained enough, fatigue fracture does not occur until 10 seven times, was the evaluation of from "○", "◎".

B1は、Sn添加量が本発明で規定する鋼成分を上回るものである。その結果、疲労試験中にSnの過剰な粒界偏析よる粒界強度低下を招き、粒界破壊が生じたため、応力範囲40MPaで10回到達前に破断した。 In B1, the amount of Sn added exceeds the steel component specified in the present invention. As a result, during the fatigue test lead to grain boundary strength decreases with excessive grain boundary segregation of Sn, for intergranular fracture occurs, broke before reaching 107 times stress range 40 MPa.

B2は、B添加量が本発明で規定する鋼成分を上回るものである。その結果、疲労試験中にBNの析出に起因した粒界破壊が生じたため、応力範囲40MPaで10回到達前に破断した。 In B2, the amount of B added exceeds the steel component specified in the present invention. As a result, the grain boundary fracture due to the deposition of BN because resulting was broken before reaching 10 7 times with stress range 40MPa during fatigue testing.

B3は、Al添加量が本発明で規定する鋼成分を下回るものである。その結果、疲労試験中に耐酸化性が不足し、スケール剥離に起因する減肉が生じたため、そこを起点とした疲労破壊が生じ、応力範囲40MPaで10回到達前に破断した。 In B3, the amount of Al added is less than the steel component specified in the present invention. As a result, oxidation resistance is insufficient in fatigue test, since the thinning caused by the scale detachment occurs, fatigue fracture starting from the there occurred was broken before reaching 10 7 times with stress range 40 MPa.

B4は、Al添加量が本発明で規定する鋼成分を上回るものである。その結果、溶接部に生じた過剰なAlを起点とした疲労破壊が生じ、応力範囲40MPaで10回到達前に破断した。 In B4, the amount of Al added exceeds the steel component specified in the present invention. As a result, starting from the excess Al 2 O 3 generated in the weld fatigue failure occurs, broke before reaching 107 times stress range 40 MPa.

B5は、P添加量が本発明で規定する鋼成分を上回る。その結果、SnおよびBの粒界強化を十分に得ることができず、応力範囲40MPaで10回到達前に破断した。 In B5, the amount of P added exceeds the steel component specified in the present invention. As a result, it is impossible to obtain a grain boundary strengthening of Sn and B sufficiently, it broke before reaching 107 times stress range 40 MPa.

B6は、O添加量が本発明で規定する鋼成分を上回る。その結果、溶接部で生成した過剰なスラグが微小き裂の生成サイトとなり、応力範囲40MPaで10回到達前に破断した。 In B6, the amount of O added exceeds the steel component specified in the present invention. As a result, excessive slag generated in the welded portion becomes a generation region of the micro crack, it broke before reaching 107 times stress range 40 MPa.

B7は、P+S+5Oが本発明で規定する鋼成分を上回る。その結果、SnおよびBの粒界強化を十分に得ることができず、応力範囲40MPaで10回到達前に破断した。 In B7, P + S + 5O exceeds the steel composition specified in the present invention. As a result, it is impossible to obtain a grain boundary strengthening of Sn and B sufficiently, it broke before reaching 107 times stress range 40 MPa.

B8は、Ti添加量が本発明で規定する範囲を上回る。その結果、溶接部に生成した過剰なTi系析出物が微小き裂の生成サイトとなり、応力範囲40MPaで10回到達前に破断した。 In B8, the amount of Ti added exceeds the range specified in the present invention. As a result, excessive Ti-based precipitates produced in the welded portion becomes a generation region of the micro crack, it broke before reaching 107 times stress range 40 MPa.

B9は、Nb添加量が本発明で規定する鋼成分を上回る。その結果、溶接部で生成した過剰なNb系析出物が微小き裂の生成サイトとなり、応力範囲40MPaで10回到達前に破断した。 In B9, the amount of Nb added exceeds the steel component specified in the present invention. As a result, excessive Nb-based precipitates generated in the welded portion becomes a generation region of the micro crack, it broke before reaching 107 times stress range 40 MPa.

B10は、Cr添加量が本発明で規定する鋼成分を上回る。その結果、溶接部で生成した過剰なCr系析出物が微小き裂の生成サイトとなり、応力範囲40MPaで10回到達前に破断した。 In B10, the amount of Cr added exceeds the steel component specified in the present invention. As a result, excessive Cr-based precipitates generated in the welded portion becomes a generation region of the micro crack, it broke before reaching 107 times stress range 40 MPa.

B11およびB12は、SnとB添加量が本発明で規定する鋼成分を下回る。その結果、亜結晶粒界の移動を抑制することができず、応力範囲40MPaで10回到達前に破断した。 In B11 and B12, the amount of Sn and B added is less than the steel component specified in the present invention. As a result, it is impossible to suppress the movement of the sub-grain boundaries, it broke before reaching 107 times stress range 40 MPa.

B13は、GaおよびSbが本発明で規定する鋼成分を上回る。その結果、溶接部の粒界強度が低下し、応力範囲40MPaで10回到達前に破断した。 B13 exceeds the steel composition defined by Ga and Sb in the present invention. As a result, grain boundary strength of the welded portion is reduced, it broke before reaching 107 times stress range 40 MPa.

B14はMgおよびCaが本発明で規定する鋼成分を上回る。その結果、溶接部でMgOおよびCaOを起点としたき裂が生成し、応力範囲40MPaで10回到達前に破断した。 In B14, Mg and Ca exceed the steel components specified in the present invention. As a result, the crack as a starting point the MgO and CaO in the weld formed and was broken before reaching 10 7 times with stress range 40 MPa.

B15は、Crが本発明で規定する鋼成分を下回る。その結果、鋼材そのものの耐酸化性の劣化に起因したスケール剥離により溶接継手が減肉し応力範囲40MPaで10回到達前に破断した。 In B15, Cr is less than the steel component specified in the present invention. As a result, the welded joint by the scale peeling due to oxidation degradation of the steel material itself is broken before reaching 10 7 times with thinning and stress range 40 MPa.

B16はC、MgおよびCaが本発明で規定する鋼成分を上回る。その結果、溶接部の粒界に析出したCr系炭化物ならびに溶接部粒内のMgOおよびCaOを起点としたき裂が生成し、応力範囲40MPaで10回到達前に破断した。 In B16, C, Mg and Ca exceed the steel components specified in the present invention. As a result, the crack as a starting point the MgO and CaO in the weld grain boundary Cr carbide and the weld grain precipitated on the formed and was broken before reaching 10 7 times with stress range 40 MPa.

A1C1は、母材、溶接材料とも本発明で規定する鋼成分を満たしている。その結果、SnおよびBの粒界強化を十分に得ることができ、10回まで疲労破壊が生じなかった。 Both the base material and the welding material of A1C1 satisfy the steel components specified in the present invention. As a result, the grain boundary strengthening of Sn and B can be sufficiently obtained, fatigue fracture did not occur until 107 times.

B11C1およびB12C2は、母材は本発明で規定する鋼成分を満たしていないが、溶接材料により溶接部の鋼成分を満たすように成分調整を行っている。その結果、SnおよびBの粒界強化を十分に得ることができ、10回まで疲労破壊が生じなかった。 In B11C1 and B12C2, the base material does not satisfy the steel component specified in the present invention, but the component is adjusted so as to satisfy the steel component of the welded portion by the welding material. As a result, the grain boundary strengthening of Sn and B can be sufficiently obtained, fatigue fracture did not occur until 107 times.

Figure 0006767831
Figure 0006767831

Figure 0006767831
Figure 0006767831

Figure 0006767831
Figure 0006767831

Figure 0006767831
Figure 0006767831

本発明によれば、Al、Nb、Mo、Cuの添加に頼ることなく、改質ガス環境を含む高温環境下において溶接部の高温疲労特性に優れたフェライト系ステンレス鋼を得ることができる。特に、燃料電池用溶接構造体に好適なフェライト系ステンレス鋼を得ることができる。 According to the present invention, it is possible to obtain a ferritic stainless steel having excellent high temperature fatigue characteristics of a welded portion in a high temperature environment including a modified gas environment without relying on the addition of Al, Nb, Mo and Cu. In particular, a ferritic stainless steel suitable for a welded structure for a fuel cell can be obtained.

Claims (7)

質量%にて、C:0.03%以下、Si:2.0%以下、Mn:2.0%以下、P:0.050%以下、S:0.015%以下、Cr:11.0〜25.0%、Al:1.3〜4.0%、N:0.040%以下、Sn:0.005〜0.5%、B:0.0005〜0.0050%未満、O:0.010%以下を含み、更にTi:0.50%以下、Nb:0.50%以下、V:0.50%以下の1種類または2種以上を含み、さらに下記(式1)を満たし、残部がFeおよび不可避的不純物であることを特徴とする高温疲労特性に優れた溶接構造体用フェライト系ステンレス鋼。
[P]+[S]+5×[O]≦0.080% ・・・(式1)
ここで、[P]、[S]、[O]は、それぞれの元素の含有量(質量%)を示す。
In terms of mass%, C: 0.03% or less, Si: 2.0% or less, Mn: 2.0% or less, P: 0.050% or less, S: 0.015% or less, Cr: 11.0 ~ 25.0%, Al: 1.3 to 4.0%, N: 0.040% or less, Sn: 0.005 to 0.5%, B: 0.0005 to less than 0.0050%, O: It contains 0.010% or less, and further contains one or more types of Ti: 0.50% or less, Nb: 0.50% or less, V: 0.50% or less, and further satisfies the following (Equation 1). Ferritic stainless steel for welded structures with excellent high temperature fatigue properties, characterized in that the balance is Fe and unavoidable impurities.
[P] + [S] + 5 × [O] ≤ 0.080% ... (Equation 1)
Here, [P], [S], and [O] indicate the content (mass%) of each element.
さらに、前記フェライト系ステンレス鋼が、質量%で、Mg:0.015%以下、Ca:0.005%以下の1種または2種を含有することを特徴とする請求項1に記載の高温疲労特性に優れた溶接構造体用フェライト系ステンレス鋼。 The high temperature fatigue according to claim 1, wherein the ferritic stainless steel contains one or two types of Mg: 0.015% or less and Ca: 0.005% or less in mass%. Ferritic stainless steel for welded structures with excellent characteristics. さらに、前記フェライト系ステンレス鋼が、質量%で、Ni:1.0%以下、Cu:1.0%以下、Mo:1.0%以下、W:1.0%以下、Co:1.0%以下の1種または2種以上を含有することを特徴とする請求項1または2に記載の高温疲労特性に優れた溶接構造体用フェライト系ステンレス鋼。 Further, the ferritic stainless steel is, in terms of mass%, Ni: 1.0% or less, Cu: 1.0% or less, Mo: 1.0% or less, W: 1.0% or less, Co: 1.0. The ferritic stainless steel for a welded structure having excellent high temperature fatigue characteristics according to claim 1 or 2, which contains 1 type or 2 or more types of% or less. さらに、前記フェライト系ステンレス鋼が、質量%で、Zr:0.50%以下、Ga:0.10%以下、Zn:0.10%以下、Sb:0.50%以下、La:0.10%以下、Y:0.10%以下、Hf:0.10%以下、Ta:0.1%以下、REM:0.10%以下の1種または2種以上を含有することを特徴とする請求項1〜3のいずれか1項に記載の高温疲労特性に優れた溶接構造体用フェライト系ステンレス鋼。 Further, the ferritic stainless steel contains Zr: 0.50% or less, Ga: 0.10% or less, Zn: 0.10% or less, Sb: 0.50% or less, La: 0.10 in mass%. % Or less, Y: 0.10% or less, Hf: 0.10% or less, Ta: 0.1% or less, REM: 0.10% or less, one or more kinds of claims. Item 5. A ferritic stainless steel for a welded structure having excellent high temperature fatigue characteristics according to any one of Items 1 to 3. 前記溶接構造体が、燃料改質器、熱交換器あるいは燃料電池高温部材であることを特徴とする請求項1〜のいずれか一項に記載の高温疲労特性に優れた溶接構造体用フェライト系ステンレス鋼。 The welded structure, the fuel reformer, the welding structure for ferrite having excellent high-temperature fatigue properties according to any one of claims 1 to 4, characterized in that a heat exchanger or a fuel cell hot member Ferritic steel. 前記請求項1〜4のいずれか1項に記載の成分組成を有するフェライト系ステンレス鋼を用いたことを特徴とする溶接構造体。A welded structure characterized in that a ferrite-based stainless steel having the component composition according to any one of claims 1 to 4 is used. 燃料改質器、熱交換器あるいは燃料電池高温部材である請求項6に記載の溶接構造体。The welded structure according to claim 6, which is a fuel reformer, a heat exchanger, or a fuel cell high temperature member.
JP2016188795A 2016-09-27 2016-09-27 Ferritic stainless steel and welded structures for welded structures with excellent high temperature fatigue characteristics Active JP6767831B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016188795A JP6767831B2 (en) 2016-09-27 2016-09-27 Ferritic stainless steel and welded structures for welded structures with excellent high temperature fatigue characteristics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016188795A JP6767831B2 (en) 2016-09-27 2016-09-27 Ferritic stainless steel and welded structures for welded structures with excellent high temperature fatigue characteristics

Publications (2)

Publication Number Publication Date
JP2018053290A JP2018053290A (en) 2018-04-05
JP6767831B2 true JP6767831B2 (en) 2020-10-14

Family

ID=61835319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016188795A Active JP6767831B2 (en) 2016-09-27 2016-09-27 Ferritic stainless steel and welded structures for welded structures with excellent high temperature fatigue characteristics

Country Status (1)

Country Link
JP (1) JP6767831B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6765287B2 (en) * 2016-11-17 2020-10-07 日鉄ステンレス株式会社 Ferritic stainless steel, its manufacturing method, and fuel cell components
JP7233195B2 (en) * 2018-10-26 2023-03-06 日鉄ステンレス株式会社 Ferritic stainless steel, manufacturing method thereof, and fuel cell member

Also Published As

Publication number Publication date
JP2018053290A (en) 2018-04-05

Similar Documents

Publication Publication Date Title
CA2711415C (en) Carburization resistant metal material
DK2725112T3 (en) COATING RESISTANT METAL MATERIALS AND USES OF THE COATING RESISTANT METAL MATERIAL
JP4335439B2 (en) Heat resistant steel
JP5544106B2 (en) Al-containing heat-resistant ferritic stainless steel for fuel cells and method for producing the same
JP6300841B2 (en) Al-containing ferritic stainless steel with excellent high-temperature strength
KR20140034928A (en) Ni-based heat-resistant alloy
WO2017073093A1 (en) Ferritic stainless steel for fuel cell with excellent anti-creep strength and manufacturing method therefor
WO2016204005A1 (en) HIGH-Cr AUSTENITIC STAINLESS STEEL
JP2013199663A (en) Austenitic stainless steel excellent in molten nitrate corrosion resistance, heat collection tube and heat accumulation system using molten nitrate as heat accumulation medium
JP2008214753A (en) Ferritic heat resistant steel having excellent creep property in weld heat-affected zone, and heat resistant structure
JP6765287B2 (en) Ferritic stainless steel, its manufacturing method, and fuel cell components
JP2005511892A6 (en) Ferritic stainless steel with high temperature creep resistance
JP2005511892A (en) Ferritic stainless steel with high temperature creep resistance
JP6767831B2 (en) Ferritic stainless steel and welded structures for welded structures with excellent high temperature fatigue characteristics
JP4632954B2 (en) Heat-resistant cast steel for hydrogen production reaction tubes with excellent aging ductility and creep rupture strength
JP2020066794A (en) Ferritic stainless steel and method for producing the same, and fuel cell member
JP2008156692A (en) Ferritic stainless steel for high-temperature device of fuel cell
JP6006893B2 (en) Ferritic stainless steel for fuel cells
JP7233195B2 (en) Ferritic stainless steel, manufacturing method thereof, and fuel cell member
JP6655962B2 (en) Al-containing ferritic stainless steel welded joint with excellent 475 ° C brittle resistance
JP6053994B1 (en) Ferritic stainless steel for fuel cells with excellent creep resistance and method for producing the same
JP6971185B2 (en) Ferritic stainless steel welded joints and fuel cell components
JP2019173072A (en) Ferritic stainless steel and manufacturing method therefor, and fuel battery member
WO2023058358A1 (en) Ferritic stainless steel pipe and method for producing same, and fuel cell
JP2019171408A (en) Filler metal for welding ferritic stainless steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200825

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200918

R150 Certificate of patent or registration of utility model

Ref document number: 6767831

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250