JP2009120894A - Ferritic stainless steel material for automotive member of exhaust gas path - Google Patents

Ferritic stainless steel material for automotive member of exhaust gas path Download PDF

Info

Publication number
JP2009120894A
JP2009120894A JP2007294932A JP2007294932A JP2009120894A JP 2009120894 A JP2009120894 A JP 2009120894A JP 2007294932 A JP2007294932 A JP 2007294932A JP 2007294932 A JP2007294932 A JP 2007294932A JP 2009120894 A JP2009120894 A JP 2009120894A
Authority
JP
Japan
Prior art keywords
less
temperature
mass
exhaust gas
steel material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007294932A
Other languages
Japanese (ja)
Other versions
JP5178157B2 (en
Inventor
Takeo Tomita
壮郎 冨田
Kazunari Imagawa
一成 今川
Sadayuki Nakamura
定幸 中村
Manabu Oku
学 奥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2007294932A priority Critical patent/JP5178157B2/en
Priority to EP08019006A priority patent/EP2060650B1/en
Priority to ES08019006T priority patent/ES2355171T3/en
Priority to DE602008003963T priority patent/DE602008003963D1/en
Priority to US12/292,072 priority patent/US20090120536A1/en
Priority to CN2008101733254A priority patent/CN101435054B/en
Publication of JP2009120894A publication Critical patent/JP2009120894A/en
Application granted granted Critical
Publication of JP5178157B2 publication Critical patent/JP5178157B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2530/00Selection of materials for tubes, chambers or housings
    • F01N2530/02Corrosion resistive metals
    • F01N2530/04Steel alloys, e.g. stainless steel

Abstract

<P>PROBLEM TO BE SOLVED: To provide a ferritic stainless steel material for an automotive member of an exhaust gas path, which can be used in a high-temperature range exceeding 900°C or further exceeding 950°C. <P>SOLUTION: The ferritic stainless steel material for the automotive member of an exhaust gas path superior in heat resistance and low-temperature toughness has a composition including, by mass%, 0.03% or less C, 1% or less Si, 0.6 to 2% Mn, 3% or less Ni, 10 to 25% Cr, 0.3 to 0.7% Nb, more than 1 to 2% Cu, 1 to 2.5% Mo, 1 to 2.5% W, 0.15% or less Al, 0.03 to 0.2% V, 0.03% or less N, further B, Co, W, Ti, Zr, an REM and Ca, as needed, and the balance Fe with unavoidable impurities, while satisfying the restrictive expressions of 1.2Nb+5Mo+6Cu≥11.5 and 15Nb+2Mo+0.5Cu≥10.5. The steel material has a texture in which the total amount of Nb and Mo existing as a precipitation phase is 0.2 mass% or less. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、自動車排ガス経路部材に使用するフェライト系ステンレス鋼材であって、特に材料温度が900℃あるいはさらに950℃を超えるような排ガス経路上流部材、例えばエキゾーストマニホールド、触媒コンバータ、フロントパイプ等に好適な耐熱性、低温靭性に優れる自動車排ガス経路部材用フェライト系ステンレス鋼材に関する。   The present invention is a ferritic stainless steel material used for automobile exhaust gas path members, and is particularly suitable for exhaust gas path upstream members whose material temperature exceeds 900 ° C. or even 950 ° C., such as exhaust manifolds, catalytic converters, front pipes, etc. The present invention relates to a ferritic stainless steel material for an automobile exhaust gas passage member having excellent heat resistance and low temperature toughness.

従来、自動車の排ガス経路部材には使用温度域に合わせて大きく2種類のフェライト系鋼種が使い分けられている。1つは材料の最高到達温度が750℃レベルの部材に主として適用されるSUS429系鋼に代表される鋼種、もう1つは材料の最高到達温度が850℃レベルの部材に主として適用されるSUS444系鋼に代表される鋼種である。   2. Description of the Related Art Conventionally, two types of ferritic steel types are widely used for exhaust gas path members of automobiles according to the operating temperature range. One is a steel type typified by SUS429 steel, which is mainly applied to members having a maximum material temperature of 750 ° C, and the other is SUS444, which is mainly applied to members having a material maximum temperature of 850 ° C. It is a steel type represented by steel.

最近では排ガス規制、燃費規制などに対応するために、排ガス温度が高温化する傾向にあり、今後、排ガス経路の上流部材では材料温度が実際に1000℃程度まで上昇することを想定した材料の要求が高まると予想される。従来のSUS444系鋼(18Cr−2Mo−0.5Nb系)ではこのような高温に曝される部材に適用するには無理がある。また、このような高温での使用に耐えるためには、単に高温での引張強さが高いだけでは不十分であり、材料が塑性変形を始める応力の指標となる0.2%耐力が高いことが重要となる。   Recently, in order to comply with exhaust gas regulations, fuel efficiency regulations, etc., the exhaust gas temperature tends to increase, and in the future, material requirements for the upstream members of the exhaust gas path are assumed to rise to about 1000 ° C. Is expected to increase. Conventional SUS444 series steel (18Cr-2Mo-0.5Nb series) cannot be applied to members exposed to such high temperatures. In order to withstand the use at such a high temperature, it is not sufficient that the tensile strength at a high temperature is simply high, and the material has a high 0.2% proof stress as an index of stress at which the material starts plastic deformation. Is important.

また、エンジンルーム内に搭載される各種装置の増加に伴い、排ガス部材の収容スペースには従来にも増して制約が大きくなっている。このため排ガス経路上流部材には種々の形状に成形加工できる優れた加工性が要求される。特に板だけでなくパイプにおいても複雑形状への厳しい加工に耐えうる優れた加工性が要求されるようになってきた。さらに、排ガス経路部材は低温靭性についても良好である必要がある。   In addition, with the increase of various devices mounted in the engine room, the exhaust gas member storage space is more restricted than in the past. For this reason, the exhaust gas path upstream member is required to have excellent workability that can be molded into various shapes. In particular, not only plates but also pipes have been required to have excellent workability that can withstand severe processing into complex shapes. Further, the exhaust gas path member needs to have good low temperature toughness.

これまでに下記のような耐熱性を向上させたフェライト系ステンレス鋼が種々開発され、実用化されつつある。
特許文献1には900℃を超える温度域での使用に耐えるために固溶Nb量を十分に確保し、950℃での引張強さが20MPaを満たすように組成・組織を調整したフェライト系ステンレス鋼が示されている。しかし、0.2%耐力の記載はなく、材料温度が実際に1000℃程度まで上昇した場合の耐久性については定かではない。熱疲労特性や低温靭性に関しても特段の配慮がない。
Various ferritic stainless steels having improved heat resistance as described below have been developed and put into practical use.
Patent Document 1 discloses a ferritic stainless steel in which the amount of solid solution Nb is sufficiently secured to withstand use in a temperature range exceeding 900 ° C., and the composition and structure are adjusted so that the tensile strength at 950 ° C. satisfies 20 MPa. Steel is shown. However, there is no description of 0.2% proof stress, and the durability when the material temperature actually rises to about 1000 ° C. is not certain. There is no special consideration for thermal fatigue properties and low temperature toughness.

特許文献2には900℃での高温強度に優れ、かつ低温靭性にも優れるフェライト系ステンレス鋼が示されている。しかし、0.2%耐力の記載はなく、材料温度が実際に1000℃程度まで上昇した場合の耐久性を十分に確保するための対策については必ずしも十分とは言えない。   Patent Document 2 discloses a ferritic stainless steel having excellent high temperature strength at 900 ° C. and excellent low temperature toughness. However, there is no description of 0.2% proof stress, and it cannot be said that the measures for ensuring sufficient durability when the material temperature actually rises to about 1000 ° C. are necessarily sufficient.

特許文献3には950℃での高温強度が高く、加工性も良好なフェライト系ステンレス鋼が記載されている。しかし、0.2%耐力は示されておらず、材料が実際に1000℃程度に曝された場合に耐えうるかどうかは定かでない。低温靭性についても特段の配慮は見られない。   Patent Document 3 describes a ferritic stainless steel having high high-temperature strength at 950 ° C. and good workability. However, 0.2% yield strength is not shown, and it is unclear whether the material can withstand when it is actually exposed to about 1000 ° C. There is no special consideration for low temperature toughness.

特許文献4には熱膨張係数の低下を図ったFe−Cr合金が示されている。しかし、1000℃程度の温度域での高温強度を改善することは意図されていない。   Patent Document 4 discloses an Fe—Cr alloy whose thermal expansion coefficient is reduced. However, it is not intended to improve the high-temperature strength in the temperature range of about 1000 ° C.

特許文献5には熱疲労特性に優れ、かつ低温靭性も良好なフェライト系ステンレス鋼が記載されている。しかし、高温強度に関しては600℃での0.2%耐力で評価されており、材料温度が実際に1000℃程度まで上昇した場合の耐久性については定かではない。   Patent Document 5 describes a ferritic stainless steel having excellent thermal fatigue characteristics and good low-temperature toughness. However, the high temperature strength is evaluated with a 0.2% proof stress at 600 ° C., and the durability when the material temperature actually rises to about 1000 ° C. is not clear.

特許文献6には700℃以上の温度で使用される排ガス系部材に用いるフェライト系ステンレス鋼が示されている。しかし、高温強度に関しては600℃と850℃での引張強さが示されているだけであり、材料が実際に1000℃程度の温度に曝された場合に耐えうるかどうかは定かでない。また、低温靭性についても記載がない。   Patent Document 6 discloses ferritic stainless steel used for an exhaust gas system member used at a temperature of 700 ° C. or higher. However, only the tensile strength at 600 ° C. and 850 ° C. is shown for the high temperature strength, and it is unclear whether the material can withstand when it is actually exposed to temperatures of about 1000 ° C. Moreover, there is no description about low temperature toughness.

特許第2959934号公報Japanese Patent No. 2959934 特許第2696584号公報Japanese Patent No. 2696584 特許第3468156号公報Japanese Patent No. 3468156 特開2005−206944号公報JP 2005-206944 A 特開2006−117985号公報JP 2006-117985 A 特開2000−303149号公報JP 2000-303149 A

900℃を超える温度で使用された場合に優れた耐久性を呈し、かつ良好な低温靭性および加工性をも同時に具備する材料を安定的に実現させる手法は未だ確立されていない(上記特許文献参照)。
本発明は、1000℃という高温での0.2%耐力、熱疲労特性、低温靭性、および加工性をともに高レベルで兼ね備えた材料であって、材料温度が実際に900℃を超える高温域あるいはさらに950℃を超える高温域に到達する用途で使用された場合でも優れた耐久性を呈する自動車排ガス経路部材用フェライト系ステンレス鋼材を提供することを目的とする。
A method for stably realizing a material that exhibits excellent durability when used at a temperature exceeding 900 ° C. and also has good low-temperature toughness and workability has not been established yet (see the above-mentioned patent document). ).
The present invention is a material having a high level of 0.2% yield strength, thermal fatigue properties, low temperature toughness, and workability at a high temperature of 1000 ° C., and the material temperature actually exceeds 900 ° C. It is another object of the present invention to provide a ferritic stainless steel material for automobile exhaust gas path members that exhibits excellent durability even when used in applications reaching a high temperature range exceeding 950 ° C.

上記目的は、質量%で、C:0.03%以下、Si:1%以下、Mn:0.6〜2%、Ni:3%以下、Cr:10〜25%、Nb:0.3〜0.7%、Cu:1超え〜2%、Mo:1〜2.5%、W:1〜2.5%、Al:0.15%以下、V:0.03〜0.2%、N:0.03%以下を含有し、必要に応じてTi、Zrの1種以上を合計1%未満の範囲で含有し、あるいはさらにB:0.02%以下、Co:2%以下の1種以上を含有し、あるいはさらにREM(希土類元素)、Caの1種以上を合計0.1%以下の範囲で含有し、残部Feおよび不可避的不純物であり、かつ下記(1)式および(2)式を満たす組成を有し、析出相として存在するNbとMoの総量が0.2質量%以下である組織を有する、耐熱性、低温靭性に優れる自動車排ガス経路部材用フェライト系ステンレス鋼材によって達成される。
1.2Nb+5Mo+6Cu≧11.5 ……(1)
15Nb+2Mo+0.5Cu≧10.5 ……(2)
The purpose is mass%, C: 0.03% or less, Si: 1% or less, Mn: 0.6-2%, Ni: 3% or less, Cr: 10-25%, Nb: 0.3- 0.7%, Cu: more than 1 to 2%, Mo: 1 to 2.5%, W: 1 to 2.5%, Al: 0.15% or less, V: 0.03 to 0.2%, N: 0.03% or less, optionally containing at least one of Ti and Zr within a total range of less than 1%, or B: 0.02% or less, Co: 1 of 2% or less Contains at least one species, or further contains at least one type of REM (rare earth element) and Ca in a total range of 0.1% or less, the balance being Fe and inevitable impurities, and the following formula (1) and (2 ) Automotive exhaust gas route having a composition satisfying the formula and having a structure in which the total amount of Nb and Mo existing as a precipitated phase is 0.2% by mass or less and excellent in heat resistance and low temperature toughness This is achieved by using a ferritic stainless steel material.
1.2 Nb + 5Mo + 6Cu ≧ 11.5 (1)
15Nb + 2Mo + 0.5Cu ≧ 10.5 (2)

ここで、上記(1)式、(2)式の元素記号の箇所には質量%で表された当該元素の含有量の値が代入される。
「自動車排ガス経路部材用フェライト系ステンレス鋼材」とは、自動車排ガス経路部材を製造する過程で1000℃を超える温度(例えば1050〜1100℃)に加熱される最終的な焼鈍(以下単に「最終焼鈍」という)を終えた後の鋼材をいう。例えば、鋼板を溶接造管してパイプにした後、成形加工し、その後最終焼鈍を施す場合は、最終焼鈍後のパイプがここでいう自動車排ガス経路部材用フェライト系ステンレス鋼材に該当する。鋼板の段階で最終焼鈍を施す場合は、最終焼鈍後の鋼板や、その後に加工されて得られたパイプ、筒体などが自動車排ガス経路部材用フェライト系ステンレス鋼材に該当する。
上記鋼材のうち、材料温度が900℃を超える温度域、あるいはさらに950℃を超える温度域となる排ガス部材に使用されるものが特に好適な対象となる。
Here, the value of the content of the element expressed in mass% is substituted for the element symbol in the above formulas (1) and (2).
“Ferrite stainless steel material for automobile exhaust gas path member” means final annealing (hereinafter simply referred to as “final annealing”) that is heated to a temperature exceeding 1000 ° C. (for example, 1050 to 1100 ° C.) in the process of manufacturing the automobile exhaust gas path member. Steel) after finishing. For example, when a steel plate is welded and formed into a pipe, and then molded, and then subjected to final annealing, the pipe after the final annealing corresponds to the ferritic stainless steel material for an automobile exhaust gas path member here. When the final annealing is performed at the stage of the steel plate, the steel plate after the final annealing, and the pipes and cylinders obtained by subsequent processing correspond to the ferritic stainless steel material for the automobile exhaust gas path member.
Among the steel materials, those used for exhaust gas members whose material temperature is in the temperature range exceeding 900 ° C. or in the temperature range exceeding 950 ° C. are particularly suitable.

本発明によれば、1000℃という高温に曝された場合に場合に耐えうる高温強度と、良好な熱疲労特性と、良好な加工性と、良好な低温靭性を同時に具備する自動車排ガス経路部材用フェライト系ステンレス鋼材が提供可能になった。この材料は、昨今の排ガス温度の上昇傾向に対応できるものであるとともに、排ガス経路上流部材の設計自由度の拡大をもたらすものである。   According to the present invention, for an automobile exhaust gas path member having a high temperature strength that can withstand when exposed to a high temperature of 1000 ° C., good thermal fatigue properties, good workability, and good low temperature toughness at the same time. Ferritic stainless steel materials are now available. This material can cope with the recent rising trend of the exhaust gas temperature, and also increases the degree of design freedom of the exhaust gas path upstream member.

本発明においては、600℃レベルでの高温強度(0.2%耐力)を高く維持しながら、1000℃レベルでの高温強度(0.2%耐力)の向上を図ることが重要である。これらの両温度域にわたって高い強度を呈することが、熱疲労特性を高く維持するために極めて有効である。種々検討の結果、600℃での0.2%耐力および1000℃での0.2%耐力は、いずれもSUS444系鋼の同温度での耐力値の1.5倍に相当する耐力値以上に高レベルであることが望ましい。具体的には、600℃での0.2%耐力は200MPa以上、1000℃での0.2%耐力は15MPa以上であることが好ましい。このような高温強度特性を有する材料は、自動車排ガス経路部材として常温と1000℃程度の温度の間で繰り返しの温度変動を受けた場合に、実用上十分な高温疲労特性を有することがわかった。   In the present invention, it is important to improve the high temperature strength (0.2% yield strength) at the 1000 ° C. level while maintaining the high temperature strength (0.2% yield strength) at the 600 ° C. level high. Exhibiting high strength over both these temperature ranges is extremely effective for maintaining high thermal fatigue properties. As a result of various studies, the 0.2% proof stress at 600 ° C and the 0.2% proof stress at 1000 ° C are both higher than the proof value corresponding to 1.5 times the proof value of SUS444 steel at the same temperature. A high level is desirable. Specifically, the 0.2% yield strength at 600 ° C. is preferably 200 MPa or more, and the 0.2% yield strength at 1000 ° C. is preferably 15 MPa or more. It has been found that a material having such high temperature strength characteristics has practically sufficient high temperature fatigue characteristics when subjected to repeated temperature fluctuations between room temperature and about 1000 ° C. as an automobile exhaust gas path member.

本発明では600℃を含む温度域(概ね500〜800℃の領域)での高温強度を向上させるために、Cuを利用する。すなわち、Cuを添加することにより600℃前後の温度域でε−Cu相が析出し、これがマトリックス中に微細分散することにより析出強化現象を発現する。また、この温度域での高温強度(0.2%耐力)をSUS444系鋼の約1.5倍以上に高く維持するためには、ε−Cu相の析出に加え、NbおよびMoの固溶強化を利用することが必要である。種々検討の結果、Nb、Mo、Cuの含有量が(1)式を満たすように成分調整することによって、800℃以下の領域での高温強度をSUS444系鋼の約1.5倍以上に高めることが可能になる。
1.2Nb+5Mo+6Cu≧11.5 ……(1)
In the present invention, Cu is used in order to improve the high temperature strength in a temperature range including 600 ° C. (approximately 500 to 800 ° C.). That is, by adding Cu, an ε-Cu phase is precipitated in a temperature range of about 600 ° C., and when this is finely dispersed in the matrix, a precipitation strengthening phenomenon is expressed. In order to maintain the high temperature strength (0.2% proof stress) in this temperature range about 1.5 times higher than that of SUS444 steel, in addition to precipitation of ε-Cu phase, solid solution of Nb and Mo It is necessary to take advantage of enhancements. As a result of various studies, by adjusting the components so that the contents of Nb, Mo, and Cu satisfy the formula (1), the high-temperature strength in the region of 800 ° C. or lower is increased to about 1.5 times or more of SUS444 steel. It becomes possible.
1.2 Nb + 5Mo + 6Cu ≧ 11.5 (1)

800℃を超える温度域になると、ε−Cu相の固溶化が進み、Cuによる高温強度の向上作用は弱くなる。1000℃での高温強度(0.2%耐力)をSUS444系鋼の約1.5倍以上に高めるためには、NbおよびMoの固溶強化を十分に利用することが重要である。固溶Cuも高温強度の向上に有効であるので、それも利用する。種々検討の結果、(2)式を満たすように成分調整する必要があることがわかった。
15Nb+2Mo+0.5Cu≧10.5 ……(2)
(2)式のNbの係数はNb:0.1質量%あたりの1000℃での0.2%耐力(MPa)の上昇量に相当し、MoおよびCuの係数はそれぞれMoおよびCu:1質量%あたりの1000℃での0.2%耐力(MPa)の上昇量に相当する。
If it becomes a temperature range exceeding 800 degreeC, solid solution of an epsilon-Cu phase will advance and the improvement effect of the high temperature intensity | strength by Cu will become weak. In order to increase the high-temperature strength at 1000 ° C. (0.2% yield strength) to about 1.5 times or more that of SUS444 steel, it is important to fully utilize the solid solution strengthening of Nb and Mo. Since solute Cu is also effective in improving high-temperature strength, it is also used. As a result of various studies, it has been found that it is necessary to adjust the components so as to satisfy the expression (2).
15Nb + 2Mo + 0.5Cu ≧ 10.5 (2)
The coefficient of Nb in the formula (2) corresponds to an increase in 0.2% proof stress (MPa) at 1000 ° C. per 0.1% by mass of Nb, and the coefficients of Mo and Cu are Mo and Cu: 1 mass, respectively. This corresponds to an increase in 0.2% yield strength (MPa) at 1000 ° C. per%.

ただし、1000℃という高温での0.2%耐力をSUS444系鋼の1.5倍程度以上に高めるためには、上記(2)式を満たす組成にするだけでは不十分である。詳細な検討によれば、特にNb、Moの析出物をできるだけ少なくした金属組織とすることが極めて重要であることがわかった。具体的には、最終焼鈍後の状態において、析出相として存在するNbとMoの総量が0.2質量%以下である組織状態としなければならない。
また、高温強度だけでなく、加工性、低温靭性、溶接性を高く維持するためにも、最終焼鈍後において上記組織状態とすることが極めて有効である。NbあるいはMoの添加量がかなり多い場合には、析出相として存在するNbとMoの総量が0.2質量%を超えても、固溶Moあるいは固溶Nb量が十分に確保され、それらの固溶強化によって1000℃での高温強度が向上することはある。しかしこの場合、低温靱性や加工性を同時に改善することは難しい。
However, in order to increase the 0.2% yield strength at a high temperature of 1000 ° C. to about 1.5 times or more that of SUS444 steel, it is not sufficient to have a composition that satisfies the above formula (2). According to a detailed examination, it has been found that it is extremely important to obtain a metal structure with as few Nb and Mo precipitates as possible. Specifically, in the state after the final annealing, the structure state must be such that the total amount of Nb and Mo existing as a precipitation phase is 0.2% by mass or less.
In order to maintain not only high temperature strength but also workability, low temperature toughness, and weldability, it is extremely effective to obtain the above-described microstructure after the final annealing. When the amount of Nb or Mo added is considerably large, even if the total amount of Nb and Mo existing as a precipitation phase exceeds 0.2% by mass, the amount of solid solution Mo or solid solution Nb is sufficiently secured, and The high temperature strength at 1000 ° C. may be improved by solid solution strengthening. However, in this case, it is difficult to simultaneously improve the low temperature toughness and workability.

「析出相として存在するNbとMoの総量(質量%)」は、非水溶媒電解液中での定電位電解(SPEED法)によって抽出した析出相の残渣について、元素を定量分析し、その残渣中に含まれるNbとMoの合計質量を、電解により溶解したマトリクスと抽出された析出相の全質量で除して、パーセント表示することにより求めることができる。   “Total amount (% by mass) of Nb and Mo existing as a precipitated phase” is a quantitative analysis of elements of the residue of the precipitated phase extracted by constant potential electrolysis (SPEED method) in a non-aqueous solvent electrolyte. The total mass of Nb and Mo contained therein is divided by the total mass of the matrix dissolved by electrolysis and the extracted precipitated phase, and can be obtained by percentage display.

また、析出相として存在するNbとMoの総量が0.2質量%以下である組織状態を得るためには、最終焼鈍時の冷却過程において、1050℃から500℃までの冷却速度を5℃/sec以上にコントロールする必要がある。例えば溶接造管したパイプを自動車排ガス経路部材に適用する場合は、造管前の鋼板の段階、あるいは造管後、部材として使用に供するまでの段階で少なくとも1回、1050〜1100℃で均熱0〜10分加熱した後、1050℃から500℃までの冷却速度が5℃/sec以上となるように冷却する最終焼鈍を施すようにすればよい。なお、自動車排ガス経路部材として使用される前に、一度このような組織状態を得ておけば、その後、自動車排ガス経路部材として1000℃程度の温度に加熱されて使用された際に、NbとMoの析出相が必要以上に生じることはなく、高温強度や低温靭性は実用上阻害されない。   In addition, in order to obtain a structure state in which the total amount of Nb and Mo existing as a precipitation phase is 0.2% by mass or less, a cooling rate from 1050 ° C. to 500 ° C. is set to 5 ° C./in the cooling process during final annealing. It is necessary to control over sec. For example, when pipes welded and piped are applied to automobile exhaust gas path members, soaking at 1050 to 1100 ° C. at least once in the stage of the steel plate before pipe making or the stage after pipe forming until it is used as a member. After heating for 0 to 10 minutes, final annealing may be performed so that the cooling rate from 1050 ° C. to 500 ° C. is 5 ° C./sec or more. In addition, once such a structural state is obtained before being used as an automobile exhaust gas route member, Nb and Mo are then used when heated and used at a temperature of about 1000 ° C. as an automobile exhaust gas route member. The precipitate phase does not occur more than necessary, and the high-temperature strength and low-temperature toughness are not impeded practically.

以下、合金成分について説明する。
CおよびNは、一般的にはクリープ強度等の高温強度向上に有効な元素とされるが、過剰に含有すると酸化特性、加工性、低温靱性、溶接性が低下する。本発明ではC、Nとも0.03質量%以下に制限する。
Hereinafter, the alloy components will be described.
C and N are generally effective elements for improving high-temperature strength such as creep strength, but if contained excessively, oxidation characteristics, workability, low-temperature toughness, and weldability deteriorate. In the present invention, both C and N are limited to 0.03 mass% or less.

Siは、高温酸化特性の改善に有効であるが、過剰に添加すると硬さが上昇し、加工性、低温靱性が低下する。本発明ではSi含有量は1.0質量%以下に制限する。   Si is effective in improving high-temperature oxidation characteristics, but if added excessively, hardness increases and workability and low-temperature toughness decrease. In the present invention, the Si content is limited to 1.0% by mass or less.

Mnは、高温酸化特性、特に耐スケール剥離性を改善する。1000℃レベルでの高温酸化特性を十分に確保するためには0.6質量%以上のMn含有量を確保する必要がある。ただし過剰添加は加工性、溶接性を阻害する。またMnはオーステナイト安定化元素であるため、多量に添加するとマルテンサイト相が生成し易くなり、熱疲労特性、加工性の低下要因となる。したがって、Mn含有量は2質量%以下の範囲に抑える必要があり、1.5質量%以下あるいは1.5質量%未満とすることがより好ましい。   Mn improves high temperature oxidation properties, particularly scale peel resistance. In order to sufficiently secure the high-temperature oxidation characteristics at the 1000 ° C. level, it is necessary to ensure a Mn content of 0.6% by mass or more. However, excessive addition hinders workability and weldability. Further, since Mn is an austenite stabilizing element, if added in a large amount, a martensite phase is likely to be generated, which causes a decrease in thermal fatigue characteristics and workability. Accordingly, the Mn content must be suppressed to a range of 2% by mass or less, and more preferably 1.5% by mass or less or less than 1.5% by mass.

Niは、低温靭性の向上に寄与するが、過剰の含有は常温での伸びを低下させる要因となる。本発明ではNi含有量は3質量%まで許容されるが、0.6質量%以下の範囲で含有させることがより好ましい。   Ni contributes to the improvement of low temperature toughness, but excessive inclusion causes a decrease in elongation at room temperature. In the present invention, the Ni content is allowed up to 3% by mass, but it is more preferable to contain it in the range of 0.6% by mass or less.

Crは、フェライト相を安定化するとともに、高温材料に重視される耐酸化性の改善に寄与する。その作用を十分に発揮させるために、本発明では15質量%以上のCr含有量を確保する。ただし、過剰のCr含有は鋼材の脆化や加工性劣化を招くので、Cr含有量は20質量%とする。   Cr stabilizes the ferrite phase and contributes to the improvement of oxidation resistance, which is important for high temperature materials. In order to fully exhibit its action, the present invention secures a Cr content of 15% by mass or more. However, excessive Cr content causes embrittlement and workability deterioration of the steel material, so the Cr content is 20% by mass.

Nbは、固溶強化によって600℃前後の温度域での高温強度を上昇させる作用も有するが、本発明では主として900℃を超える高温域での高温強度を確保するためにNbの固溶強化作用を活用する。そのためには0.3質量%以上のNb含有量を確保するとともに、前述の(2)式を満たすことが必要である。また、前述のように本発明では析出相として存在するNbとMoの総量が0.2質量%以下である組織状態とする必要があるが、NbはC、Nとの親和力が強く、高温強度、低温靭性、加工性等を低下させる要因となる析出物を形成しやすい。このため、Nb含有量は0.7質量%以下の範囲に制限する。   Nb also has the effect of increasing the high-temperature strength in the temperature range around 600 ° C. by solid solution strengthening, but in the present invention, Nb has a solid solution strengthening effect mainly in order to ensure high-temperature strength in the high temperature range exceeding 900 ° C. Utilize. For that purpose, it is necessary to ensure the Nb content of 0.3% by mass or more and to satisfy the above-mentioned formula (2). In addition, as described above, in the present invention, it is necessary to have a structural state in which the total amount of Nb and Mo existing as a precipitation phase is 0.2% by mass or less, but Nb has a strong affinity for C and N, and has a high temperature strength. It is easy to form precipitates that cause low temperature toughness, workability, and the like. For this reason, Nb content is restrict | limited to the range below 0.7 mass%.

Cuは、本発明において重要な元素である。すなわち、本発明では前述のようにε−Cu相の微細分散析出現象を利用して600℃前後(概ね500〜850℃)での強度を高め、熱疲労特性を向上させる。また、850℃を超える高温域では、Cuの固溶強化を利用してNbおよびMoによる高温強度の向上作用を補助する役割を有する。種々検討の結果、これらの効果を十分に引き出すためには、少なくとも1質量%を超えるCu含有が必要となる。ただし過剰のCu含有は加工性、低温靱性、溶接性を低下させるのでCu含有量の上限は2質量%に制限する。   Cu is an important element in the present invention. That is, in the present invention, as described above, the strength at around 600 ° C. (approximately 500 to 850 ° C.) is increased by utilizing the fine dispersion precipitation phenomenon of the ε-Cu phase, and the thermal fatigue characteristics are improved. Moreover, in the high temperature range over 850 degreeC, it has the role which assists the improvement effect of the high temperature strength by Nb and Mo using the solid solution strengthening of Cu. As a result of various studies, in order to sufficiently bring out these effects, it is necessary to contain at least 1% by mass of Cu. However, since excessive Cu content reduces workability, low temperature toughness, and weldability, the upper limit of Cu content is limited to 2% by mass.

Moは、Nbと同様に固溶強化による高温強度の上昇作用を有する。特に本発明では900℃を超える高温域での高温強度を高める必要があることから、1質量%以上のMo添加が必須となる。また、前述のように本発明では析出相として存在するNbとMoの総量が0.2質量%以下である組織状態とする必要があるが、過剰のMo添加は炭化物やLaves相(Fe2Mo)を形成して高温強度や低温靭性を阻害する要因となる。このためMo含有量は2.5質量%以下の範囲に制限される。 Mo, like Nb, has the effect of increasing the high temperature strength by solid solution strengthening. In particular, in the present invention, since it is necessary to increase the high temperature strength in a high temperature region exceeding 900 ° C., it is essential to add 1% by mass or more of Mo. Further, it is necessary to tissue condition total is not more than 0.2 mass% of Nb and Mo existing as a precipitation phase in the present invention as described above, the excess addition of Mo carbide and Laves phase (Fe 2 Mo ) To inhibit high temperature strength and low temperature toughness. For this reason, Mo content is restrict | limited to the range of 2.5 mass% or less.

Wは、900℃を超える高温域での高温強度の上昇に有効な元素であり、本発明では1質量%以上のW含有量を確保する必要がある。ただし、過剰のW含有は常温での加工性を阻害する要因となるのでW含有量は2.5質量%以下とする必要があり、2質量%以下とすることがより好ましい。   W is an element effective for increasing the high-temperature strength in a high-temperature region exceeding 900 ° C. In the present invention, it is necessary to secure a W content of 1% by mass or more. However, since excessive W content becomes a factor that hinders workability at normal temperature, the W content needs to be 2.5% by mass or less, and more preferably 2% by mass or less.

Alは、脱酸剤であるとともに、耐高温酸化性を改善する。しかし、多量にAlを含有させると表面性状、加工性、溶接性、低温靱性に悪影響を及ぼす。このため、Alは0.15質量%以下の範囲で添加する。   Al is a deoxidizer and improves high-temperature oxidation resistance. However, when Al is contained in a large amount, the surface properties, workability, weldability, and low temperature toughness are adversely affected. For this reason, Al is added in the range of 0.15% by mass or less.

Vは、Nb、Cuとの複合添加によって高温強度の向上に寄与する。また、Nbとの共存により、加工性、低温靱性、耐粒界腐食感受性、溶接熱影響部の靱性を改善する。これらの作用を十分に得るために、本発明ではVを0.03質量%以上含有させる。ただし、Vの過剰添加は加工性や低温靱性の低下を招く要因になる。このため、V含有量は0.2質量%以下の範囲に制限する。   V contributes to the improvement of the high-temperature strength by the combined addition with Nb and Cu. Further, coexistence with Nb improves workability, low temperature toughness, intergranular corrosion resistance, and toughness of the heat affected zone. In order to obtain these effects sufficiently, in the present invention, V is contained in an amount of 0.03 mass% or more. However, excessive addition of V becomes a factor that causes a decrease in workability and low-temperature toughness. For this reason, V content is restrict | limited to the range below 0.2 mass%.

Ti、Zrは、高温強度の向上に有効な元素であり、必要に応じてこれらの1種以上を添加することができる。ただし、過剰の添加は靭性を低下させるため、Ti、Zrの1種以上を添加する場合はそれらの合計含有量が1質量%以下の範囲となるようにする。   Ti and Zr are effective elements for improving the high-temperature strength, and one or more of them can be added as necessary. However, since excessive addition reduces toughness, when adding one or more of Ti and Zr, the total content thereof is set to be in a range of 1% by mass or less.

B、Coは、Niと同様に低温靭性に寄与する元素であり、必要に応じてB、Coの1種または2種を添加することができる。ただし、過剰の添加は常温での伸びを低下させる要因となるので、B含有量は0.02質量%以下の範囲、Co含有量は2質量%以下の範囲とする。Bは0.0005〜0.02質量%の含有量を確保することがより効果的である。   B and Co are elements that contribute to low temperature toughness like Ni, and one or two of B and Co can be added as necessary. However, excessive addition causes a decrease in elongation at room temperature, so the B content is in the range of 0.02% by mass or less and the Co content is in the range of 2% by mass or less. It is more effective to secure B in a content of 0.0005 to 0.02% by mass.

REM(希土類元素)、Caは、耐高温酸化特性の改善に寄与する元素であり、必要に応じてこれらの1種以上を添加することができる。REM、Caの合計含有量を0.001質量%以上とすることがより効果的である。ただし、過剰の添加は製造性に悪影響を及ぼすので、REM、Caの合計含有量は0.1質量%以下の範囲となるようにする。   REM (rare earth element) and Ca are elements that contribute to the improvement of high-temperature oxidation resistance, and one or more of them can be added as necessary. It is more effective to set the total content of REM and Ca to 0.001% by mass or more. However, excessive addition adversely affects manufacturability, so the total content of REM and Ca is set to be in the range of 0.1% by mass or less.

本発明のステンレス鋼材は、以上の組成に調整されたステンレス鋼を通常の手法で溶製したのち、一般的なステンレス鋼板製造プロセスにて所定板厚の鋼板とし、その後、溶接造管、成形加工などの工程に供することによって製造される。その際、1050〜1100℃に加熱する最終焼鈍においては、前述のように、1050℃から500℃までの冷却速度を5℃/sec以上にコントロールすることが重要である。この冷却条件を外れると、析出相として存在するNbとMoの総量が0.2質量%以下である組織状態が得られにくくなり、1000℃での高温強度(0.2%耐力)をSUS444の約1.5倍以上のレベルに安定して向上させることが難しくなる。また、低温靭性の低下を招く要因にもなる。   The stainless steel material of the present invention is obtained by melting a stainless steel adjusted to the above composition by a usual method, and then converting it into a steel plate having a predetermined plate thickness by a general stainless steel plate manufacturing process, and then performing welding pipe forming and forming processing. It is manufactured by subjecting it to such processes. In that case, in the final annealing which heats to 1050-1100 degreeC, it is important to control the cooling rate from 1050 degreeC to 500 degreeC to 5 degree-C / sec or more as mentioned above. If this cooling condition is not satisfied, it becomes difficult to obtain a structural state in which the total amount of Nb and Mo existing as a precipitation phase is 0.2 mass% or less, and the high temperature strength at 1000 ° C. (0.2% proof stress) is less than that of SUS444. It becomes difficult to improve the level stably to about 1.5 times or more. Moreover, it becomes a factor which causes the fall of low-temperature toughness.

表1に示すフェライト系ステンレス鋼を溶製し、熱間圧延、熱延板焼鈍、冷間圧延、仕上焼鈍の工程を経て板厚2mmの冷延焼鈍鋼板を作製した。上記の仕上焼鈍は、排ガス経路部材用鋼材としての最終焼鈍を模した条件で行った。最終焼鈍条件は、1050℃×均熱1分の加熱の後、一部の比較例(No.21)を除き、1000℃から500℃までの平均冷却速度が5℃/sec以上となるように冷却した。冷却速度は試料表面に取り付けた熱電対を用いて測定した。このような最終焼鈍を終えて得られた冷延焼鈍鋼板を供試材として排ガス経路部材用鋼材の各種特性を調査した。   A ferritic stainless steel shown in Table 1 was melted, and a cold-rolled annealed steel sheet having a thickness of 2 mm was prepared through the steps of hot rolling, hot-rolled sheet annealing, cold rolling, and finish annealing. Said finish annealing was performed on the conditions which simulated the final annealing as a steel material for exhaust gas path members. As for the final annealing conditions, after heating at 1050 ° C. × soaking for 1 minute, except for some comparative examples (No. 21), the average cooling rate from 1000 ° C. to 500 ° C. is 5 ° C./sec or more. Cooled down. The cooling rate was measured using a thermocouple attached to the sample surface. Various characteristics of the steel material for exhaust gas passage members were investigated using the cold-rolled annealed steel plate obtained after such final annealing as a test material.

Figure 2009120894
Figure 2009120894

供試材(最終焼鈍を終えたもの)について、析出相として存在するNbとMoの総量(ここでは「析出Nb+析出Mo量」と表示する)、600℃での0.2%耐力、1000℃での0.2%耐力、低温靭性、常温での加工性を以下のようにして調べた。   For the test material (after final annealing), the total amount of Nb and Mo existing as a precipitation phase (herein referred to as “precipitation Nb + precipitation Mo amount”), 0.2% proof stress at 600 ° C., 1000 ° C. The 0.2% proof stress, the low temperature toughness, and the workability at room temperature were examined as follows.

〔析出Nb+析出Mo量〕
SPEED法により、供試材のマトリクスが溶解し、かつ析出相が溶解しない電位での定電位電解を行い、抽出した析出相の残渣について、元素を定量分析した。その残渣中に含まれるNbとMoの合計質量を、電解により溶解したマトリクスと抽出された析出相の全質量で除して、パーセント表示することにより、析出Nb+析出Mo量を定めた。SPEED法においては非水溶媒として10%アセチルアセトン+1%テトラメチルアンモニウムクロライド+メチルアルコール溶液を用いた。
[Precipitation Nb + Precipitation Mo amount]
By the SPEED method, constant potential electrolysis was performed at a potential at which the matrix of the test material was dissolved and the precipitated phase was not dissolved, and the elements of the extracted precipitated phase residue were quantitatively analyzed. The total mass of Nb and Mo contained in the residue was divided by the total mass of the matrix dissolved by electrolysis and the extracted precipitated phase, and expressed as a percentage to determine the amount of precipitated Nb + precipitated Mo. In the SPEED method, 10% acetylacetone + 1% tetramethylammonium chloride + methyl alcohol solution was used as a nonaqueous solvent.

〔600℃、1000℃での0.2%耐力〕
板厚2mmの引張試験片(引張方向が圧延方向に一致するもの)を用いて、JIS G0567に準拠して600℃での引張試験および1000℃での引張試験を行った。600℃の0.2%耐力はSUS444系鋼の約1.5倍に相当する200MPa以上のものを合格、それより低いものを不合格と評価した。1000℃の0.2%耐力はSUS444系鋼の約1.5倍に相当する35MPa以上のものを合格、それより低いものを不合格と評価した。
[0.2% yield strength at 600 ° C and 1000 ° C]
A tensile test at 600 ° C. and a tensile test at 1000 ° C. were performed in accordance with JIS G0567 using a tensile test piece having a thickness of 2 mm (the tensile direction coincided with the rolling direction). The 0.2% proof stress at 600 ° C. was evaluated as acceptable when the pressure was 200 MPa or higher, which is about 1.5 times that of SUS444 steel, and rejected when lower than that. The 0.2% proof stress at 1000 ° C. was evaluated as passing a 35 MPa or more equivalent to about 1.5 times that of SUS444 steel, and rejecting a lower one than that.

〔低温靭性〕
板厚2mmの供試材からVノッチシャルピー衝撃試験片(ハンマーのぶつかる方向が圧延方向に対し平行方向のもの)を作製し、JIS Z2242に準拠して−75℃〜25℃の範囲で25℃ピッチでシャルピー衝撃試験を行い、延性靭性遷移温度を求めた。遷移温度が−25℃以下であるものを○(低温靭性;良好)、それより高いものを×(低温靭性;不良)と評価した。
(Low temperature toughness)
A V-notch Charpy impact test piece (having a hammer striking direction parallel to the rolling direction) was prepared from a specimen having a thickness of 2 mm, and 25 ° C. in the range of −75 ° C. to 25 ° C. in accordance with JIS Z2242. A Charpy impact test was performed at the pitch to determine the ductile toughness transition temperature. Those having a transition temperature of −25 ° C. or lower were evaluated as “◯” (low temperature toughness: good), and those having a transition temperature higher than that were evaluated as “x” (low temperature toughness; poor).

〔常温での加工性〕
板厚2mmの供試材から、引張方向が圧延方向に対して0°、45°、90°の3種類の引張試験片(JIS 13B号)を作製し、それぞれJIS 2241に準拠して試験数n=3で引張試験を破断まで行い、破断後の試験片を突き合わせて破断時の伸び(%)を測定し、下記(3)式により平均伸び値ELAを求め、このELAを当該供試材の常温伸びの値とした。
ELA=(ELL+ELD+ELT) ……(3)
ここで、ELLは引張方向が0°の破断時の伸び(n=3の平均値)、ELDは引張方向が45°の破断時の伸び(n=3の平均値)、ELTは引張方向が90°の破断時の伸び(n=3の平均値)である。ELAが30%以上のものを○(常温での加工性;良好)、それより低いものを×(常温での加工性;不良)と評価した。
結果を表2に示す。表2中の「最終焼鈍冷却速度」は、1050℃から500℃までの平均冷却速度である。
[Processability at room temperature]
Three types of tensile test pieces (JIS 13B) having a tensile direction of 0 °, 45 °, and 90 ° with respect to the rolling direction were prepared from a specimen having a plate thickness of 2 mm, and the number of tests in accordance with JIS 2241, respectively. subjected to tensile tests at n = 3 to rupture, against the test piece after breaking is measured elongation at break (%), an average elongation value EL a by the following equation (3), the subject of this EL a The room temperature elongation value of the sample was used.
EL A = (EL L + EL D + EL T ) (3)
Here, EL L is the elongation at break when the tensile direction is 0 ° (average value of n = 3), EL D is the elongation at break when the tensile direction is 45 ° (average value of n = 3), and EL T is Elongation at break when the tensile direction is 90 ° (average value of n = 3). Those having EL A of 30% or more were evaluated as ◯ (workability at normal temperature; good), and those lower than that were evaluated as x (workability at normal temperature; poor).
The results are shown in Table 2. “Final annealing cooling rate” in Table 2 is an average cooling rate from 1050 ° C. to 500 ° C.

Figure 2009120894
Figure 2009120894

組成および析出Nb+析出Mo量が本発明の規定を満たす本発明例の鋼材は、表2からわかるように、いずれも600℃の0.2%耐力および1000℃の0.2%耐力がSUS444系鋼の1.5倍程度以上に高く、850℃を超える高温域で優れた高温強度を呈すると共に、熱疲労特性も十分に良好であると言える。また、低温靭性、常温での加工性も良好である。   As can be seen from Table 2, the steel materials of the examples of the present invention in which the composition and the amount of precipitated Nb + precipitated Mo satisfy the provisions of the present invention are 0.2% proof stress at 600 ° C and 0.2% proof stress at 1000 ° C. It is about 1.5 times higher than steel, exhibits excellent high-temperature strength in a high-temperature region exceeding 850 ° C., and has a sufficiently good thermal fatigue property. Moreover, low temperature toughness and processability at normal temperature are also good.

これに対し、No.21は、鋼の組成は本発明規定範囲にあるものの、最終焼鈍時の1000℃から500℃までの冷却速度が5℃/secより遅かったことにより、その冷却過程でNb、Moの析出物が多く生成して、析出Nb+析出Mo量が多すぎる組織状態となったものである。この場合、1000℃での高温強度、低温靭性、常温での加工性に劣った。No.22はMo、Nbの含有量が少なく、No.23はさらにCu含有量も少ないものであり、これらは(1)式、(2)式を満たさないため、600℃および1000℃の高温強度が低かった。No.24はW含有量が高すぎたことにより常温での加工性に劣った。No.25は、Cu含有量が低く(1)式を満たさないため、600℃での高温強度が低かった。No.26はCu含有量が高すぎて(2)式を満たさず、またW無添加であるため1000℃での高温強度が低かった。No.27はMo含有量が高すぎたので析出Nb+析出Mo量が多過ぎる組織状態となり、Nb含有量が低すぎて(2)式を満たさないものであり、1000℃での高温強度および低温靱性に劣った。No.28はNb含有量が高いので析出Nb+析出Mo量が多すぎる組織状態となり、常温での加工性に劣った。No.29はMo、Nbの含有量が多いので析出Nb+析出Mo量が多すぎる組織状態となり、低音靱性に劣った。またCu含有量が少ないので600℃での高温強度が低かった。No.30はMo含有量が高すぎたので析出Nb+析出Mo量が多すぎる組織状態となったが、固溶Moによって1000℃での高温強度は向上した。しかし、低温靱性および常温での加工性に劣った。   On the other hand, in No. 21, although the steel composition was within the range specified in the present invention, the cooling rate from 1000 ° C. to 500 ° C. during the final annealing was slower than 5 ° C./sec. , A large amount of precipitates of Mo is generated, and the amount of precipitated Nb + precipitated Mo is too much. In this case, the high temperature strength at 1000 ° C., the low temperature toughness, and the workability at room temperature were inferior. No. 22 has a small content of Mo and Nb, and No. 23 has a low content of Cu. Since these do not satisfy the formulas (1) and (2), the temperatures are high at 600 ° C. and 1000 ° C. The strength was low. No. 24 was inferior in workability at room temperature because the W content was too high. No. 25 had a low Cu content and did not satisfy the formula (1), so the high-temperature strength at 600 ° C. was low. In No. 26, the Cu content was too high to satisfy the formula (2), and because W was not added, the high-temperature strength at 1000 ° C. was low. In No. 27, since the Mo content was too high, the Nb + precipitated Mo amount was too much, and the Nb content was too low to satisfy the formula (2). High temperature strength at 1000 ° C. and low temperature Poor toughness. Since No. 28 had a high Nb content, it was in a structural state in which the amount of precipitated Nb + precipitated Mo was too much, and the processability at room temperature was poor. No. 29 had a large amount of Mo and Nb, so that the amount of precipitated Nb + precipitated Mo was too much, and the low sound toughness was inferior. Further, since the Cu content was small, the high temperature strength at 600 ° C. was low. In No. 30, since the Mo content was too high, the amount of precipitated Nb + precipitated Mo was too much, but the high-temperature strength at 1000 ° C. was improved by solid solution Mo. However, it was inferior in low temperature toughness and workability at room temperature.

Claims (5)

質量%で、C:0.03%以下、Si:1%以下、Mn:0.6〜2%、Ni:3%以下、Cr:10〜25%、Nb:0.3〜0.7%、Cu:1超え〜2%、Mo:1〜2.5%、W:1〜2.5%、Al:0.15%以下、V:0.03〜0.2%、N:0.03%以下、残部Feおよび不可避的不純物、かつ下記(1)式および(2)式を満たす組成を有し、析出相として存在するNbとMoの総量が0.2質量%以下である組織を有する、耐熱性、低温靭性に優れる自動車排ガス経路部材用フェライト系ステンレス鋼材。
1.2Nb+5Mo+6Cu≧11.5 ……(1)
15Nb+2Mo+0.5Cu≧10.5 ……(2)
In mass%, C: 0.03% or less, Si: 1% or less, Mn: 0.6-2%, Ni: 3% or less, Cr: 10-25%, Nb: 0.3-0.7% Cu: more than 1 to 2%, Mo: 1 to 2.5%, W: 1 to 2.5%, Al: 0.15% or less, V: 0.03 to 0.2%, N: 0.3. A structure having a composition satisfying the following formulas (1) and (2), and the total amount of Nb and Mo existing as a precipitated phase is 0.2% by mass or less: 03% or less, balance Fe and inevitable impurities A ferritic stainless steel material for automobile exhaust gas passage members having excellent heat resistance and low temperature toughness.
1.2 Nb + 5Mo + 6Cu ≧ 11.5 (1)
15Nb + 2Mo + 0.5Cu ≧ 10.5 (2)
さらに、Ti、Zrの1種以上を合計1%未満の範囲で含有する組成を有する請求項1に記載の鋼材。   Furthermore, the steel material of Claim 1 which has a composition which contains 1 or more types of Ti and Zr in the range less than 1% in total. さらに、B:0.02%以下、Co:2%以下の1種以上を含有する組成を有する請求項1または2に記載の鋼材。   Furthermore, the steel material of Claim 1 or 2 which has a composition containing 1 or more types of B: 0.02% or less and Co: 2% or less. さらに、REM(希土類元素)、Caの1種以上を合計0.1%以下の範囲で含有する組成を有する請求項1〜3のいずれかに記載の鋼材。   Furthermore, the steel materials in any one of Claims 1-3 which have a composition which contains 1 or more types of REM (rare earth element) and Ca in the range of a total 0.1% or less. 材料温度が900℃を超える温度域となる排ガス部材に使用される請求項1〜4のいずれかに記載の鋼材。   The steel material in any one of Claims 1-4 used for the exhaust gas member used as the temperature range whose material temperature exceeds 900 degreeC.
JP2007294932A 2007-11-13 2007-11-13 Ferritic stainless steel material for automobile exhaust gas path members Active JP5178157B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2007294932A JP5178157B2 (en) 2007-11-13 2007-11-13 Ferritic stainless steel material for automobile exhaust gas path members
EP08019006A EP2060650B1 (en) 2007-11-13 2008-10-30 Ferritic stainless steel material for automobile exhaust gas passage components
ES08019006T ES2355171T3 (en) 2007-11-13 2008-10-30 STAINLESS STEEL MATERIAL FERRÍTICO FOR THE COMPONENTS OF THE PASSAGE OF THE EXHAUST GAS OF A CAR.
DE602008003963T DE602008003963D1 (en) 2007-11-13 2008-10-30 Ferritic stainless steel for exhaust pipe components of a vehicle
US12/292,072 US20090120536A1 (en) 2007-11-13 2008-11-12 Ferritic Stainless steel material for automobile exhaust gas passage components
CN2008101733254A CN101435054B (en) 2007-11-13 2008-11-13 Ferritic stainless steel material for automobile exhaust gas passage components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007294932A JP5178157B2 (en) 2007-11-13 2007-11-13 Ferritic stainless steel material for automobile exhaust gas path members

Publications (2)

Publication Number Publication Date
JP2009120894A true JP2009120894A (en) 2009-06-04
JP5178157B2 JP5178157B2 (en) 2013-04-10

Family

ID=40467035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007294932A Active JP5178157B2 (en) 2007-11-13 2007-11-13 Ferritic stainless steel material for automobile exhaust gas path members

Country Status (6)

Country Link
US (1) US20090120536A1 (en)
EP (1) EP2060650B1 (en)
JP (1) JP5178157B2 (en)
CN (1) CN101435054B (en)
DE (1) DE602008003963D1 (en)
ES (1) ES2355171T3 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008291351A (en) * 2007-04-27 2008-12-04 Jfe Steel Kk Cr-CONTAINING STEEL PIPE AND ITS PRODUCTION METHOD
JP2009197307A (en) * 2008-02-25 2009-09-03 Jfe Steel Corp Ferritic stainless steel excellent in high-temperature strength, water-vapor-oxidizing resistance, and workability
JP2010121208A (en) * 2008-10-24 2010-06-03 Nippon Steel & Sumikin Stainless Steel Corp Ferritic stainless steel sheet for egr cooler
WO2011111871A1 (en) 2010-03-11 2011-09-15 新日鐵住金ステンレス株式会社 Highly oxidation-resistant ferrite stainless steel plate, highly heat-resistant ferrite stainless steel plate, and manufacturing method therefor
WO2012133573A1 (en) 2011-03-29 2012-10-04 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet having excellent heat resistance and processability, and method for producing same
JP2012193435A (en) * 2011-03-17 2012-10-11 Nippon Steel & Sumikin Stainless Steel Corp Ferrite-based stainless steel plate excellent in heat resistance
US8470237B2 (en) 2006-05-09 2013-06-25 Nippon Steel & Sumikin Stainless Steel Corporation Stainless steel excellent in corrosion resistance, ferritic stainless steel excellent in resistance to crevice corrosion and formability, and ferritic stainless steel excellent in resistance to crevice corrosion
WO2013133429A1 (en) * 2012-03-09 2013-09-12 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet
WO2014136866A1 (en) 2013-03-06 2014-09-12 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet having excellent heat resistance
KR20140117506A (en) 2012-02-15 2014-10-07 닛폰 스틸 앤드 스미킨 스테인레스 스틸 코포레이션 Ferrite-based stainless steel plate having excellent resistance against scale peeling, and method for manufacturing same
KR101519159B1 (en) 2009-07-28 2015-05-12 현대자동차주식회사 Product method of ferritic stainless steel excellent in thermo-mechanical fatigue property
JP2015151555A (en) * 2014-02-10 2015-08-24 日新製鋼株式会社 Ferritic stainless steel for turbo housing and turbo housing
WO2018180643A1 (en) * 2017-03-29 2018-10-04 新日鐵住金ステンレス株式会社 Ferrite stainless steel having superior wear resistance at high temperature, production method for ferrite stainless steel sheet, exhaust components, high-temperature sliding components, and turbocharger components
US10260134B2 (en) 2012-03-30 2019-04-16 Nippon Steel & Sumikin Stainless Steel Corporation Hot rolled ferritic stainless steel sheet for cold rolling raw material
US10385429B2 (en) 2013-03-27 2019-08-20 Nippon Steel & Sumikin Stainless Steel Corporation Hot-rolled ferritic stainless-steel plate, process for producing same, and steel strip
KR20190132455A (en) 2017-03-27 2019-11-27 닛테츠 스테인레스 가부시키가이샤 Ferritic stainless steel sheet and its manufacturing method, and exhaust parts
JP2021505771A (en) * 2017-12-11 2021-02-18 ポスコPosco Ferritic stainless steel with excellent high-temperature oxidation resistance and its manufacturing method

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5626338B2 (en) * 2010-03-31 2014-11-19 日立金属株式会社 Ferritic heat-resistant cast steel with excellent room temperature toughness and exhaust system parts made of it
SE1250101A1 (en) * 2011-04-01 2012-10-02 Scania Cv Ab Cast iron alloy as well as exhaust gas conducting component
CN102433514B (en) * 2011-11-29 2013-08-28 宁波精磊汽车零部件有限公司 Low-alloy steel and preparation method thereof
CN102409259B (en) * 2011-11-29 2013-04-24 宁波精磊汽车零部件有限公司 Alloy steel for braking caliper and preparation method thereof
FI125855B (en) * 2012-06-26 2016-03-15 Outokumpu Oy Ferritic stainless steel
CN105220074A (en) * 2015-10-22 2016-01-06 山西太钢不锈钢股份有限公司 Chrome ferritic high temperature steel making method in a kind of boiler swing pipe tray use
KR102058602B1 (en) * 2015-12-18 2019-12-23 닛폰세이테츠 가부시키가이샤 Manufacturing method of welding material for ferritic heat resistant steel, welding joint for ferritic heat resistant steel and welding joint for ferritic heat resistant steel
WO2017163636A1 (en) * 2016-03-24 2017-09-28 日新製鋼株式会社 Ti-containing ferritic stainless steel sheet having good toughness, and flange
JP6740974B2 (en) * 2017-07-14 2020-08-19 株式会社デンソー Gas sensor
CN107675075A (en) * 2017-09-05 2018-02-09 王业双 A kind of high-performance high temperature resistant ferritic stainless steel and preparation method thereof
CN111057947A (en) * 2019-12-09 2020-04-24 宁波宝新不锈钢有限公司 Ferrite stainless steel with good high-temperature strength and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03274245A (en) * 1990-03-24 1991-12-05 Nisshin Steel Co Ltd Ferritic heat-resistant stainless steel excellent in low temperature toughness, weldability and heat resistance
JP2001303202A (en) * 2000-04-18 2001-10-31 Nisshin Steel Co Ltd Ferritic stainless steel for exhaust gas passage member of gas turbine
JP2005206944A (en) * 2003-12-26 2005-08-04 Jfe Steel Kk FERRITIC Cr-CONTAINING STEEL AND ITS PRODUCTION METHOD
JP2008291351A (en) * 2007-04-27 2008-12-04 Jfe Steel Kk Cr-CONTAINING STEEL PIPE AND ITS PRODUCTION METHOD
JP2009102728A (en) * 2007-10-02 2009-05-14 Jfe Steel Corp Ferritic stainless steel excellent in toughness and its manufacturing method

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5302214A (en) * 1990-03-24 1994-04-12 Nisshin Steel Co., Ltd. Heat resisting ferritic stainless steel excellent in low temperature toughness, weldability and heat resistance
JP2959934B2 (en) 1993-09-02 1999-10-06 新日本製鐵株式会社 Heat-resistant ferritic stainless steel
JP3706428B2 (en) * 1996-03-15 2005-10-12 新日鐵住金ステンレス株式会社 Ferritic stainless steel for automotive exhaust system equipment
JP3468156B2 (en) 1999-04-13 2003-11-17 住友金属工業株式会社 Ferritic stainless steel for automotive exhaust system parts
JP3397167B2 (en) 1999-04-16 2003-04-14 住友金属工業株式会社 Ferritic stainless steel for automotive exhaust system parts
JP4608818B2 (en) * 2000-07-04 2011-01-12 Jfeスチール株式会社 Ferritic stainless steel with excellent secondary work brittleness resistance and high temperature fatigue properties of welds
DE60100880T2 (en) * 2000-07-25 2004-09-02 Kawasaki Steel Corp., Kobe Ferritic stainless steel with good ductility at room temperature and with good mechanical properties at higher temperatures, and methods of manufacturing the same
JP4312653B2 (en) * 2004-04-28 2009-08-12 新日鐵住金ステンレス株式会社 Ferritic stainless steel excellent in heat resistance and workability and method for producing the same
JP4468137B2 (en) 2004-10-20 2010-05-26 日新製鋼株式会社 Ferritic stainless steel material and automotive exhaust gas path member with excellent thermal fatigue characteristics
JP4948998B2 (en) 2006-12-07 2012-06-06 日新製鋼株式会社 Ferritic stainless steel and welded steel pipe for automotive exhaust gas flow path members

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03274245A (en) * 1990-03-24 1991-12-05 Nisshin Steel Co Ltd Ferritic heat-resistant stainless steel excellent in low temperature toughness, weldability and heat resistance
JP2001303202A (en) * 2000-04-18 2001-10-31 Nisshin Steel Co Ltd Ferritic stainless steel for exhaust gas passage member of gas turbine
JP2005206944A (en) * 2003-12-26 2005-08-04 Jfe Steel Kk FERRITIC Cr-CONTAINING STEEL AND ITS PRODUCTION METHOD
JP2008291351A (en) * 2007-04-27 2008-12-04 Jfe Steel Kk Cr-CONTAINING STEEL PIPE AND ITS PRODUCTION METHOD
JP2009102728A (en) * 2007-10-02 2009-05-14 Jfe Steel Corp Ferritic stainless steel excellent in toughness and its manufacturing method

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8470237B2 (en) 2006-05-09 2013-06-25 Nippon Steel & Sumikin Stainless Steel Corporation Stainless steel excellent in corrosion resistance, ferritic stainless steel excellent in resistance to crevice corrosion and formability, and ferritic stainless steel excellent in resistance to crevice corrosion
JP2008291351A (en) * 2007-04-27 2008-12-04 Jfe Steel Kk Cr-CONTAINING STEEL PIPE AND ITS PRODUCTION METHOD
JP2009197307A (en) * 2008-02-25 2009-09-03 Jfe Steel Corp Ferritic stainless steel excellent in high-temperature strength, water-vapor-oxidizing resistance, and workability
JP2010121208A (en) * 2008-10-24 2010-06-03 Nippon Steel & Sumikin Stainless Steel Corp Ferritic stainless steel sheet for egr cooler
KR101519159B1 (en) 2009-07-28 2015-05-12 현대자동차주식회사 Product method of ferritic stainless steel excellent in thermo-mechanical fatigue property
WO2011111871A1 (en) 2010-03-11 2011-09-15 新日鐵住金ステンレス株式会社 Highly oxidation-resistant ferrite stainless steel plate, highly heat-resistant ferrite stainless steel plate, and manufacturing method therefor
US9243306B2 (en) 2010-03-11 2016-01-26 Nippon Steel & Sumikin Stainless Steel Corporation Ferritic stainless steel sheet excellent in oxidation resistance
JP2012193435A (en) * 2011-03-17 2012-10-11 Nippon Steel & Sumikin Stainless Steel Corp Ferrite-based stainless steel plate excellent in heat resistance
WO2012133573A1 (en) 2011-03-29 2012-10-04 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet having excellent heat resistance and processability, and method for producing same
US10030282B2 (en) 2012-02-15 2018-07-24 Nippon Steel & Sumikin Stainless Steel Corporation Ferrite-based stainless steel plate having excellent resistance against scale peeling, and method for manufacturing same
KR20140117506A (en) 2012-02-15 2014-10-07 닛폰 스틸 앤드 스미킨 스테인레스 스틸 코포레이션 Ferrite-based stainless steel plate having excellent resistance against scale peeling, and method for manufacturing same
WO2013133429A1 (en) * 2012-03-09 2013-09-12 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet
JP2013213279A (en) * 2012-03-09 2013-10-17 Nippon Steel & Sumikin Stainless Steel Corp Ferritic stainless steel sheet excellent in oxidation resistance
KR101614236B1 (en) * 2012-03-09 2016-04-20 닛폰 스틸 앤드 스미킨 스테인레스 스틸 코포레이션 Ferritic stainless steel sheet
EP2824208A4 (en) * 2012-03-09 2016-04-20 Nippon Steel & Sumikin Sst Ferritic stainless steel sheet
US9885099B2 (en) 2012-03-09 2018-02-06 Nippon Steel & Sumikin Stainless Steel Corporation Ferritic stainless steel sheet
US10260134B2 (en) 2012-03-30 2019-04-16 Nippon Steel & Sumikin Stainless Steel Corporation Hot rolled ferritic stainless steel sheet for cold rolling raw material
KR20150103212A (en) 2013-03-06 2015-09-09 닛폰 스틸 앤드 스미킨 스테인레스 스틸 코포레이션 Ferritic stainless steel sheet having excellent heat resistance
US10450623B2 (en) 2013-03-06 2019-10-22 Nippon Steel & Sumikin Stainless Steel Corporation Ferritic stainless steel sheet having excellent heat resistance
WO2014136866A1 (en) 2013-03-06 2014-09-12 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet having excellent heat resistance
US10385429B2 (en) 2013-03-27 2019-08-20 Nippon Steel & Sumikin Stainless Steel Corporation Hot-rolled ferritic stainless-steel plate, process for producing same, and steel strip
JP2015151555A (en) * 2014-02-10 2015-08-24 日新製鋼株式会社 Ferritic stainless steel for turbo housing and turbo housing
KR20190132455A (en) 2017-03-27 2019-11-27 닛테츠 스테인레스 가부시키가이샤 Ferritic stainless steel sheet and its manufacturing method, and exhaust parts
WO2018180643A1 (en) * 2017-03-29 2018-10-04 新日鐵住金ステンレス株式会社 Ferrite stainless steel having superior wear resistance at high temperature, production method for ferrite stainless steel sheet, exhaust components, high-temperature sliding components, and turbocharger components
JPWO2018180643A1 (en) * 2017-03-29 2020-03-26 日鉄ステンレス株式会社 Ferritic stainless steel excellent in high-temperature wear resistance, method for producing ferritic stainless steel sheet, exhaust parts, high-temperature sliding parts, and turbocharger parts
JP2021505771A (en) * 2017-12-11 2021-02-18 ポスコPosco Ferritic stainless steel with excellent high-temperature oxidation resistance and its manufacturing method

Also Published As

Publication number Publication date
JP5178157B2 (en) 2013-04-10
DE602008003963D1 (en) 2011-01-27
CN101435054B (en) 2012-09-12
CN101435054A (en) 2009-05-20
ES2355171T3 (en) 2011-03-23
EP2060650B1 (en) 2010-12-15
US20090120536A1 (en) 2009-05-14
EP2060650A1 (en) 2009-05-20

Similar Documents

Publication Publication Date Title
JP5178157B2 (en) Ferritic stainless steel material for automobile exhaust gas path members
JP5178156B2 (en) Ferritic stainless steel material for automobile exhaust gas path members
JP5297630B2 (en) Ferritic stainless steel plate with excellent heat resistance
US9279172B2 (en) Heat-resistance ferritic stainless steel
US20100050617A1 (en) Ferritic stainles steel for exhaust gas path members
JP5141296B2 (en) Ferritic stainless steel with excellent high temperature strength and toughness
JP5540637B2 (en) Ferritic stainless steel with excellent heat resistance
KR20140117686A (en) Ferritic stainless steel plate having excellent heat resistance and excellent workability
WO2011111871A1 (en) Highly oxidation-resistant ferrite stainless steel plate, highly heat-resistant ferrite stainless steel plate, and manufacturing method therefor
JP2009235573A (en) Ferritic stainless steel with excellent heat resistance and toughness
JP2012102376A (en) Ferritic stainless steel with excellent oxidation resistance
JP4816642B2 (en) Low alloy steel
JP2009197307A (en) Ferritic stainless steel excellent in high-temperature strength, water-vapor-oxidizing resistance, and workability
JP5208450B2 (en) Cr-containing steel with excellent thermal fatigue properties
JP2012117084A (en) Highly oxidation-resistant ferrite stainless steel plate
JP5239642B2 (en) Ferritic stainless steel with excellent thermal fatigue properties, high temperature fatigue properties and oxidation resistance
JP4309293B2 (en) Ferritic stainless steel for automotive exhaust system parts
JP2923825B2 (en) Ferritic stainless steel sheet for heat resistance with excellent high-temperature strength and weldability
JP5239644B2 (en) Ferritic stainless steel with excellent thermal fatigue properties, high temperature fatigue properties, oxidation resistance and toughness
JP5343444B2 (en) Ferritic stainless steel with excellent thermal fatigue properties, oxidation resistance and workability
JP5343445B2 (en) Ferritic stainless steel with excellent thermal fatigue properties, oxidation resistance and toughness
JP2010053421A (en) Ferritic stainless steel excellent in thermal fatigue property, high temperature fatigue property, oxidation resistance and high temperature salt damage corrosion resistance
JP2022151087A (en) Ferritic stainless steel sheet
JP2022151085A (en) Ferritic stainless steel sheet
JP5222595B2 (en) Ferritic stainless steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130108

R150 Certificate of patent or registration of utility model

Ref document number: 5178157

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250