JP2010121208A - Ferritic stainless steel sheet for egr cooler - Google Patents
Ferritic stainless steel sheet for egr cooler Download PDFInfo
- Publication number
- JP2010121208A JP2010121208A JP2009241500A JP2009241500A JP2010121208A JP 2010121208 A JP2010121208 A JP 2010121208A JP 2009241500 A JP2009241500 A JP 2009241500A JP 2009241500 A JP2009241500 A JP 2009241500A JP 2010121208 A JP2010121208 A JP 2010121208A
- Authority
- JP
- Japan
- Prior art keywords
- less
- stainless steel
- ferritic stainless
- steel sheet
- exhaust gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910001220 stainless steel Inorganic materials 0.000 title claims abstract description 44
- 229910052802 copper Inorganic materials 0.000 claims abstract description 15
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 14
- 239000012535 impurity Substances 0.000 claims abstract description 5
- 229910052742 iron Inorganic materials 0.000 claims description 4
- 230000007797 corrosion Effects 0.000 abstract description 64
- 238000005260 corrosion Methods 0.000 abstract description 64
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 23
- 229910052710 silicon Inorganic materials 0.000 abstract description 8
- 229910052748 manganese Inorganic materials 0.000 abstract description 5
- 229910052799 carbon Inorganic materials 0.000 abstract description 4
- 229910052757 nitrogen Inorganic materials 0.000 abstract description 4
- 229910052758 niobium Inorganic materials 0.000 abstract description 3
- 238000005219 brazing Methods 0.000 description 45
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 25
- 230000000694 effects Effects 0.000 description 17
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 14
- 229910052759 nickel Inorganic materials 0.000 description 13
- 229910052750 molybdenum Inorganic materials 0.000 description 12
- 238000012360 testing method Methods 0.000 description 11
- 239000013078 crystal Substances 0.000 description 9
- 239000010935 stainless steel Substances 0.000 description 8
- 229910000831 Steel Inorganic materials 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- 239000010959 steel Substances 0.000 description 7
- 239000002253 acid Substances 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- 238000009736 wetting Methods 0.000 description 6
- 229910000963 austenitic stainless steel Inorganic materials 0.000 description 5
- 239000000446 fuel Substances 0.000 description 5
- 238000009991 scouring Methods 0.000 description 5
- 238000004088 simulation Methods 0.000 description 5
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 229910017604 nitric acid Inorganic materials 0.000 description 4
- 150000007524 organic acids Chemical class 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 235000011114 ammonium hydroxide Nutrition 0.000 description 3
- 238000000137 annealing Methods 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 239000010960 cold rolled steel Substances 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 2
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 229910001208 Crucible steel Inorganic materials 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 239000000498 cooling water Substances 0.000 description 2
- 229910001651 emery Inorganic materials 0.000 description 2
- 238000005098 hot rolling Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 238000005554 pickling Methods 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 229910000679 solder Inorganic materials 0.000 description 2
- 229910000859 α-Fe Inorganic materials 0.000 description 2
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- 206010070834 Sensitisation Diseases 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 235000019270 ammonium chloride Nutrition 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 239000003225 biodiesel Substances 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000010531 catalytic reduction reaction Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000005097 cold rolling Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000009749 continuous casting Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000002848 electrochemical method Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 230000008570 general process Effects 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 238000007750 plasma spraying Methods 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000000611 regression analysis Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 230000008313 sensitization Effects 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/38—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/20—Ferrous alloys, e.g. steel alloys containing chromium with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/26—Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/58—Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M26/00—Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
- F02M26/11—Manufacture or assembly of EGR systems; Materials or coatings specially adapted for EGR systems
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M26/00—Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
- F02M26/13—Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
- F02M26/22—Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
- F02M26/29—Constructional details of the coolers, e.g. pipes, plates, ribs, insulation or materials
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F19/00—Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
- F28F19/02—Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings
- F28F19/06—Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings of metal
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F21/00—Constructions of heat-exchange apparatus characterised by the selection of particular materials
- F28F21/08—Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
- F28F21/081—Heat exchange elements made from metals or metal alloys
- F28F21/082—Heat exchange elements made from metals or metal alloys from steel or ferrous alloys
- F28F21/083—Heat exchange elements made from metals or metal alloys from steel or ferrous alloys from stainless steel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F21/00—Constructions of heat-exchange apparatus characterised by the selection of particular materials
- F28F21/08—Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
- F28F21/089—Coatings, claddings or bonding layers made from metals or metal alloys
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M26/00—Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
- F02M26/50—Arrangements or methods for preventing or reducing deposits, corrosion or wear caused by impurities
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- General Engineering & Computer Science (AREA)
- Thermal Sciences (AREA)
- Physics & Mathematics (AREA)
- Combustion & Propulsion (AREA)
- Manufacturing & Machinery (AREA)
- Heat Treatment Of Sheet Steel (AREA)
- Exhaust-Gas Circulating Devices (AREA)
Abstract
Description
本発明は、例えば自動車のディーゼルエンジンやガソリンエンジンなどで使用される排ガス再循環(Exhaust Gas Recirculation:以下、EGRという。)システムにおいて、排ガスをエンジン冷却水や空気などで冷却するEGRクーラに用いて好適なEGRクーラ用フェライト系ステンレス鋼板に関する。 The present invention is used in an EGR cooler that cools exhaust gas with engine cooling water or air in an exhaust gas recirculation (hereinafter referred to as EGR) system used in, for example, a diesel engine or a gasoline engine of an automobile. The present invention relates to a suitable ferritic stainless steel sheet for an EGR cooler.
近年、自動車分野においては、環境問題に対する意識の高まりから、排ガス規制がより強化されると共に、炭酸ガス排出抑制に向けた取り組みが進められている。また、バイオエタノールやバイオディーゼル燃料といった燃料面からの取り組みに加え、軽量化や排気熱を熱回収する熱交換器を取り付けて燃費向上を図ったり、EGR、DPF(Diesel Particulate Filter)、尿素SCR(Selective Catalytic Reduction)システムといった排ガス処理装置を設置するといった取り組みを実施している。 In recent years, in the automotive field, exhaust gas regulations have been further strengthened due to increasing awareness of environmental issues, and efforts are being made to reduce carbon dioxide emissions. In addition to efforts from the fuel side, such as bioethanol and biodiesel fuel, it is possible to improve fuel efficiency by reducing the weight and installing a heat exchanger that recovers exhaust heat. EGR, DPF (Diesel Particulate Filter), urea SCR ( Efforts are being made to install exhaust gas treatment equipment such as the Selective Catalytic Reduction system.
このうち、EGRシステムは、エンジンの排ガスを冷却させた後、吸気側に戻して再燃焼させることで、燃焼温度を下げ、有害ガスであるNOxを低下させることを目的としている。また、EGRクーラは、排ガスをエンジン冷却水や空気により冷却する装置であり、その熱交換部分には良好な熱効率が要求され熱伝導性が良好であることが望まれる。 Among these, the EGR system aims to lower the combustion temperature and lower NOx, which is a harmful gas, by cooling the exhaust gas of the engine and then returning it to the intake side to re-combust it. The EGR cooler is a device that cools the exhaust gas with engine cooling water or air, and it is desired that the heat exchange portion requires good thermal efficiency and good thermal conductivity.
従来、EGRクーラには、下記特許文献1や下記特許文献2等に開示されているように、一般的にはSUS304やSUS316といったオーステナイト系ステンレス鋼が使用されている。しかしながら、最近、NOxをより低減させるために、EGRクーラの出側温度を低下させたいとの要求があり、このようなオーステナイト系ステンレス鋼では入出側の温度差拡大による熱疲労特性劣化が懸念されつつある。そこで、オーステナイト系ステンレス鋼よりも、熱伝導率に優れ、また熱膨張係数が小さく、そして安価なフェライト系ステンレス鋼が注目されている。
Conventionally, austenitic stainless steels such as SUS304 and SUS316 are generally used for EGR coolers as disclosed in the following
また、EGRクーラは、これまでディーゼルエンジン用に設置されるのが一般的であったが、直噴化による燃費向上とNOx低減を両立させるために、ガソリンエンジンへの適用も検討されている。一般的に、ガソリンエンジンは、ディーゼルエンジンに比べ排ガス温度は高く、EGRクーラの入側温度は500〜600℃に達するといわれている。この温度域は、SUS304やSUS316といったオーステナイト系ステンレス鋼にとって鋭敏化による粒界腐食が懸念される領域であり、この点からもフェライト系ステンレス鋼が注目されている。 In addition, EGR coolers have been generally installed for diesel engines, but application to gasoline engines is also being studied in order to achieve both improved fuel consumption and NOx reduction through direct injection. In general, it is said that a gasoline engine has a higher exhaust gas temperature than a diesel engine, and an inlet temperature of an EGR cooler reaches 500 to 600 ° C. This temperature range is a region where intergranular corrosion due to sensitization is a concern for austenitic stainless steels such as SUS304 and SUS316, and from this point, ferritic stainless steel is attracting attention.
EGRクーラ、特にその熱交換部分の製造においては、ろう付け接合により組み立てられるのが一般的である。また、EGRクーラの排ガス側においては、冷却時に排ガス成分が凝縮し得る。このため、ろう付け性と排ガス凝縮水に対する耐食性が要求される。 In the production of an EGR cooler, in particular its heat exchange part, it is generally assembled by brazing joints. Further, on the exhaust gas side of the EGR cooler, exhaust gas components can be condensed during cooling. For this reason, brazing properties and corrosion resistance against exhaust gas condensed water are required.
下記特許文献3には、Ni系ろう材を有機系バインダーと共に懸濁して、ステンレス鋼板表面上に噴霧塗布後加熱して作製される、プレコートろう被覆金属板材が開示されている。
下記特許文献4には、表面粗さを調整したステンレス鋼板上に、プラズマ溶射にてNi系ろう材を被覆させた、自己ろう付け性に優れたニッケルろう被覆ステンレス鋼板の製造方法が開示されている。何れの場合も、実施例の対象にしているステンレス鋼は、オーステナイト系ステンレス鋼である。 The following Patent Document 4 discloses a method for producing a nickel brazing coated stainless steel sheet excellent in self-brazing property, in which a Ni-based brazing material is coated by plasma spraying on a stainless steel sheet having an adjusted surface roughness. Yes. In any case, the stainless steel that is the subject of the examples is austenitic stainless steel.
下記特許文献5には、C:0.5%以下、Si:2%以下、Mn:3%以下、S:0.2%以下、Ni:8〜18%、Cr:12〜25%、Mo:0〜4%、W:0〜2%で、かつ(Ni/Cu):2以上、Nb:0〜2.5%の範囲にあり、実質的にオーステナイト系ステンレス鋳鋼からなる排気ガス再循環部品が開示されている。 In the following Patent Document 5, C: 0.5% or less, Si: 2% or less, Mn: 3% or less, S: 0.2% or less, Ni: 8-18%, Cr: 12-25%, Mo : 0-4%, W: 0-2%, (Ni / Cu): 2 or more, Nb: 0-2.5%, and exhaust gas recirculation substantially made of austenitic stainless cast steel Parts are disclosed.
下記特許文献6には、パイプ内又は複数のパイプの間にフィンを挿入して高熱流体通路を形成し、この高熱流体に隣接して低熱流体を形成した熱交換器において、フィンをオーステナイト系ステンレス鋼、パイプをフェライト系ステンレス鋼で構成した熱交換器が開示されており、オーステナイト系ステンレス鋼としてSUS304、フェライト系ステンレス鋼としてSUS430が例示されている。オーステナイト系ステンレス鋼とフェライト系ステンレス鋼との熱膨張係数差を利用した構造となっており、ろう付け接合を省略することで、安価でかつ短時間に製造できることを特徴としている。そのため、ろう付け性に関する記述が認められないと共に、凝縮水耐食性に対しても言及していない。 In Patent Document 6 below, in a heat exchanger in which a high heat fluid passage is formed by inserting fins in a pipe or between a plurality of pipes and a low heat fluid is formed adjacent to the high heat fluid, the fins are made of austenitic stainless steel. A heat exchanger in which steel and pipes are made of ferritic stainless steel is disclosed, and SUS304 is exemplified as an austenitic stainless steel, and SUS430 is exemplified as a ferritic stainless steel. It has a structure utilizing the difference in thermal expansion coefficient between austenitic stainless steel and ferritic stainless steel, and is characterized in that it can be manufactured at low cost and in a short time by omitting brazing joint. For this reason, no description regarding brazing is found, and no mention is made of condensed water corrosion resistance.
下記特許文献7には、排気ガス用熱交換器に組み込まれる扁平チューブに内蔵されて、扁平チューブが形成する排気ガス流路の広幅方向を小区画に分割して、多数個の細長い排気ガス流路を形成するインナーフィンにおいて、インナーフィンの材質をフェライト系ステンレス鋼とした排気ガス用熱交換器のインナーフィンが開示されている。フェライト系ステンレス鋼の成形性を考慮した形状とすることで、耐熱性を改善したことを特徴としており、SUS405、SUS446が例示されている。耐熱性がよいことと折り曲げ可能であることのみを必要特性として挙げており、ろう付け性や凝縮水耐食性については言及していない。 In Patent Document 7 below, a large number of elongated exhaust gas flows are provided by dividing the wide direction of the exhaust gas flow path formed by the flat tube into small sections, which are built into the flat tube incorporated in the exhaust gas heat exchanger. An inner fin of a heat exchanger for exhaust gas in which the material of the inner fin is ferritic stainless steel is disclosed as the inner fin forming the path. SUS405 and SUS446 are exemplified as a feature that heat resistance is improved by adopting a shape that takes the formability of ferritic stainless steel into consideration. It only mentions that it has good heat resistance and that it can be bent, and does not mention brazing or condensate corrosion resistance.
下記特許文献8には、C:0.025%以下、Si:0.10%以下、Mn:1.0%以下、Cr:17.0〜25.0%、Ni:0.50%以下、Mo:0.50〜2.00%以下、Al:0.025%以下、N:0.025%以下、かつNb、Tiのいずれか1種または2種を10(C+N)〜1.0%の範囲で含有する熱交換器用フェライト系ステンレス鋼が開示されている。ろう付け性の観点からSi、Al量を制限すると共に、耐食性、耐酸化性の観点から高いCrかつMo添加量としており、このうち、Moは特に、排ガス凝縮水に対する耐食性に非常に有効な元素としている。腐食環境がさらに厳しくなった場合には、Mo添加量を増加させる必要があるが、Moは高価な元素であるためコストパフォーマンスに劣る問題がある。 In the following Patent Document 8, C: 0.025% or less, Si: 0.10% or less, Mn: 1.0% or less, Cr: 17.0 to 25.0%, Ni: 0.50% or less, Mo: 0.50 to 2.00% or less, Al: 0.025% or less, N: 0.025% or less, and any one or two of Nb and Ti are 10 (C + N) to 1.0%. The ferritic stainless steel for heat exchangers contained in the range is disclosed. In addition to limiting the amount of Si and Al from the viewpoint of brazing, the amount of Cr and Mo added is high from the viewpoint of corrosion resistance and oxidation resistance. Of these, Mo is an element that is extremely effective for corrosion resistance against exhaust gas condensed water. It is said. When the corrosive environment becomes more severe, it is necessary to increase the amount of Mo added. However, since Mo is an expensive element, there is a problem that the cost performance is inferior.
下記特許文献9には、C:0.08%以下、Si:0.01〜2.0%、Mn:0.05〜1.5%、P:0.05%以下、S:0.01%以下、Cr:13〜32%、Mo:3.0%以下、Al:0.005〜0.1%、Ni:1.0%以下、Cu:1.0%以下、Ti:0.05%以下の範囲で含有するろう接性に優れたアンモニア−水系吸収式サイクル熱交換器用フェライト系ステンレス鋼が開示されている。ろう接性(ろう付け性)の観点からTiを0.05%以下に制限し、高温高圧アンモニア水環境における耐食性の観点からCrを13%以上とすることを特徴としている。Mo、Ni、Cuも耐食性に有効な元素として記載されているが、その必要量については記載されていない。 In the following Patent Document 9, C: 0.08% or less, Si: 0.01 to 2.0%, Mn: 0.05 to 1.5%, P: 0.05% or less, S: 0.01 %: Cr: 13-32%, Mo: 3.0% or less, Al: 0.005-0.1%, Ni: 1.0% or less, Cu: 1.0% or less, Ti: 0.05 A ferritic stainless steel for ammonia-water absorption cycle heat exchangers having excellent brazing properties contained in a range of not more than% is disclosed. From the viewpoint of brazing (brazing), Ti is limited to 0.05% or less, and from the viewpoint of corrosion resistance in a high-temperature and high-pressure ammonia water environment, Cr is 13% or more. Mo, Ni, and Cu are also described as elements effective for corrosion resistance, but their required amounts are not described.
下記特許文献10には、Cr:18.0〜27.0%、Cu:0.8〜3.5%、Si:0.5〜2.0%、Mo:0.5〜1.5%、Nb:2.5%以下、Ni:0.6%以下、C:0.12%以下、Mn:1.0%以下、Al:0.10%以下、P:0.15%以下、S:0.15%以下、N:0.10%以下で、かつ(Cu+Si)が2.0%を超えることを特徴とする耐酸性に優れたフェライト系ステンレス鋳鋼が開示されている。被削性の観点からフェライト系とし、耐酸性の観点からCr、Cu、Siならびに(Cu+Si)量を規定していることを特徴としている。耐酸性の観点から多量のCu、Siを必要とするため、硬質となり、鋼板として使用する場合には成形性に問題がある。
In the following
本発明は、このような従来の事情に鑑みて提案されたものであり、優れたろう付け性と排ガス凝縮水に対する耐食性とを兼ね備えたEGRクーラ用フェライト系ステンレス鋼板を提供することを目的とする。 This invention is proposed in view of such a conventional situation, and it aims at providing the ferritic stainless steel plate for EGR coolers which has the outstanding brazing property and the corrosion resistance with respect to exhaust gas condensate.
上記課題を解決することを目的とした本発明の要旨は、以下のとおりである。
〔1〕 質量%で、
C:0.03%以下、
N:0.05%以下、
Si:0.1%以上、1%以下、
Mn:0.02%以上、2%以下、
Cu:0.2%以上、1.5%以下、
Cr:15%以上、25%以下、
Nb:8(C+N)%以上、1%以下、
Al:0.5%以下
を少なくとも含有し、残部がFe及び不可避不純物からなり、
更に、質量%で、
Tiについて、下記式(1)及び(2)を満足する範囲とし、
C、Cuについて、下記式(3)を満足する範囲で含有することを特徴とするEGRクーラ用フェライト系ステンレス鋼板。
Ti−3N≦0.03 ・・・(1)
10(Ti−3N)+Al≦0.5 ・・・(2)
Cr+2.3Cu≧18 ・・・(3)
〔2〕 更に、質量%で、
Mo:3%以下、
Ni:3%以下
のうち何れか1種又は2種以上を含有し、なお且つ下記式(4)を満足する範囲で含有することを特徴とする前記〔1〕に記載のEGRクーラ用フェライト系ステンレス鋼板。
Cr+1.9Mo+1.6Ni+2.3Cu≧18 ・・・(4)
〔3〕 更に、質量%で、
V:3%以下、
W:5%以下
のうち何れか一方又は両方を含有することを特徴とする前記〔1〕又は〔2〕に記載のEGRクーラ用フェライト系ステンレス鋼板。
〔4〕 更に、質量%で、
Ca:0.002%以下、
Mg:0.002%以下、
B:0.005%以下
のうち何れか1種又は2種以上を含有することを特徴とする前記〔1〕〜〔3〕の何れか一項に記載のEGRクーラ用フェライト系ステンレス鋼板。
〔5〕 C+N:0.015%以上であることを特徴とする前記〔1〕〜〔4〕の何れか一項に記載のEGRクーラ用フェライト系ステンレス鋼板。
The gist of the present invention aimed at solving the above problems is as follows.
[1] By mass%
C: 0.03% or less,
N: 0.05% or less,
Si: 0.1% or more, 1% or less,
Mn: 0.02% or more, 2% or less,
Cu: 0.2% or more, 1.5% or less,
Cr: 15% or more, 25% or less,
Nb: 8 (C + N)% or more, 1% or less,
Al: containing at least 0.5% or less, the balance consisting of Fe and inevitable impurities,
Furthermore, in mass%,
For Ti, the following formulas (1) and (2) are satisfied,
A ferritic stainless steel sheet for an EGR cooler characterized by containing C and Cu in a range satisfying the following formula (3).
Ti-3N ≦ 0.03 (1)
10 (Ti-3N) + Al ≦ 0.5 (2)
Cr + 2.3Cu ≧ 18 (3)
[2] Furthermore, in mass%,
Mo: 3% or less,
Ni: The ferrite system for EGR cooler according to [1] above, which contains any one or more of 3% or less and satisfies the following formula (4): Stainless steel sheet.
Cr + 1.9Mo + 1.6Ni + 2.3Cu ≧ 18 (4)
[3] Furthermore, in mass%,
V: 3% or less,
W: Ferritic stainless steel sheet for EGR cooler according to [1] or [2] above, containing either one or both of 5% or less.
[4] Furthermore, in mass%,
Ca: 0.002% or less,
Mg: 0.002% or less,
B: The ferritic stainless steel sheet for an EGR cooler according to any one of [1] to [3], wherein one or more of 0.005% or less are contained.
[5] The ferritic stainless steel sheet for an EGR cooler according to any one of [1] to [4], wherein C + N: 0.015% or more.
以上のように、本発明によれば、優れたろう付け性と排ガス凝縮水に対する耐食性を兼ね備えたフェライト系ステンレス鋼板を提供できるため、このフェライト系ステンレス鋼板をEGRクーラ、なかでもEGRクーラの熱交換部に好適に用いることが可能である。 As described above, according to the present invention, it is possible to provide a ferritic stainless steel plate having both excellent brazing property and corrosion resistance against exhaust gas condensed water. It is possible to use it suitably.
以下、本発明の実施の形態について、図面を参照して詳細に説明する。
EGRクーラには、NiやCuによるろう付け性が要求される。このため、本発明者等は、ろう付け性に対する合金元素の影響について鋭意検討を行った。その結果、下記式(1)及び(2)に示すように、フェライト系ステンレス鋼板において、加工性や粒界腐食性の向上を目的として添加されることが多いTi、そして脱酸を目的として添加されるAlに、良好なろう付け性を確保できる上限値があることを知見した。
Ti−3N≦0.03 ・・・(1)
10(Ti−3N)+Al≦0.5 ・・・(2)
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
The EGR cooler is required to be brazed with Ni or Cu. For this reason, the present inventors have conducted intensive studies on the influence of alloy elements on brazeability. As a result, as shown in the following formulas (1) and (2), in ferritic stainless steel sheets, Ti is often added for the purpose of improving workability and intergranular corrosion, and for the purpose of deoxidation. It has been found that Al has an upper limit value that can ensure good brazing properties.
Ti-3N ≦ 0.03 (1)
10 (Ti-3N) + Al ≦ 0.5 (2)
良好なろう付け性を得るには、溶融したろうがステンレス鋼板の表面上をぬれ広がる必要があるが、ぬれ性にはろう付け雰囲気でステンレス鋼板上に形成される表面皮膜が影響する。また、ろう付け雰囲気では、Fe、Crの酸化物は、還元される条件が維持できたとしても、Fe、Crよりも酸化し易いTi、Alは酸化物を形成して、ろうのぬれ広がりを阻害して、ろう付け性を劣化させる。こうした皮膜形成に寄与するのは、固溶しているTi、Alであり、ろう付け温度でも比較的安定な窒化物として存在している場合には皮膜形成には寄与せず、ろうのぬれ広がりを阻害しない。 In order to obtain good brazing properties, it is necessary that the molten brazing wets and spreads on the surface of the stainless steel plate, but the wettability is affected by the surface film formed on the stainless steel plate in the brazing atmosphere. In the brazing atmosphere, even if the conditions under which the Fe and Cr oxides can be reduced can be maintained, Ti and Al, which are easier to oxidize than Fe and Cr, form oxides and spread the wetting of the solder. Inhibits and degrades brazing. Contributing to this film formation is Ti and Al in solid solution, and if they exist as relatively stable nitrides even at the brazing temperature, they do not contribute to film formation and spread the wetting of the brazing. Does not disturb.
こうした点から、Ti、Al量とろうのぬれ広がり性との関係を、表1に記載の16〜21Crのフェライト系ステンレス鋼板を用いて、後述する実施例と同一の試験条件にて評価した。表1において、残部はFe及び不可避不純物である。その結果を図1に示す。 From these points, the relationship between the amounts of Ti and Al and the wettability of the wax was evaluated using the 16 to 21 Cr ferritic stainless steel sheets shown in Table 1 under the same test conditions as those in Examples described later. In Table 1, the balance is Fe and inevitable impurities. The result is shown in FIG.
図1に示す結果から、上記式(1)及び(2)を満足する範囲において、ろうのぬれ広がり性が良好であることが判明した。また、TiないしAl量が上記条件を満足しない鋼について、ろう付け熱処理後の表面皮膜を分析したところ、数十から数百nmの厚さで、TiないしAlの濃化した酸化皮膜が一様に形成された。したがって、こうした皮膜形成がろうのぬれ広がりを阻害していると考えられる。 From the results shown in FIG. 1, it was found that the wettability of the wax is good within the range satisfying the above formulas (1) and (2). Further, when the surface film after brazing heat treatment was analyzed for steel whose Ti or Al content does not satisfy the above conditions, the Ti or Al concentrated oxide film was uniform with a thickness of several tens to several hundreds of nanometers. Formed. Therefore, it is considered that such film formation inhibits the wetting spread of the wax.
本発明が対象とするEGRクーラでは、強度も必要であり、ろう付け後の強度低下が小さいことが望ましい。Niろう付けやCuろう付けのように、1000〜1150℃といった高温でろう付けされる場合には、結晶粒粗大化に伴う強度低下を抑制することが重要と考えられる。結晶粒の粗大化抑制には、析出物によるピン止めが有用である。本発明では、析出物としてNbの炭窒化物を活用し、C+Nを0.015%以上とすることにより、結晶粒の粗大化抑制に有用な、Nbの炭窒化物の析出量、及び安定性が確保されることを知見した(特願2007−339732号公報を参照。)。 In the EGR cooler targeted by the present invention, strength is also required, and it is desirable that the strength decrease after brazing is small. In the case of brazing at a high temperature of 1000 to 1150 ° C. like Ni brazing or Cu brazing, it is considered important to suppress a decrease in strength due to crystal grain coarsening. Pinning with precipitates is useful for suppressing coarsening of crystal grains. In the present invention, by utilizing Nb carbonitride as a precipitate and making C + N 0.015% or more, the precipitation amount of Nb carbonitride, which is useful for suppressing grain coarsening, and stability (See Japanese Patent Application No. 2007-339732).
EGRクーラにおいては、排ガス中に含まれるSOx、NOx、HCに起因して、硫酸、硝酸、有機酸からなる酸性の凝縮水が生じる。EGRクーラにおいては、マフラーのような下流部材とは異なり、エンジン直下で触媒前にあり、浄化前の排ガスを対象とするため、生成する凝縮水の酸濃度も高くなる。 In the EGR cooler, acidic condensed water composed of sulfuric acid, nitric acid, and organic acid is generated due to SOx, NOx, and HC contained in the exhaust gas. In the EGR cooler, unlike a downstream member such as a muffler, the exhaust gas is directly under the engine and in front of the catalyst, and the exhaust gas before purification is targeted. Therefore, the acid concentration of the generated condensed water is also high.
また、最近では、グローバル化に伴って、S濃度の高い低品位の燃料も自動車用燃料として使用される場合がある。この場合、凝縮水中の硫酸濃度も高くなる。こうした酸濃度の上昇はpHの低下につながり、EGRクーラの凝縮水のpHは1.5程度に達すると言われている。一般的に、EGRクーラの熱交換部の板厚は0.1〜0.5mmと薄いため、こうした硫酸、硝酸、有機酸からなるpH1.5程度の凝縮液中において優れた耐食性が必要となる。 Recently, with globalization, low-grade fuel with high S concentration is sometimes used as fuel for automobiles. In this case, the sulfuric acid concentration in the condensed water also increases. Such an increase in acid concentration leads to a decrease in pH, and it is said that the pH of condensed water in the EGR cooler reaches about 1.5. In general, since the plate thickness of the heat exchanging part of the EGR cooler is as thin as 0.1 to 0.5 mm, excellent corrosion resistance is required in a condensate having a pH of about 1.5 composed of sulfuric acid, nitric acid, and organic acid. .
そこで、本発明者らは、16〜19Cr、0〜0.5Cuの範囲のフェライト系ステンレス鋼を用いて、凝縮水耐食性に及ぼすCr、Cuの影響を、実施例と同一条件の腐食試験により検討した。その結果を図2に示す。なお、NO3−イオンは、腐食抑制イオン種として働くため、無添加として安全側の評価とした。 Therefore, the present inventors examined the influence of Cr and Cu on the condensed water corrosion resistance by using a ferritic stainless steel in the range of 16 to 19 Cr and 0 to 0.5 Cu by a corrosion test under the same conditions as in the examples. did. The result is shown in FIG. Since NO 3− ions act as corrosion-inhibiting ionic species, they were evaluated as safety-free as no addition.
図2には、pH1.5の溶液中における試験結果を示すが、Cr+2.3Cu≧18を満足することで優れた耐食性を示すことがわかる。 FIG. 2 shows the test results in a solution having a pH of 1.5. It can be seen that excellent corrosion resistance is exhibited by satisfying Cr + 2.3Cu ≧ 18.
次に、Ni、Moを加えて、13〜21Cr、0〜2Mo、0〜3Ni、0〜1Cuの範囲のフェライト系ステンレス鋼を用いて、凝縮水耐食性に及ぼすCr、Ni、Mo、Cuの影響を、実施例と同一条件での腐食試験により検討した。その結果を図3に示す。なお、ここでも、NO3−イオンは無添加とした。 Next, the effect of Cr, Ni, Mo and Cu on the corrosion resistance of condensed water using ferritic stainless steel in the range of 13 to 21 Cr, 0 to 2 Mo, 0 to 3 Ni and 0 to 1 Cu by adding Ni and Mo Were examined by a corrosion test under the same conditions as in the examples. The result is shown in FIG. Here, NO 3− ions were not added.
図3にpH1.5の溶液中における試験結果を示すが、Cr、Ni、Mo、Cuの何れの元素も耐食性向上に有効であるが、なかでもCuが最も耐食性向上に有効であり、Cr+1.9Mo+1.6Ni+2.3Cu≧18を満足することで優れた耐食性を示すことがわかる。 FIG. 3 shows the test results in a solution having a pH of 1.5. Any element of Cr, Ni, Mo, and Cu is effective in improving the corrosion resistance, but Cu is the most effective in improving the corrosion resistance, and Cr + 1. It can be seen that excellent corrosion resistance is exhibited by satisfying 9Mo + 1.6Ni + 2.3Cu ≧ 18.
ここで、各合金元素の係数は、臨界pHに対する合金元素の寄与度を重回帰分析によって求めたものである。なお、臨界pHは、腐食速度が0.1g・m−2・h−1以下となる上限のpHである。そして、図4には、pH1の溶液における腐食速度に及ぼすCuの影響を、図5には、pH1の溶液における腐食速度に及ぼすMoの影響を、図6には、pH0.5の溶液中における腐食速度に及ぼすNiの影響をそれぞれ示す。
Here, the coefficient of each alloy element is obtained by multiple regression analysis of the degree of contribution of the alloy element to the critical pH. The critical pH is the upper limit pH at which the corrosion rate is 0.1 g · m −2 · h −1 or less. 4 shows the effect of Cu on the corrosion rate in the
図4、図5及び図6の結果から、Cuは、Mo、Niに比べ、より少ない添加量で腐食速度が顕著に低下しており、耐食性向上に非常に有効な元素であることがわかる。また、Cuは、耐酸性を向上させる元素として知られるが、電気化学的測定によりCuの影響を検討したところ、Cu添加により腐食電位が貴化する現象が認められた。このことは、Cuには、活性溶解抑制作用以外に、不動態化を促進する作用があることを示しており、この2つの効果により耐食性向上への寄与が大きくなったと考えられる。 From the results of FIGS. 4, 5 and 6, it can be seen that Cu is a very effective element for improving corrosion resistance because the corrosion rate is remarkably reduced with a smaller addition amount than Mo and Ni. In addition, Cu is known as an element that improves acid resistance. When the influence of Cu was examined by electrochemical measurement, a phenomenon that the corrosion potential became noble by addition of Cu was observed. This indicates that Cu has an action of promoting passivation in addition to the action of suppressing the active dissolution, and it is considered that the contribution to the improvement of corrosion resistance is increased by these two effects.
本発明は、上記知見に基づいてなされたものであり、優れたろう付け性と排ガス凝縮水に対する耐食性とを兼ね備えたEGRクーラ用フェライト系ステンレス鋼板を提供するのであり、その要旨とするところは、特許請求の範囲に記載した通りの内容である。 The present invention has been made on the basis of the above findings, and provides a ferritic stainless steel sheet for EGR cooler that has both excellent brazing properties and corrosion resistance against exhaust gas condensed water. The contents are as described in the claims.
以下、EGRクーラ用フェライト系ステンレス鋼板の各組成を限定した理由について説明する。なお、以下の説明では、特に断らない限り、各成分の%は、質量%を表すものとする。 Hereinafter, the reason which limited each composition of the ferritic stainless steel plate for EGR coolers is demonstrated. In the following description, unless otherwise specified,% of each component represents mass%.
(C:0.03%以下)
Cは、耐粒界腐食性、加工性を低下させるため、その含有量を低く抑える必要がある。このため、Cを0.03%以下とした。しかしながら、過度に低めることはろう付け時の結晶粒粗大化を助長し、かつ精練コストを上昇させるため、Cを0.002%以上とすることが好ましい。より好ましくは0.005〜0.025%である。
(C: 0.03% or less)
Since C reduces intergranular corrosion resistance and workability, it is necessary to keep the content low. For this reason, C was made 0.03% or less. However, excessively lowering promotes crystal grain coarsening during brazing and increases the scouring cost, so C is preferably made 0.002% or more. More preferably, it is 0.005 to 0.025%.
(N:0.05%以下)
Nは、耐孔食性に有用な元素であるが、耐粒界腐食性、加工性を低下させるため、その含有量を低く抑える必要がある。このため、Nを0.05%以下とした。しかしながら、過度に低めることはろう付け時の結晶粒粗大化を助長し、精練コストを上昇させるため、Nを0.002%以上とすることが好ましい。より好ましくは0.005〜0.03%である。
(N: 0.05% or less)
N is an element useful for pitting corrosion resistance, but its content needs to be kept low in order to reduce intergranular corrosion resistance and workability. For this reason, N was made into 0.05% or less. However, excessively lowering promotes coarsening of the crystal grains during brazing and increases the scouring cost, so N is preferably made 0.002% or more. More preferably, it is 0.005 to 0.03%.
(Si:0.1%以上、1%以下)
Siは、脱酸元素として有用なTi、Alを制限しているため、脱酸元素として必要である。また、ろう付け熱処理により表面のCr濃度が低下するため、ろう付け後の耐酸化性向上にSiは有効な元素となる。このため、Siを少なくとも0.1%以上含有させる必要がある。しかしながら、過剰な添加は加工性を低下させるため、1%以下とすることが好ましい。より好ましくは0.1〜0.5%である。
(Si: 0.1% or more, 1% or less)
Si is necessary as a deoxidizing element because it limits Ti and Al useful as a deoxidizing element. Further, since the Cr concentration on the surface is lowered by brazing heat treatment, Si becomes an effective element for improving the oxidation resistance after brazing. For this reason, it is necessary to contain Si at least 0.1% or more. However, since excessive addition reduces workability, it is preferable to make it 1% or less. More preferably, it is 0.1 to 0.5%.
(Mn:0.02%以上、2%以下)
Mnは、脱酸元素として有用な元素であり、少なくとも0.02%以上必要である。しかしながら、過剰に含有させると耐食性を劣化させるので、2%以下とすることが好ましい。より好ましくは、0.1〜1%である。
(Mn: 0.02% to 2%)
Mn is an element useful as a deoxidizing element and needs to be at least 0.02% or more. However, since it will degrade corrosion resistance if it is contained excessively, it is preferably made 2% or less. More preferably, it is 0.1 to 1%.
(Cu:0.2%以上、1.5%以下)
Cuは、排ガス凝縮水耐食性を確保する上で、Crと同様重要な元素であり、少なくとも0.2%以上必要である。一方、Cuは、その含有量を増加させるほど耐食性を向上させることができるが、過剰な添加は加工性を劣化させるため、1.5%以下とすることが好ましい。より好ましくは、0.2〜1.0%である。
(Cu: 0.2% or more, 1.5% or less)
Cu is an element as important as Cr in securing the corrosion resistance of the exhaust gas condensate and needs to be at least 0.2% or more. On the other hand, Cu can improve the corrosion resistance as the content thereof is increased. However, since excessive addition deteriorates workability, it is preferably made 1.5% or less. More preferably, it is 0.2 to 1.0%.
(Cr:15%以上、25%以下)
Crは、排ガス凝縮水耐食性、耐酸化性を確保する上で基本となる元素であり、少なくとも15%以上必要である。一方、Crは、その含有量を増加させるほど耐食性、耐酸化性を向上させることができるが、過剰な添加は加工性、製造性を低下させるため、25%以下とすることが好ましい。より好ましくは17〜23%である。
(Cr: 15% or more, 25% or less)
Cr is an element that is fundamental for ensuring corrosion resistance and oxidation resistance of the exhaust gas condensate, and at least 15% or more is necessary. On the other hand, Cr can improve the corrosion resistance and the oxidation resistance as the content thereof is increased. However, since excessive addition reduces workability and manufacturability, the Cr content is preferably 25% or less. More preferably, it is 17 to 23%.
(Nb:8(C+N)%以上、1%以下)
Nbは、C、Nを固定し、溶接部の耐粒界腐食性を向上させる上で有用な元素であるため、(C+N)量の8倍以上含有させる必要がある。また、Nbは、高温強度向上にも有用であり、EGRクーラのように高温で使用される部材に必要である。また、Nbの炭窒化物は、ろう付け時の結晶粒粗大化の抑制に有用である。しかしながら、過剰の添加は、加工性、製造性を低下させるため、1.0%以下とすることが好ましい。より好ましくは10(C+N)〜0.6%である。
(Nb: 8 (C + N)% or more, 1% or less)
Since Nb is an element useful for fixing C and N and improving the intergranular corrosion resistance of the welded portion, it is necessary to contain Nb at least eight times the (C + N) amount. Nb is also useful for improving the high-temperature strength, and is necessary for a member used at a high temperature such as an EGR cooler. Further, Nb carbonitride is useful for suppressing grain coarsening during brazing. However, excessive addition reduces workability and manufacturability, so 1.0% or less is preferable. More preferably, it is 10 (C + N) to 0.6%.
(C+N:0.015%以上)
さらに、ろう付け時に結晶粒粗大化に伴う強度低下を抑制する観点から、C+Nを0.015%以上とすることが好ましい。C+Nは、望ましくは0.02%以上である。Cとの過剰の添加は、耐粒界腐食性及び加工性を低下させるため、C+Nを0.04%以下とすることが望ましい。
(C + N: 0.015% or more)
Furthermore, it is preferable that C + N is set to 0.015% or more from the viewpoint of suppressing the strength decrease accompanying the coarsening of crystal grains during brazing. C + N is desirably 0.02% or more. Since excessive addition with C reduces intergranular corrosion resistance and workability, C + N is preferably 0.04% or less.
(Al:0.5%以下)
Alは、脱酸効果等を有するので精練上有用な元素であり、成形性を向上させる効果があるが、本発明で最も重要な特性であるろう付け性を阻害するため0.5%以下とした。好ましくは0.001〜0.1%であり、より好ましくは0.001〜0.05%である。
(Al: 0.5% or less)
Al is an element useful for scouring because it has a deoxidizing effect and the like, and has an effect of improving moldability, but it is 0.5% or less in order to inhibit brazing, which is the most important characteristic in the present invention. did. Preferably it is 0.001-0.1%, More preferably, it is 0.001-0.05%.
(Ti:式(1)及び(2)を満足する範囲)
本発明においては、最も重要な特性であるろう付け性において、良好なろうのぬれ広がり性を得るために上記式(1)及び式(2)を同時に満足させる必要がある。これを満足するため、上記知見に基づき、Tiについては上記式(1)及び(2)を満足する範囲とした。Ti−3Nの値は、望ましくは0.02%以下である。しかしながら、Tiの含有量が低すぎると、加工性を劣化させるため、Ti−3Nの値が−0.08%以上になるようにTiの含有量を調整することが望ましい。加工性などが特に要求されない場合には、Tiを添加しなくてもよい。
(Ti: range satisfying the formulas (1) and (2))
In the present invention, it is necessary to satisfy the above formulas (1) and (2) at the same time in order to obtain good brazing spreadability in the brazability which is the most important characteristic. In order to satisfy this, on the basis of the above knowledge, Ti is set in a range that satisfies the above formulas (1) and (2). The value of Ti-3N is desirably 0.02% or less. However, if the Ti content is too low, the workability is deteriorated. Therefore, it is desirable to adjust the Ti content so that the value of Ti-3N is -0.08% or more. When workability is not particularly required, Ti need not be added.
(Cr、Cu:式(3)を満足する範囲)
本発明においては、硫酸、硝酸、有機酸からなるpH1.5程度の排ガス凝縮液中において良好な耐食性を発現させるために、Cr、Cuについては下記式(3)を満足させる必要がある。
Cr+2.3Cu≧18 ・・・ (3)
(Cr, Cu: range satisfying the formula (3))
In the present invention, it is necessary to satisfy the following formula (3) for Cr and Cu in order to develop good corrosion resistance in an exhaust gas condensate having a pH of about 1.5 consisting of sulfuric acid, nitric acid, and organic acid.
Cr + 2.3Cu ≧ 18 (3)
また、本発明においては、更に、Mo又はNiのうち何れか一方又は両方を含有させてもよい。
(Mo:3%以下)
Moは、耐食性を向上させる上で、必要に応じて3%以下含有させることができる。安定した効果が得られるのは0.3%以上である。しかしながら、過剰の添加は、加工性を劣化させると共に、高価であるためコストアップにつながる。したがって、0.3〜3%含有させることが好ましい。
In the present invention, either one or both of Mo and Ni may be further contained.
(Mo: 3% or less)
Mo can be contained in an amount of 3% or less as required in order to improve the corrosion resistance. It is 0.3% or more that a stable effect can be obtained. However, excessive addition deteriorates processability and increases the cost because it is expensive. Therefore, it is preferable to contain 0.3 to 3%.
(Ni:3%以下)
Niは、耐食性を向上させる上で、必要に応じて3%以下含有させることができる。安定した効果が得られるのは0.2%以上である。しかしながら、過剰の添加は、加工性を劣化させると共に、高価であるためコストアップにつながる。したがって、0.2〜3%含有させることが好ましい。
(Ni: 3% or less)
Ni can be contained in an amount of 3% or less as required in order to improve the corrosion resistance. It is 0.2% or more that a stable effect is obtained. However, excessive addition deteriorates processability and increases the cost because it is expensive. Therefore, it is preferable to contain 0.2 to 3%.
さらに、Mo又はNiのうち何れか一方又は両方を添加する場合には、硫酸、硝酸、有機酸からなるpH1.5程度の排ガス凝縮液中において良好な耐食性を発現させるために、下記式(4)を満足させる必要がある。
Cr+1.9Mo+1.6Ni+2.3Cu≧18 ・・・(4)
Furthermore, in the case of adding either one or both of Mo and Ni, in order to develop good corrosion resistance in an exhaust gas condensate having a pH of about 1.5 consisting of sulfuric acid, nitric acid, and organic acid, the following formula (4 ) Must be satisfied.
Cr + 1.9Mo + 1.6Ni + 2.3Cu ≧ 18 (4)
また、本発明においては、更に、V、Wのうち何れか一方又は両方を含有させてもよい。
(V:3%以下)
Vは、耐食性を向上させる上で、必要に応じて3%以下含有させることができる。安定した効果が得られるのは0.2%以上である。しかしながら、過剰の添加は、加工性を劣化させると共に、高価であるためコストアップにつながる。したがって、0.2〜3%含有させることが好ましい。
In the present invention, either one or both of V and W may be further contained.
(V: 3% or less)
V can be contained in an amount of 3% or less as required for improving the corrosion resistance. It is 0.2% or more that a stable effect is obtained. However, excessive addition deteriorates processability and increases the cost because it is expensive. Therefore, it is preferable to contain 0.2 to 3%.
(W:5%以下)
Wは、耐食性を向上させる上で、必要に応じて3%以下含有させることができる。安定した効果が得られるのは0.5%以上である。しかしながら、過剰の添加は、加工性を劣化させると共に、高価であるためコストアップにつながる。したがって、0.5〜5%含有させることが好ましい。
(W: 5% or less)
W can be contained in an amount of 3% or less as required for improving the corrosion resistance. It is 0.5% or more that a stable effect is obtained. However, excessive addition deteriorates processability and increases the cost because it is expensive. Therefore, it is preferable to contain 0.5 to 5%.
また、本発明においては、更に、Ca、Mg、Bのうち何れか一方又は両方を含有させてもよい。
(Ca:0.002%以下)
Caは、脱酸効果等を有するので精練上有用な元素であり、必要に応じて0.002%以下含有させることができる。また、Caを含有させる場合には、安定した効果が得られる0.0002%以上とすることが好ましい。
In the present invention, any one or both of Ca, Mg, and B may be further contained.
(Ca: 0.002% or less)
Ca is an element useful for scouring because it has a deoxidizing effect and the like, and can be contained in an amount of 0.002% or less as required. Moreover, when Ca is contained, the content is preferably 0.0002% or more so that a stable effect can be obtained.
(Mg:0.002%以下)
Mgは、脱酸効果等を有するので精練上有用な元素であり、また、組織を微細化し、加工性、靭性の向上にも有用であることから、必要に応じて0.002%以下含有させることができる。また、Mgを含有させる場合には、安定した効果が得られる0.0002%以上とすることが好ましい。
(Mg: 0.002% or less)
Mg is a useful element for scouring because it has a deoxidizing effect and the like, and it is also useful for improving the workability and toughness by refining the structure. be able to. Further, when Mg is contained, the content is preferably 0.0002% or more so that a stable effect can be obtained.
(B:0.005%以下)
Bは、2次加工性を向上させるのに有用な元素であり、必要に応じて0.005%以下含有させることができる。また、Bを含有させる場合には、安定した効果が得られる0.0002%以上とすることが好ましい。
(B: 0.005% or less)
B is an element useful for improving secondary workability, and can be contained in an amount of 0.005% or less as required. When B is contained, the content is preferably 0.0002% or more so that a stable effect can be obtained.
なお、不可避不純物のうち、Pについては、溶接性の観点から0.04%以下とすることが好ましい。また、Sについては、耐食性の観点から0.01%以下とすることが好ましい。 Of the inevitable impurities, P is preferably 0.04% or less from the viewpoint of weldability. Moreover, about S, it is preferable to set it as 0.01% or less from a corrosion-resistant viewpoint.
本発明のステンレス鋼の製造方法は、フェライト系ステンレス鋼を製造する一般的な工程でよい。一般に、転炉又は電気炉で溶鋼とし、AOD炉やVOD炉などで精練して、連続鋳造法又は造塊法で鋼片とした後、熱間圧延−熱延板の焼鈍−酸洗−冷間圧延−仕上げ焼鈍−酸洗の工程を経て製造される。必要に応じて、熱延板の焼鈍を省略してもよいし、冷間圧延−仕上げ焼鈍−酸洗を繰り返し行ってもよい。
(実施例)
The method for producing stainless steel of the present invention may be a general process for producing ferritic stainless steel. Generally, it is made into molten steel in a converter or electric furnace, scoured in an AOD furnace or VOD furnace, and made into a steel piece by a continuous casting method or an ingot-making method, and then hot-rolled-annealed hot-rolled sheet-pickled-cooled It is manufactured through a process of hot rolling, finish annealing and pickling. If necessary, annealing of the hot-rolled sheet may be omitted, or cold rolling-finish annealing-pickling may be repeated.
(Example)
以下、実施例により本発明の効果をより明らかなものとする。なお、本発明は、以下の実施例に限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することができる。 Hereinafter, the effects of the present invention will be made clearer by examples. In addition, this invention is not limited to a following example, In the range which does not change the summary, it can change suitably and can implement.
本実施例では、下記表2に示す化学組成を有する鋼を溶製し、熱延、冷延、焼鈍工程を経て、板厚0.4mmの冷延鋼板を製造し、ろう付け性と排ガス模擬凝縮水中での耐食性を評価した。 In this example, a steel having the chemical composition shown in Table 2 below is melted and subjected to hot rolling, cold rolling, and annealing processes to produce a cold rolled steel sheet having a thickness of 0.4 mm. The corrosion resistance in the condensed water was evaluated.
(ろう付け性)
冷延鋼板より、幅50mm、長さ70mmの試験片を切り出した後、エメリー紙にて片面を#400まで湿式研磨を施した。その後、研磨面上に0.1gのNiろうを置き、1100℃、5×10−3torrの真空雰囲気で10分加熱した。そして、常温まで冷却後、加熱後のろう面積を測定した。その測定結果を表3に示す。
(Brassability)
A test piece having a width of 50 mm and a length of 70 mm was cut out from the cold-rolled steel sheet, and then one side was wet-polished to # 400 with emery paper. Thereafter, 0.1 g of Ni solder was placed on the polished surface and heated in a vacuum atmosphere at 1100 ° C. and 5 × 10 −3 torr for 10 minutes. And after cooling to normal temperature, the brazing area after a heating was measured. The measurement results are shown in Table 3.
なお、表3中に示すろう付け性については、加熱前のろう面積に対して加熱後のろう面積が2倍以上あるときは、ぬれ広がりが「○」、2倍未満のときは、ぬれ広がりが「×」として評価を行った。また、その後、断面ミクロ組織を観察した。そして、圧延方向に平行に長さ20mmの範囲にわたって、板厚方向に存在する結晶粒の数を測定し、板厚方向に2個以上の結晶粒が存在するものを、ミクロ組織が「○」、1個しか存在しないものを、ミクロ組織が「×」として評価を行った。 As for the brazing property shown in Table 3, when the brazing area after heating is more than twice the brazing area before heating, the wetting spread is “◯”, and when it is less than 2 times, the wetting spread is shown. Was evaluated as “×”. Thereafter, the cross-sectional microstructure was observed. Then, the number of crystal grains existing in the plate thickness direction is measured over a range of 20 mm in length in parallel with the rolling direction, and the microstructure is “◯” when two or more crystal grains exist in the plate thickness direction. In the case of only one, the microstructure was evaluated as “x”.
(腐食試験)
冷延鋼板より25W×40Lの試験片を切り出し、エメリー紙にて全面を#320まで湿式研磨した。試薬に塩化アンモニウム、硫酸、蟻酸、酢酸を用いて、50ppmCl−+5000ppmSO4 2−+5000ppmHCOO−+3000ppmCH3COO−の溶液を調製した。その後、硫酸もしくはアンモニア水を用いて、pH1.5とpH1.0に調整した。60℃に加熱したこの溶液に3h、試験片を浸漬し、浸漬前後の質量変化から腐食速度を求めた。その測定結果を表3に示す。
なお、表3中に示す腐食試験については、その腐食速度が0.1g・m−2・h−1以下のものを「○」、0.1g・m−2・h−1を超えるものを「×」として評価を行った。
(Corrosion test)
A 25 W × 40 L test piece was cut out from the cold rolled steel sheet, and the entire surface was wet-polished to # 320 with emery paper. Ammonium chloride reagent, with sulfuric acid, formic acid, acetic acid, 50ppmCl - + 5000ppmSO 4 2- + 5000ppmHCOO -
For the corrosion tests shown in Table 3, those having a corrosion rate of 0.1 g · m −2 · h −1 or less are “◯” and those having a corrosion rate exceeding 0.1 g · m −2 · h −1. Evaluation was performed as “×”.
表3に示す試験結果から、本発明の範囲内にある実験例No.1〜13の鋼は、ろうのぬれ広がり性が良好で、ろう付け後の結晶粒粗大化が抑制されており、pH1.5の排ガス模擬凝縮水中での耐食性が良好である。このうち、実験例No.2、3、4、6、7、9、10、11の鋼は、pH1.0の排ガス模擬凝縮水中において良好な耐食性を示しており、腐食環境がさらに厳しくなった場合に対応できるEGRクーラ用材料として好適である。 From the test results shown in Table 3, Experimental Example No. within the scope of the present invention. Steel Nos. 1 to 13 have good wetting and spreading properties of the brazing, are suppressed in crystal grain coarsening after brazing, and have good corrosion resistance in exhaust gas simulated condensed water having a pH of 1.5. Among these, Experimental Example No. Steel of 2, 3, 4, 6, 7, 9, 10, 11 shows good corrosion resistance in exhaust gas simulated condensed water with a pH of 1.0, and can be used for EGR coolers that can cope with a more severe corrosive environment Suitable as a material.
一方、Alが本発明の範囲から外れる実験例No.14、上記式(2)を満足しない実験例No.15は、ろうのぬれ広がり性に劣ることがわかる。また、上記式(1)〜(3)の全てが本発の明範囲から外れる実験例No.16は、ろうのぬれ広がり性、排ガス模擬凝縮水中での耐食性共に劣ることがわかる。また、Cr量と上記式(3)が本発明の範囲から外れるとともに、(C+N)量が0.015%未満となる実験例No.17は、排ガス模擬凝縮水中での耐食性に劣ると共に、結晶粒の粗大化が顕著であることがわかる。 On the other hand, Experimental Example No. 1 in which Al deviates from the scope of the present invention. 14, Experimental Example No. that does not satisfy the above formula (2) 15 shows that it is inferior to the wettability of wax. In addition, all of the above formulas (1) to (3) deviate from the light range of the present invention. No. 16 is inferior in both the wettability of the wax and the corrosion resistance in the exhaust gas simulated condensed water. Moreover, while the amount of Cr and said Formula (3) remove | deviate from the range of this invention, (C + N) amount is less than 0.015% of experiment example No. It can be seen that No. 17 is inferior in corrosion resistance in exhaust gas simulated condensed water, and the crystal grains are markedly coarsened.
本発明の優れたろう付け性と排ガス凝縮水に対する耐食性とを兼ね備えたフェライト系ステンレス鋼板は、EGRクーラ部材、なかでもEGRクーラの熱交換部材に好適である。その他、排ガス凝縮水に曝され、ろう付け接合される排ガス経路部材にも好適である。 The ferritic stainless steel sheet having both excellent brazing property and corrosion resistance against exhaust gas condensate of the present invention is suitable for an EGR cooler member, particularly an EGR cooler heat exchange member. In addition, it is also suitable for an exhaust gas path member that is exposed to exhaust gas condensed water and brazed.
Claims (5)
C:0.03%以下、
N:0.05%以下、
Si:0.1%以上、1%以下、
Mn:0.02%以上、2%以下、
Cu:0.2%以上、1.5%以下、
Cr:15%以上、25%以下、
Nb:8(C+N)%以上、1%以下、
Al:0.5%以下
を少なくとも含有し、残部がFe及び不可避不純物からなり、
更に、質量%で、
Tiについて、下記式(1)及び(2)を満足する範囲とし、
Cr、Cuについて、下記式(3)を満足する範囲で含有することを特徴とするEGRクーラ用フェライト系ステンレス鋼板。
Ti−3N≦0.03 ・・・(1)
10(Ti−3N)+Al≦0.5 ・・・(2)
Cr+2.3Cu≧18 ・・・(3) % By mass
C: 0.03% or less,
N: 0.05% or less,
Si: 0.1% or more, 1% or less,
Mn: 0.02% or more, 2% or less,
Cu: 0.2% or more, 1.5% or less,
Cr: 15% or more, 25% or less,
Nb: 8 (C + N)% or more, 1% or less,
Al: containing at least 0.5% or less, the balance consisting of Fe and inevitable impurities,
Furthermore, in mass%,
For Ti, the following formulas (1) and (2) are satisfied,
A ferritic stainless steel sheet for an EGR cooler characterized by containing Cr and Cu in a range satisfying the following formula (3).
Ti-3N ≦ 0.03 (1)
10 (Ti-3N) + Al ≦ 0.5 (2)
Cr + 2.3Cu ≧ 18 (3)
Mo:3%以下、
Ni:3%以下
のうち何れか一方又は両方を含有し、なお且つ下記式(4)を満足する範囲で含有することを特徴とする請求項1に記載のEGRクーラ用フェライト系ステンレス鋼板。
Cr+1.9Mo+1.6Ni+2.3Cu≧18 ・・・(4) Furthermore, in mass%,
Mo: 3% or less,
The ferritic stainless steel sheet for an EGR cooler according to claim 1, wherein Ni: One or both of Ni and 3% or less is contained, and is contained in a range satisfying the following formula (4).
Cr + 1.9Mo + 1.6Ni + 2.3Cu ≧ 18 (4)
V:3%以下、
W:5%以下
のうち何れか一方又は両方を含有することを特徴とする請求項1又は2に記載のEGRクーラ用フェライト系ステンレス鋼板。 Furthermore, in mass%,
V: 3% or less,
The ferritic stainless steel sheet for an EGR cooler according to claim 1 or 2, wherein either or both of W: 5% or less are contained.
Ca:0.002%以下、
Mg:0.002%以下、
B:0.005%以下
のうち何れか1種又は2種以上を含有することを特徴とする請求項1〜3の何れか一項に記載のEGRクーラ用フェライト系ステンレス鋼板。 Furthermore, in mass%,
Ca: 0.002% or less,
Mg: 0.002% or less,
B: Ferritic stainless steel sheet for EGR cooler according to any one of claims 1 to 3, which contains any one or more of 0.005% or less.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009241500A JP5462583B2 (en) | 2008-10-24 | 2009-10-20 | Ferritic stainless steel sheet for EGR cooler |
CN2009801333269A CN102131946A (en) | 2008-10-24 | 2009-10-23 | Ferritic stainless steel sheet for EGR cooler |
PCT/JP2009/005607 WO2010047131A1 (en) | 2008-10-24 | 2009-10-23 | Ferritic stainless steel sheet for egr coolers |
US12/998,242 US20110176953A1 (en) | 2008-10-24 | 2009-10-23 | Ferritic stainless steel sheet for egr coolers |
EP09821831.6A EP2351868B1 (en) | 2008-10-24 | 2009-10-23 | Ferritic stainless steel sheet for egr coolers |
KR1020117004305A KR101247906B1 (en) | 2008-10-24 | 2009-10-23 | Ferritic stainless steel sheet for egr coolers |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008274553 | 2008-10-24 | ||
JP2008274553 | 2008-10-24 | ||
JP2009241500A JP5462583B2 (en) | 2008-10-24 | 2009-10-20 | Ferritic stainless steel sheet for EGR cooler |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010121208A true JP2010121208A (en) | 2010-06-03 |
JP5462583B2 JP5462583B2 (en) | 2014-04-02 |
Family
ID=42119182
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009241500A Active JP5462583B2 (en) | 2008-10-24 | 2009-10-20 | Ferritic stainless steel sheet for EGR cooler |
Country Status (6)
Country | Link |
---|---|
US (1) | US20110176953A1 (en) |
EP (1) | EP2351868B1 (en) |
JP (1) | JP5462583B2 (en) |
KR (1) | KR101247906B1 (en) |
CN (1) | CN102131946A (en) |
WO (1) | WO2010047131A1 (en) |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012107313A (en) * | 2010-10-26 | 2012-06-07 | Jfe Steel Corp | Ferritic stainless steel excellent in thermal fatigue characteristics and oxidation resistance |
WO2013122191A1 (en) * | 2012-02-15 | 2013-08-22 | 新日鐵住金ステンレス株式会社 | Ferrite-based stainless steel plate having excellent resistance against scale peeling, and method for manufacturing same |
JP2015194324A (en) * | 2014-03-27 | 2015-11-05 | 株式会社ティラド | Header plate-less heat exchanger |
JP2016023341A (en) * | 2014-07-22 | 2016-02-08 | 新日鐵住金ステンレス株式会社 | Ferritic stainless steel and production method therefor, and heat exchanger using ferritic stainless steel as member |
WO2016068291A1 (en) * | 2014-10-31 | 2016-05-06 | 新日鐵住金ステンレス株式会社 | Ferrite-based stainless steel with high resistance to corrosiveness caused by exhaust gas and condensation and high brazing properties and method for manufacturing same |
JP2016089272A (en) * | 2014-10-31 | 2016-05-23 | 新日鐵住金ステンレス株式会社 | Ferritic stainless steel excellent in exhaust gas condensed water corrosion resistance and brazability and manufacturing method therefor |
KR20160122824A (en) | 2014-03-20 | 2016-10-24 | 제이에프이 스틸 가부시키가이샤 | Ferritic stainless steel and production method therefor |
KR20170031768A (en) | 2014-07-31 | 2017-03-21 | 제이에프이 스틸 가부시키가이샤 | Ferritic stainless steel and method for producing same |
US9611525B2 (en) | 2011-03-29 | 2017-04-04 | Nippon Steel & Sumikin Stainless Steel Corporation | Ferritic stainless steel for biofuel supply system part, biofuel supply system part, ferritic stainless steel for exhaust heat recovery unit, and exhaust heat recovery unit |
KR20170088431A (en) | 2014-12-24 | 2017-08-01 | 제이에프이 스틸 가부시키가이샤 | Ferritic stainless steel and process for producing same |
US9885099B2 (en) | 2012-03-09 | 2018-02-06 | Nippon Steel & Sumikin Stainless Steel Corporation | Ferritic stainless steel sheet |
WO2018043309A1 (en) | 2016-09-02 | 2018-03-08 | Jfeスチール株式会社 | Ferritic stainless steel |
WO2018043310A1 (en) | 2016-09-02 | 2018-03-08 | Jfeスチール株式会社 | Ferritic stainless steel |
JP2018048392A (en) * | 2016-09-15 | 2018-03-29 | Jfeスチール株式会社 | Ferritic stainless steel plate for a heat exchange part of a heat exchanger |
WO2018216236A1 (en) | 2017-05-26 | 2018-11-29 | Jfeスチール株式会社 | Ferritic stainless steel |
US10385429B2 (en) | 2013-03-27 | 2019-08-20 | Nippon Steel & Sumikin Stainless Steel Corporation | Hot-rolled ferritic stainless-steel plate, process for producing same, and steel strip |
WO2019159606A1 (en) | 2018-02-14 | 2019-08-22 | Jfeスチール株式会社 | Ferritic stainless steel |
KR20200105932A (en) | 2018-02-14 | 2020-09-09 | 제이에프이 스틸 가부시키가이샤 | Ferritic stainless steel |
US10793930B2 (en) | 2016-02-17 | 2020-10-06 | Nippon Steel & Sumikin Stainless Steel Corporation | Ferritic-austenitic two-phase stainless steel material and method for manufacturing same |
WO2023276411A1 (en) | 2021-06-28 | 2023-01-05 | Jfeスチール株式会社 | Ferritic stainless steel |
KR20240000556A (en) | 2021-06-28 | 2024-01-02 | 제이에프이 스틸 가부시키가이샤 | Ferritic stainless steel |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5918008B2 (en) * | 2012-05-08 | 2016-05-18 | 昭和電工株式会社 | Manufacturing method of cooler |
CN103305766B (en) * | 2013-05-10 | 2018-05-25 | 宝钢不锈钢有限公司 | A kind of High-strength high-plasticity ferritic stainless steel and its manufacturing method |
EP3095888B1 (en) * | 2014-01-14 | 2019-08-14 | Nippon Steel & Sumikin Stainless Steel Corporation | Ferritic stainless steel sheet excellent in electrical conductivity and adhesion of oxide film |
EP3153599B1 (en) * | 2014-09-02 | 2019-02-20 | JFE Steel Corporation | Ferritic stainless steel sheet for urea-scr casing |
MY176089A (en) * | 2015-09-29 | 2020-07-24 | Jfe Steel Corp | Ferritic stainless steel |
KR101835021B1 (en) * | 2016-09-28 | 2018-03-09 | 주식회사 포스코 | Ferritic stainless steel for exhaust system heat exchanger and method of manufacturing the same |
CN107058906B (en) * | 2017-02-21 | 2018-11-16 | 山西太钢不锈钢股份有限公司 | Stainless steel, ball pen head STAINLESS STEEL WIRE and preparation method thereof |
KR20190012628A (en) * | 2017-07-28 | 2019-02-11 | 현대자동차주식회사 | Aluminum plate and cooler having this |
US11022077B2 (en) | 2019-08-13 | 2021-06-01 | Caterpillar Inc. | EGR cooler with Inconel diffuser |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5760056A (en) * | 1980-08-08 | 1982-04-10 | Allegheny Ludlum Ind Inc | Stabilized ferrite stainless steel with good weldability |
JPH07292446A (en) * | 1994-04-22 | 1995-11-07 | Nippon Yakin Kogyo Co Ltd | Ferritic stainless steel for heat exchanger |
JP2000073147A (en) * | 1998-08-27 | 2000-03-07 | Kawasaki Steel Corp | Chromium-containing steel excellent in high temperature strength workability and surface property |
JP2002004011A (en) * | 2000-06-23 | 2002-01-09 | Nisshin Steel Co Ltd | Ferritic stainless steel for exhaust gas route member of gas turbine |
JP2009120893A (en) * | 2007-11-13 | 2009-06-04 | Nisshin Steel Co Ltd | Ferritic stainless steel material for automotive member of exhaust gas path |
JP2009120894A (en) * | 2007-11-13 | 2009-06-04 | Nisshin Steel Co Ltd | Ferritic stainless steel material for automotive member of exhaust gas path |
JP2009174040A (en) * | 2008-01-28 | 2009-08-06 | Nisshin Steel Co Ltd | Ferritic stainless steel for egr cooler, and egr cooler |
Family Cites Families (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2701329C2 (en) * | 1977-01-14 | 1983-03-24 | Thyssen Edelstahlwerke AG, 4000 Düsseldorf | Corrosion-resistant ferritic chrome-molybdenum-nickel steel |
US4461811A (en) * | 1980-08-08 | 1984-07-24 | Allegheny Ludlum Steel Corporation | Stabilized ferritic stainless steel with improved brazeability |
JPH01249294A (en) | 1988-03-29 | 1989-10-04 | Nippon Stainless Steel Co Ltd | Precoated brazing filler metal-coated metal sheet, production thereof and using method therefor |
JP2696584B2 (en) * | 1990-03-24 | 1998-01-14 | 日新製鋼株式会社 | Ferrite heat-resistant stainless steel with excellent low-temperature toughness, weldability and heat resistance |
JP3219099B2 (en) * | 1991-07-26 | 2001-10-15 | 日新製鋼株式会社 | Ferrite heat-resistant stainless steel with excellent heat resistance, low temperature toughness and weldability |
CA2085790C (en) * | 1991-12-19 | 2000-03-28 | Masao Koike | Steel for use in exhaust manifolds of automobiles |
JP2942073B2 (en) * | 1992-09-21 | 1999-08-30 | 住友金属工業株式会社 | Ferritic stainless steel for exhaust manifold with excellent high-temperature strength |
EP0603402B1 (en) * | 1992-02-25 | 1998-04-15 | Kawasaki Steel Corporation | High-chromium and high-phosphorus ferritic stainless steel excellent in weatherproofness and rustproofness |
JP2923825B2 (en) * | 1992-03-19 | 1999-07-26 | 日新製鋼株式会社 | Ferritic stainless steel sheet for heat resistance with excellent high-temperature strength and weldability |
CA2123470C (en) * | 1993-05-19 | 2001-07-03 | Yoshihiro Yazawa | Ferritic stainless steel exhibiting excellent atmospheric corrosion resistance and crevice corrosion resistance |
JPH11236654A (en) | 1998-02-25 | 1999-08-31 | Nippon Steel Corp | Stainless steel for ammonia-water base absorption type cycle heat exchanger excellent in brazing property |
JP4252145B2 (en) * | 1999-02-18 | 2009-04-08 | 新日鐵住金ステンレス株式会社 | High strength and toughness stainless steel with excellent delayed fracture resistance |
JP2001026855A (en) | 1999-07-14 | 2001-01-30 | Nisshin Steel Co Ltd | Production of nickel solder-coated stainless steel sheet excellent in self-brazability |
JP4390961B2 (en) * | 2000-04-04 | 2009-12-24 | 新日鐵住金ステンレス株式会社 | Ferritic stainless steel with excellent surface properties and corrosion resistance |
ES2250443T3 (en) * | 2000-08-01 | 2006-04-16 | Nisshin Steel Co., Ltd. | STAINLESS STEEL FUEL TANK FOR CAR. |
CA2354665C (en) * | 2000-08-09 | 2006-10-31 | Nippon Steel Corporation | Soluble lubricating surface-treated stainless steel sheet with excellent shapability for fuel tank and method for manufacturing fuel tank |
DE60105955T2 (en) * | 2000-12-25 | 2005-10-06 | Nisshin Steel Co., Ltd. | Ferritic stainless steel sheet with good processability and process for its production |
EP1225242B1 (en) * | 2001-01-18 | 2004-04-07 | JFE Steel Corporation | Ferritic stainless steel sheet with excellent workability and method for making the same |
EP1394282B1 (en) * | 2001-06-01 | 2007-09-26 | Nippon Steel & Sumikin Stainless Steel Corporation | Fuel tank or fuel pipe exhibiting excellent corrosion resistance and method for manufacturing the same |
US20040170518A1 (en) * | 2001-07-05 | 2004-09-02 | Manabu Oku | Ferritic stainless steel for member of exhaust gas flow passage |
JP4042102B2 (en) | 2001-10-18 | 2008-02-06 | 日立金属株式会社 | Exhaust gas recirculation system parts |
KR100762151B1 (en) * | 2001-10-31 | 2007-10-01 | 제이에프이 스틸 가부시키가이샤 | Ferritic stainless steel sheet having excellent deep-drawability and brittle resistance to secondary processing and method for making the same |
JP3788311B2 (en) * | 2001-10-31 | 2006-06-21 | Jfeスチール株式会社 | Ferritic stainless steel sheet and manufacturing method thereof |
JP4014907B2 (en) * | 2002-03-27 | 2007-11-28 | 日新製鋼株式会社 | Stainless steel fuel tank and fuel pipe made of stainless steel with excellent corrosion resistance |
JP3995978B2 (en) * | 2002-05-13 | 2007-10-24 | 日新製鋼株式会社 | Ferritic stainless steel for heat exchanger |
JP2005055153A (en) | 2003-08-07 | 2005-03-03 | Toyota Motor Corp | Heat exchanger |
US7732733B2 (en) * | 2005-01-26 | 2010-06-08 | Nippon Welding Rod Co., Ltd. | Ferritic stainless steel welding wire and manufacturing method thereof |
JP2007064515A (en) | 2005-08-29 | 2007-03-15 | Usui Kokusai Sangyo Kaisha Ltd | Flat heat transfer tube for heat exchanger, and its manufacturing method |
JP2007224786A (en) | 2006-02-22 | 2007-09-06 | Komatsu Ltd | Exhaust gas recirculation device |
JP2008096048A (en) | 2006-10-13 | 2008-04-24 | Tokyo Radiator Mfg Co Ltd | Inner fin for exhaust gas heat exchanger |
JP4915923B2 (en) | 2007-02-09 | 2012-04-11 | 日立金属株式会社 | Ferritic stainless cast steel and cast member with excellent acid resistance |
JP5390175B2 (en) * | 2007-12-28 | 2014-01-15 | 新日鐵住金ステンレス株式会社 | Ferritic stainless steel with excellent brazeability |
-
2009
- 2009-10-20 JP JP2009241500A patent/JP5462583B2/en active Active
- 2009-10-23 CN CN2009801333269A patent/CN102131946A/en active Pending
- 2009-10-23 KR KR1020117004305A patent/KR101247906B1/en active IP Right Grant
- 2009-10-23 WO PCT/JP2009/005607 patent/WO2010047131A1/en active Application Filing
- 2009-10-23 EP EP09821831.6A patent/EP2351868B1/en active Active
- 2009-10-23 US US12/998,242 patent/US20110176953A1/en not_active Abandoned
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5760056A (en) * | 1980-08-08 | 1982-04-10 | Allegheny Ludlum Ind Inc | Stabilized ferrite stainless steel with good weldability |
JPH07292446A (en) * | 1994-04-22 | 1995-11-07 | Nippon Yakin Kogyo Co Ltd | Ferritic stainless steel for heat exchanger |
JP2000073147A (en) * | 1998-08-27 | 2000-03-07 | Kawasaki Steel Corp | Chromium-containing steel excellent in high temperature strength workability and surface property |
JP2002004011A (en) * | 2000-06-23 | 2002-01-09 | Nisshin Steel Co Ltd | Ferritic stainless steel for exhaust gas route member of gas turbine |
JP2009120893A (en) * | 2007-11-13 | 2009-06-04 | Nisshin Steel Co Ltd | Ferritic stainless steel material for automotive member of exhaust gas path |
JP2009120894A (en) * | 2007-11-13 | 2009-06-04 | Nisshin Steel Co Ltd | Ferritic stainless steel material for automotive member of exhaust gas path |
JP2009174040A (en) * | 2008-01-28 | 2009-08-06 | Nisshin Steel Co Ltd | Ferritic stainless steel for egr cooler, and egr cooler |
Cited By (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012107313A (en) * | 2010-10-26 | 2012-06-07 | Jfe Steel Corp | Ferritic stainless steel excellent in thermal fatigue characteristics and oxidation resistance |
US9611525B2 (en) | 2011-03-29 | 2017-04-04 | Nippon Steel & Sumikin Stainless Steel Corporation | Ferritic stainless steel for biofuel supply system part, biofuel supply system part, ferritic stainless steel for exhaust heat recovery unit, and exhaust heat recovery unit |
WO2013122191A1 (en) * | 2012-02-15 | 2013-08-22 | 新日鐵住金ステンレス株式会社 | Ferrite-based stainless steel plate having excellent resistance against scale peeling, and method for manufacturing same |
JP2013189709A (en) * | 2012-02-15 | 2013-09-26 | Nippon Steel & Sumikin Stainless Steel Corp | Ferritic stainless steel sheet excellent in scale peeling resistance, and method for manufacturing the same |
US10030282B2 (en) | 2012-02-15 | 2018-07-24 | Nippon Steel & Sumikin Stainless Steel Corporation | Ferrite-based stainless steel plate having excellent resistance against scale peeling, and method for manufacturing same |
US9885099B2 (en) | 2012-03-09 | 2018-02-06 | Nippon Steel & Sumikin Stainless Steel Corporation | Ferritic stainless steel sheet |
US10385429B2 (en) | 2013-03-27 | 2019-08-20 | Nippon Steel & Sumikin Stainless Steel Corporation | Hot-rolled ferritic stainless-steel plate, process for producing same, and steel strip |
KR20160122824A (en) | 2014-03-20 | 2016-10-24 | 제이에프이 스틸 가부시키가이샤 | Ferritic stainless steel and production method therefor |
JP2015194324A (en) * | 2014-03-27 | 2015-11-05 | 株式会社ティラド | Header plate-less heat exchanger |
US11091824B2 (en) | 2014-07-22 | 2021-08-17 | Nippon Steel & Sumikin Stainless Steel Corporation | Ferritic stainless steel and method for producing same, and heat exchanger equipped with ferritic stainless steel as member |
JP2016023341A (en) * | 2014-07-22 | 2016-02-08 | 新日鐵住金ステンレス株式会社 | Ferritic stainless steel and production method therefor, and heat exchanger using ferritic stainless steel as member |
KR20170031768A (en) | 2014-07-31 | 2017-03-21 | 제이에프이 스틸 가부시키가이샤 | Ferritic stainless steel and method for producing same |
US10450625B2 (en) | 2014-07-31 | 2019-10-22 | Jfe Steel Corporation | Ferritic stainless steel and method for producing same |
KR20190010747A (en) * | 2014-10-31 | 2019-01-30 | 닛폰 스틸 앤드 스미킨 스테인레스 스틸 코포레이션 | Ferrite-based stainless steel with high resistance to corrosiveness caused by exhaust gas and condensation and high brazing properties and method for manufacturing same |
WO2016068291A1 (en) * | 2014-10-31 | 2016-05-06 | 新日鐵住金ステンレス株式会社 | Ferrite-based stainless steel with high resistance to corrosiveness caused by exhaust gas and condensation and high brazing properties and method for manufacturing same |
US10752973B2 (en) | 2014-10-31 | 2020-08-25 | Nippon Steel & Sumikin Stainless Steel Corporation | Ferrite-based stainless steel with high resistance to corrosiveness caused by exhaust gas and condensation and high brazing properties and method for manufacturing same |
KR102037643B1 (en) * | 2014-10-31 | 2019-10-28 | 닛테츠 스테인레스 가부시키가이샤 | Ferrite-based stainless steel with high resistance to corrosiveness caused by exhaust gas and condensation and high brazing properties and method for manufacturing same |
JP2016089272A (en) * | 2014-10-31 | 2016-05-23 | 新日鐵住金ステンレス株式会社 | Ferritic stainless steel excellent in exhaust gas condensed water corrosion resistance and brazability and manufacturing method therefor |
KR20170037663A (en) * | 2014-10-31 | 2017-04-04 | 닛폰 스틸 앤드 스미킨 스테인레스 스틸 코포레이션 | Ferrite-based stainless steel with high resistance to corrosiveness caused by exhaust gas and condensation and high brazing properties and method for manufacturing same |
KR101959149B1 (en) * | 2014-10-31 | 2019-03-15 | 닛폰 스틸 앤드 스미킨 스테인레스 스틸 코포레이션 | Ferrite-based stainless steel with high resistance to corrosiveness caused by exhaust gas and condensation and high brazing properties and method for manufacturing same |
KR20170088431A (en) | 2014-12-24 | 2017-08-01 | 제이에프이 스틸 가부시키가이샤 | Ferritic stainless steel and process for producing same |
US10458013B2 (en) | 2014-12-24 | 2019-10-29 | Jfe Steel Corporation | Ferritic stainless steel and process for producing same |
US10793930B2 (en) | 2016-02-17 | 2020-10-06 | Nippon Steel & Sumikin Stainless Steel Corporation | Ferritic-austenitic two-phase stainless steel material and method for manufacturing same |
KR20190030718A (en) | 2016-09-02 | 2019-03-22 | 제이에프이 스틸 가부시키가이샤 | Ferritic stainless steel |
CN109563597A (en) * | 2016-09-02 | 2019-04-02 | 杰富意钢铁株式会社 | Ferrite-group stainless steel |
US11261512B2 (en) | 2016-09-02 | 2022-03-01 | Jfe Steel Corporation | Ferritic stainless steel |
US11230756B2 (en) | 2016-09-02 | 2022-01-25 | Jfe Steel Corporation | Ferritic stainless steel |
WO2018043309A1 (en) | 2016-09-02 | 2018-03-08 | Jfeスチール株式会社 | Ferritic stainless steel |
KR20190028785A (en) | 2016-09-02 | 2019-03-19 | 제이에프이 스틸 가부시키가이샤 | Ferritic stainless steel |
WO2018043310A1 (en) | 2016-09-02 | 2018-03-08 | Jfeスチール株式会社 | Ferritic stainless steel |
JP2018048392A (en) * | 2016-09-15 | 2018-03-29 | Jfeスチール株式会社 | Ferritic stainless steel plate for a heat exchange part of a heat exchanger |
KR20200002991A (en) | 2017-05-26 | 2020-01-08 | 제이에프이 스틸 가부시키가이샤 | Ferritic Stainless Steel |
WO2018216236A1 (en) | 2017-05-26 | 2018-11-29 | Jfeスチール株式会社 | Ferritic stainless steel |
US11365467B2 (en) | 2017-05-26 | 2022-06-21 | Jfe Steel Corporation | Ferritic stainless steel |
KR20200105932A (en) | 2018-02-14 | 2020-09-09 | 제이에프이 스틸 가부시키가이샤 | Ferritic stainless steel |
WO2019159606A1 (en) | 2018-02-14 | 2019-08-22 | Jfeスチール株式会社 | Ferritic stainless steel |
WO2023276411A1 (en) | 2021-06-28 | 2023-01-05 | Jfeスチール株式会社 | Ferritic stainless steel |
KR20240000556A (en) | 2021-06-28 | 2024-01-02 | 제이에프이 스틸 가부시키가이샤 | Ferritic stainless steel |
Also Published As
Publication number | Publication date |
---|---|
EP2351868A4 (en) | 2016-11-30 |
CN102131946A (en) | 2011-07-20 |
EP2351868A1 (en) | 2011-08-03 |
KR20110036753A (en) | 2011-04-08 |
EP2351868B1 (en) | 2020-06-03 |
US20110176953A1 (en) | 2011-07-21 |
JP5462583B2 (en) | 2014-04-02 |
WO2010047131A1 (en) | 2010-04-29 |
KR101247906B1 (en) | 2013-03-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5462583B2 (en) | Ferritic stainless steel sheet for EGR cooler | |
JP5390175B2 (en) | Ferritic stainless steel with excellent brazeability | |
JP6270821B2 (en) | Ferritic stainless steel plate with excellent brazing, heat exchanger, ferritic stainless steel plate for heat exchanger, ferritic stainless steel, ferritic stainless steel for fuel supply system members, and fuel supply system parts | |
JP5588868B2 (en) | Ferritic stainless steel for urea water tank | |
JP5264199B2 (en) | EGR cooler using ferritic stainless steel | |
JP6379283B2 (en) | Stainless steel with excellent brazeability | |
JP5856878B2 (en) | Ferritic stainless steel for exhaust heat recovery and exhaust heat recovery | |
JP6895787B2 (en) | Austenitic stainless steel, brazed structures, brazed structural parts and exhaust gas heat exchange parts | |
WO2011013193A1 (en) | Ferritic stainless steel for egr cooler and egr cooler | |
JP5786491B2 (en) | Ferritic stainless steel for EGR cooler | |
JP5788946B2 (en) | Ferritic stainless steel for parts assembled by brazing with excellent brazing | |
JP6807221B2 (en) | Ni brazed joint heat exchanger member | |
JP7570243B2 (en) | Stainless steel welded components for urea SCR systems | |
JP6871045B2 (en) | Ferritic stainless steel and Ni brazed joint members with excellent brazing and corrosion resistance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120608 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130910 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131107 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20131220 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140117 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5462583 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |