JP6145048B2 - Al-containing heat-resistant ferritic stainless steel for fuel cells and method for producing the same - Google Patents

Al-containing heat-resistant ferritic stainless steel for fuel cells and method for producing the same Download PDF

Info

Publication number
JP6145048B2
JP6145048B2 JP2014001283A JP2014001283A JP6145048B2 JP 6145048 B2 JP6145048 B2 JP 6145048B2 JP 2014001283 A JP2014001283 A JP 2014001283A JP 2014001283 A JP2014001283 A JP 2014001283A JP 6145048 B2 JP6145048 B2 JP 6145048B2
Authority
JP
Japan
Prior art keywords
less
stainless steel
ferritic stainless
steel
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014001283A
Other languages
Japanese (ja)
Other versions
JP2014139342A (en
Inventor
秦野 正治
正治 秦野
井上 宜治
宜治 井上
修 池上
修 池上
深谷 益啓
益啓 深谷
高橋 明彦
明彦 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel and Sumikin Stainless Steel Corp
Original Assignee
Nippon Steel and Sumikin Stainless Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Stainless Steel Corp filed Critical Nippon Steel and Sumikin Stainless Steel Corp
Priority to JP2014001283A priority Critical patent/JP6145048B2/en
Publication of JP2014139342A publication Critical patent/JP2014139342A/en
Application granted granted Critical
Publication of JP6145048B2 publication Critical patent/JP6145048B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、メタン,天然ガス,都市ガス,プロパン,灯油等を燃料とした高温水蒸気含有雰囲気中で優れた耐酸化性を有し,クリ−プ破断寿命も良好な燃料電池高温部材に適したAl含有耐熱フェライト系ステンレス鋼およびその製造方法に関する。   The present invention is suitable for a fuel cell high-temperature member having excellent oxidation resistance in a high-temperature steam-containing atmosphere using methane, natural gas, city gas, propane, kerosene, etc. as a fuel and having a good creep rupture life. The present invention relates to an Al-containing heat-resistant ferritic stainless steel and a method for producing the same.

石油を代表とする化石燃料の枯渇化,CO2排出による地球温暖化等の観点から、従来の発電システムに替わる新しいシステムの実用化と普及が求められている。その中で、クリ−ンな発電システムである固体高分子型燃料電池(PEFC)や固体酸化物型燃料電池(SOFC)などの普及が進められている。 From the viewpoints of depletion of fossil fuels such as petroleum, global warming due to CO 2 emissions, and the like, there is a demand for the practical use and spread of new systems that replace conventional power generation systems. Among them, a clean polymer system such as a polymer electrolyte fuel cell (PEFC) and a solid oxide fuel cell (SOFC) are being widely used.

これら燃料電池では、水素を供給するための燃料としてメタン,天然ガス,都市ガス,プロパン,灯油等の炭化水素系燃料を使用する。このような燃料を使用して空気と混合した場合、燃料改質器をはじめ、これらの機器につながる配管や高温熱交換器などの部位は、多くの水蒸気と酸素を含む高温環境に曝される。これら改質器、熱交換器、ガス配管、電池まわりを構成する金属材料には、SUS310S,SUS316L系,SUS304系のオーステナイト系ステンレス鋼や高Niの耐熱オーステナイト系ステンレス鋼が主として使用されてきた。   In these fuel cells, hydrocarbon fuels such as methane, natural gas, city gas, propane, and kerosene are used as fuel for supplying hydrogen. When such fuel is used and mixed with air, parts such as fuel reformers, piping connected to these devices, and high-temperature heat exchangers are exposed to a high-temperature environment containing a large amount of water vapor and oxygen. . SUS310S, SUS316L series, SUS304 series austenitic stainless steel and high Ni heat-resistant austenitic stainless steel have been mainly used as the metal materials constituting these reformers, heat exchangers, gas pipes, and batteries.

近年、SOFCのシステム改良が著しく進み,従来の1000℃付近から700〜900℃の低温作動で高出力運転が可能となっている。これらシステムの普及には上述したオーステナイト系ステンレスから安価でかつ9〜10万時間以上の装置寿命を保証できる信頼性の高い金属材料への変更が望まれており、その課題は、多くの水蒸気と酸素を含む高温環境での耐酸化性,装置寿命の視点からクリ−プ破断寿命であり,これらの課題を克服できる耐熱フェライト系ステンレス鋼が候補になっている。   In recent years, the SOFC system has been remarkably improved, and high output operation is possible at a low temperature operation of 700 to 900 ° C. from the conventional vicinity of 1000 ° C. For the spread of these systems, it is desired to change from the above-mentioned austenitic stainless steel to an inexpensive and highly reliable metal material that can guarantee a device life of 90,000 to 100,000 hours or more. The creep rupture life is from the viewpoint of oxidation resistance in a high-temperature environment containing oxygen and equipment life, and heat-resistant ferritic stainless steel that can overcome these problems is a candidate.

上述した観点から,最近、燃料電池高温機器用フェライト系ステンレス鋼が提案されている。下記特許文献1には、Cr+7(Si+Al)≧22とし,更にYやREM等の微量元素を添加し、800℃,80%H2O−20%CH4、950℃,10%H2O−90%空気に代表される高温環境において酸化皮膜の質量増加が小さく耐水蒸気酸化性に優れ,熱疲労特性も良好なフェライト系ステンレス鋼が開示されている。上記公報の実施例は、Al含有フェライト系ステンレスを主とし,0.01≦C≦0.05,TiやNbは選択添加元素としている。 From the above-mentioned viewpoint, ferritic stainless steel for fuel cell high-temperature equipment has been recently proposed. In the following Patent Document 1, Cr + 7 (Si + Al) ≧ 22, and trace elements such as Y and REM are added, and 800 ° C., 80% H 2 O-20% CH 4 , 950 ° C., 10% H 2 O— A ferritic stainless steel is disclosed in which the mass increase of the oxide film is small in a high temperature environment typified by 90% air, the steam oxidation resistance is excellent, and the thermal fatigue characteristics are also good. The examples of the above publication are mainly Al-containing ferritic stainless steel, 0.01 ≦ C ≦ 0.05, and Ti and Nb are selectively added elements.

上述したようなAl含有耐熱フェライト系ステンレスは、これまで種々の検討がなされている。例えば,下記特許文献2には、Cr:13〜20%,Al:1.5〜2.5%未満,Si:0.3〜0.8%,Ti:3×(C+N)〜20×(C+N)を特徴とする加工性,耐酸化性に優れたAl含有耐熱フェライト系ステンレス鋼板及びその製造方法が開示されている。上記公報の実施例は、Crを18%と固定し,Nbの添加は検討されていなかった。   Various studies have been made on Al-containing heat-resistant ferritic stainless steel as described above. For example, in the following Patent Document 2, Cr: 13 to 20%, Al: less than 1.5 to 2.5%, Si: 0.3 to 0.8%, Ti: 3 × (C + N) to 20 × ( An Al-containing heat-resistant ferritic stainless steel sheet excellent in workability and oxidation resistance characterized by C + N) and a method for producing the same are disclosed. In the examples of the above publication, Cr was fixed at 18%, and addition of Nb was not studied.

また、下記特許文献3および特許文献4には、上記公報と比較して高Al含有フェライト系ステンレス鋼が開示されている。特許文献3には、Cr:12〜30%,Al:2.5〜8%とし,更にTi:0.02〜0.2%,Zr:0.02〜0.2%の1種以上含有することを特徴としている。上記公報は、Nbの添加は検討されていない。一方,特許文献4は、特許文献3と同成分系において,重量検知センサ−基板としての高耐力・高耐衝撃特性を得るためにNb:0.3〜0.7%を必須添加元素としている。上記公報の実施例は、TiとNbを複合添加する場合,Nbは上記特性を得るために0.4%以上添加している。   Further, Patent Document 3 and Patent Document 4 below disclose high Al content ferritic stainless steel as compared with the above publication. Patent Document 3 includes Cr: 12-30%, Al: 2.5-8%, and further Ti: 0.02-0.2%, Zr: 0.02-0.2%. It is characterized by doing. The above publication does not consider addition of Nb. On the other hand, Patent Document 4 uses Nb: 0.3 to 0.7% as an essential additive element in the same component system as Patent Document 3 in order to obtain high strength and high impact resistance characteristics as a weight detection sensor-substrate. . In the example of the above publication, when Ti and Nb are added in combination, 0.4% or more of Nb is added to obtain the above characteristics.

これまで,耐熱フェライト系ステンレス鋼の耐酸化性は、Al,Si量を増加する,加えて高価な希土類元素を添加することにより,Al系酸化皮膜の保護性を向上させている。すなわち,Al,Siによる高合金化と,高価な希土類元素の添加を指向している。他方,Al系酸化皮膜の耐酸化性に関して,フェライト系ステンレスの安定化元素として耐食性や加工性の改善に活用されているTiやNbの検討は見当たらない。つまり,前記した燃料電池用の課題である耐酸化性とクリ−プ破断寿命に関して、高合金化や高価な元素の添加に頼ることなく,TiやNb等の微量元素を活用した耐熱フェライト系ステンレス鋼およびその製造方法については明らかにされていなかった。   Up to now, the oxidation resistance of heat-resistant ferritic stainless steel has improved the protection of Al-based oxide films by increasing the amount of Al and Si, and also adding expensive rare earth elements. That is, it is aimed at high alloying with Al and Si and addition of expensive rare earth elements. On the other hand, regarding the oxidation resistance of the Al-based oxide film, there is no study of Ti or Nb that is utilized as a stabilizing element for ferritic stainless steel for improving corrosion resistance and workability. In other words, regarding the oxidation resistance and creep rupture life which are the problems for the fuel cell described above, heat resistant ferritic stainless steel utilizing trace elements such as Ti and Nb without resorting to high alloying or addition of expensive elements. The steel and its manufacturing method were not clarified.

特開2008−156692号公報JP 2008-156692 A 特開2004−307918号公報JP 2004-307918 A 特開2005−232485号公報JP-A-2005-232485 特開2006−63380号公報JP 2006-63380 A 熱処理,33,(1993),251Heat treatment, 33, (1993), 251

本発明は、TiやNb等の鋼中での固溶状態をコントロ−ルすることにより,高合金化や高価な元素の添加に頼ることなく,燃料電池用として要求される耐酸化性とクリ−プ破断寿命を兼備する、Al含有耐熱フェライト系ステンレス鋼およびその製造方法を提供することを目的とする。   By controlling the solid solution state in steels such as Ti and Nb, the present invention controls the oxidation resistance and clearness required for fuel cells without relying on high alloying or addition of expensive elements. It is an object of the present invention to provide an Al-containing heat-resistant ferritic stainless steel having a fracture life and a method for producing the same.

(1)質量%にて、C:0.02%未満、Si:0.15超〜0.7%、Mn:0.3%以下、P:0.035%以下、S:0.003%以下、Cr:13〜20%、Al:1.5〜6%、N:0.02%以下、Ti:0.03〜0.5%以下、Nb:0.6%以下、残部がFeおよび不可避的不純物からなり、
鋼中の固溶Ti量を[Ti],固溶Nb量を[Nb]とし、13≦Cr≦16の場合は下記(a)式を満足し、16<Cr≦20の場合は下記(b)式を満足し、TiC,Ti422,FeTiPのいずれか1種または2種以上が析出しており、20%水蒸気,20%酸素,残部窒素ガスの酸化雰囲気で1050℃,300hの加速酸化試験した後、次いで大気中で750℃に30分加熱した後10分放冷とする加熱・冷却の熱サイクルを600回行った時の酸化皮膜表面の剥離率が10ケ/cm 以下であることを特徴とする高温,高水蒸気,高酸素雰囲気下で用いられる燃料電池用Al含有耐熱フェライト系ステンレス鋼。
(1) In mass%, C: less than 0.02%, Si: more than 0.15 to 0.7%, Mn: 0.3% or less, P: 0.035% or less, S: 0.003% Hereinafter, Cr: 13-20%, Al: 1.5-6%, N: 0.02% or less, Ti: 0.03-0.5% or less, Nb: 0.6% or less, the balance being Fe and Consisting of inevitable impurities,
The amount of solid solution Ti in the steel is [Ti] and the amount of solid solution Nb is [Nb]. When 13 ≦ Cr ≦ 16, the following equation (a) is satisfied, and when 16 <Cr ≦ 20, the following (b ) Satisfying the formula, any one or more of TiC, Ti 4 C 2 S 2 , and FeTiP are precipitated , and 1050 ° C., 300 h in an oxidizing atmosphere of 20% water vapor, 20% oxygen, and the remaining nitrogen gas. After the accelerated oxidation test, the oxide film surface peeling rate was 10 pcs / cm 2 when the heating / cooling heat cycle was performed 600 times after heating to 750 ° C. for 30 minutes in the air and then allowing to cool for 10 minutes. An Al-containing heat-resistant ferritic stainless steel for fuel cells used in a high temperature, high water vapor, high oxygen atmosphere characterized by:

0≦[Ti]≦[Nb]+0.05,0<[Nb]≦0.6・・・(a)
0≦[Ti]≦1/2×[Nb]+0.15,0<[Nb]≦0.6・・・(b)
(2)前記鋼が、さらに質量%にて、Zr:0.1%以下,La:0.1%以下,Y:0.1%以下,REM:0.1%以下,B:0.005%以下、Mg:0.005%以下、Ca:0.005%以下の1種または2種以上含有していることを特徴とする請求項1に記載の燃料電池用Al含有耐熱フェライト系ステンレス鋼。
(3)(1)または(2)のいずれか一項に記載の燃料電池用Al含有耐熱フェライト系ステンレス鋼の製造方法であって、前記フェライト系ステンレス鋼のスラブを熱間加工し、その後冷間加工と焼鈍を組み合わせる製造工程において、熱間加工後あるいは冷間加工後に800〜1100℃で熱処理を行い、500〜800℃の温度範囲での平均冷却速度を5℃/秒以下とすることを特徴とする燃料電池用Al含有耐熱フェライト系ステンレス鋼の製造方法。以下、上記(1)、(2)の鋼に係わる発明および(3)の製造方法に係わる発明をそれぞれ本発明という。また、(1)〜(3)の発明を合わせて、本発明ということがある。
0 ≦ [Ti] ≦ [Nb] +0.05, 0 <[Nb] ≦ 0.6 (a)
0 ≦ [Ti] ≦ 1/2 × [Nb] +0.15, 0 <[Nb] ≦ 0.6 (b)
(2) The steel is further mass%, Zr: 0.1% or less, La: 0.1% or less, Y: 0.1% or less, REM: 0.1% or less, B: 0.005 The Al-containing heat-resistant ferritic stainless steel for a fuel cell according to claim 1, characterized in that it contains at least one of the following:% or less, Mg: 0.005% or less, Ca: 0.005% or less .
(3) A method for producing an Al-containing heat-resistant ferritic stainless steel for a fuel cell according to any one of (1) or (2) , wherein the slab of the ferritic stainless steel is hot worked, and then cooled. In a manufacturing process combining hot working and annealing, heat treatment is performed at 800 to 1100 ° C. after hot working or after cold working, and an average cooling rate in a temperature range of 500 to 800 ° C. is set to 5 ° C./second or less. A method for producing an Al-containing heat-resistant ferritic stainless steel for a fuel cell. Hereinafter, the invention related to the steels (1) and (2) and the invention related to the manufacturing method (3) are referred to as the present invention. Further, the inventions of (1) to (3) may be collectively referred to as the present invention.

酸化皮膜の表面FE−SEM観察結果を示す図である。It is a figure which shows the surface FE-SEM observation result of an oxide film. 耐酸化性に及ぼす固溶Ti量と固溶Nb量の関係(低Cr鋼)を示す図である。It is a figure which shows the relationship (low Cr steel) of the amount of solid solution Ti which affects oxidation resistance, and the amount of solid solution Nb. 耐酸化性に及ぼす固溶Ti量と固溶Nb量の関係(高Cr鋼)を示す図である。It is a figure which shows the relationship (high Cr steel) of the amount of solid solution Ti which affects oxidation resistance, and the amount of solid solution Nb.

本発明者らは、前記した課題を解決するために、Al含有耐熱フェライト系ステンレス鋼において、耐酸化性とクリ−プ破断寿命に及ぼすTiやNbの鋼中での固溶状態の影響について鋭意研究を行い、本発明を完成させた。以下にその代表的な実験結果について説明する。   In order to solve the above-mentioned problems, the present inventors have earnestly studied the influence of the solid solution state of Ti and Nb on the oxidation resistance and creep rupture life of Al-containing heat-resistant ferritic stainless steel. Research has been done to complete the present invention. The typical experimental results will be described below.

表1には代表的な供試鋼成分を示している。A,Bの鋼を溶製し,熱延板焼鈍と酸洗を経て1.2mm厚の冷延板を作製した。冷延板焼鈍は1000℃で実施し,鋼Aの一部は引き続いてTiやNbの固溶状態を調整するために650℃,1hrの熱処理を行った。
冷延焼鈍板は、析出物の抽出残渣分析,加速条件下の酸化試験とクリ−プ試験に供した。析出物の抽出残渣分析では、Ti,Nbの残渣量を測定し,鋼の成分から残渣量を差し引きして固溶Ti量と固溶Nb量を求めた。
Table 1 shows typical test steel components. A and B steels were melted and subjected to hot-rolled sheet annealing and pickling to produce a cold-rolled sheet having a thickness of 1.2 mm. Cold-rolled sheet annealing was performed at 1000 ° C., and a part of Steel A was subsequently heat-treated at 650 ° C. for 1 hr in order to adjust the solid solution state of Ti and Nb.
The cold-rolled annealed sheet was subjected to precipitate extraction residue analysis, oxidation test under accelerated conditions, and creep test. In the extraction residue analysis of precipitates, the amount of Ti and Nb residues was measured, and the amount of solid solution Ti and the amount of solid solution Nb were determined by subtracting the amount of residue from the steel components.

Figure 0006145048
酸化試験は、SOFCの標準的な作動温度を想定した750℃で9万時間(10年)の運転で生成する酸化物の生成量を実験室的に模擬する加速試験条件を検討した。供試鋼の酸化皮膜は主としてAl23であり,酸化皮膜の成長はAl23の成長速度に従う。
Al23の成長速度は、例えば,前記非特許文献1により求めることが可能であり,750℃,9万時間後の酸化増量は0.5〜0.6mg/cm2と予測される。これに相当する酸化増量を比較的短時間で模擬できる加速条件(温度,時間)として、1050℃,300hrを選定した。酸化雰囲気は、20%水蒸気,20%酸素,残部窒素ガスとした。試験片寸法は、1mm厚×25mm×20mmとし,表面と端面はエメリー紙番手#600の湿式研磨とした。加速試験後、酸化増量を測定し,酸化皮膜表面のFE−SEM観察を行い,酸化増量の検証ならびに酸化皮膜の微細形態について検討した。引き続いて、酸化皮膜の健全性を評価するために、加速試験材を大気中で750℃に30分加熱しその後10分放冷とする、加熱・冷却の熱サイクルを繰り返し行い,酸化皮膜表面の剥離率を測定した。クリ−プ試験は、平行部60mmの板状試験片を作製し,750℃,初期応力10MPaの条件下で破断時間を求めた。
Figure 0006145048
In the oxidation test, an accelerated test condition was simulated in which the amount of oxide produced in operation of 90,000 hours (10 years) at 750 ° C. assuming a standard operating temperature of SOFC was simulated in the laboratory. The oxide film of the test steel is mainly Al 2 O 3 and the growth of the oxide film follows the growth rate of Al 2 O 3 .
The growth rate of Al 2 O 3 can be determined by, for example, Non-Patent Document 1, and the increase in oxidation after 90,000 hours at 750 ° C. is predicted to be 0.5 to 0.6 mg / cm 2 . 1050 ° C. and 300 hr were selected as acceleration conditions (temperature, time) that can simulate the corresponding increase in oxidation in a relatively short time. The oxidizing atmosphere was 20% water vapor, 20% oxygen, and the balance nitrogen gas. The test piece dimensions were 1 mm thick × 25 mm × 20 mm, and the surface and end surfaces were wet-polished with emery paper count # 600. After the acceleration test, the amount of increase in oxidation was measured, and the surface of the oxide film was observed by FE-SEM to verify the amount of increase in oxidation and to examine the fine form of the oxide film. Subsequently, in order to evaluate the integrity of the oxide film, the accelerated test material was heated in the atmosphere to 750 ° C. for 30 minutes and then allowed to cool for 10 minutes. The peel rate was measured. In the creep test, a plate-like test piece having a parallel part of 60 mm was prepared, and the fracture time was determined under the conditions of 750 ° C. and initial stress of 10 MPa.

酸化皮膜表面の剥離率は、次のように測定した。酸化試験は、25mm×20mm角の同一試料を4個使用して行う。酸化試験後、試験片表裏面の外観写真を実寸から2倍程度に拡大して撮影する。そこで、表面から酸化物の飛散した痕跡である点を数える。これら点は、実寸にして0.5mm以上のものを対象とし,目視で十分認識可能な大きさとした。剥離率(ケ/cm2)は、4試料,8面からカウントした点をその表面積(0.4cm
2)で除することにより算出した。酸化皮膜表面からの剥離が顕著な試料では、0.5〜1mmの点状の痕跡を比較的容易に観察することができる。酸化皮膜の剥離が殆ど生じないとする判定基準は、1試料につき点状の痕跡1点以下の場合とした。すなわち、剥離率≦10(4個/0.4cm2)とした。
The peel rate on the oxide film surface was measured as follows. The oxidation test is performed using four identical samples of 25 mm × 20 mm square. After the oxidation test, the photograph of the appearance of the front and back surfaces of the test piece is enlarged from the actual size to about 2 times. Therefore, the points which are traces of oxide scattering from the surface are counted. For these points, the actual size is 0.5 mm or more, and the size is sufficiently recognizable visually. The peel rate (ke / cm 2 ) is the surface area (0.4 cm) of points counted from 4 samples and 8 surfaces.
Calculated by dividing by 2 ). In a sample with remarkable peeling from the oxide film surface, a dot-like trace of 0.5 to 1 mm can be observed relatively easily. The criterion for determining that the oxide film hardly peeled was the case of one point or less of point-like traces per sample. That is, the peel rate ≦ 10 (4 / 0.4 cm 2 ).

表2に得られた結果を示す。酸化増量は概ね予測値を反映しており,加速試験の妥当性を検証することができた。表2から分かるように、酸化増量は、固溶Ti量の低下,更には固溶Nbにより少なくなり,Bは理想的なAl23皮膜の成長則に従う結果となっている。更に、加速酸化試験材において、加熱・冷却の熱サイクルに伴う酸化皮膜表面の剥離率についても、固溶Ti量の低下,更には固溶Nbの存在により大幅に改善されている。 Table 2 shows the results obtained. The increase in oxidation largely reflected the predicted value, and the validity of the accelerated test could be verified. As can be seen from Table 2, the increase in oxidation is reduced by the decrease in the amount of solid solution Ti, and further by the solid solution Nb, and B follows the ideal growth law of the Al 2 O 3 film. Furthermore, in the accelerated oxidation test material, the peeling rate of the oxide film surface accompanying the heat cycle of heating / cooling is also greatly improved by the decrease in the amount of solid solution Ti and the presence of solid solution Nb.

Figure 0006145048
上述した結果を説明するために行った,酸化皮膜表面の観察結果を図1に示す。Bは、0.1〜0.5μmのAl23粒子からなり,微視的にも均一性の高い酸化皮膜と言える。A−2は概ねBに近い状態である。他方,酸化増量が多めで皮膜表面の剥離率が高いA−1は、Al23粒子のサイズも大きめで,場所によっては図1に見られるような板状の酸化物粒子が入り混じった10μmにも及ぶ粗大な塊状領域が確認された。これら板状の酸化物粒子は、元素分析の結果から多量のTiが検出され,Ti含有酸化物であることを確認した。すなわち,Al23皮膜の健全性を阻害する要因は,Ti含有酸化物粒子の生成によると考えられる。このようなTi含有酸化物粒子は、鋼の固溶Ti量が多い場合に生成し、固溶Nbの存在により抑制されることが分かった。固溶Nbの存在によりTi含有酸化物の生成が抑制される理由は必ずしも明らかではないが、皮膜/鋼界面でのTi酸化物の生成抑制に起因し、固溶Nbが少なからずAl23皮膜直下におけるTiの拡散と酸素との結合を抑制しているものと考えられる。
Figure 0006145048
FIG. 1 shows an observation result of the oxide film surface, which was performed to explain the above-described results. B is made of Al 2 O 3 particles of 0.1 to 0.5 μm and can be said to be an oxide film having high uniformity even microscopically. A-2 is a state substantially close to B. On the other hand, A-1 with a large oxidation increase and a high peeling rate on the surface of the film has a large size of Al 2 O 3 particles, and plate-like oxide particles as shown in FIG. A coarse mass region as long as 10 μm was confirmed. From these elemental analysis results, a large amount of Ti was detected, and these plate-like oxide particles were confirmed to be Ti-containing oxides. That is, it is considered that the factor that hinders the soundness of the Al 2 O 3 film is due to the generation of Ti-containing oxide particles. It has been found that such Ti-containing oxide particles are generated when the amount of solid solution Ti in the steel is large and are suppressed by the presence of solid solution Nb. The reason why the generation of Ti-containing oxide is suppressed by the presence of solid solution Nb is not necessarily clear, but due to the suppression of the generation of Ti oxide at the film / steel interface, the amount of solid solution Nb is not limited to Al 2 O 3. It is considered that the diffusion of Ti and the bond between oxygen immediately below the film is suppressed.

さらに,表2から明らかなように、クリ−プ破断寿命の向上について,固溶Nb量を高めることは効果がある。以上の検討から,高温,高水蒸気,高酸素含有雰囲気下で生成するAl23皮膜の健全性は、固溶Ti量を低減しつつ,固溶Nb量を高めることで大幅に改善する新規な知見を得るに至った。尚、Al23皮膜の健全性とは、ミクロ的に均一なAl23粒子を呈し,長時間の連続酸化と加熱・冷却に伴う熱サイクルを経ても酸化皮膜表面の剥離が殆ど生じない(10ケ/cm2以下)ことを意味する。 Further, as is clear from Table 2, it is effective to increase the amount of dissolved Nb in improving the creep rupture life. From the above examination, the soundness of the Al 2 O 3 coating produced under high temperature, high water vapor and high oxygen content atmosphere is greatly improved by increasing the solid solution Nb content while reducing the solid solution Ti content. It came to obtain a new knowledge. The soundness of the Al 2 O 3 film means microscopically uniform Al 2 O 3 particles, and almost no peeling of the oxide film surface occurs even after a long period of continuous oxidation and a thermal cycle accompanying heating and cooling. This means that there is not (10 / cm 2 or less).

前記(1)〜(4)の本発明は、上述した実験に代表される検討結果から得られた知見に基づいて完成されたものである。
以下、本発明の各要件について詳しく説明する。なお、各元素の含有量の「%」表示は「質量%」を意味する。
まず、成分の限定理由を以下に説明する。
The present inventions (1) to (4) have been completed based on the knowledge obtained from the examination results represented by the above-described experiments.
Hereinafter, each requirement of the present invention will be described in detail. In addition, "%" display of the content of each element means "mass%".
First, the reasons for limiting the components will be described below.

Cは、鋼中に含まれる不可避的不純物元素であり,本発明の目標とするAl23皮膜の健全性を阻害する。そのため,C量は低いほど好ましいが,過度の低減は精錬コストの大幅な上昇を招く。従って、上限は0.02%未満とする。耐酸化性と製造性の点から,好ましい範囲は0.001〜0.01%未満である。より好ましくは0.003〜0.008%とする。
Siは、脱酸作用に加えて,本発明の目標とするAl23皮膜の健全性を高めるために効果がある。そのため,下限は0.15%超とする。一方,過度の添加は、加工性や溶接性の低下を招く。従って、上限は0.7%とする。耐酸化性と材質の点から,好ましい範囲は0.3〜0.6%である。
Mnは、脱酸作用を有するが,本発明の目的とする耐酸化性を低下させる。特に,高水蒸気,高酸素雰囲気下でAl23皮膜の健全性を阻害するスピネル酸化物の生成を助長する。そのため,上限は0.3%とする。しかし,過度の低減は精錬コストの上昇を招く。従って、下限は0.01%とすることが好ましい。耐酸化性と製造性の点から,好ましい範囲は0.05〜0.25%である。より好ましくは0.1〜0.2%とする。
C is an inevitable impurity element contained in the steel, and inhibits the soundness of the Al 2 O 3 film that is the target of the present invention. Therefore, the lower the amount of C, the better. However, excessive reduction leads to a significant increase in refining costs. Therefore, the upper limit is made less than 0.02%. From the viewpoint of oxidation resistance and manufacturability, the preferred range is 0.001 to less than 0.01%. More preferably, the content is 0.003 to 0.008%.
In addition to the deoxidizing action, Si is effective for enhancing the soundness of the Al 2 O 3 film targeted by the present invention. Therefore, the lower limit is over 0.15%. On the other hand, excessive addition causes deterioration of workability and weldability. Therefore, the upper limit is set to 0.7%. From the viewpoint of oxidation resistance and material, the preferred range is 0.3 to 0.6%.
Mn has a deoxidizing action, but lowers the target oxidation resistance of the present invention. In particular, it promotes the formation of spinel oxides that impair the soundness of the Al 2 O 3 film in a high water vapor and high oxygen atmosphere. Therefore, the upper limit is 0.3%. However, excessive reduction leads to an increase in refining costs. Therefore, the lower limit is preferably 0.01%. From the viewpoint of oxidation resistance and manufacturability, the preferred range is 0.05 to 0.25%. More preferably, the content is 0.1 to 0.2%.

Pは、鋼中に含まれる不可避的不純物元素であり,本発明の目的とする耐酸化性や加工性の低下を招く。そのため,上限は0.035%とする。しかし,過度の低減は精錬コストの上昇を招く。従って、下限は0.01%とすることが好ましい。耐酸化性と製造性の点から,好ましい範囲は0.02〜0.03%である。
Sは、鋼中に含まれる不可避的不純物元素であり,本発明の目的とする耐酸化性や熱間加工性を低下させる。特に,Mn系介在物や固溶Sの存在は,高水蒸気,高酸素雰囲気下でAl23皮膜を破壊するスピネル系酸化物の起点となることが危惧される。そのため,S量は低いほど好ましいが,過度の低減は原料や精錬コストの上昇を招く。従って、上限は0.003%とする。耐酸化性と熱間加工性や製造コストの点から,好ましい範囲は0.0002〜0.001%である。
P is an inevitable impurity element contained in the steel, and causes reduction in oxidation resistance and workability, which are the objects of the present invention. Therefore, the upper limit is 0.035%. However, excessive reduction leads to an increase in refining costs. Therefore, the lower limit is preferably 0.01%. From the viewpoint of oxidation resistance and manufacturability, the preferred range is 0.02 to 0.03%.
S is an inevitable impurity element contained in the steel, and lowers the oxidation resistance and hot workability that are the object of the present invention. In particular, it is feared that the presence of Mn inclusions and solute S will be the starting point for spinel oxides that destroy Al 2 O 3 coatings under high water vapor and high oxygen atmospheres. Therefore, the lower the amount of S, the better. However, excessive reduction leads to an increase in raw materials and refining costs. Therefore, the upper limit is made 0.003%. A preferable range is 0.0002 to 0.001% from the viewpoint of oxidation resistance, hot workability and manufacturing cost.

Crは、本発明の目的とする耐酸化性とクリ−プ破断寿命を確保する上で基本の構成元素である。本発明においては、13%未満では目的とする特性が十分に確保されない。従って、下限は13%とする。しかし,過度の添加は、熱間圧延鋼材の靭性や延性が著しく低下し,製造性を阻害するとともに,本発明の目標とする高合金化抑制という点から上限は20%とする。効果と製造性の点から,好ましい範囲は14.5〜18.5%である。
Alは、本発明の目的とするAl含有耐熱フェライト系ステンレスのAl23皮膜を形成するために必須の元素である。本発明においては、1.5%未満では目的とするAl23皮膜の健全性が確保されない。従って、下限は1.5%とする。しかし,過度な添加は、加工性,溶接性に加えて熱間圧延鋼材の靭性や延性の著しい低下を招く。従って、上限は6%とする。効果と製造性の点から,好ましい範囲は1.8〜5%である。
Cr is a basic constituent element in securing the oxidation resistance and creep rupture life which are the object of the present invention. In the present invention, if it is less than 13%, the desired characteristics are not sufficiently ensured. Therefore, the lower limit is 13%. However, excessive addition significantly reduces the toughness and ductility of the hot-rolled steel material, impairs manufacturability, and the upper limit is made 20% from the viewpoint of suppressing high alloying as a target of the present invention. From the standpoint of effects and manufacturability, the preferred range is 14.5 to 18.5%.
Al is an essential element for forming the Al 2 O 3 film of the Al-containing heat-resistant ferritic stainless steel that is the object of the present invention. In the present invention, if it is less than 1.5%, the soundness of the target Al 2 O 3 film is not ensured. Therefore, the lower limit is 1.5%. However, excessive addition leads to a significant decrease in the toughness and ductility of hot-rolled steel in addition to workability and weldability. Therefore, the upper limit is 6%. From the standpoint of effects and manufacturability, the preferred range is 1.8 to 5%.

Nは、鋼中に含まれる不可避的不純物元素であり,本発明の目標とするAl23皮膜の健全性を阻害する。そのため,N量は低いほど好ましいが,過度の低減は精錬コストの大幅な上昇を招く。従って、上限は0.02%とする。耐酸化性と製造性の点から,好ましい範囲は0.001〜0.01%である。より好ましくは0.003〜0.008%とする。 N is an unavoidable impurity element contained in the steel, and inhibits the soundness of the Al 2 O 3 film targeted by the present invention. Therefore, the lower the amount of N, the better. However, excessive reduction leads to a significant increase in refining costs. Therefore, the upper limit is made 0.02%. From the viewpoint of oxidation resistance and manufacturability, the preferred range is 0.001 to 0.01%. More preferably, the content is 0.003 to 0.008%.

Tiは、CやNを炭窒化物として固定し,加工性や耐酸化性を向上させる作用を持つ。従って、これら効果を発現させるために,下限は0.03%とする。一方,Tiの添加量が増加すると,固溶Ti量も上昇し,前記した高水蒸気,高酸素雰囲気下でのTi含有酸化物の生成が促進し,Al23皮膜の健全性を阻害する。従って,本発明の目的とする耐酸化性を確保する点から,上限は0.5%とする。Ti添加による耐酸化性向上効果を有効に発現させる点から,好ましい範囲は0.1〜0.3%である。より好ましくは、0.1〜0.2%とする。
Nbは、Tiと同様にCやNを炭窒化物として固定し,加工性や耐酸化性を向上させる作用を持つ。さらに、Nbは前記した高水蒸気,高酸素雰囲気下でのTi含有酸化物の生成を抑制しつつ,クリ−プ破断寿命を向上させる有効な元素である。これら効果を得るために下限は0.001%とする。好ましくは0.005%以上である。過度の添加は、原料コストの上昇や加工性を阻害する。従って、上限は0.6%である。コスト対効果の点から,好ましい範囲は0.1〜0.4%である。より好ましくは0.15〜0.3%とする。
Ti fixes C and N as carbonitrides and has an effect of improving workability and oxidation resistance. Therefore, to express these effects, the lower limit is 0.03%. On the other hand, as the amount of Ti added increases, the amount of solid solution Ti also increases, promoting the formation of Ti-containing oxides under the high water vapor and high oxygen atmosphere, and impairing the soundness of the Al 2 O 3 film. . Therefore, the upper limit is set to 0.5% from the viewpoint of securing the oxidation resistance targeted by the present invention. From the viewpoint of effectively expressing the effect of improving the oxidation resistance by adding Ti, the preferred range is 0.1 to 0.3%. More preferably, it is 0.1 to 0.2%.
Nb, like Ti, fixes C and N as carbonitrides and has the effect of improving workability and oxidation resistance. Further, Nb is an effective element that improves the creep rupture life while suppressing the formation of the Ti-containing oxide in the high water vapor and high oxygen atmosphere. In order to obtain these effects, the lower limit is made 0.001%. Preferably it is 0.005% or more. Excessive addition hinders increase in raw material cost and processability. Therefore, the upper limit is 0.6%. From the viewpoint of cost effectiveness, the preferred range is 0.1 to 0.4%. More preferably, the content is 0.15 to 0.3%.

本発明では、前記のAl23皮膜の健全性を確保しつつ,クリ−プ破断寿命を向上させるために、TiとNbの添加量に加えて,鋼中での固溶量を規定する。鋼中での固溶Ti量と固溶Nb量は、以後,それぞれ[Ti],[Nb]と記述する。TiとNbの添加は、前記したようにCやNを炭窒化物として固定して本発明の目的とする耐酸化性の向上に寄与する。高温,高水蒸気,高酸素雰囲気下でAl23皮膜の健全性を確保するには、[Ti]を低下し,[Nb]を高めることが有効である。耐酸化性を確保する[Ti]の許容限界は、16%以下の低Cr鋼と16%超の高Cr鋼において異なる。 In the present invention, in order to improve the creep rupture life while ensuring the soundness of the Al 2 O 3 film, the amount of solid solution in steel is specified in addition to the addition amounts of Ti and Nb. . Hereinafter, the amount of solute Ti and the amount of solute Nb in steel are described as [Ti] and [Nb], respectively. Addition of Ti and Nb fixes C and N as carbonitrides as described above and contributes to the improvement in oxidation resistance which is the object of the present invention. In order to ensure the soundness of the Al 2 O 3 film under a high temperature, high water vapor, and high oxygen atmosphere, it is effective to decrease [Ti] and increase [Nb]. The allowable limit of [Ti] for ensuring oxidation resistance is different between a low Cr steel of 16% or less and a high Cr steel of over 16%.

16%以下の低Cr鋼では[Ti]≦0.05%であり,[Ti]の許容限界は[Nb]に比例して上昇することを見出した。従って、13≦Cr≦16の場合は、0≦[Ti]≦[Nb]+0.05,0<[Nb]≦0.6 である。クリ−プ破断寿命向上の点から,好ましくは、[Ti]≦0.3となるように,Nbの添加や後述するTi系析出物の生成により[Ti]を低下させる。耐酸化性向上を重視する点から,好ましくは[Ti]≦0.2となるようにTi系析出物の生成を促進して[Ti]を低減する。   It has been found that in a low Cr steel of 16% or less, [Ti] ≦ 0.05%, and the allowable limit of [Ti] increases in proportion to [Nb]. Therefore, in the case of 13 ≦ Cr ≦ 16, 0 ≦ [Ti] ≦ [Nb] +0.05, 0 <[Nb] ≦ 0.6. From the viewpoint of improving the creep rupture life, [Ti] is preferably decreased by adding Nb or generating a Ti-based precipitate described later so that [Ti] ≦ 0.3. From the point of emphasizing improvement in oxidation resistance, the formation of Ti-based precipitates is preferably promoted to reduce [Ti] so that [Ti] ≦ 0.2.

16%超の高Cr鋼では[Ti]≦0.15%であり,[Ti]の許容限界は1/2[Nb]に比例して上昇することを見出した。従って、16<Cr≦20の場合は、0≦[Ti]≦1/2[Nb]+0.15,0<[Nb]≦0.6 である。高Cr鋼の場合、クリ−プ破断寿命は低Cr鋼より上位であり,耐酸化性向上を重視する点から,好ましくは[Ti]≦0.2となるようにNbの添加やTi系析出物の生成により[Ti]を低減する。   It was found that [Ti] ≦ 0.15% for high Cr steels exceeding 16%, and the allowable limit of [Ti] increases in proportion to 1/2 [Nb]. Therefore, in the case of 16 <Cr ≦ 20, 0 ≦ [Ti] ≦ 1/2 [Nb] +0.15, 0 <[Nb] ≦ 0.6. In the case of high Cr steel, the creep rupture life is higher than that of low Cr steel. From the point of emphasizing improvement in oxidation resistance, Nb addition or Ti precipitation is preferably performed so that [Ti] ≦ 0.2. [Ti] is reduced by the formation of the product.

Zr,La,Y,REMは、本発明において選択的に添加することができる。これら元素は熱間加工性の改善に加えて,Al23皮膜の健全性を高める上で著しい効果を有するものの,高価な元素である。従って、添加する場合は上限を0.1%とする。好ましい範囲は、コスト対効果の点から,0.01〜0.05%である。 Zr, La, Y, and REM can be selectively added in the present invention. These elements are expensive elements, although they have a remarkable effect on improving the soundness of the Al 2 O 3 film in addition to improving the hot workability. Therefore, when added, the upper limit is made 0.1%. A preferable range is 0.01 to 0.05% from the viewpoint of cost effectiveness.

B,Mg,Caは、本発明において選択的に添加することができる。これら元素は熱間加工性を改善する上で効果のある元素である。しかし,過度な添加は製造性の低下や熱間加工での表面疵を誘発する。従って、添加する場合は上限を0.005%とする。好ましい範囲は、製造性と効果の点から,0.0002〜0.002%である。   B, Mg, and Ca can be selectively added in the present invention. These elements are effective in improving the hot workability. However, excessive addition induces a decrease in manufacturability and surface flaws in hot working. Therefore, when added, the upper limit is made 0.005%. A preferable range is 0.0002 to 0.002% from the viewpoint of manufacturability and effects.

次に、製造方法に関して以下に説明する。
本発明のAl含有耐熱フェライト系ステンレス鋼は、前記の成分を有し,耐酸化性とクリ−プ破断寿命向上の観点から[Ti]と[Nb]を規定している。本発明で規定する[Ti]と[Nb]を満足するために、以下の製造条件が好ましい。
Next, the manufacturing method will be described below.
The Al-containing heat-resistant ferritic stainless steel of the present invention has the above-described components, and defines [Ti] and [Nb] from the viewpoint of improving oxidation resistance and creep rupture life. In order to satisfy [Ti] and [Nb] defined in the present invention, the following production conditions are preferable.

本発明のAl含有耐熱フェライト系ステンレス鋼は、主として,熱間圧延鋼帯を焼鈍あるいは焼鈍を省略してデスケ−リングの後冷間圧延し,続いて仕上げ焼鈍とデスケ−リングした冷延焼鈍板を対象としている。場合によっては、冷間圧延を施さない熱延焼鈍板でも構わない。さらに、ガス配管用としては、鋼板から製造した溶接菅も含まれる。配管は、溶接菅に限定するものでなく,熱間加工により製造した継ぎ目無し菅でもよい。   The Al-containing heat-resistant ferritic stainless steel of the present invention is mainly a cold-rolled annealed sheet obtained by subjecting a hot-rolled steel strip to cold rolling after descaling by omitting annealing or annealing, followed by finish annealing and descaling. Is targeted. In some cases, a hot-rolled annealed plate that is not subjected to cold rolling may be used. Furthermore, for gas piping, a welding rod manufactured from a steel plate is also included. The pipe is not limited to a weld rod, and may be a seamless rod manufactured by hot working.

上述した鋼の仕上げ焼鈍は、800〜1100℃とするのが好ましい。800℃未満では鋼の軟質化と再結晶が不十分となり,所定の材料特性が得られないこともある。他方,1100℃超では粗大粒となり,鋼の靭性・延性を阻害することもある。より好ましくは、[Nb]を高めて,耐酸化性に加えて,クリ−プ破断寿命を向上させるために900℃以上とする。これら仕上げ焼鈍後、Ti系析出物を効率的に形成させて[Ti]を低減するには,再結晶温度以下を緩冷却とすることが好ましい。具体的には、500〜800℃の範囲における平均冷却速度を5℃/秒以下とすることが好ましい。緩冷却とする温度の上限は800℃,より好ましくは750℃とする。また、下限は500℃とする。500℃未満で析出させるには長時間を要し,実用上困難である。   The finish annealing of the steel described above is preferably 800 to 1100 ° C. If it is less than 800 ° C., the softening and recrystallization of the steel become insufficient, and predetermined material characteristics may not be obtained. On the other hand, if it exceeds 1100 ° C., it becomes coarse and may impair the toughness and ductility of the steel. More preferably, the temperature is set to 900 ° C. or higher in order to increase [Nb] and improve creep rupture life in addition to oxidation resistance. After these finish annealing, in order to efficiently form Ti-based precipitates and reduce [Ti], it is preferable to set the recrystallization temperature or lower to a slow cooling. Specifically, the average cooling rate in the range of 500 to 800 ° C. is preferably 5 ° C./second or less. The upper limit of the temperature for slow cooling is 800 ° C., more preferably 750 ° C. The lower limit is 500 ° C. Precipitation at less than 500 ° C. takes a long time and is practically difficult.

なお、[Ti]を低減する際のTi系析出物は、TiC,Ti422,FeTiPなどである。これら析出粒子のサイズや分散状態などは特に限定するものでない。 Note that Ti-based precipitates for reducing [Ti] are TiC, Ti 4 C 2 S 2 , FeTiP, and the like. There are no particular restrictions on the size or dispersion state of these precipitated particles.

以下に、本発明の鋼が鋼板の場合である実施例について述べる。
表3に成分を示すAl含有フェライト系ステンレス鋼を溶製し、熱間圧延を行い板厚4.0〜5.0mmの熱延板を製造した。鋼No.1〜9は本発明の規定する成分範囲を有するものである。鋼No.10〜17は、本発明の規定する成分範囲から外れるものである。
Examples where the steel of the present invention is a steel sheet will be described below.
Al-containing ferritic stainless steels having the components shown in Table 3 were melted and hot rolled to produce hot rolled sheets having a thickness of 4.0 to 5.0 mm. Steel No. 1-9 have the component range which this invention prescribes | regulates. Steel No. 10-17 are outside the component range which this invention prescribes | regulates.

Figure 0006145048
鋼No.1〜4、10〜17は、熱延板焼鈍を省略して冷間圧延して1.2mm厚とし,仕上げ焼鈍は850〜950℃とし,焼鈍後の冷却はガス冷却(10℃/秒)あるいは水冷(>100℃/秒)とした。鋼No.5〜9は、1000℃で熱延板焼鈍を行い,冷間圧延して1.0mm厚とし,仕上げ焼鈍は900〜1000℃とした。焼鈍後の冷却はガス冷却(10℃/秒),水冷(>100℃/秒),空冷(5℃/秒)とした。
Figure 0006145048
Steel No. 1-4, 10-17 omit hot-rolled sheet annealing and cold-roll to 1.2 mm thickness, finish annealing is 850-950 ° C., cooling after annealing is gas cooling (10 ° C./second) Alternatively, water cooling (> 100 ° C./second) was performed. Steel No. 5-9 performed hot-rolled sheet annealing at 1000 degreeC, cold-rolled to 1.0 mm thickness, and finish annealing was 900-1000 degreeC. Cooling after annealing was gas cooling (10 ° C./second), water cooling (> 100 ° C./second), and air cooling (5 ° C./second).

得られた鋼板は、前記の要領で[Ti],[Nb]の測定,高水蒸気・高酸素雰囲気下での1050℃,300hrの加速酸化試験による酸化増量、加速酸化試験材を用いた750℃加熱・冷却の熱サイクルによる酸化皮膜表面の剥離率を測定した。本発明の目標とする耐酸化性は、加速酸化試験と加熱・冷却に伴う熱サイクルを経ても酸化皮膜表面の剥離が殆ど生じない(剥離率10ケ/cm2以下)である。また、750℃、初期応力10MPaの条件下でのクリ−プ破断時間を求めた。クリ−プ寿命の到達目標は4000hrを目安とした。 The obtained steel sheet was measured at [Ti] and [Nb] as described above, 1050 ° C. in a high steam / high oxygen atmosphere, oxidization increase by 300 hr accelerated oxidation test, and 750 ° C. using an accelerated oxidation test material. The exfoliation rate on the surface of the oxide film was measured by heating and cooling thermal cycles. The target oxidation resistance of the present invention is that the oxide film surface hardly peels even after an accelerated oxidation test and a heat cycle accompanying heating and cooling (peeling rate of 10 / cm 2 or less). Further, the creep rupture time under conditions of 750 ° C. and initial stress of 10 MPa was determined. The target of the creep life was 4000 hours as a guide.

得られた結果を表4に示す。試番1、2は本発明の規定する成分範囲と[Ti],[Nb]の両者を満たすものであり,本発明の目標とする耐酸化性を有し,クリ−プ破断寿命も良好である。これより,本発明の成分範囲を満たせば,必ずしも本発明で規定する製造条件を実施しなくても構わないことが分かる。   Table 4 shows the obtained results. Test Nos. 1 and 2 satisfy both the component range defined by the present invention and [Ti] and [Nb], have the target oxidation resistance of the present invention, and have a good creep rupture life. is there. From this, it can be seen that the production conditions defined in the present invention are not necessarily implemented as long as the component range of the present invention is satisfied.

Figure 0006145048
試番4、5、8、11、13、14、16、19、20、22、23は本発明の規定する成分範囲と[Ti],[Nb]を満たすものであり,本発明の規定する緩冷却を施したものである。これらは、本発明の目標とする耐酸化性を有し,クリ−プ破断寿命も良好である。これより,本発明の成分範囲を満たし,本発明で規定する製造条件を実施すれば本発明の目標とする耐酸化性とクリ−プ破断寿命を兼備することができる。
Figure 0006145048
The trial numbers 4, 5, 8, 11, 13, 14, 16, 19, 20, 22, and 23 satisfy the component ranges defined by the present invention and [Ti] and [Nb], and are defined by the present invention. Slowly cooled. These have the oxidation resistance targeted by the present invention and a good creep rupture life. Thus, the oxidation resistance and creep rupture life targeted by the present invention can be achieved by satisfying the component range of the present invention and implementing the production conditions defined in the present invention.

試番3、6、7、9、10、12、15、17、18、21は本発明の規定する成分範囲を満たすものの,本発明で規定する製造条件から外れるものであり,本発明で目標とする耐酸化性が得られなかったものである。これらは、本発明で規定する[Ti]と[Nb]の関係を満たさず,良好な耐酸化性が得られなかった。これより、本発明で規定する成分範囲に加えて,[Ti]と[Nb]の関係の両者を満たすことが、本発明の目標とする耐酸化性を得るために重要であることが分かる。   Although the trial numbers 3, 6, 7, 9, 10, 12, 15, 17, 18, and 21 satisfy the component ranges defined by the present invention, they are outside the production conditions defined by the present invention. The oxidation resistance was not obtained. These did not satisfy the relationship between [Ti] and [Nb] defined in the present invention, and good oxidation resistance could not be obtained. From this, it can be seen that it is important to satisfy both of the relations of [Ti] and [Nb] in addition to the component range defined in the present invention in order to obtain the target oxidation resistance of the present invention.

試番24〜31は本発明の規定する成分から外れるものであり,これら鋼板は、[Ti]と[Nb]の関係を満たすものも含まれるが,本発明で目標とする耐酸化性が得らなかった。これより,本発明で規定する成分範囲を満たすことが目標特性を得るために必要であることが分かる。   The trial numbers 24 to 31 deviate from the components specified in the present invention, and these steel sheets include those satisfying the relationship between [Ti] and [Nb], but the target oxidation resistance in the present invention is obtained. I didn't. From this, it can be seen that it is necessary to satisfy the component range defined in the present invention in order to obtain the target characteristics.

16%Cr以下の低Cr鋼において、耐酸化性に及ぼす固溶Ti量と固溶Nb量の関係を図2に示す。これより、本発明の目標とする耐酸化性を得るには、前述のとおり,0≦[Ti]≦[Nb]+0.05に従うことが確認できた。   FIG. 2 shows the relationship between the amount of solute Ti and the amount of solute Nb affecting the oxidation resistance in a low Cr steel of 16% Cr or less. From this, it was confirmed that in order to obtain the target oxidation resistance of the present invention, 0 ≦ [Ti] ≦ [Nb] +0.05 was satisfied as described above.

16%Cr超の高Cr鋼において、耐酸化性に及ぼす固溶Ti量と固溶Nb量の関係を図3に示す。これより、本発明の目標とする耐酸化性を得るには、前述のとおり,0≦1/2×[Ti]≦[Nb]+0.15に従うことが確認できた。   FIG. 3 shows the relationship between the amount of solute Ti and the amount of solute Nb affecting the oxidation resistance in high Cr steel exceeding 16% Cr. From this, it was confirmed that in order to obtain the target oxidation resistance of the present invention, 0 ≦ 1/2 × [Ti] ≦ [Nb] +0.15 was satisfied as described above.

本発明によれば、鋼の成分,TiとNbの鋼中での固溶状態を規定することにより,高合金化や高価な元素の添加に頼ることなく,燃料電池用として要求される耐酸化性とクリ−プ破断寿命を兼備する、燃料電池用Al含有耐熱フェライト系ステンレス鋼およびその製造方法を提供することができる。本発明のAl含有耐熱フェライト系ステンレス鋼は、特殊な製造方法に依らず,仕上げ焼鈍後の緩冷却あるいは更に熱処理を施すにより工業的に生産することができる。   According to the present invention, by defining the solid solution state of steel components, Ti and Nb in steel, the oxidation resistance required for fuel cells can be achieved without resorting to high alloying or addition of expensive elements. It is possible to provide an Al-containing heat-resistant ferritic stainless steel for fuel cells and a method for producing the same, which have both properties and creep rupture life. The Al-containing heat-resistant ferritic stainless steel of the present invention can be industrially produced by subjecting it to slow cooling after finish annealing or further heat treatment, regardless of a special manufacturing method.

Claims (3)

質量%にて、
C:0.02%未満、
Si:0.15超〜0.7%、
Mn:0.3%以下、
P:0.035%以下、
S:0.003%以下、
Cr:13〜20%、
Al:1.5〜6%、
N:0.02%以下、
Ti:0.03〜0.5%以下、
Nb:0.6%以下、残部がFeおよび不可避的不純物からなり、
鋼中の固溶Ti量を[Ti],固溶Nb量を[Nb]とし、13≦Cr≦16の場合は下記(a)式を満足し、16<Cr≦20の場合は下記(b)式を満足し、TiC,Ti422,FeTiPのいずれか1種または2種以上が析出しており、20%水蒸気,20%酸素,残部窒素ガスの酸化雰囲気で1050℃,300hの加速酸化試験した後、次いで大気中で750℃に30分加熱した後10分放冷とする加熱・冷却の熱サイクルを600回行った時の酸化皮膜表面の剥離率が10ケ/cm 以下であることを特徴とする高温,高水蒸気,高酸素雰囲気下で用いられる燃料電池用Al含有耐熱フェライト系ステンレス鋼。
0≦[Ti]≦[Nb]+0.05,0<[Nb]≦0.6・・・(a)
0≦[Ti]≦1/2×[Nb]+0.15,0<[Nb]≦0.6・・・(b)
In mass%
C: less than 0.02%,
Si: more than 0.15 to 0.7%,
Mn: 0.3% or less,
P: 0.035% or less,
S: 0.003% or less,
Cr: 13-20%,
Al: 1.5-6%,
N: 0.02% or less,
Ti: 0.03 to 0.5% or less,
Nb: 0.6% or less, the balance consisting of Fe and inevitable impurities,
The amount of solid solution Ti in the steel is [Ti] and the amount of solid solution Nb is [Nb]. When 13 ≦ Cr ≦ 16, the following equation (a) is satisfied, and when 16 <Cr ≦ 20, the following (b ) Satisfying the formula, any one or more of TiC, Ti 4 C 2 S 2 , and FeTiP are precipitated , and 1050 ° C., 300 h in an oxidizing atmosphere of 20% steam, 20% oxygen, and the remaining nitrogen gas. After the accelerated oxidation test, the oxide film surface peeling rate was 10 pcs / cm 2 when the heating / cooling heat cycle was performed 600 times after heating to 750 ° C. for 30 minutes in the air and then allowing to cool for 10 minutes. An Al-containing heat-resistant ferritic stainless steel for fuel cells used in a high temperature, high water vapor, high oxygen atmosphere characterized by:
0 ≦ [Ti] ≦ [Nb] +0.05, 0 <[Nb] ≦ 0.6 (a)
0 ≦ [Ti] ≦ 1/2 × [Nb] +0.15, 0 <[Nb] ≦ 0.6 (b)
前記鋼が、さらに質量%にて、Zr:0.1%以下,La:0.1%以下,Y:0.1%以下,REM:0.1%以下,B:0.005%以下、Mg:0.005%以下、Ca:0.005%以下の1種または2種以上含有していることを特徴とする請求項1に記載の燃料電池用Al含有耐熱フェライト系ステンレス鋼。   The steel is further in mass%, Zr: 0.1% or less, La: 0.1% or less, Y: 0.1% or less, REM: 0.1% or less, B: 0.005% or less, 2. The Al-containing heat-resistant ferritic stainless steel for a fuel cell according to claim 1, comprising one or more of Mg: 0.005% or less and Ca: 0.005% or less. 請求項1または請求項2のいずれか一項に記載の燃料電池用Al含有耐熱フェライト系ステンレス鋼の製造方法であって、前記フェライト系ステンレス鋼のスラブを熱間加工し、その後冷間加工と焼鈍を組み合わせる製造工程において、熱間加工後あるいは冷間加工後に800〜1100℃で熱処理を行い、500〜800℃の温度範囲での平均冷却速度を5℃/秒以下とすることを特徴とする燃料電池用Al含有耐熱フェライト系ステンレス鋼の製造方法。 It is a manufacturing method of the Al content heat-resistant ferritic stainless steel for fuel cells as described in any one of Claim 1 or Claim 2 , Comprising: Hot-working the slab of the said ferritic stainless steel, and cold-working after that, In the manufacturing process combined with annealing, heat treatment is performed at 800 to 1100 ° C. after hot working or after cold working, and the average cooling rate in the temperature range of 500 to 800 ° C. is 5 ° C./second or less. A method for producing Al-containing heat-resistant ferritic stainless steel for fuel cells.
JP2014001283A 2014-01-08 2014-01-08 Al-containing heat-resistant ferritic stainless steel for fuel cells and method for producing the same Active JP6145048B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014001283A JP6145048B2 (en) 2014-01-08 2014-01-08 Al-containing heat-resistant ferritic stainless steel for fuel cells and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014001283A JP6145048B2 (en) 2014-01-08 2014-01-08 Al-containing heat-resistant ferritic stainless steel for fuel cells and method for producing the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009071054A Division JP5544106B2 (en) 2009-03-24 2009-03-24 Al-containing heat-resistant ferritic stainless steel for fuel cells and method for producing the same

Publications (2)

Publication Number Publication Date
JP2014139342A JP2014139342A (en) 2014-07-31
JP6145048B2 true JP6145048B2 (en) 2017-06-07

Family

ID=51416178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014001283A Active JP6145048B2 (en) 2014-01-08 2014-01-08 Al-containing heat-resistant ferritic stainless steel for fuel cells and method for producing the same

Country Status (1)

Country Link
JP (1) JP6145048B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101929138B1 (en) * 2014-09-30 2018-12-13 히타치 긴조쿠 가부시키가이샤 Steel for solid oxide fuel cells and method for porducing same
WO2017073094A1 (en) * 2015-10-29 2017-05-04 新日鐵住金ステンレス株式会社 Al-CONTAINING FERRITIC STAINLESS STEEL WITH EXCELLENT CREEP CHARACTERISTICS, MANUFACTURING METHOD THEREFOR, AND FUEL CELL MEMBER

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09279311A (en) * 1996-04-18 1997-10-28 Nippon Steel Corp Iron-chrome-alum. alloy having heat resistance and oxidation resistance and excellent in diffusion joining property
JP3865452B2 (en) * 1997-03-13 2007-01-10 日新製鋼株式会社 Fe-Cr-Al ferrite stainless steel with excellent high-temperature oxidation resistance and high-temperature deformation resistance
JP3938246B2 (en) * 1998-03-27 2007-06-27 日新製鋼株式会社 Heat-resistant Fe-Cr-Al ferritic stainless steel sheet with high temperature deformation resistance
JP2008156692A (en) * 2006-12-22 2008-07-10 Nisshin Steel Co Ltd Ferritic stainless steel for high-temperature device of fuel cell

Also Published As

Publication number Publication date
JP2014139342A (en) 2014-07-31

Similar Documents

Publication Publication Date Title
JP5544106B2 (en) Al-containing heat-resistant ferritic stainless steel for fuel cells and method for producing the same
JP5645417B2 (en) Al-containing ferritic stainless steel with excellent oxidation resistance and electrical conductivity
JP5716054B2 (en) Ferritic stainless steel sheet with excellent electrical conductivity and adhesion of oxide film
JP2009120894A (en) Ferritic stainless steel material for automotive member of exhaust gas path
JP5902253B2 (en) Ferritic stainless steel for fuel cells and method for producing the same
JP6444320B2 (en) Ferritic stainless steel sheet with excellent electrical conductivity and adhesion of oxide film
JP5125600B2 (en) Ferritic stainless steel with excellent high-temperature strength, steam oxidation resistance and workability
EP3369832A1 (en) Al-CONTAINING FERRITIC STAINLESS STEEL WITH EXCELLENT CREEP CHARACTERISTICS, MANUFACTURING METHOD THEREFOR, AND FUEL CELL MEMBER
WO2017073093A1 (en) Ferritic stainless steel for fuel cell with excellent anti-creep strength and manufacturing method therefor
JP2009197306A (en) Ferritic stainless steel excellent in high-temperature strength and toughness
JP5977854B1 (en) Ferritic stainless steel sheet excellent in carburization resistance and oxidation resistance and method for producing the same
JP2016204709A (en) Ferritic stainless steel sheet having excellent carburization resistance and oxidation resistance, and method of manufacturing the same
JP2013189709A (en) Ferritic stainless steel sheet excellent in scale peeling resistance, and method for manufacturing the same
JP6423138B2 (en) Austenitic stainless steel for fuel reformer with excellent adhesion of oxide film and method for producing the same
JP2016030855A (en) Fuel cell ferritic stainless steel and production method therefor
JP7224141B2 (en) Ferritic stainless steel sheet, manufacturing method thereof, and fuel cell member
JP6643906B2 (en) Ferritic stainless steel with excellent heat resistance for solid oxide fuel cells and method for producing the same
JP6145048B2 (en) Al-containing heat-resistant ferritic stainless steel for fuel cells and method for producing the same
JP6367259B2 (en) Ferritic stainless steel plate with excellent carburization and oxidation resistance
JP6006893B2 (en) Ferritic stainless steel for fuel cells
JP6498263B2 (en) Austenitic stainless steel for fuel reformer with excellent adhesion of oxide film and method for producing the same
JP6971184B2 (en) Ferritic stainless steel, its manufacturing method, and fuel cell components
JP6429957B1 (en) Austenitic stainless steel, manufacturing method thereof, and fuel reformer and combustor member
JP6655962B2 (en) Al-containing ferritic stainless steel welded joint with excellent 475 ° C brittle resistance
JP6053994B1 (en) Ferritic stainless steel for fuel cells with excellent creep resistance and method for producing the same

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20140421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150430

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170512

R150 Certificate of patent or registration of utility model

Ref document number: 6145048

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250