JP6655962B2 - Al-containing ferritic stainless steel welded joint with excellent 475 ° C brittle resistance - Google Patents
Al-containing ferritic stainless steel welded joint with excellent 475 ° C brittle resistance Download PDFInfo
- Publication number
- JP6655962B2 JP6655962B2 JP2015232001A JP2015232001A JP6655962B2 JP 6655962 B2 JP6655962 B2 JP 6655962B2 JP 2015232001 A JP2015232001 A JP 2015232001A JP 2015232001 A JP2015232001 A JP 2015232001A JP 6655962 B2 JP6655962 B2 JP 6655962B2
- Authority
- JP
- Japan
- Prior art keywords
- less
- stainless steel
- ferritic stainless
- welded joint
- containing ferritic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910001220 stainless steel Inorganic materials 0.000 title claims description 60
- 238000003466 welding Methods 0.000 claims description 32
- 229910052751 metal Inorganic materials 0.000 claims description 29
- 239000002184 metal Substances 0.000 claims description 29
- 239000000446 fuel Substances 0.000 claims description 18
- 239000000203 mixture Substances 0.000 claims description 18
- 229910000831 Steel Inorganic materials 0.000 claims description 15
- 239000010959 steel Substances 0.000 claims description 15
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 14
- 239000000126 substance Substances 0.000 claims description 13
- 239000010935 stainless steel Substances 0.000 claims description 10
- 229910052799 carbon Inorganic materials 0.000 claims description 9
- 229910052758 niobium Inorganic materials 0.000 claims description 9
- 229910052757 nitrogen Inorganic materials 0.000 claims description 9
- 229910052718 tin Inorganic materials 0.000 claims description 9
- 229910052720 vanadium Inorganic materials 0.000 claims description 9
- 229910052725 zinc Inorganic materials 0.000 claims description 9
- 229910052787 antimony Inorganic materials 0.000 claims description 8
- 229910052745 lead Inorganic materials 0.000 claims description 8
- 229910052727 yttrium Inorganic materials 0.000 claims description 8
- 229910052726 zirconium Inorganic materials 0.000 claims description 8
- 229910052785 arsenic Inorganic materials 0.000 claims description 7
- 229910052796 boron Inorganic materials 0.000 claims description 7
- 229910052735 hafnium Inorganic materials 0.000 claims description 7
- 239000012535 impurity Substances 0.000 claims description 7
- 229910052802 copper Inorganic materials 0.000 claims description 6
- 229910052733 gallium Inorganic materials 0.000 claims description 6
- 229910052750 molybdenum Inorganic materials 0.000 claims description 6
- 229910000859 α-Fe Inorganic materials 0.000 claims description 5
- 229910052804 chromium Inorganic materials 0.000 claims description 4
- 238000002485 combustion reaction Methods 0.000 claims description 4
- 229910052746 lanthanum Inorganic materials 0.000 claims description 4
- 229910052748 manganese Inorganic materials 0.000 claims description 4
- 229910052698 phosphorus Inorganic materials 0.000 claims description 4
- 238000010248 power generation Methods 0.000 claims description 4
- 229910052710 silicon Inorganic materials 0.000 claims description 4
- 229910052717 sulfur Inorganic materials 0.000 claims description 4
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- 239000000463 material Substances 0.000 description 24
- 238000012360 testing method Methods 0.000 description 24
- 239000013078 crystal Substances 0.000 description 20
- 230000000694 effects Effects 0.000 description 15
- 230000003647 oxidation Effects 0.000 description 15
- 238000007254 oxidation reaction Methods 0.000 description 15
- 239000007789 gas Substances 0.000 description 12
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 12
- 230000015572 biosynthetic process Effects 0.000 description 10
- 238000005452 bending Methods 0.000 description 9
- 238000003776 cleavage reaction Methods 0.000 description 9
- 230000007017 scission Effects 0.000 description 9
- 229910052719 titanium Inorganic materials 0.000 description 9
- 229910052739 hydrogen Inorganic materials 0.000 description 7
- 239000001257 hydrogen Substances 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- 239000002436 steel type Substances 0.000 description 7
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 6
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 6
- 238000001704 evaporation Methods 0.000 description 6
- 230000008020 evaporation Effects 0.000 description 6
- 229910052759 nickel Inorganic materials 0.000 description 5
- 239000006104 solid solution Substances 0.000 description 5
- 229910052721 tungsten Inorganic materials 0.000 description 5
- 230000032683 aging Effects 0.000 description 4
- 230000006378 damage Effects 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 238000007670 refining Methods 0.000 description 4
- 239000004215 Carbon black (E152) Substances 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 239000003502 gasoline Substances 0.000 description 3
- 229930195733 hydrocarbon Natural products 0.000 description 3
- 150000002430 hydrocarbons Chemical class 0.000 description 3
- 239000003350 kerosene Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 239000003345 natural gas Substances 0.000 description 3
- 239000001294 propane Substances 0.000 description 3
- 238000005204 segregation Methods 0.000 description 3
- 238000001330 spinodal decomposition reaction Methods 0.000 description 3
- 229910052715 tantalum Inorganic materials 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 239000010953 base metal Substances 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 230000003749 cleanliness Effects 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 238000002407 reforming Methods 0.000 description 2
- 238000006057 reforming reaction Methods 0.000 description 2
- 238000005728 strengthening Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 238000007545 Vickers hardness test Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- QZPSXPBJTPJTSZ-UHFFFAOYSA-N aqua regia Chemical compound Cl.O[N+]([O-])=O QZPSXPBJTPJTSZ-UHFFFAOYSA-N 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 231100000572 poisoning Toxicity 0.000 description 1
- 230000000607 poisoning effect Effects 0.000 description 1
- 239000005518 polymer electrolyte Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Landscapes
- Heat Treatment Of Sheet Steel (AREA)
Description
本発明は、都市ガス、メタン、天然ガス、プロパン、灯油、ガソリン等の炭化水素系燃料を水素に改質する際に使用される改質器、熱交換器などの燃料電池高温部材に好適な耐475℃脆性に優れたAl含有フェライト系ステンレス鋼溶接継手およびその製造方法に関する。 INDUSTRIAL APPLICABILITY The present invention is suitable for a fuel cell high-temperature member such as a reformer and a heat exchanger used when reforming a hydrocarbon-based fuel such as city gas, methane, natural gas, propane, kerosene and gasoline into hydrogen. The present invention relates to an Al-containing ferritic stainless steel welded joint excellent in 475 ° C brittleness resistance and a method for producing the same.
最近、石油を代表とする化石燃料の枯渇化、CO2排出による地球温暖化現象等の問題から、従来の発電システムに替わる新しいシステムの普及が加速している。その1つとして、分散電源,自動車の動力源としても実用的価値が高い「燃料電池」が注目されている。燃料電池にはいくつかの種類があるが、その中でも固体高分子型燃料電池(PEFC)や固体酸化物型燃料電池(SOFC)はエネルギー効率が高く、将来の普及拡大が有望視されている。 Recently, due to problems such as depletion of fossil fuels represented by petroleum and global warming due to CO 2 emission, the spread of new systems replacing conventional power generation systems is accelerating. As one of them, a "fuel cell", which has a high practical value as a distributed power source and a power source of an automobile, has attracted attention. There are several types of fuel cells. Among them, polymer electrolyte fuel cells (PEFCs) and solid oxide fuel cells (SOFCs) have high energy efficiency and are expected to be widely used in the future.
燃料電池は、水の電気分解と逆の反応過程を経て電力を発生する装置であり、水素を必要とする。水素は、都市ガス(LNG)、メタン、天然ガス、プロパン、灯油、ガソリン等の炭化水素系燃料を触媒の存在下で改質反応させることにより製造される。中でも都市ガスを原燃料とする燃料電池は、都市ガス配管が整備された地区において水素を製造できる利点がある。 A fuel cell is a device that generates electric power through a reaction process reverse to the electrolysis of water, and requires hydrogen. Hydrogen is produced by subjecting a hydrocarbon-based fuel such as city gas (LNG), methane, natural gas, propane, kerosene, gasoline, and the like to a reforming reaction in the presence of a catalyst. Among them, a fuel cell using city gas as a raw fuel has an advantage that hydrogen can be produced in an area where city gas piping is provided.
燃料改質器は、水素の改質反応に必要な熱量を確保するため、通常、200〜900℃までの高温で運転される。このような高温運転下において、多量の水蒸気、二酸化炭素、一酸化炭素等を含む酸化性の雰囲気に曝され、水素の需要に応じて起動・停止による加熱・冷却サイクルが繰り返される。また、SOFCシステムでは、高Cr含有ステンレス鋼を適用した場合、SOFC動作温度においてCrの蒸発によるセラミックス電極の被毒を防止する課題がある。 The fuel reformer is usually operated at a high temperature of 200 to 900 ° C. in order to secure the heat required for the reforming reaction of hydrogen. Under such a high-temperature operation, a heating / cooling cycle by starting / stopping is repeated according to a demand for hydrogen by being exposed to an oxidizing atmosphere containing a large amount of water vapor, carbon dioxide, carbon monoxide and the like. Further, in the SOFC system, when a high Cr-containing stainless steel is applied, there is a problem of preventing poisoning of the ceramic electrode due to evaporation of Cr at the SOFC operating temperature.
また、Crを15%以上含有するフェライト系ステンレス鋼では、400〜500℃程度の温度域に長時間曝されると、高Cr濃度相と低Cr濃度相のスピノーダル分解に起因した硬質化が生じる可能性が考えられる。いわゆる475℃脆性である。したがって、SOFCシステムにおける高温使用環境においては、475℃脆性に起因した材料劣化が生じる可能性が考えられる。 Further, in a ferritic stainless steel containing 15% or more of Cr, when exposed to a temperature range of about 400 to 500 ° C. for a long time, hardening due to spinodal decomposition of a high Cr concentration phase and a low Cr concentration phase occurs. There is a possibility. It is so-called 475 ° C brittleness. Therefore, in a high-temperature use environment of the SOFC system, there is a possibility that material deterioration due to 475 ° C. brittleness may occur.
SOFC用途では、良好な耐酸化性・耐Cr蒸発性を有するAl含有フェライト系ステンレス鋼の適用が推奨されている。しかしながら、Al含有フェライト系ステンレス鋼は他のフェライト系ステンレス鋼と比べ強度が高いため低靭性であり、例えば非特許文献1で開示されている通り、鉄鋼材料の延性脆性遷移温度はAl添加により増大することが知られている。 For SOFC applications, the application of Al-containing ferritic stainless steel having good oxidation resistance and Cr evaporation resistance is recommended. However, Al-containing ferritic stainless steels have higher toughness than other ferritic stainless steels and therefore have lower toughness. For example, as disclosed in Non-Patent Document 1, the ductile brittle transition temperature of steel materials increases with the addition of Al. It is known to
特許文献1には、高温水蒸気含有雰囲気での耐酸化性とクリープ破断寿命を兼備する燃料電池用フェライト系ステンレス鋼が開示されている。本ステンレス鋼のCr量は13〜20%であるが、Cr量が475℃脆性を示さない15%以下の場合、耐酸化性確保のために4%以上のAl添加が必要となるが、このように多量のAlを含む鋼板の靭性は著しく低下するため、実製造が困難となる。 Patent Literature 1 discloses a ferritic stainless steel for a fuel cell having both oxidation resistance in a high-temperature steam-containing atmosphere and creep rupture life. The Cr content of this stainless steel is 13 to 20%. If the Cr content is 15% or less which does not exhibit 475 ° C brittleness, it is necessary to add 4% or more of Al to secure oxidation resistance. As described above, since the toughness of the steel sheet containing a large amount of Al is significantly reduced, actual production becomes difficult.
特許文献2には、耐酸化性、二次加工性に優れ、自動車排ガス経路に設置されるセンサの素子カバーなどの耐酸化性と高成形加工性が要求される用途に好適なフェライト系ステンレス鋼が開示されている。本ステンレス鋼の場合、実質18%程度のCrを含有するため、475℃脆性が発現する可能性が考えられる。 Patent Literature 2 discloses a ferritic stainless steel excellent in oxidation resistance and secondary workability, and suitable for applications requiring oxidation resistance and high formability such as an element cover of a sensor installed in an automobile exhaust gas path. Is disclosed. In the case of the present stainless steel, since it contains about 18% of Cr substantially, it is considered that 475 ° C brittleness may be exhibited.
特許文献3には、表面性状に優れた高Al含有フェライト系ステンレス鋼板、その製造方法、ステンレス箔が開示されている。本ステンレス鋼の場合、実質18%程度のCrおよび3%以上のAlを含有するため、475℃脆性の発現および高Al含有による靭性低下が生じると考えられる。 Patent Document 3 discloses a high Al-containing ferritic stainless steel sheet having excellent surface properties, a method for producing the same, and a stainless steel foil. In the case of the present stainless steel, since it contains substantially 18% of Cr and 3% or more of Al, it is considered that brittleness at 475 ° C. is exhibited and toughness is reduced due to high Al content.
特許文献4には、溶接性と加工性に優れた触媒担持用耐熱フェライト系ステンレス鋼が開示されている。本ステンレス鋼はAlを1〜2.5%程度含有し、溶接後も優れた成形加工性を有している点に特徴がある。 Patent Document 4 discloses a heat-resistant ferritic stainless steel for supporting a catalyst excellent in weldability and workability. The present stainless steel is characterized by containing about 1 to 2.5% of Al and having excellent formability even after welding.
本発明では、SOFCシステムにおいて溶接構造を採用する場合に、475℃脆性に起因した溶接部の脆性破壊を回避することが特に重要な解決課題であると知見した。
特許文献1〜4においては、475℃脆性起因の硬化後の溶接部における課題は認識されていない。すなわち、溶接部における耐475℃脆性を確保する観点から開発されたフェライト系ステンレス鋼は現状存在しない。
本発明は、上述した課題を解消すべく開発されたものであり、耐475℃脆性に優れたAl含有フェライト系ステンレス鋼溶接継手を提供するものである。
In the present invention, it has been found that avoiding brittle fracture of a welded portion caused by 475 ° C. brittleness is a particularly important solution when a welded structure is employed in an SOFC system.
Patent Literatures 1 to 4 do not recognize a problem in a weld after hardening due to 475 ° C brittleness. In other words, there is no ferritic stainless steel developed from the viewpoint of ensuring 475 ° C brittleness resistance at the welded portion.
The present invention has been developed to solve the above-described problem, and provides an Al-containing ferritic stainless steel welded joint excellent in 475 ° C. brittleness resistance.
(1)溶接金属部の化学成分が、質量%にて、C:0.03%以下、N:0.03%以下、Si:2.0%以下、Mn:2.0%以下、P:0.040%以下、S:0.01%以下、Cr:15.0〜25.0%、Al:1.0〜4.0%を含み、更にTi:1.0%以下、Nb:1.0%以下、V:1.0%以下の1種類または2種以上からなり且つ式(1)を満たす第1群、およびMg:0.010%以下、Ca:0.005%以下の1種または2種以上からなる第2群のうち少なくともいずれかの群を含有し、残部がFeおよび不可避的不純物であることを特徴とする耐475℃脆性に優れたAl含有フェライト系ステンレス鋼溶接継手。
([Ti]+[Nb]+[V])/(2×[C]+[N])≧4.0・・・・式(1)
ここで、[Ti]、[Nb]、[V]、[C]、[N]は、それぞれの元素の含有量(質量%)を示す。
(2)溶接金属部の化学成分が、更に、質量%にて、
Ni:1.0%以下、Cu:1.0%以下、Mo:1.0%以下、W:1.0%以下の1種または2種以上からなる第3群、および、Co:0.10%以下、Sn0.10%以下、As:0.05%以下、B:0.005%以下、Pb:0.005%以下、Zr:0.1%以下、Zn:0.03%以下、Y:0.10%以下、Ga:0.10%以下、La:0.10%以下、Hf:0.10%以下、Sb:0.10%以下、REM:0.10%以下、Ta:0.5%以下の1種または2種以上からなる第4群のうち、少なくともいずれかの群を含有することを特徴とする(1)に記載の耐475℃脆性に優れたAl含有フェライト系ステンレス鋼溶接継手。
(3)式(2)が質量%にて、0.20%以下であることを特徴とする請求項2に記載の耐475℃脆性に優れたAl含有フェライト系ステンレス鋼溶接継手。
[Co]+[Sn]+[As]+[B]+[Pb]+[Zr]+[Zn]+[Y]+[Ga]+[La]+[Hf]+[Sb]+[REM]+[Ta]・・・式(2)
ここで、[Co]、[Sn]、[As]、[B]、[Pb]、[Zr]、[Zn]、[Y]、[Ga]、[La]、[Hf]、[Sb]、[REM]、[Ta]は、それぞれの元素の含有量(質量%)を示す。
(4)溶接金属部における結晶粒径の大きさが350μm以下であることを特徴とする(1)〜(3)に記載の耐475℃脆性に優れたAl含有フェライト系ステンレス鋼溶接継手。
(5)燃料改質器、熱交換器あるいは燃料電池高温部材に適用されることを特徴とする(1)〜(4)に記載の耐475℃脆性に優れたAl含有フェライト系ステンレス鋼溶接継手。
(6)ガスタービン及び発電システムの少なくともいずれかに用いられる高温部材に適用されることを特徴とする(1)〜(4)のいずれかに記載の耐475℃脆性に優れたAl含有フェライト系ステンレス鋼溶接継手。
(7)エキゾーストマニホールド、コンバータ、マフラー、ターボチャージャー、EGRクーラー、フロントパイプ及びセンターパイプの少なくともいずれかの自動車用部材に適用されることを特徴とする(1)〜(4)のいずれかに記載の耐475℃脆性に優れたAl含有フェライト系ステンレス鋼溶接継手。
(8)ストーブ及びファンヒータの少なくともいずれかの燃焼機器に用いられる高温部材に適用されることを特徴とする(1)〜(4)のいずれかに記載の耐475℃脆性に優れたAl含有フェライト系ステンレス鋼溶接継手。
以下、上記(1)〜(8)に係るAl含有フェライト系ステンレス鋼溶接継手をそれぞれ本発明という。
(1) The chemical composition of the weld metal portion is, in mass%, C: 0.03% or less, N: 0.03% or less, Si: 2.0% or less, Mn: 2.0% or less, P: 0.040% or less, S: 0.01% or less, Cr: 15.0 to 25.0%, Al: 1.0 to 4.0%, Ti: 1.0% or less, Nb: 1 0.01% or less, V: 1.0% or less, a first group consisting of one or more kinds and satisfying the formula (1), and Mg: 0.010% or less and Ca: 0.005% or less. Al-containing ferritic stainless steel welded joint excellent in brittle resistance at 475 ° C., characterized by containing at least one of the second group consisting of one or more species and the balance being Fe and inevitable impurities. .
([Ti] + [Nb] + [V]) / (2 × [C] + [N]) ≧ 4.0 (1)
Here, [Ti], [Nb], [V], [C], and [N] indicate the content (% by mass) of each element.
(2) The chemical composition of the weld metal part is further
Ni: 1.0% or less, Cu: 1.0% or less, Mo: 1.0% or less, W: 1.0% or less, a third group composed of one or more kinds, and Co: 0. 10% or less, Sn 0.10% or less, As: 0.05% or less, B: 0.005% or less, Pb: 0.005% or less, Zr: 0.1% or less, Zn: 0.03% or less, Y: 0.10% or less, Ga: 0.10% or less, La: 0.10% or less, Hf: 0.10% or less, Sb: 0.10% or less, REM: 0.10% or less, Ta: An Al-containing ferrite system excellent in 475 ° C brittleness resistance according to (1), wherein at least one of the fourth group consisting of one or more kinds of 0.5% or less is contained. Stainless steel welded joint.
(3) The Al-containing ferritic stainless steel welded joint excellent in 475 ° C brittleness resistance according to claim 2, wherein the formula (2) is 0.20% or less by mass%.
[Co] + [Sn] + [As] + [B] + [Pb] + [Zr] + [Zn] + [Y] + [Ga] + [La] + [Hf] + [Sb] + [REM] ] + [Ta] Expression (2)
Here, [Co], [Sn], [As], [B], [Pb], [Zr], [Zn], [Y], [Ga], [La], [Hf], [Sb] , [REM], and [Ta] indicate the content (% by mass) of each element.
(4) The Al-containing ferritic stainless steel welded joint excellent in 475 ° C brittle resistance described in (1) to (3), wherein the crystal grain size in the weld metal portion is 350 µm or less.
(5) An Al-containing ferritic stainless steel welded joint excellent in brittle resistance at 475 ° C described in (1) to (4), which is applied to a fuel reformer, a heat exchanger, or a high-temperature member of a fuel cell. .
(6) An Al-containing ferrite system excellent in brittle resistance at 475 ° C according to any one of (1) to (4), which is applied to a high-temperature member used in at least one of a gas turbine and a power generation system. Stainless steel welded joint.
(7) The anti-durability described in any one of (1) to (4), which is applied to at least one of automobile members such as an exhaust manifold, a converter, a muffler, a turbocharger, an EGR cooler, a front pipe, and a center pipe. Al-containing ferritic stainless steel welded joint with excellent 475 ° C brittleness.
(8) Al content excellent in 475 ° C brittle resistance described in any one of (1) to (4), wherein the Al content is applied to a high-temperature member used in a combustion device of at least one of a stove and a fan heater. Ferritic stainless steel welded joint.
Hereinafter, the Al-containing ferritic stainless steel welded joints according to the above (1) to (8) are each referred to as the present invention.
本発明により、耐475℃脆性に優れたAl含有フェライト系ステンレス鋼溶接継手を提供することができる。 According to the present invention, an Al-containing ferritic stainless steel welded joint excellent in 475 ° C brittleness resistance can be provided.
本発明者らは、前記した課題を解決するため、フェライト系ステンレス鋼における475℃脆性に起因した脆性破壊機構の解明および脆性破壊挙動におよぼす各種合金元素の影響について実験と検討を重ね、本発明を完成させた。以下に本発明で得られた知見について説明する。 The present inventors have elucidated the brittle fracture mechanism caused by 475 ° C brittleness in ferritic stainless steel and conducted experiments and studies on the effects of various alloying elements on the brittle fracture behavior. Was completed. Hereinafter, the findings obtained by the present invention will be described.
(a)母材部に対し、溶接部では結晶粒径が大きくなるため、475℃脆性起因の破壊が生じやすくなる。この破壊の場合、へき開破面を呈する。Al含有フェライト系ステンレス鋼では、Alを含有していないフェライト系ステンレス鋼と比較し溶接時の結晶粒径が粗大化しやすい傾向にある。溶接継手における溶金部(溶接金属部、本発明では溶接施工時に溶融して凝固した領域のことを意味する)の結晶粒径は350μm以下であることが好ましい。また、475℃脆性起因の硬化挙動は例えばビッカース硬さ試験により評価できる。耐475℃脆性確保のためには、500℃時効後のビッカース硬さが300以下であることが好ましい。 (A) Since the crystal grain size in the welded portion is larger than that in the base material portion, fracture due to brittleness at 475 ° C. is likely to occur. In the case of this fracture, it exhibits a cleavage surface. The Al-containing ferritic stainless steel tends to have a larger crystal grain size during welding than a ferritic stainless steel not containing Al. The crystal grain size of the molten metal portion (welded metal portion, in the present invention, means a region that has been melted and solidified during welding) in the welded joint is preferably 350 μm or less. The curing behavior attributable to 475 ° C. brittleness can be evaluated by, for example, a Vickers hardness test. In order to ensure 475 ° C brittle resistance, the Vickers hardness after aging at 500 ° C is preferably 300 or less.
(b)詳細な組織観察を行った結果、475℃脆性起因の破壊には双晶変形が関与しており、変形双晶導入によりせん断歪が発生する。このせん断歪を解放するため、へき開き裂が生成し、伝播することで破壊に至る。また、上述のせん断歪の解放時、粒界き裂が生じる場合もあることが分かった。この場合、PやS,Sn等の粒界偏析による粒界強度低下にともなう粒界破壊がき裂生成の起点となる。 (B) As a result of detailed structure observation, twinning deformation is involved in the fracture caused by brittleness at 475 ° C., and shear strain is generated by the introduction of the deformation twinning. To release this shear strain, cleavage cracks are formed and propagate, leading to fracture. It was also found that a grain boundary crack may occur when the above-mentioned shear strain is released. In this case, grain boundary destruction due to a decrease in grain boundary strength due to grain boundary segregation of P, S, Sn or the like becomes a starting point of crack generation.
(c)溶接部における475℃脆性起因の破壊を抑制するためには、(i)双晶変形を発現しにくくすること、(ii)溶接時の結晶粒の粗大化を抑制すること、(iii)不純物元素の過剰な粒界偏析による粒界強度の低下を抑制することが重要となる。 (C) In order to suppress fracture attributable to brittleness at 475 ° C. in the welded portion, (i) it is difficult to develop twinning deformation, (ii) the coarsening of crystal grains during welding is suppressed, (iii) ) It is important to suppress a decrease in grain boundary strength due to excessive grain boundary segregation of impurity elements.
(d)Alは従来、フェライト鋼の強度を増加させ、延性脆性遷移温度を増加させる、すなわち脆性破壊を助長させる元素であることが知られていた。しかしながら、溶接部のような結晶粒が粗大で、かつ475℃脆性起因の硬化によりすべり変形が非常に困難な状況において、適量のAl添加は双晶変形応力を高め、相対的にすべり変形を容易にすることが新たに分かった。 (D) Al has conventionally been known to be an element that increases the strength of ferritic steel and increases the ductile-brittle transition temperature, that is, promotes brittle fracture. However, in a situation where the crystal grains are coarse such as in a welded area and slip deformation is extremely difficult due to hardening caused by brittleness at 475 ° C., addition of an appropriate amount of Al increases twinning deformation stress and relatively facilitates slip deformation. I found it new.
(e)通常、Al含有フェライト系ステンレス鋼の溶接組織は柱状晶の成長により構成されるため、Alを含有していないフェライト系ステンレス鋼に対して粗大となる傾向にある。しかしながら、溶接金属中の化学成分の制御により(Ti,Nb,V)(C,N)から成る炭窒化物、あるいはMgO、CaOなどから成る介在物を生成させることで等軸晶の形成が助長され、溶接組織が微細化することがわかった。 (E) Normally, since the welded structure of an Al-containing ferritic stainless steel is constituted by the growth of columnar crystals, it tends to be larger than a ferritic stainless steel not containing Al. However, the formation of equiaxed crystals is promoted by controlling the chemical components in the weld metal to generate carbonitrides composed of (Ti, Nb, V) (C, N) or inclusions composed of MgO, CaO, and the like. It was found that the weld structure was refined.
(f)フェライト系ステンレス鋼において、炭窒化物Ti(C,N)の生成挙動は[Ti]/([C]+[N])で整理させる。しかしながら、Al含有フェライト系ステンレス鋼においては、AlがCの活量を増加させるため、Cr炭化物の析出挙動は、通常のフェライト系ステンレス鋼に対してC量の影響をより強く受けることが新たに分かった。(e)で述べた炭窒化物(Ti,Nb,V)(C,N)による等軸晶の形成促進効果を得るためには、([Ti]+[Nb]+[V])/(2×[C]+[N])の値を4.0以上とすることが好ましい。或いは、同様の効果を得るためにMgを0.0005%以上、Caを0.0001%以上添加することが好ましいことが分かった。 (F) In ferritic stainless steel, the formation behavior of carbonitride Ti (C, N) is arranged by [Ti] / ([C] + [N]). However, in Al-containing ferritic stainless steels, since Al increases the activity of C, the precipitation behavior of Cr carbide is more strongly affected by the amount of C than ordinary ferritic stainless steels. Do you get it. In order to obtain the effect of promoting the formation of equiaxed crystals by the carbonitride (Ti, Nb, V) (C, N) described in (e), ([Ti] + [Nb] + [V]) / ( The value of (2 × [C] + [N]) is preferably set to 4.0 or more. Alternatively, it was found that it is preferable to add 0.0005% or more of Mg and 0.0001% or more of Ca in order to obtain the same effect.
(g)粒界偏析による粒界移動を抑制する元素はCo、Sn、As、B、Pb、Zr、Zn、Y、Ga、La、Hf、Sb、REM、Taである。これら元素を1種類または2種類以上含有し、その合計量が0.010%以上であることが好ましい。一方、これら元素の過剰な含有は粒界強度の低下による粒界破壊を助長するため、合計量を0.10%以下とすることが好ましい。 (G) Elements that suppress grain boundary migration due to grain boundary segregation are Co, Sn, As, B, Pb, Zr, Zn, Y, Ga, La, Hf, Sb, REM, and Ta. It is preferable that one or two or more of these elements are contained, and the total amount is 0.010% or more. On the other hand, an excessive content of these elements promotes grain boundary destruction due to a decrease in grain boundary strength, so that the total amount is preferably set to 0.10% or less.
以下、本発明の各要件について詳しく説明する。なお、各元素の含有量の「%」表示は「質量%」を意味する。 Hereinafter, each requirement of the present invention will be described in detail. In addition, "%" of the content of each element means "% by mass".
溶接金属部の化学成分の限定理由を以下に説明する。 The reasons for limiting the chemical composition of the weld metal part will be described below.
<C:0.03%以下>
Cは、フェライト相に固溶あるいはCr炭化物を形成して耐酸化性を阻害する。また、溶接時の粒界におけるCr炭化物形成を促進させる。このため、C量は少ないほど良く、上限を0.03%とする。但し、過度な低減は精錬コストの上昇に繋がるため、下限は0.001%とすることが好ましい。より好ましい範囲は0.002〜0.020%である。
<C: 0.03% or less>
C forms a solid solution or forms a Cr carbide in the ferrite phase and inhibits oxidation resistance. It also promotes the formation of Cr carbide at the grain boundaries during welding. Therefore, the smaller the C content, the better, and the upper limit is made 0.03%. However, since an excessive reduction leads to an increase in the refining cost, the lower limit is preferably set to 0.001%. A more preferred range is 0.002 to 0.020%.
<N:0.030%以下>
Nは、Cと同様に本発明の目標とする耐酸化性を阻害する。このため、N量は少ないほど良く、上限を0.030%とする。但し、過度な低減は精錬コストの上昇に繋がるため、下限は0.001%とする。好ましい範囲は0.002〜0.020%である。
<N: 0.030% or less>
N, like C, inhibits the oxidation resistance targeted by the present invention. Therefore, the smaller the amount of N, the better, and the upper limit is made 0.030%. However, an excessive reduction leads to an increase in refining costs, so the lower limit is set to 0.001%. The preferred range is 0.002 to 0.020%.
<Si:2.0%以下>
Siは、耐酸化性を確保する上で重要な元素である。Siは、Al系酸化皮膜中へ僅かに固溶するとともに、酸化皮膜直下/鋼界面にも濃化し、改質ガス環境下の耐酸化性を向上させる。これら効果を得るために下限は0.2%とすることが好ましい。一方、過度な添加は、Crのスピノーダル分解を助長させ、耐475℃脆性を低下させる。また、鋼の靭性や加工性の低下ならびにAl系酸化皮膜の形成を阻害する場合もあるため、上限は2.0%とする。好ましい上限は1.2%である。
<Si: 2.0% or less>
Si is an important element for securing oxidation resistance. Si is slightly dissolved in the Al-based oxide film, and is also concentrated at the interface immediately below the oxide film / steel interface, thereby improving oxidation resistance in a reformed gas environment. In order to obtain these effects, the lower limit is preferably set to 0.2%. On the other hand, excessive addition promotes spinodal decomposition of Cr and lowers 475 ° C brittleness resistance. In addition, the upper limit is set to 2.0% because the toughness and workability of steel may be reduced and the formation of an Al-based oxide film may be hindered. A preferred upper limit is 1.2%.
<Mn:2.0%以下>
Mnは、改質ガス環境下でSiとともに酸化皮膜中に固溶して保護性を高める。これら効果を得るために下限は0.1%とすることが好ましい。一方、過度な添加は、鋼の耐食性やAl系酸化皮膜の形成を阻害するため、上限は2.0%以下とする。耐酸化性と基本特性の点から、1.2%以下が好ましい。
<Mn: 2.0% or less>
Mn forms a solid solution together with Si in an oxide film in a reformed gas environment to enhance protection. In order to obtain these effects, the lower limit is preferably set to 0.1%. On the other hand, excessive addition impairs the corrosion resistance of steel and the formation of an Al-based oxide film, so the upper limit is made 2.0% or less. From the viewpoints of oxidation resistance and basic characteristics, the content is preferably 1.2% or less.
<P:0.040%以下>
Pは、製造性や溶接性を阻害し、溶接部における粒界強度を低下させる元素である。その含有量は少ないほど良いため、上限は0.040%とする。但し、過度な低減は精錬コストの上昇に繋がるため、下限は0.003%とすることが好ましい。製造性と溶接性の点から、好ましい範囲は0.004〜0.028%である。
<P: 0.040% or less>
P is an element that inhibits manufacturability and weldability, and lowers the grain boundary strength at the welded portion. Since the smaller the content, the better, the upper limit is made 0.040%. However, since an excessive reduction leads to an increase in the refining cost, the lower limit is preferably set to 0.003%. From the viewpoint of manufacturability and weldability, a preferable range is 0.004 to 0.028%.
<S:0.010%以下>
Sは、鋼中に含まれる不可避的不純物元素であり、Al系皮膜の保護性を低下させる。特に、Mn系介在物や固溶Sの存在は、高温・長時間使用におけるAl系酸化皮膜の破壊起点としても作用する。また、溶接部における粒界強度を低下させる元素である。従って、S量は低いほど良いため、上限は0.010%とする。但し、過度の低減は原料や精錬コストの上昇に繋がるため、下限は0.0001%とする。製造性と耐酸化性、耐475℃脆性の観点から、好ましい範囲は0.0001〜0.0010%である。
<S: 0.010% or less>
S is an unavoidable impurity element contained in steel and lowers the protection of the Al-based film. In particular, the presence of Mn-based inclusions and solid solution S also acts as a starting point of the destruction of the Al-based oxide film when used at a high temperature for a long time. Further, it is an element that lowers the grain boundary strength in the welded portion. Therefore, the lower the S amount, the better, and the upper limit is set to 0.010%. However, an excessive reduction leads to an increase in raw materials and refining costs, so the lower limit is made 0.0001%. From the viewpoints of manufacturability, oxidation resistance, and 475 ° C brittleness, a preferable range is 0.0001 to 0.0010%.
<Cr:15.0〜25.0%>
Crは、耐食性に加えて、表面酸化皮膜の保護性を確保する上で基本となる構成元素であり、これら効果を得るためには15.0%以上のCr量が必要である。一方、過度なCrの添加は、475℃脆性起因の著しい材料硬化に加え、高温雰囲気に曝された際、脆化相であるσ相の生成を助長する。また、合金コストの上昇とCr蒸発を助長する場合があるため上限は25.0%とする。好ましい範囲は15.5〜20.0%である。より好ましい範囲は、16.0〜20.0%である。
<Cr: 15.0 to 25.0%>
Cr is a basic constituent element for ensuring the protection of the surface oxide film in addition to the corrosion resistance. To obtain these effects, a Cr content of 15.0% or more is required. On the other hand, excessive addition of Cr promotes formation of a σ phase, which is an embrittlement phase, when exposed to a high-temperature atmosphere, in addition to remarkable material hardening caused by 475 ° C. brittleness. The upper limit is set to 25.0% because the alloy cost may be increased and Cr evaporation may be promoted. The preferred range is 15.5 to 20.0%. A more preferred range is 16.0 to 20.0%.
<Al:1.0〜4.0%>
Alは、脱酸元素に加えて、Al系酸化皮膜を形成してCr蒸発を抑止するために必須の添加元素である。また、溶接部における双晶変形発現を抑制する元素である。本発明においては、1.0%未満ではこれら効果が得られないため、下限は1.0%とする。しかし、過度なAlの添加は、鋼の靭性や溶接部における脆性破壊を助長するため、上限は、4.0%とする。好ましい範囲は1.2〜3.5%である。
<Al: 1.0 to 4.0%>
Al is an essential additive element in addition to the deoxidizing element to form an Al-based oxide film and suppress Cr evaporation. Further, it is an element that suppresses the appearance of twinning deformation in a welded portion. In the present invention, since these effects cannot be obtained at less than 1.0%, the lower limit is set to 1.0%. However, excessive addition of Al promotes the toughness of the steel and brittle fracture in the welded portion, so the upper limit is set to 4.0%. The preferred range is 1.2-3.5%.
<Ti、Nb、V:1.0%以下>
Tiは、C,Nを固定する安定化元素の作用により、溶接時のCr炭化物生成抑制に寄与する元素である。また、Al系酸化皮膜の外層側へTi系酸化物を形成してCrの蒸発を抑止する有効な元素である。これら効果を得るために下限は0.01%とすることが好ましい。一方、過度な添加は合金コストの上昇や再結晶温度上昇に伴う製造性の低下や耐酸化性の低下にも繋がるため、上限は1.0%とする。好ましい範囲は0.10〜0.50%である。
NbおよびVは固溶強化により材料強度を高め、過剰な添加は脆性破壊を助長するため、上限をそれぞれ1.0%とする必要がある。好ましい成分範囲は0.008〜0.7%である。
<Ti, Nb, V: 1.0% or less>
Ti is an element that contributes to suppressing the formation of Cr carbide during welding by the action of a stabilizing element that fixes C and N. Further, it is an effective element for forming a Ti-based oxide on the outer layer side of the Al-based oxide film to suppress the evaporation of Cr. In order to obtain these effects, the lower limit is preferably set to 0.01%. On the other hand, excessive addition leads to an increase in alloy cost and a decrease in manufacturability and oxidation resistance due to an increase in recrystallization temperature, so the upper limit is made 1.0%. A preferred range is 0.10 to 0.50%.
Nb and V increase the material strength by solid solution strengthening, and excessive addition promotes brittle fracture. Therefore, the upper limits must each be 1.0%. A preferred component range is 0.008 to 0.7%.
<([Ti]+[Nb]+[V])/(2×[C]+[N])>(第1群)
また、本発明に係る溶接継手では、Ti、Nb、Vからなる元素群が上記で限定した溶接金属の化学組成を満たしつつ、溶接金属部のTi、Nb、V、C、Nの含有量(質量%)が以下の式(1)を満たすことが好ましい。
([Ti]+[Nb]+[V])/(2×[C]+[N])≧4.0・・・・式(1)
ここで、[Ti]、[Nb]、[V]、[C]、[N]は、溶接金属部におけるそれぞれの元素の含有量(質量%)を示す。
<([Ti] + [Nb] + [V]) / (2 × [C] + [N])> (first group)
Further, in the welded joint according to the present invention, the content of Ti, Nb, V, C, and N in the weld metal portion (while the element group consisting of Ti, Nb, and V satisfies the chemical composition of the weld metal defined above). Mass%) preferably satisfies the following expression (1).
([Ti] + [Nb] + [V]) / (2 × [C] + [N]) ≧ 4.0 (1)
Here, [Ti], [Nb], [V], [C], and [N] indicate the content (% by mass) of each element in the weld metal part.
<Mg、Ca>(第2群)
Mg、Caは鋼の清浄度や熱間加工性を高めるのに有効な元素である。また、溶接時にMgO、CaOなどから成る介在物を生成させることで等軸晶の形成が助長され、溶接組織の微細化に寄与する元素でもある。これら効果を得るため、Mgは0.0005%以上、Caは0.0005%以上含むことが好ましい。一方、過度な添加は製造性の低下を招くため、Mgは0.010%以下、Caは0.005%以下であることが好ましい。尚、Mg:0.0005%以上0.010%以下、Ca:0.0005%以上0.005%以下の1種または2種以上からなる第2群を溶接金属部に含有させることによって、溶接金属部のTi、Nb及びVの少なくとも1種以上からなり且つ前記式(1)を満たす第2群を含有する場合と同様の効果を得ることができる。また、溶接金属部の組成は、第1群又は第2群のうち少なくともいずれかの群を含有すれば良く、溶接金属部がMg及び/又はCaを前記範囲未満(例えば、不純物レベルの濃度)で含有している場合であっても、前記式(1)を満たせば良い。
<Mg, Ca> (second group)
Mg and Ca are effective elements for improving the cleanliness and hot workability of steel. Further, the formation of inclusions made of MgO, CaO, or the like at the time of welding promotes the formation of equiaxed crystals, and is an element that contributes to the refinement of the weld structure. In order to obtain these effects, it is preferable that Mg contains 0.0005% or more and Ca contains 0.0005% or more. On the other hand, since excessive addition causes a decrease in productivity, Mg is preferably 0.010% or less and Ca is preferably 0.005% or less. In addition, a second group consisting of one or more of Mg: 0.0005% or more and 0.010% or less, and Ca: 0.0005% or more and 0.005% or less is contained in the weld metal portion to thereby perform welding. The same effect can be obtained as in the case where the second group that includes at least one of Ti, Nb and V of the metal part and satisfies the formula (1) is included. Further, the composition of the weld metal portion may include at least one of the first group and the second group, and the weld metal portion may contain Mg and / or Ca less than the above range (for example, impurity level concentration). Even if it is contained, the above formula (1) may be satisfied.
<Ni、Cu、Mo、W:1.0%以下>(第3群)
Ni、Cu、Mo、Wは高温強度と耐食性を高めるのに有効な元素であり、必要に応じて少なくとも1種(以下、「第3群」ともいう。)を添加しても良い。但し、過度な添加は合金コストの上昇や製造性を阻害することに繋がるため、Ni、Cu、Mo、Wの上限は1.0%とする。前記効果を発現させるためには、Ni,Co,Mo,Wは0.02%以上が好ましい。更に好ましくは0.08%以上である。
<Ni, Cu, Mo, W: 1.0% or less> (third group)
Ni, Cu, Mo, and W are effective elements for improving high-temperature strength and corrosion resistance, and at least one kind (hereinafter, also referred to as “third group”) may be added as necessary. However, since excessive addition leads to an increase in alloy cost and hinders manufacturability, the upper limits of Ni, Cu, Mo, and W are set to 1.0%. In order to exhibit the above effects, it is preferable that Ni, Co, Mo, and W be 0.02% or more. More preferably, it is 0.08% or more.
<Co、Sn、As、B、Pb、Zr、Zn、Y、Ga、La、Hf、Sb、REM、Ta>(第4群)
これらの元素は粒界に偏析して溶接時の結晶粒の粗大化を抑制する。また、Zr、La、Y、Hf、REM、Taは、熱間加工性や鋼の清浄度を向上ならびに耐酸化性改善に対しても、従来から有効な元素である。Ga、Zn、Sn、Sbは表面近傍に濃化してCrの酸化を抑制する。
<Co, Sn, As, B, Pb, Zr, Zn, Y, Ga, La, Hf, Sb, REM, Ta> (fourth group)
These elements segregate at the grain boundaries and suppress the coarsening of crystal grains during welding. Zr, La, Y, Hf, REM, and Ta have been conventionally effective elements for improving hot workability, cleanliness of steel, and oxidation resistance. Ga, Zn, Sn and Sb are concentrated near the surface to suppress the oxidation of Cr.
これらの効果を得るため、Co:0.005%以上、Sn0.003%以上、As:0.001%以上、B:0.0001%以上、Pb:0.0001%以上、Zr:0.0001%以上、Zn:0.01%以上、Y:0.0001%以上、Ga:0.001%以上、La:0.0001%以上、Hf:0.0001%以上、Sb:0.003%以上、REM:0.001%以上、Ta:0.002%以上でこれらの元素を1種類または2種類以上含有し、合計量が0.010%以上であることが好ましい。本発明のAl含有フェライト系ステンレス鋼溶接継手は、その溶接金属部が、前記第3群とともに、或いは、Ni、Cu、Mo、Wの元素群の代わりに、Co、Sn、As、B、Pb、Zr、Zn、Y、Ga、La、Hf、Sb、REM、Taの元素群のうちの少なくとも1種の元素からなる第4群を前述の含有量の範囲で含有しても良い。 To obtain these effects, Co: 0.005% or more, Sn 0.003% or more, As: 0.001% or more, B: 0.0001% or more, Pb: 0.0001% or more, Zr: 0.0001 % Or more, Zn: 0.01% or more, Y: 0.0001% or more, Ga: 0.001% or more, La: 0.0001% or more, Hf: 0.0001% or more, Sb: 0.003% or more , REM: 0.001% or more, Ta: 0.002% or more, and preferably contains one or more of these elements, and the total amount is 0.010% or more. In the Al-containing ferritic stainless steel welded joint of the present invention, the weld metal portion is made of Co, Sn, As, B, Pb together with the third group or instead of the element group of Ni, Cu, Mo, W. , Zr, Zn, Y, Ga, La, Hf, Sb, REM, and a fourth group composed of at least one element of Ta may be contained within the above-mentioned content range.
一方、これらの元素の過度な添加は粒界強度低下による粒界破壊を助長するため、前記第4群は、Co:0.10%以下、Sn0.10%以下、As:0.05%以下、B:0.005%以下、Pb:0.005%以下、Zr:0.1%以下、Zn:0.03%以下、Y:0.10%以下、Ga:0.10%以下、La:0.10%以下、Hf:0.10%以下、Sb:0.10%以下、REM:0.10%以下、Ta:0.5%以下の1種類または2種類以上からなる元素群であって、合計量(以下の式(2))を0.20%以下とする必要がある。
[Co]+[Sn]+[As]+[B]+[Pb]+[Zr]+[Zn]+[Y]+[Ga]+[La]+[Hf]+[Sb]+[REM]・・・式(2)
ここで、[Co]、[Sn]、[As]、[B]、[Pb]、[Zr]、[Zn]、[Y]、[Ga]、[La]、[Hf]、[Sb]、[REM]、[Ta]は、それぞれの元素の含有量(質量%)を示す。
On the other hand, excessive addition of these elements promotes grain boundary destruction due to a decrease in grain boundary strength. Therefore, the fourth group contains Co: 0.10% or less, Sn 0.10% or less, and As: 0.05% or less. , B: 0.005% or less, Pb: 0.005% or less, Zr: 0.1% or less, Zn: 0.03% or less, Y: 0.10% or less, Ga: 0.10% or less, La : 0.10% or less, Hf: 0.10% or less, Sb: 0.10% or less, REM: 0.10% or less, Ta: 0.5% or less Therefore, the total amount (the following formula (2)) needs to be 0.20% or less.
[Co] + [Sn] + [As] + [B] + [Pb] + [Zr] + [Zn] + [Y] + [Ga] + [La] + [Hf] + [Sb] + [REM] ] Equation (2)
Here, [Co], [Sn], [As], [B], [Pb], [Zr], [Zn], [Y], [Ga], [La], [Hf], [Sb] , [REM], and [Ta] indicate the content (% by mass) of each element.
製造方法について以下に説明する。
本発明の耐475℃脆性に優れたAl含有フェライト系ステンレス鋼溶接継手は、Al含有フェライト系ステンレス鋼をなめ付けあるいは溶接棒を使用した溶接により作製される。本発明の溶接継手は、後述する本発明の溶接材料を用いて製造することで、実現が容易になるが、本発明の溶接継手は、当該製造条件に限定されるものでないことは言うまでもない。つまり、溶接する母鋼材、用いる溶接材料、溶接手法、さらに溶接条件を適切に選択することで、最終的な溶接継手における溶接金属の化学組成を本発明の範囲内に制御することができる。溶接材料を使用する場合、SOFC用途では良好な耐酸化性・耐Cr蒸発性が求められるため、これら特性を兼ね備えたAl含有フェライト系ステンレス鋼を母材として溶接継手を製造することは、本発明の好ましい例である。また、溶接継手の成分制御を容易にする意味では、母材あるいは溶接材料が本発明の溶接継手に近い成分系であることはさらに好ましい。
The manufacturing method will be described below.
The Al-containing ferritic stainless steel welded joint excellent in 475 ° C brittleness resistance of the present invention is manufactured by tanning Al-containing ferritic stainless steel or welding using a welding rod. The welding joint of the present invention can be easily realized by manufacturing using the welding material of the present invention described later, but it goes without saying that the welding joint of the present invention is not limited to the manufacturing conditions. That is, by appropriately selecting the base steel material to be welded, the welding material to be used, the welding method, and the welding conditions, the chemical composition of the weld metal in the final welded joint can be controlled within the scope of the present invention. When a welding material is used, good oxidation resistance and Cr evaporation resistance are required for SOFC applications. Therefore, manufacturing a welded joint using an Al-containing ferritic stainless steel having these characteristics as a base material is the present invention. Is a preferred example. Further, from the viewpoint of facilitating the control of the components of the welded joint, it is more preferable that the base material or the welding material is a component system close to the welded joint of the present invention.
本発明の好適な母材の化学組成は、質量%で、C:0.02%以下、Si:0.15〜0.70%、Mn:0.3%以下、Cr:13〜20%、Al:1.5〜6%、N:0.02%以下、Ti:0.03〜0.5%を含有し、残部がFeおよび不可避的不純物である。また、本発明の好適な溶接材料の化学組成は、質量%で、C:0.02%以下、Si:0.1〜0.6%、Mn:0.05〜0.4%、Cr:13〜20%、Ti:0.05〜0.4%、P:0.020%以下、S:0.015%以下、N:0.040%以下を含有し、残部がFeおよび不可避的不純物である。 The chemical composition of a suitable base material of the present invention is, in mass%, C: 0.02% or less, Si: 0.15 to 0.70%, Mn: 0.3% or less, Cr: 13 to 20%, Al: 1.5 to 6%, N: 0.02% or less, Ti: 0.03 to 0.5%, the balance being Fe and inevitable impurities. Further, the chemical composition of a preferable welding material of the present invention is, in mass%, C: 0.02% or less, Si: 0.1 to 0.6%, Mn: 0.05 to 0.4%, Cr: 13 to 20%, Ti: 0.05 to 0.4%, P: 0.020% or less, S: 0.015% or less, N: 0.040% or less, the balance being Fe and unavoidable impurities It is.
なお、SOFC用途以外の用途であって、耐475℃脆性を要求される用途において、本発明の溶接継手を構成する母材は、Al含有フェライト系ステンレス鋼に限定されない。また、例えば、ガスタービン、発電システムなどに用いられる高温部材、エキゾーストマニホールド、コンバータ、マフラー、ターボチャージャー、EGRクーラー、フロントパイプ、センターパイプなどの自動車部材、ストーブ・ファンヒータなどの燃焼機器といった高温環境下で使用される部材全般に好適である。 In applications other than SOFC applications and applications requiring 475 ° C. brittleness resistance, the base material constituting the welded joint of the present invention is not limited to Al-containing ferritic stainless steel. Further, for example, in a high temperature environment such as a high temperature member used for a gas turbine, a power generation system, an exhaust member, an automobile member such as a converter, a muffler, a turbocharger, an EGR cooler, a front pipe, a center pipe, and a combustion device such as a stove fan heater. It is suitable for all members used.
以下に、本発明の実施例について述べる。
表1−1及び表1−2に成分を示す鋼種1〜35のフェライト系ステンレス鋼を溶製し、熱間圧延、焼鈍酸洗、冷間圧延後、仕上げ焼鈍・酸洗により厚さ1.0mmの冷延焼鈍鋼板を製造した。尚、表1−1の「発明例の組成」とは、鋼の組成が本発明のAl含有フェライト系ステンレス鋼溶接継手の溶接金属部の組成を満たすことを意味する。また、表1−2の「比較例の組成」とは、鋼の組成が本発明のAl含有フェライト系ステンレス鋼溶接継手の溶接金属部の組成を満たしていないことを意味する。尚、表1−1、表1−2、表2及び表3の空欄は、該当する成分を添加していないことを意味する。
Hereinafter, examples of the present invention will be described.
Ferritic stainless steels of steel types 1 to 35 whose components are shown in Tables 1-1 and 1-2 are melted, hot-rolled, annealed and pickled, cold-rolled, and then subjected to finish annealing and pickling to obtain a thickness of 1. A 0 mm cold-rolled annealed steel sheet was manufactured. The “composition of the invention example” in Table 1-1 means that the steel composition satisfies the composition of the weld metal portion of the Al-containing ferritic stainless steel welded joint of the present invention. The “composition of the comparative example” in Table 1-2 means that the steel composition does not satisfy the composition of the weld metal part of the Al-containing ferritic stainless steel welded joint of the present invention. Blanks in Tables 1-1, 1-2, 2 and 3 mean that the corresponding components were not added.
各鋼種のフェライト系ステンレス鋼板から幅120mm、長さ250mmの試験片を切り出した。次いで、同じ鋼種のフェライト系ステンレス鋼板同士を母材として、電流80〜100A、溶接速度50cm/minにて、Arシールドガスを用いてTIGなめ付け溶接して、鋼種1〜31のフェライト系ステンレス鋼板毎にフェライト系ステンレス鋼溶接継手を製造した。溶接位置は板幅中央で、溶接方向は板長手方向とした。 Test pieces having a width of 120 mm and a length of 250 mm were cut out from ferritic stainless steel sheets of each steel type. Next, ferritic stainless steel sheets of steel types 1 to 31 are subjected to TIG tanning welding using ferrite stainless steel sheets of the same steel type as base materials at a current of 80 to 100 A and a welding speed of 50 cm / min using an Ar shielding gas. Each time a ferritic stainless steel welded joint was manufactured. The welding position was the center of the plate width, and the welding direction was the plate longitudinal direction.
また、表2に成分を示す記号A〜CのAl含有フェライト系ステンレス鋼溶接材料を溶製した。表1−1及び表1−2の鋼種4,5,14,22,29を母材とし、前記記号A〜Cの溶接材料を用いて溶接継手を作製した。溶接条件は電流200A、溶接速度50cm/min、溶接材料供給量8g/minであり、Arガスシールドを実施した。得られた溶接継手の溶接金属部から化学分析用試料を採取し、成分分析を行った。表3に各溶接継手の溶接金属部の化学成分を示す。ここで、表3の記号は、例えば4Aの場合、母材は4、溶接材料はCを使用して製造した溶接継手であることを意味する。 In addition, Al-containing ferritic stainless steel welding materials indicated by the symbols A to C indicating the components in Table 2 were melted. Welded joints were produced using the steel types 4, 5, 14, 22, and 29 in Tables 1-1 and 1-2 as base materials and using the welding materials of the symbols A to C. The welding conditions were a current of 200 A, a welding speed of 50 cm / min, a welding material supply of 8 g / min, and Ar gas shielding. A sample for chemical analysis was collected from the weld metal part of the obtained welded joint, and a component analysis was performed. Table 3 shows the chemical components of the weld metal part of each welded joint. Here, the symbol in Table 3 means that, for example, in the case of 4A, the base material is 4, and the welding material is a welded joint manufactured using C.
各溶接継手の溶接部より試料を切り出し、樹脂埋めを行った後、王水によるエッチングを行った。エッチング後の試料に対し、光学顕微鏡により撮影した溶金部において、溶金部中心の厚さ800μm×幅1600μmの領域内の結晶粒の数をカウントした。測定領域の1辺をまたいだ結晶粒は0.5個、2辺をまたいだ場合は0.25個とした。(測定領域の面積)/(測定領域内の結晶粒の数)の平方根をその溶接継手の結晶粒径と定義した。 A sample was cut out from the welded portion of each welded joint, filled with resin, and then etched with aqua regia. With respect to the sample after etching, the number of crystal grains in an area of 800 μm in thickness × 1600 μm in width at the center of the molten metal part was counted in the molten metal part photographed by an optical microscope. The number of crystal grains that crossed one side of the measurement region was 0.5, and the number of crystal grains that crossed two sides was 0.25. The square root of (area of measurement area) / (number of crystal grains in measurement area) was defined as the crystal grain size of the weld joint.
各溶接継手に対し大気中で500℃、3000時間の時効処理を行った。耐475℃脆性は、これら500℃時効処理材に対し、V曲げ試験により評価した。曲げ半径2.0mm、曲げ角度90度とし、試料の裏ビードに押金具が接触するようにしてV曲げを行った。目視にて割れが生成することなくV曲げ成型が完了した場合、耐475℃脆性は極めて良好(◎)、V曲げ成型が完了するが目視にて割れが確認できた場合は良好(○)、V曲げ成型中に割れが貫通した場合、耐475℃脆性は不良(×)とした。 Each welded joint was subjected to an aging treatment at 500 ° C. for 3000 hours in the atmosphere. The resistance to 475 ° C brittleness was evaluated by a V-bending test for these 500 ° C aged materials. The bending radius was set to 2.0 mm and the bending angle was set to 90 degrees, and V-bending was performed so that the press fitting was in contact with the back bead of the sample. When the V-bending molding was completed without cracking visually, the brittle resistance at 475 ° C was very good ((), and when the V-bending molding was completed but cracking was visually observed, good (○). When a crack penetrated during V-bending, the brittle resistance at 475 ° C was evaluated as poor (x).
表4に試験結果を示す。記号1〜32の試験片は、各記号に対応する鋼種のフェライト系ステンレス鋼板をなめ付け溶接して得られた溶接継手の溶接金属部なので、各記号に対応する鋼種のフェライト系ステンレス鋼板と同一の組成を有している。従って、記号1〜22の試験片は本発明の規定する成分範囲を満たしている。その結果、500℃、3000時間の時効処理後も溶接部にてV曲げによる割れの生成は確認されず、優れた耐475℃脆性を示した。 Table 4 shows the test results. The test pieces of symbols 1 to 32 are the weld metal parts of the welded joints obtained by tanning and welding ferritic stainless steel sheets of the steel type corresponding to each symbol, and thus are the same as the ferritic stainless steel sheets of the steel type corresponding to each symbol. Having the following composition: Therefore, the test pieces of symbols 1 to 22 satisfy the component range specified by the present invention. As a result, even after aging treatment at 500 ° C. for 3000 hours, generation of cracks due to V bending in the welded portion was not confirmed, and excellent 475 ° C. brittleness resistance was exhibited.
記号8aは、記号Hの溶接継手よりも高い入熱量で作製した試験片である。溶接部の結晶粒径は360μmで本発明の好ましい範囲よりも大きいが、本発明の規定する成分範囲を満たしているため、良好な耐475℃脆性を示した。
記号23の試験片はP量が本発明の規定範囲よりも多い。その結果、溶接金属部の粒界強度が低下し、粒界破壊が生じた。
記号24の試験片はCr量が本発明の規定範囲よりも多い。その結果、Crのスピノーダル分解による素材の著しい硬化が生じ、へき開破壊が生じた。
記号25の試験片はAl量が本発明の規定範囲よりも多い。その結果、Al添加による双晶変形の抑制効果を、Alの固溶強化による著しい硬化が上回り、へき開破壊が生じた。
記号26および30の試験片はAl量が本発明の規定範囲よりも少ない。その結果、Al添加による双晶変形の抑制効果を十分に得ることができず、へき開破壊が生じた。
記号27の試験片は、Snの含有量が0.10%を超過しており、Sn、Sb及びGaの含有量の合計も本発明の規定範囲より多い。また、記号28の試験片は、Zn、B及びPbのそれぞれの含有量が本発明の規定範囲よりも多く、Zn、B、As及びPbの含有量の合計も本発明の規定範囲より多い。その結果、記号27及び28の試験片の溶接部の粒界強度は著しく低下し、粒界破壊が生じた。
記号29の試験片は、溶接金属部As、Zr、Y、Ga及びTaの含有量が本発明の規定範囲内であるにも関わらず、前記式(2)で表される合計量が本発明の規定範囲よりも多い。その結果、溶接部の結晶粒径が大きくなり、へき開破壊が生じた。
記号31の試験片は、前記式(1)の値が本発明の規定範囲よりも少ない。また、記号32の試験片は、C含有量が本発明の規定範囲より多い。その結果、いずれの試験片も溶接部の結晶粒径が大きくなり、へき開破壊が生じた。
記号33の試験片は、Sb含有量が0.10%を超過している。また、記号34の試験片は、As含有量が0.05%、Pb含有量が0.005%を超過している。その結果記号33および34の試験片の溶接部の粒界強度は著しく低下し、粒界破壊が生じた。
記号35の試験片はCa含有量が0.005%を超過している。その結果記号35の試験片の溶接部で過剰に生成した介在物が破壊の起点となり、へき開破壊が生じた。
Symbol 8a is a test piece produced with a higher heat input than the welded joint of symbol H. The crystal grain size of the welded portion was 360 μm, which was larger than the preferred range of the present invention, but because it satisfied the component range specified by the present invention, it exhibited good 475 ° C. brittleness resistance.
The test piece of symbol 23 has a P content larger than the specified range of the present invention. As a result, the grain boundary strength of the weld metal decreased, and grain boundary fracture occurred.
The test piece denoted by reference numeral 24 has a Cr content larger than the range specified in the present invention. As a result, the material was significantly hardened due to the spinodal decomposition of Cr, and cleaved fracture occurred.
The test piece of symbol 25 has an Al content larger than the specified range of the present invention. As a result, the effect of suppressing the twinning deformation due to the addition of Al surpassed the remarkable hardening due to solid solution strengthening of Al, resulting in cleavage fracture.
The test pieces of symbols 26 and 30 have an Al content smaller than the specified range of the present invention. As a result, the effect of suppressing twin deformation due to the addition of Al could not be sufficiently obtained, and cleavage cleavage occurred.
The test piece denoted by reference numeral 27 has a Sn content exceeding 0.10%, and the total content of Sn, Sb and Ga is also larger than the specified range of the present invention. Further, in the test piece of symbol 28, the respective contents of Zn, B and Pb are larger than the specified range of the present invention, and the total content of Zn, B, As and Pb is also larger than the specified range of the present invention. As a result, the grain boundary strength of the welds of the test pieces of symbols 27 and 28 was significantly reduced, and grain boundary fracture occurred.
The test piece denoted by reference numeral 29 has a total amount represented by the formula (2) according to the present invention, although the content of the weld metal portions As, Zr, Y, Ga, and Ta is within the range specified by the present invention. More than the specified range. As a result, the crystal grain size of the weld became large, and cleavage cleavage occurred.
In the test piece denoted by the symbol 31, the value of the expression (1) is smaller than the specified range of the present invention. Further, the test piece indicated by the symbol 32 has a C content larger than the specified range of the present invention. As a result, in each of the test pieces, the crystal grain size of the welded portion was increased, and cleavage occurred.
The test piece of symbol 33 has an Sb content exceeding 0.10%. In addition, the test piece indicated by the symbol 34 has an As content exceeding 0.05% and a Pb content exceeding 0.005%. As a result, the grain boundary strength of the welds of the test pieces of symbols 33 and 34 was significantly reduced, and grain boundary fracture occurred.
The test piece of symbol 35 has a Ca content exceeding 0.005%. As a result, the inclusions excessively generated in the welded portion of the test piece of symbol 35 became the starting point of the fracture, and the cleavage fracture occurred.
記号4A、5C、14A、22C、29Bの試験片はいずれも本発明の規定する成分範囲を満たしている。その結果、500℃、3000時間の時効処理後も溶接部にてV曲げによる割れの生成は確認されず、優れた耐475℃脆性を示した。特に29Bの試験片については、母材XのTIGなめ付け溶接継手では脆性破壊が生じていることから、本発明において、母材の成分は限定されるものではなく、溶接金属の化学組成が重要であると示唆する結果である。 All of the test pieces with symbols 4A, 5C, 14A, 22C, and 29B satisfy the component range specified by the present invention. As a result, even after the aging treatment at 500 ° C. for 3000 hours, generation of cracks due to V bending in the welded portion was not confirmed, and excellent 475 ° C. brittleness resistance was exhibited. In particular, with respect to the test piece of 29B, since the brittle fracture occurs in the TIG tanned welded joint of the base metal X, the components of the base metal are not limited in the present invention, and the chemical composition of the weld metal is important. The result suggests that
本発明によれば、都市ガス、メタン、天然ガス、プロパン、灯油、ガソリン等の炭化水素系燃料を水素に改質する際に使用される改質器、熱交換器などの燃料電池高温部材、エキゾーストマニホールド、コンバータ、マフラー、ターボチャージャー、EGRクーラー、フロントパイプ、センターパイプなどの自動車用部材、ストーブ・ファンヒータなどの燃焼機器など、高温環境下で使用される部材全般に好適な耐475℃脆性に優れたAl含有フェライト系ステンレス鋼溶接継手を提供することができる。 According to the present invention, city gas, methane, natural gas, propane, kerosene, reformer used when reforming hydrocarbon-based fuel such as gasoline to hydrogen, a fuel cell high-temperature member such as a heat exchanger, Excellent resistance to 475 ° C brittleness suitable for all parts used in high-temperature environments, such as exhaust manifolds, converters, mufflers, turbochargers, EGR coolers, front pipes, center pipes and other automotive parts, and stoves and fan heaters and other combustion equipment. In addition, it is possible to provide an Al-containing ferritic stainless steel welded joint.
Claims (7)
更にTi:1.0%以下、Nb:1.0%以下、V:1.0%以下の1種類または2種以上からなり且つ式(1)を満たす第1群、および、
Mg:0.010%以下、Ca:0.005%以下の1種または2種以上からなる第2群のうち少なくともいずれかの群を含有し、
残部がFeおよび不可避的不純物であり、
前記溶接金属部における結晶粒径の大きさが350μm以下であることを特徴とする耐475℃脆性に優れたAl含有フェライト系ステンレス鋼溶接継手。
([Ti]+[Nb]+[V])/(2×[C]+[N])≧4.0・・・・式(1)
ここで、[Ti]、[Nb]、[V]、[C]、[N]は、それぞれの元素の含有量(質量%)を示す。 The chemical composition of the weld metal part is, in mass%, C: 0.03% or less, N: 0.03% or less, Si: 2.0% or less, Mn: 2.0% or less, P: 0.040. %, S: 0.01% or less, Cr: 15 to 25%, Al: 1.0 to 4.0%,
A first group consisting of one or more of Ti: 1.0% or less, Nb: 1.0% or less, V: 1.0% or less, and satisfying the formula (1); and
Mg: 0.010% or less, Ca: 0.005% or less, containing at least one of the second group consisting of one or two or more,
Balance Fe and unavoidable impurities der is,
The weld metal grain size magnitude is Al-containing ferritic stainless steel welded joints having excellent 475 ° C. embrittlement, characterized in der Rukoto following 350μm in.
([Ti] + [Nb] + [V]) / (2 × [C] + [N]) ≧ 4.0 (1)
Here, [Ti], [Nb], [V], [C], and [N] indicate the content (% by mass) of each element.
Ni:1.0%以下、Cu:1.0%以下、Mo:1.0%以下、W:1.0%以下の1種または2種以上からなる第3群、および、
Co:0.10%以下、Sn0.10%以下、As:0.05%以下、B:0.005%以下、Pb:0.005%以下、Zr:0.1%以下、Zn:0.03%以下、Y:0.10%以下、Ga:0.10%以下、La:0.10%以下、Hf:0.10%以下、Sb:0.10%以下、REM:0.10%以下、Ta:0.5%以下の1種または2種以上からなる第4群のうち、
少なくともいずれかの群を含有することを特徴とする請求項1に記載の耐475℃脆性に優れたAl含有フェライト系ステンレス鋼溶接継手。 The chemical composition of the weld metal part is
A third group consisting of one or more of Ni: 1.0% or less, Cu: 1.0% or less, Mo: 1.0% or less, and W: 1.0% or less; and
Co: 0.10% or less, Sn 0.10% or less, As: 0.05% or less, B: 0.005% or less, Pb: 0.005% or less, Zr: 0.1% or less, Zn: 0. 03% or less, Y: 0.10% or less, Ga: 0.10% or less, La: 0.10% or less, Hf: 0.10% or less, Sb: 0.10% or less, REM: 0.10% Hereinafter, among the fourth group consisting of one or more of Ta: 0.5% or less,
The Al-containing ferritic stainless steel welded joint excellent in 475 ° C brittleness resistance according to claim 1, comprising at least one group.
[Co]+[Sn]+[As]+[B]+[Pb]+[Zr]+[Zn]+[Y]+[Ga]+[La]+[Hf]+[Sb]+[REM]+[Ta]・・・式(2)
ここで、[Co]、[Sn]、[As]、[B]、[Pb]、[Zr]、[Zn]、[Y]、[Ga]、[La]、[Hf]、[Sb]、[REM]、[Ta]は、それぞれの元素の含有量(質量%)を示す。 The Al-containing ferritic stainless steel welded joint excellent in brittle resistance at 475 ° C according to claim 2, wherein the formula (2) is not more than 0.20% by mass%.
[Co] + [Sn] + [As] + [B] + [Pb] + [Zr] + [Zn] + [Y] + [Ga] + [La] + [Hf] + [Sb] + [REM] ] + [Ta] Expression (2)
Here, [Co], [Sn], [As], [B], [Pb], [Zr], [Zn], [Y], [Ga], [La], [Hf], [Sb] , [REM], and [Ta] indicate the content (% by mass) of each element.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015232001A JP6655962B2 (en) | 2015-11-27 | 2015-11-27 | Al-containing ferritic stainless steel welded joint with excellent 475 ° C brittle resistance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015232001A JP6655962B2 (en) | 2015-11-27 | 2015-11-27 | Al-containing ferritic stainless steel welded joint with excellent 475 ° C brittle resistance |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017095786A JP2017095786A (en) | 2017-06-01 |
JP6655962B2 true JP6655962B2 (en) | 2020-03-04 |
Family
ID=58817924
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015232001A Active JP6655962B2 (en) | 2015-11-27 | 2015-11-27 | Al-containing ferritic stainless steel welded joint with excellent 475 ° C brittle resistance |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6655962B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6971185B2 (en) * | 2018-03-27 | 2021-11-24 | 日鉄ステンレス株式会社 | Ferritic stainless steel welded joints and fuel cell components |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4784239B2 (en) * | 2005-02-28 | 2011-10-05 | Jfeスチール株式会社 | Ferritic stainless steel filler rod for TIG welding |
JP4986975B2 (en) * | 2008-10-24 | 2012-07-25 | 新日鐵住金ステンレス株式会社 | Al-containing heat-resistant ferritic stainless steel sheet excellent in workability and oxidation resistance and method for producing the same |
JP5588198B2 (en) * | 2010-03-02 | 2014-09-10 | 日新製鋼株式会社 | Ferritic stainless steel with excellent oxidation resistance, secondary work brittleness resistance and weldability |
JP2011190524A (en) * | 2010-03-17 | 2011-09-29 | Nisshin Steel Co Ltd | Ferritic stainless steel having excellent oxidation resistance, secondary processing brittleness resistance and weld zone toughness |
JP5780716B2 (en) * | 2010-07-01 | 2015-09-16 | 日新製鋼株式会社 | Ferritic stainless steel with excellent oxidation resistance and secondary workability |
TWI604912B (en) * | 2011-07-13 | 2017-11-11 | Illinois Tool Works | Cored welding wires, the method for making the same and its use |
JP6462231B2 (en) * | 2014-04-10 | 2019-01-30 | 日新製鋼株式会社 | Welding wire and method of manufacturing welded structure using the same |
-
2015
- 2015-11-27 JP JP2015232001A patent/JP6655962B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2017095786A (en) | 2017-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5544106B2 (en) | Al-containing heat-resistant ferritic stainless steel for fuel cells and method for producing the same | |
JP5902253B2 (en) | Ferritic stainless steel for fuel cells and method for producing the same | |
JP5600012B2 (en) | Ferritic stainless steel with excellent oxidation resistance and secondary work brittleness resistance, as well as steel and secondary work products | |
JP2009235569A (en) | Ferritic stainless steel having excellent heat resistance | |
JP6300841B2 (en) | Al-containing ferritic stainless steel with excellent high-temperature strength | |
JP6190498B2 (en) | Ferritic stainless steel and manufacturing method thereof | |
WO2017073093A1 (en) | Ferritic stainless steel for fuel cell with excellent anti-creep strength and manufacturing method therefor | |
JP2012102376A (en) | Ferritic stainless steel with excellent oxidation resistance | |
JP7224141B2 (en) | Ferritic stainless steel sheet, manufacturing method thereof, and fuel cell member | |
EP3369832A1 (en) | Al-CONTAINING FERRITIC STAINLESS STEEL WITH EXCELLENT CREEP CHARACTERISTICS, MANUFACTURING METHOD THEREFOR, AND FUEL CELL MEMBER | |
JP6006759B2 (en) | Ferritic stainless steel for fuel reformer of fuel cell or heat exchanger of fuel cell and method for producing the same | |
JP6067134B2 (en) | Ferritic stainless steel for fuel reformer and manufacturing method thereof | |
JP2016037614A (en) | Ferritic stainless steel weld structure and thermostable component of solid oxide type fuel cell | |
JP2015001008A (en) | Austenitic stainless steel for fuel reformer excellent in adhesion of oxide film and production method thereof | |
JP6006893B2 (en) | Ferritic stainless steel for fuel cells | |
JP6655962B2 (en) | Al-containing ferritic stainless steel welded joint with excellent 475 ° C brittle resistance | |
JP6429957B1 (en) | Austenitic stainless steel, manufacturing method thereof, and fuel reformer and combustor member | |
JP6767831B2 (en) | Ferritic stainless steel and welded structures for welded structures with excellent high temperature fatigue characteristics | |
JP6971184B2 (en) | Ferritic stainless steel, its manufacturing method, and fuel cell components | |
JP7233195B2 (en) | Ferritic stainless steel, manufacturing method thereof, and fuel cell member | |
JP6971185B2 (en) | Ferritic stainless steel welded joints and fuel cell components | |
JP6145048B2 (en) | Al-containing heat-resistant ferritic stainless steel for fuel cells and method for producing the same | |
JP6053994B1 (en) | Ferritic stainless steel for fuel cells with excellent creep resistance and method for producing the same | |
JP2018016862A (en) | Ferritic stainless steel sheet excellent in carburization resistance and oxidation resistance and manufacturing method therefor | |
JP2007191740A (en) | Heat resistant material having excellent oxidation resistance and creep property |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180726 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20190520 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190604 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190726 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200107 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200204 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6655962 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |