JP2696584B2 - Ferrite heat-resistant stainless steel with excellent low-temperature toughness, weldability and heat resistance - Google Patents

Ferrite heat-resistant stainless steel with excellent low-temperature toughness, weldability and heat resistance

Info

Publication number
JP2696584B2
JP2696584B2 JP2074785A JP7478590A JP2696584B2 JP 2696584 B2 JP2696584 B2 JP 2696584B2 JP 2074785 A JP2074785 A JP 2074785A JP 7478590 A JP7478590 A JP 7478590A JP 2696584 B2 JP2696584 B2 JP 2696584B2
Authority
JP
Japan
Prior art keywords
less
temperature
stainless steel
weldability
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2074785A
Other languages
Japanese (ja)
Other versions
JPH03274245A (en
Inventor
美博 植松
直人 平松
定幸 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2074785A priority Critical patent/JP2696584B2/en
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to DE69110816T priority patent/DE69110816T2/en
Priority to EP91906263A priority patent/EP0478790B1/en
Priority to PCT/JP1991/000344 priority patent/WO1991014796A1/en
Priority to CA002056362A priority patent/CA2056362C/en
Priority to KR1019910701642A priority patent/KR0180206B1/en
Publication of JPH03274245A publication Critical patent/JPH03274245A/en
Priority to US07/976,840 priority patent/US5302214A/en
Application granted granted Critical
Publication of JP2696584B2 publication Critical patent/JP2696584B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Exhaust Silencers (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は,各種内燃機関の排気ガス浄化用材料あるい
は各種燃焼機器などに用いられるフェライト系耐熱用ス
テンレス鋼に関するものである。
Description: TECHNICAL FIELD The present invention relates to a ferritic heat-resistant stainless steel used for exhaust gas purification materials of various internal combustion engines or various combustion devices.

〔発明の背景および従来技術〕[Background of the Invention and Prior Art]

近年,自動車あるいは工場から排出されるガスによる
大気汚染が大きな問題となっている。例えば自動車の排
気ガスは公害防止の観点からNOx,HC,COなどの量が規制
されてきたが,最近では酸性雨などの点から規制がより
厳しくなる傾向にあり,排気ガス浄化効率の向上が必要
となってきた。
In recent years, air pollution caused by gas emitted from automobiles or factories has become a major problem. For example NO x exhaust gas from the viewpoint of prevention of pollution automobiles, HC, the amount of such CO have been regulated, recently there more stringent tends regulations in view of acid rain, improved exhaust gas purification efficiency Is needed.

他方,自動車では浄化効率の向上に加え,エンジンの
高出力化あるいは性能アップの要求が高まり排ガス温度
は上昇する傾向にある。このような背景から排気ガス系
統の部材は運転中にきわめて高温になり,また,機械の
振動や外部からの振動による機械的な応力変動,あるい
は運転パターンに依存した冷熱サイクル,さらには寒冷
地では冬期の温度低下による温度変動を受けるなど,き
わめて過酷な状況下にさらされることになる。
On the other hand, in automobiles, in addition to improvement of purification efficiency, demands for higher output and higher performance of engines are increasing, and the temperature of exhaust gas tends to increase. Due to this background, the exhaust gas system components become extremely hot during operation, and mechanical stress fluctuations due to machine vibrations or external vibrations, or cooling and heating cycles depending on the operation pattern, and even in cold regions They will be exposed to extremely harsh conditions, such as undergoing temperature fluctuations due to the temperature drop in winter.

ステンレス鋼などの耐熱鋼をこれらの用途で使用する
場合,耐熱性に優れることは無論であるが,板材あるい
はパイプのいずれを用いても溶接施工を要するので溶接
性に優れることが必要となり,またそれらを加工する際
の加工性に優れることが必要となる。したがって,これ
らの用途では耐熱性,低温靭性,溶接性および加工性を
同時に兼備することが重要な課題となる。
When heat-resistant steel such as stainless steel is used in these applications, it is obvious that it is excellent in heat resistance, but it requires welding work using either sheet material or pipe, so it is necessary to have excellent weldability. It is necessary to have excellent workability when processing them. Therefore, in these applications, it is important to simultaneously have heat resistance, low temperature toughness, weldability and workability.

SUS304に代表されるオーステナイト系ステンレス鋼は
加工性に優れ且つ溶接性も良好であるために上記のよう
な用途に対して有望な材料であると考えられている。し
かしオーステナイト系ステンレス鋼は熱膨脹係数が大き
いことから,加熱−冷却を受けるような用途では使用中
に発生する熱応力による熱疲労破壊が懸念されている。
また,オーステナイト系ステンレス鋼は表面酸化物との
熱膨脹差が大きいため,加熱−冷却によって表面酸化物
が剥離しやすい。このようなことから,一部の用途では
Inocnel 600に代表されるNi基の合金が使用されてい
る。この合金材料は熱膨脹係数が低く,また表面酸化物
の密着性など耐高温酸化特性に優れ,かつ優れた高温強
度を有しているので有望な材料であるが,きわめて高価
な材料であるため広く一般に使用されるには至っていな
い。
Austenitic stainless steel represented by SUS304 is considered to be a promising material for the above applications because of its excellent workability and good weldability. However, since austenitic stainless steel has a large coefficient of thermal expansion, there is a concern about thermal fatigue fracture due to thermal stress generated during use in applications that undergo heating and cooling.
In addition, since austenitic stainless steel has a large thermal expansion difference from the surface oxide, the surface oxide is easily separated by heating and cooling. For this reason, in some applications
A Ni-based alloy typified by Inocnel 600 is used. This alloy material is a promising material because of its low coefficient of thermal expansion, excellent high-temperature oxidation resistance such as adhesion of surface oxides, and excellent high-temperature strength. It has not been used in general.

一方,フェライト系ステンレス鋼はオーステナイト系
ステンレス鋼に比べ安価であり,また,熱膨脹係数が小
さいので熱疲労特性に優れている。したがって,加熱−
冷却の温度サイクルを受けるような用途では優れた特徴
を有しているものと考えられる。そのため,一部の用途
に対して,Type409やSUS430で代表されるフェライト系ス
テンレス鋼が使用され始めている。しかし,これらの材
料は900℃以上になると強度が著しく低下するため,強
度不足による高温疲労破壊を起こすことや,耐酸化限界
を越えると異常酸化を起こすなどの問題がある。これら
の問題に対し,高温強度を改善する各種合金元素を添加
しまた耐酸化性の改善をCr量の増量によって行うことも
可能であるが,かような合金元素の添加およびCr量の増
量は一般に鋼の衝撃靭性を著しく劣化させ,また溶接性
および加工性も著しく劣るようになる。
On the other hand, ferritic stainless steel is less expensive than austenitic stainless steel, and has excellent thermal fatigue characteristics due to its small coefficient of thermal expansion. Therefore, heating
It is considered to have excellent characteristics in an application that undergoes a temperature cycle of cooling. For this reason, ferritic stainless steels represented by Type 409 and SUS430 have begun to be used for some applications. However, since the strength of these materials is significantly reduced at 900 ° C or higher, there are problems such as high temperature fatigue failure due to insufficient strength and abnormal oxidation when exceeding the oxidation resistance limit. To solve these problems, it is possible to add various alloying elements that improve high-temperature strength and to improve oxidation resistance by increasing the amount of Cr. Generally, the impact toughness of steel is significantly deteriorated, and the weldability and workability are also significantly deteriorated.

以上のように,現状では高温強度,耐酸化性,耐熱
性,靭性,溶接性,加工性といった多性質を同時に満足
できるような材料は出現しておらず,今後の排気ガス浄
化効率の向上,内燃機関の高出力化および高性能化など
の進展とともにますます厳しくなる使用条件および環境
に対応するため,高温強度や熱疲労特性および高温酸化
などの耐熱性を具有したうえ,製造性,加工性,溶接性
および低温靭性に優れた材料が要望されている。もしフ
ェライト系ステンレス鋼において優れた耐熱性を有しか
つ製造性,加工性,溶接性および低温靭性に優れた鋼が
得られれば,上記のような特殊用途に対してきわめて有
望な材料を得ることができるものと考えれられる。
As described above, at present, no material has been developed that can simultaneously satisfy various properties such as high-temperature strength, oxidation resistance, heat resistance, toughness, weldability, and workability. In order to cope with increasingly severe use conditions and environments with the progress of higher output and higher performance of internal combustion engines, it has heat resistance such as high temperature strength and thermal fatigue characteristics and high temperature oxidation, as well as manufacturability and workability. There is a demand for materials having excellent weldability and low-temperature toughness. If a ferritic stainless steel with excellent heat resistance and excellent manufacturability, workability, weldability and low-temperature toughness can be obtained, a material that is extremely promising for special applications as described above can be obtained. It is thought that it is possible.

〔発明の目的〕[Object of the invention]

本発明は,優れた高温強度および耐高温酸化特性を有
し,かつフェライト系ステンレス鋼の欠点である低温靭
性を改善し,また製造上および施工上問題となる溶接部
の溶接高温割れをも防止したフェライト系耐熱用ステン
レス鋼の開発を目的としたものである。
The present invention has excellent high-temperature strength and high-temperature oxidation resistance, improves low-temperature toughness which is a drawback of ferritic stainless steel, and also prevents weld hot cracking of welds, which is a problem in production and construction. The purpose is to develop a ferritic heat-resistant stainless steel.

〔発明の構成〕[Configuration of the invention]

本発明は,重量%において, C:0.03%以下, Si:0.1〜0.8%, Mn:0.6〜2.0%, S:0.006%以下, Ni:4%以下, Cr:17.0〜25.0%, Nb:0.2〜0.8%, Mo:1.0越え〜4.5% Cu:0.1〜2.5%, N;0.03%以下, ただし,前記の範囲において, Mn%/S%の比が200以上, 〔Nb〕=Nb%−8%(C%+N%) の式に従う〔Nb〕が0.2以上,および Ni%+Cu%ga4以下 の関係を満足するようにこれらの元素を含有し,残部が
Feおよび製造上の不可避的不純物からなる低温靭性,溶
接性および耐熱性に優れたフェライト系耐熱用ステンレ
ス鋼を提供する。
In the present invention, C: 0.03% or less, Si: 0.1 to 0.8%, Mn: 0.6 to 2.0%, S: 0.006% or less, Ni: 4% or less, Cr: 17.0 to 25.0%, Nb: 0.2% by weight. 0.8%, Mo: more than 1.0 to 4.5% Cu: 0.1 to 2.5%, N: 0.03% or less However, in the above range, the ratio of Mn% / S% is 200 or more, [Nb] = Nb% -8 % (C% + N%) These elements are contained so that [Nb] satisfies the relationship of 0.2 or more and Ni% + Cu% ga4 or less, with the balance being
Provide ferritic heat-resistant stainless steel with excellent low-temperature toughness, weldability and heat resistance consisting of Fe and inevitable impurities in production.

また,本発明は,前記の鋼に,さらに Al:0.5%以下, Ti:0.6%以下, V:0.5%以下, Zr:1.0%以下, W:1.5%以下, B:0.01%以下, REM:0.1%以下 の一種または二種以上を含有した低温靭性,溶接性およ
び耐熱性に優れたフェライト系耐熱用ステンレス鋼を提
供する。
In addition, the present invention further provides the above steel with Al: 0.5% or less, Ti: 0.6% or less, V: 0.5% or less, Zr: 1.0% or less, W: 1.5% or less, B: 0.01% or less, REM: To provide ferritic heat-resistant stainless steel containing 0.1% or less of one or more types and having excellent low-temperature toughness, weldability and heat resistance.

〔発明の詳述〕[Detailed Description of the Invention]

本発明者らは前記の目的を達成すべく試験研究を重
ね,以下の如き知見を得ることができた。
The inventors of the present invention have conducted test and research in order to achieve the above object, and have obtained the following findings.

第1図は,材料に要求される重要特性である高温強度
の観点からFe−18%Cr−0.45%Nbを基本組成とし,高温
引張強さに及ぼすMoおよびCuの影響を調べた結果を示し
たものである。同図に見られるように,Moを1%より多
く添加することによって高温強度が改善されている。ま
た,Mc−Cuの複合添加によってMo単独添加よりも高温強
度が上昇している。したがって,高温強度が要求される
材料ではMoとCuの複合添加が有効であるとの知見を得
た。
Fig. 1 shows the results of examining the effect of Mo and Cu on the high-temperature tensile strength, based on the basic composition of Fe-18% Cr-0.45% Nb from the viewpoint of high-temperature strength, which is an important property required for materials. It is a thing. As can be seen in the figure, the high-temperature strength is improved by adding more than 1% of Mo. In addition, the high-temperature strength is higher than that of Mo alone due to the composite addition of Mc-Cu. Therefore, it was found that composite addition of Mo and Cu is effective for materials that require high-temperature strength.

第2図は,もう一方の重要特性である高温酸化特性の
うち,耐スケール剥離性についてMnの影響を調べたもの
である。試験はFe−18%Cr−0.45%Nbを基本組成として
Mn量を変化させ,大気中で900℃および1000℃において1
00時間の連続酸化を実施し,スケール剥離量を調査し
た。その結果,いずれの試験温度でもMnを0.6%以上添
加することによってスケール剥離が抑制された。したが
って,Mnはフェライト系ステンレス鋼の耐酸化限界を上
昇させるとの知見を得た。
FIG. 2 shows the effect of Mn on the scale peeling resistance among the high-temperature oxidation characteristics, which is another important characteristic. The test is based on the basic composition of Fe-18% Cr-0.45% Nb.
Change the amount of Mn to 1 at 900 ° C and 1000 ° C in air.
The continuous oxidation was performed for 00 hours, and the scale peeling amount was examined. As a result, scale peeling was suppressed by adding Mn at 0.6% or more at any test temperature. Therefore, it was found that Mn raises the oxidation resistance limit of ferritic stainless steel.

第3図は,Fe−18%Cr−0.45%Nbを基本組成とし,第
1図で効果の認められた適量のMoとCuを複合添加したう
え,MnとSを変動させ,溶接高温割れに及ぼすMn/S比の
影響を調べたものである。溶接高温割れ試験は,1.2mm厚
の冷却焼鈍板を作成し,40mm×20mmの試験片に加工後,
試験片の両端を保持して長手方向に引張り応力を付加し
た状態にてTIG溶接を行ない,割れが発生し始める最小
のひずみ量を臨界歪量とし,これを溶接高温割れ感受性
の指標とした。第3図に見られるよに,Mo−Cu複合添加
の場合,Mn/Sが200以上になると臨界歪量が増大し,溶接
性が改善される効果が認められた。この結果,溶接高温
割れを改善するためにはMn/Sが200以上となる適正量のM
nを添加することが有効であるとの知見を得た。
Fig. 3 shows the basic composition of Fe-18% Cr-0.45% Nb, with the addition of an appropriate amount of Mo and Cu, which were effective in Fig. 1, and varied the Mn and S to reduce welding hot cracking. The effect of the Mn / S ratio was examined. In the welding hot cracking test, a 1.2 mm thick cold-annealed plate was prepared and processed into a 40 mm x 20 mm test piece.
TIG welding was performed in a state where tensile stress was applied in the longitudinal direction while holding both ends of the test piece, and the minimum strain at which cracking began to occur was defined as the critical strain, which was used as an index of the hot cracking susceptibility. As can be seen from FIG. 3, in the case of adding Mo—Cu, when Mn / S is 200 or more, the amount of critical strain increases, and the effect of improving weldability was observed. As a result, in order to improve the hot cracking of the weld, an appropriate amount of M
We have found that it is effective to add n.

第4図は,製品としての靭性を把握するためにFe−18
%Cr−0.45%Nbを基本組成としMoおよびCuの影響を調べ
るためにシャルピー衝撃試験を実施した結果である。Mo
を添加すると衝撃値が低下することは従来より知られて
いる結果と同じであるが,さらにCuを複合添加すること
により靭性が改善されるという新しい知見を得ることが
できた。中でも4%Mo添加鋼のように衝撃靭性が著しく
低いものでも,Cuを複合添加することによって十分に衝
撃値が改善されることがわかった。また,NiおよびMoと
の複合添加によって低温での衝撃靭性を改善できること
が後記実施例に示したように判明した。このことは重大
な知見であり,冬期の低温環境下にさらされる部材には
特に有効と考えられ,今後予想されるますます厳しい条
件においても使用可能となり,フェライト系ステンレス
鋼の新しい用途拡大につながるものと考えられる。
Fig. 4 shows the characteristics of Fe-18 to determine the toughness of the product.
5 shows the results of a Charpy impact test conducted to examine the effects of Mo and Cu based on the basic composition of% Cr-0.45% Nb. Mo
It is the same as the conventionally known results that the impact value decreases with the addition of Cu, but a new finding was found that the toughness was improved by further adding Cu in combination. In particular, it was found that the impact value was sufficiently improved by adding Cu in combination even for steels with extremely low impact toughness, such as steel with 4% Mo. In addition, it was found that the composite toughness with Ni and Mo can improve the impact toughness at a low temperature, as shown in Examples below. This is a significant finding and is considered to be particularly effective for components exposed to low-temperature environments in winter, and it can be used under increasingly severe conditions expected in the future, leading to new applications of ferritic stainless steel. It is considered something.

このような知見事実に基づき,本発明は高温強度,熱
疲労特性および耐酸化性に優れ,かつ,溶接性および低
温靭性に優れたトータルバランスの良好なフエライト系
ステンレス鋼を提供するものである。
Based on these findings, the present invention is to provide a ferrite stainless steel excellent in high-temperature strength, thermal fatigue properties and oxidation resistance, and excellent in weldability and low-temperature toughness and excellent in total balance.

以下に本発明鋼における各化学成分値の含有量の限定
理由を述べる。
The reasons for limiting the content of each chemical component value in the steel of the present invention will be described below.

CおよびN:CとNは一般的には高温強度を高めるため
に重要な元素であるが,反面含有量が多くなると耐酸化
性,加工性ならびに靭性の低下を来す。またCとNはNb
との化合物をつくり,フェライト相中の有効Nb量を減少
せしめる。したがって,CとNは低いことが望ましく,そ
れぞれ0.03%以下とする。
C and N: C and N are generally important elements for increasing the high-temperature strength, but when the content is increased, the oxidation resistance, workability and toughness decrease. C and N are Nb
To reduce the effective Nb content in the ferrite phase. Therefore, C and N are desirably low, and each is set to 0.03% or less.

Si:Siは耐酸化性の向上には有効な元素である。しか
し,過剰に添加すると硬さが上昇し加工性,靭性の低下
が予想されるので0.1〜0.8%の範囲とする。
Si: Si is an element effective for improving oxidation resistance. However, if it is added excessively, the hardness increases and the workability and toughness are expected to decrease.

Mn:Mnは前述の試験結果に示したように溶接高温割れに
有害なSをMnSの形で固定し,溶接金属中のSを除去,
減少せしめる。S自身の低減も有効であるがMn/S≧200
の関係を満足すれば良好であることが判明した。一方,M
nは前述のように耐スケール剥離性の面で0.6%以上添加
することによって耐スケール剥離性が改善される。した
がって,Mnは0.6〜2.0%の範囲とし,且つMn/S≧200の関
係を満足することが必要である。
As shown in the above test results, Mn: Mn fixes S harmful to hot cracking in the form of MnS, removes S in the weld metal,
Let it decrease. Reduction of S itself is effective, but Mn / S ≧ 200
It was found that if the above relationship was satisfied, it was good. On the other hand, M
As described above, n is added in an amount of 0.6% or more in terms of scale peeling resistance, thereby improving the scale peeling resistance. Therefore, it is necessary that Mn be in the range of 0.6 to 2.0% and satisfy the relationship of Mn / S ≧ 200.

S:Sは上述のごとく溶接高温割れに対して有害であるの
で可能な限り低いほうが望ましいが,低く押さえるほど
製造コストの上昇を招く。本発明鋼においてはSは0.00
6%まで許容しても前述のようにMnの作用によって十分
な耐溶接高温割れを有するのでSの上限を0.006%とす
る。
Since S: S is harmful to welding hot cracking as described above, it is desirable that S be as low as possible. However, the lower the S, the higher the manufacturing cost. In the steel of the present invention, S is 0.00
Even if it is allowed to be up to 6%, the effect of Mn has sufficient welding hot crack resistance as described above, so the upper limit of S is made 0.006%.

Ni:Niは実施例からわかるように,Cuと同様な靭性改善効
果をもたらす。しかし,過剰に添加すると高温において
オーステナイト相の析出などが起こり,熱膨脹係数の増
大などによる熱疲労特性の低下などが懸念される。この
ためオーステナイト生成元素であるCuとの複合添加にお
いて,Ni+Cuが4%以内の関係を満足する必要があるこ
とがわかった。この結果から上限を4%とした。
Ni: As can be seen from the examples, Ni has the same toughness improving effect as Cu. However, when added excessively, precipitation of austenite phase or the like occurs at high temperatures, and there is a concern that thermal fatigue characteristics may be reduced due to an increase in thermal expansion coefficient and the like. Therefore, it was found that Ni + Cu must satisfy the relationship of 4% or less in the composite addition with Cu, which is an austenite forming element. From this result, the upper limit was set to 4%.

Cr:Crは耐食性,耐酸化性の改善に不可欠の元素であ
る。下限を17%としたのは900℃以上の耐酸化性を維持
するためには17%以上の添加を必要とするからである。
耐酸化性の面からCrは高いほど好ましいが,過剰に添加
すると鋼の脆化を招き,また硬さの上昇によって加工性
も劣化するので上限は25%とする。
Cr: Cr is an element indispensable for improving corrosion resistance and oxidation resistance. The lower limit is set to 17% because it is necessary to add 17% or more to maintain oxidation resistance of 900 ° C or more.
From the viewpoint of oxidation resistance, the higher the content of Cr, the better. However, if added in excess, the steel will become brittle and the workability will deteriorate due to the increase in hardness, so the upper limit is set to 25%.

Nb:Nbは高温強度を維持せしめるのに必要な元素であ
る。また加工性および耐酸化性の改善や高周波溶接によ
る造管性にも好影響を及ぼす。後述の第2表の高温引張
試験結果からも判るように高温強度を改善するためには
少なくとも0.2%添加する必要がある。しかしNbはCと
Nによる化合物をつくるのでただ単に下限を0.2%とし
てもCとNの量によって固溶Nbは減少し,高温強度に及
ぼすNbの効果は減少する。したがって, 〔Nb〕=Nb%−8(C%+N%) の式に従う〔Nb〕が0.2%以上となる関係を満足するこ
とが必要である。一方,Nbを過剰に添加すると溶接高温
割れ感受性が高くなる。十分な高温強度を維持し,なお
かつ溶接高温割れ感受性にあまり影響を及ぼさないよう
にNbの上限を0.8%とする。
Nb: Nb is an element necessary for maintaining high-temperature strength. In addition, it has a favorable effect on the improvement of workability and oxidation resistance, and on the pipe formability by high frequency welding. As can be seen from the results of the high-temperature tensile test shown in Table 2 below, it is necessary to add at least 0.2% in order to improve the high-temperature strength. However, since Nb forms a compound of C and N, even if the lower limit is simply set to 0.2%, the amount of C and N decreases the dissolved Nb, and the effect of Nb on the high temperature strength decreases. Therefore, it is necessary to satisfy the relationship that [Nb] according to the equation [Nb] = Nb% -8 (C% + N%) is 0.2% or more. On the other hand, when Nb is added excessively, the susceptibility to welding hot cracking increases. The upper limit of Nb is set to 0.8% so as to maintain sufficient high-temperature strength and not significantly affect the hot cracking susceptibility.

Mo:Moは前述の試験結果でも述べたように添加するほど
高温強度を上昇させる。また耐高温酸化および耐食性の
改善にも有効である。一方,過剰に添加すると低温での
靭性を著しく低下させ,また製造性,加工性の低下をき
たすため,1.0越え〜4.5%とした。
Mo: Mo increases the high-temperature strength as added as described in the above test results. It is also effective in improving high-temperature oxidation resistance and corrosion resistance. On the other hand, if it is added excessively, the toughness at low temperature is remarkably reduced, and the manufacturability and workability are lowered.

Cu:Cuも前述の試験結果で述べたように靭性面で非常に
有効な元素で本発明鋼の重要な元素である。靭性改善効
果を得るには第4図に見られるように0.1%以上必要で
あるため,下限値を0.1%とした。一方,過剰に添加す
ると硬質となり加工性を害する。また,熱間加工性にも
著しく悪影響を及ぼすので上限を2.5%とする。
Cu: Cu is also a very effective element in terms of toughness as described in the above test results, and is an important element of the steel of the present invention. Since the effect of improving toughness requires 0.1% or more as shown in FIG. 4, the lower limit is set to 0.1%. On the other hand, if added excessively, it becomes hard and impairs workability. In addition, the upper limit is set to 2.5% because it has a significant adverse effect on hot workability.

Al:Alは耐高温酸化特性を改善する。しかし過剰に添加
すると製造性,溶接性での問題になるため上限を0.5%
とする。
Al: Al improves high temperature oxidation resistance. However, if added excessively, it will cause problems in manufacturability and weldability, so the upper limit is 0.5%
And

Ti:Tiは高温強度を上昇させ,加工性も改善する。しか
しAl同様過剰に添加すると製造性,溶接性で問題になる
ため,上限を0.5%とする。
Ti: Ti increases high-temperature strength and improves workability. However, as in the case of Al, an excessive addition causes problems in manufacturability and weldability, so the upper limit is made 0.5%.

V:VもTiと同様に高温強度を上昇させ,加工性を改善す
る。しかし,過剰に添加すると逆に強度の低下を招く。
よって上限を0.5%とする。
V: V, like Ti, also increases the high-temperature strength and improves workability. However, when added in excess, the strength is adversely reduced.
Therefore, the upper limit is set to 0.5%.

Zr:Zrは高温強度を上昇させ,高温酸化特性を改善す
る。しかし,過剰に添加すると強度の低下を招くので上
限を1.0%とする。
Zr: Zr increases high-temperature strength and improves high-temperature oxidation characteristics. However, if added in excess, the strength is reduced, so the upper limit is made 1.0%.

W:WもTiやV同様,高温強度を上昇させ,加工性を改善
する。しかし過剰に添加すると強度の低下を招くので上
限を1.5%とする。
W: W, like Ti and V, increases high-temperature strength and improves workability. However, if added excessively, the strength is reduced, so the upper limit is made 1.5%.

B:Bは熱間加工性を改善し高温強度も上昇させ,加工性
をも改善する。しかし,過剰に添加するとかえって熱間
加工性の低下を招くため,上限を0.01%とする。
B: B improves hot workability, increases high-temperature strength, and also improves workability. However, an excessive addition causes a reduction in hot workability, so the upper limit is made 0.01%.

REM:希土類元素は微量添加によって熱間加工製を改善
し,耐酸化性特にスケールの密着性を改善する。しか
し,過剰に添加すると逆に熱間加工性の低下を招くた
め,上限を0.1%とする。
REM: Rare earth element improves the hot workability by adding a trace amount, and improves oxidation resistance, especially scale adhesion. However, an excessive addition will adversely affect hot workability. Therefore, the upper limit is set to 0.1%.

〔実施例〕〔Example〕

第1表に供試材の化学成分値を示した。M1〜M21は本
発明鋼で,M22〜M30は比較鋼である。これらの鋼は,実
験室にて30kg鋼塊を作成し,25mmφの丸棒と25mm厚の板
に鍛造した。丸棒950℃〜1100℃で焼鈍後,JIS標準の高
温引張試験片に加工した。鍛造板は切削後1200℃抽出に
よる熱間圧延を施し,5mmtの熱圧延とし,950℃〜1100℃
で焼鈍後,一部はそのままでシャルピー衝撃試験片に加
工した。残部は冷延,焼鈍を繰り返し,2mmtの板厚にて
高温酸化試験を実施し,1.2mmtの板厚において溶接高温
割れ試験を実施した。
Table 1 shows the chemical component values of the test materials. M1 to M21 are steels of the present invention, and M22 to M30 are comparative steels. In the laboratory, 30kg ingots of these steels were prepared and forged into 25mmφ round bars and 25mm thick plates. After annealing at 950 ℃ ~ 1100 ℃ in round bar, it was processed into JIS standard high temperature tensile test piece. After cutting, the forged plate is subjected to hot rolling by extraction at 1200 ° C, hot rolling of 5 mm t , 950 ° C to 1100 ° C
After annealing in, a part was processed into a Charpy impact test specimen as it was. The remaining part was repeatedly cold rolled and annealed, and a high temperature oxidation test was performed at a thickness of 2 mm t, and a hot crack test was performed at a thickness of 1.2 mm t .

第2表に,JIS標準で実施した高温引張試験による高温
引張強さ,900℃および100℃での100時間の連続酸化試験
によるスケール剥離量,本文に記載した溶接高温割れ試
験による溶接時の臨界歪量,および4.5mmtの板厚でVノ
ッチシャルピー衝撃試験片で実施したシャルピー衝撃試
験結果を示した。
Table 2 shows the high-temperature tensile strength obtained by the high-temperature tensile test performed in accordance with the JIS standard, the amount of scale peeling obtained by continuous oxidation tests at 900 ° C and 100 ° C for 100 hours, and the criticality at the time of welding obtained by the hot crack test described in the text. The results of the Charpy impact test performed on a V-notch Charpy impact test specimen with a strain amount and a plate thickness of 4.5 mm t are shown.

第2表の結果から,Nb,MoおよびNiを添加することによ
って高温強度が上昇していることがわかる。またMoおよ
びCuの複合添加鋼はさらに高温強度の上昇が見られる。
連続高温酸化試験結果では900℃および1000℃ともMn量
が0.6%を越えると耐スケール剥離性が著しく改善され
ることがわかる。また,溶接高温割れ試験における臨界
歪量はMn/Sが200を越えると著しく改善されることがわ
かる。一方,シャルピー衝撃試験結果では,Moを添加す
るにしたがって衝撃靭性は低下するものの,Cuを添加す
ることによって靭性が改善され,またNi添加によっても
同様な効果があることがわかる。
The results in Table 2 show that the addition of Nb, Mo, and Ni increases the high-temperature strength. In addition, the high-temperature strength of the composite steel containing Mo and Cu further increases.
The results of the continuous high-temperature oxidation test show that when the Mn content exceeds 0.6% at both 900 ° C. and 1000 ° C., the scale peeling resistance is significantly improved. It can also be seen that the critical strain in the welding hot cracking test is significantly improved when Mn / S exceeds 200. On the other hand, the Charpy impact test results show that although the impact toughness decreases with the addition of Mo, the addition of Cu improves the toughness, and the addition of Ni has the same effect.

〔効果〕 以上のように本発明によれば,高温強度および耐高温
酸化特性に優れたうえ,耐溶接高温割れに優れ,しかも
フエライト系ステンレス鋼の欠点である低温靭性も改善
されたフェライト系耐熱用ステンレス鋼が得られたもの
であり,特に今後の内燃機関の高出力化および高性能化
に応えうる排ガス系統用材料として多大の貢献ができ
る。
[Effects] As described above, according to the present invention, a ferritic heat-resistant material having excellent high-temperature strength and high-temperature oxidation resistance, excellent resistance to high-temperature cracking at welding, and improved low-temperature toughness, which is a disadvantage of ferritic stainless steel. This is a stainless steel for industrial use, and it can make a great contribution as an exhaust gas system material that can respond to the high output and high performance of internal combustion engines in the future.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明をなすに至った高温引張試験結果の例を
示すMo量と高温引張強度との関係図,第2図は高温酸化
試験結果の例を示すMn量とスケール剥離量の関係図,第
3は溶接高温割れ試験結果の例を示すMn/Sと臨界歪量と
の関係図,第4図はシャルピー衝撃試験結果の例を示す
Cu量とシャルピー衝撃試験値の関係図である。
FIG. 1 is a diagram showing the relationship between the amount of Mo and high-temperature tensile strength showing an example of the results of a high-temperature tensile test which led to the present invention, and FIG. Fig. 3 shows the relationship between Mn / S and critical strain, showing an example of the results of welding hot cracking test. Fig. 4 shows an example of the results of Charpy impact test.
FIG. 4 is a relationship diagram between a Cu amount and a Charpy impact test value.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】重量%において, C:0.03%以下, Si:0.1〜0.8%, Mn:0.6〜2.0%, S:0.006%以下, Ni:4%以下, Cr:17.0〜25.0%, Nb:0.2〜0.8%, Mo:1.0越え〜4.5%, Cu:0.1〜2.5%, N;0.03%以下, ただし,前記の範囲において, Mn%/S%の比が200以上, 〔Nb〕=Nb%−8%(C%+N%) の式に従う〔Nb〕が0.2以上,および Ni%+Cu%が4以下 の関係を満足するようにこれらの元素を含有し,残部が
Feおよび製造上の不可避的不純物からなる低温靭性,溶
接性および耐熱性に優れたフェライト系耐熱用ステンレ
ス鋼。
C .: 0.03% or less, Si: 0.1 to 0.8%, Mn: 0.6 to 2.0%, S: 0.006% or less, Ni: 4% or less, Cr: 17.0 to 25.0%, Nb: 0.2 to 0.8%, Mo: more than 1.0 to 4.5%, Cu: 0.1 to 2.5%, N; 0.03% or less, provided that the ratio of Mn% / S% is 200 or more, [Nb] = Nb% According to the formula of -8% (C% + N%), these elements are contained so that [Nb] satisfies the relation of 0.2 or more and Ni% + Cu% satisfies the relation of 4 or less, and the balance is
Ferritic heat-resistant stainless steel with excellent low-temperature toughness, weldability and heat resistance consisting of Fe and inevitable impurities in production.
【請求項2】重量%において, C:0.03%以下, Si:0.1〜0.8%, Mn:0.6〜2.0%, S:0.006%以下, Ni:4%以下, Cr:17.0〜25.0%, Nb:0.2〜0.8%, Mo:1.0越え〜4.5%, Cu:0.1〜2.5%, N;0.03%以下, を含有し,且つ Al:0.5%以下, Ti:0.6%以下, V:0.5%以下, Zr:1.0%以下, W:1.5%以下, B:0.01%以下, REM:0.1%以下 の一種または二種以上を含有したうえ, 前記の範囲において, Mn%/S%の比が200以上, 〔Nb〕/Nb%−8(C%+N%) の式に従う〔Nb〕が0.2以上,および Ni%+Cu%が4以下 の関係を満足するようにこれらの元素を含有し,残部が
Feおよび製造上の不可避的不純物からなる低温靭性,溶
接性および耐熱性に優れたフェライト系耐熱用ステンレ
ス鋼。
2. In% by weight, C: 0.03% or less, Si: 0.1 to 0.8%, Mn: 0.6 to 2.0%, S: 0.006% or less, Ni: 4% or less, Cr: 17.0 to 25.0%, Nb: 0.2 to 0.8%, Mo: over 1.0 to 4.5%, Cu: 0.1 to 2.5%, N: 0.03% or less, and Al: 0.5% or less, Ti: 0.6% or less, V: 0.5% or less, Zr : 1.0% or less, W: 1.5% or less, B: 0.01% or less, REM: 0.1% or less, and in the above range, the ratio of Mn% / S% is 200 or more, [ According to the formula of [Nb] / Nb% -8 (C% + N%), these elements are contained so that [Nb] satisfies the relationship of 0.2 or more, and Ni% + Cu% satisfies the relationship of 4 or less.
Ferritic heat-resistant stainless steel with excellent low-temperature toughness, weldability and heat resistance consisting of Fe and inevitable impurities in production.
JP2074785A 1990-03-24 1990-03-24 Ferrite heat-resistant stainless steel with excellent low-temperature toughness, weldability and heat resistance Expired - Lifetime JP2696584B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2074785A JP2696584B2 (en) 1990-03-24 1990-03-24 Ferrite heat-resistant stainless steel with excellent low-temperature toughness, weldability and heat resistance
EP91906263A EP0478790B1 (en) 1990-03-24 1991-03-13 Heat-resistant ferritic stainless steel excellent in low-temperature toughness, weldability and heat resistance
PCT/JP1991/000344 WO1991014796A1 (en) 1990-03-24 1991-03-13 Heat-resistant ferritic stainless steel excellent in low-temperature toughness, weldability and heat resistance
CA002056362A CA2056362C (en) 1990-03-24 1991-03-13 Heat resisting ferritic stainless steel excellent in low temperature toughness, weldability and heat resistance
DE69110816T DE69110816T2 (en) 1990-03-24 1991-03-13 HEAT-RESISTANT FERRITIC STAINLESS STEEL WITH EXCELLENT PROPERTIES FOR TOUGHNESS AT DEEP TEMPERATURES, WELDABILITY AND HEAT RESISTANCE.
KR1019910701642A KR0180206B1 (en) 1990-03-24 1991-03-13 Heat resistant ferritic stainless steel excellent in low-temperature, weldability & heat resistance
US07/976,840 US5302214A (en) 1990-03-24 1992-11-16 Heat resisting ferritic stainless steel excellent in low temperature toughness, weldability and heat resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2074785A JP2696584B2 (en) 1990-03-24 1990-03-24 Ferrite heat-resistant stainless steel with excellent low-temperature toughness, weldability and heat resistance

Publications (2)

Publication Number Publication Date
JPH03274245A JPH03274245A (en) 1991-12-05
JP2696584B2 true JP2696584B2 (en) 1998-01-14

Family

ID=13557292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2074785A Expired - Lifetime JP2696584B2 (en) 1990-03-24 1990-03-24 Ferrite heat-resistant stainless steel with excellent low-temperature toughness, weldability and heat resistance

Country Status (6)

Country Link
EP (1) EP0478790B1 (en)
JP (1) JP2696584B2 (en)
KR (1) KR0180206B1 (en)
CA (1) CA2056362C (en)
DE (1) DE69110816T2 (en)
WO (1) WO1991014796A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2060650A1 (en) 2007-11-13 2009-05-20 Nisshin Steel Co., Ltd. Ferritic stainless steel material for automobile exhaust gas passage components
WO2011111871A1 (en) 2010-03-11 2011-09-15 新日鐵住金ステンレス株式会社 Highly oxidation-resistant ferrite stainless steel plate, highly heat-resistant ferrite stainless steel plate, and manufacturing method therefor
WO2013133429A1 (en) 2012-03-09 2013-09-12 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet
US9399809B2 (en) 2011-02-08 2016-07-26 Nippon Steel & Sumikin Stainless Steel Corporation Hot rolled ferritic stainless steel sheet, method for producing same, and method for producing ferritic stainless steel sheet
US10030282B2 (en) 2012-02-15 2018-07-24 Nippon Steel & Sumikin Stainless Steel Corporation Ferrite-based stainless steel plate having excellent resistance against scale peeling, and method for manufacturing same
US10260134B2 (en) 2012-03-30 2019-04-16 Nippon Steel & Sumikin Stainless Steel Corporation Hot rolled ferritic stainless steel sheet for cold rolling raw material
US10385429B2 (en) 2013-03-27 2019-08-20 Nippon Steel & Sumikin Stainless Steel Corporation Hot-rolled ferritic stainless-steel plate, process for producing same, and steel strip
US10450623B2 (en) 2013-03-06 2019-10-22 Nippon Steel & Sumikin Stainless Steel Corporation Ferritic stainless steel sheet having excellent heat resistance

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0547626B1 (en) * 1991-12-19 1997-07-23 Sumitomo Metal Industries, Ltd. Exhaust manifold
US5427634A (en) * 1992-04-09 1995-06-27 Nippon Steel Corporation Ferrite system stainless steel having excellent nacl-induced hot corrosion resistance and high temperature strength
MY118759A (en) * 1995-12-15 2005-01-31 Nisshin Steel Co Ltd Use of a stainless steel as an anti-microbial member in a sanitary environment
FR2746114B1 (en) * 1996-03-15 1998-04-24 PROCESS FOR PRODUCING FERRITIC STAINLESS STEEL HAVING IMPROVED CORROSION RESISTANCE, IN PARTICULAR INTERGRANULAR AND PITCH CORROSION RESISTANCE
KR20000034395A (en) * 1998-11-30 2000-06-26 이구택 Ferrite type stainless steel excellent in toughness in welding unit
KR100605678B1 (en) * 1999-11-08 2006-07-31 주식회사 포스코 A heat resistant stainless steel having good heat resistant strength
EP1176220B9 (en) 2000-07-25 2004-04-21 JFE Steel Corporation Ferritic stainless steel sheet having superior workability at room temperatures and mechanical characteristics at high temperatures, and method of producing the same
US20040170518A1 (en) * 2001-07-05 2004-09-02 Manabu Oku Ferritic stainless steel for member of exhaust gas flow passage
CN1308477C (en) * 2003-10-31 2007-04-04 烨联钢铁股份有限公司 Rich granule iron series stainless steel with good hot work ability and antibacterial effect
EP1818421A1 (en) * 2006-02-08 2007-08-15 UGINE & ALZ FRANCE Ferritic, niobium-stabilised 19% chromium stainless steel
JP4948998B2 (en) * 2006-12-07 2012-06-06 日新製鋼株式会社 Ferritic stainless steel and welded steel pipe for automotive exhaust gas flow path members
CN100485077C (en) * 2007-06-13 2009-05-06 陈卫东 Ultrathin alloy material hose and producing method thereof
JP5428396B2 (en) * 2008-03-07 2014-02-26 Jfeスチール株式会社 Ferritic stainless steel with excellent heat resistance and weldability
CN102099500B (en) * 2008-07-23 2013-01-23 新日铁住金不锈钢株式会社 Ferritic stainless steel for use in producing urea water tank
JP5462583B2 (en) * 2008-10-24 2014-04-02 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet for EGR cooler
KR20120036959A (en) * 2009-07-27 2012-04-18 닛신 세이코 가부시키가이샤 Ferritic stainless steel for egr cooler and egr cooler
JP5609571B2 (en) * 2010-11-11 2014-10-22 Jfeスチール株式会社 Ferritic stainless steel with excellent oxidation resistance
JP5703075B2 (en) * 2011-03-17 2015-04-15 新日鐵住金ステンレス株式会社 Ferritic stainless steel plate with excellent heat resistance
US9920409B2 (en) * 2012-01-30 2018-03-20 Jfe Steel Corporation Ferritic stainless steel foil
FI125855B (en) * 2012-06-26 2016-03-15 Outokumpu Oy Ferritic stainless steel
WO2018043310A1 (en) 2016-09-02 2018-03-08 Jfeスチール株式会社 Ferritic stainless steel
WO2018216236A1 (en) * 2017-05-26 2018-11-29 Jfeスチール株式会社 Ferritic stainless steel
EP3670692B1 (en) 2018-12-21 2022-08-10 Outokumpu Oyj Ferritic stainless steel
CN112458379A (en) * 2020-10-30 2021-03-09 萍乡德博科技股份有限公司 Material suitable for variable-section nozzle ring disc parts of gasoline engine

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2701329C2 (en) * 1977-01-14 1983-03-24 Thyssen Edelstahlwerke AG, 4000 Düsseldorf Corrosion-resistant ferritic chrome-molybdenum-nickel steel
JPS53118218A (en) * 1977-03-25 1978-10-16 Nippon Steel Corp Stainless steel use in apparatus for purifying automotive exhaust gas
US4286986A (en) * 1979-08-01 1981-09-01 Allegheny Ludlum Steel Corporation Ferritic stainless steel and processing therefor
CA1184402A (en) * 1980-04-11 1985-03-26 Sumitomo Metal Industries, Ltd. Ferritic stainless steel having good corrosion resistance
US4391635A (en) * 1980-09-22 1983-07-05 Kubota, Ltd. High Cr low Ni two-phased cast stainless steel
US4331474A (en) * 1980-09-24 1982-05-25 Armco Inc. Ferritic stainless steel having toughness and weldability
FR2589482B1 (en) * 1985-11-05 1987-11-27 Ugine Gueugnon Sa STAINLESS STEEL FERRITIC STEEL SHEET OR STRIP, ESPECIALLY FOR EXHAUST SYSTEMS
JP2514367B2 (en) * 1987-06-27 1996-07-10 日新製鋼株式会社 Automotive engine manifold steel
US4834808A (en) * 1987-09-08 1989-05-30 Allegheny Ludlum Corporation Producing a weldable, ferritic stainless steel strip
JPH02145752A (en) * 1988-11-28 1990-06-05 Toshiba Corp Ferritic stainless steel

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2060650A1 (en) 2007-11-13 2009-05-20 Nisshin Steel Co., Ltd. Ferritic stainless steel material for automobile exhaust gas passage components
WO2011111871A1 (en) 2010-03-11 2011-09-15 新日鐵住金ステンレス株式会社 Highly oxidation-resistant ferrite stainless steel plate, highly heat-resistant ferrite stainless steel plate, and manufacturing method therefor
US9243306B2 (en) 2010-03-11 2016-01-26 Nippon Steel & Sumikin Stainless Steel Corporation Ferritic stainless steel sheet excellent in oxidation resistance
US9399809B2 (en) 2011-02-08 2016-07-26 Nippon Steel & Sumikin Stainless Steel Corporation Hot rolled ferritic stainless steel sheet, method for producing same, and method for producing ferritic stainless steel sheet
US10072323B2 (en) 2011-02-08 2018-09-11 Nippon Steel & Sumikin Stainless Steel Corporation Hot rolled ferritic stainless steel sheet, method for producing same, and method for producing ferritic stainless steel sheet
US10030282B2 (en) 2012-02-15 2018-07-24 Nippon Steel & Sumikin Stainless Steel Corporation Ferrite-based stainless steel plate having excellent resistance against scale peeling, and method for manufacturing same
WO2013133429A1 (en) 2012-03-09 2013-09-12 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet
US10260134B2 (en) 2012-03-30 2019-04-16 Nippon Steel & Sumikin Stainless Steel Corporation Hot rolled ferritic stainless steel sheet for cold rolling raw material
US10450623B2 (en) 2013-03-06 2019-10-22 Nippon Steel & Sumikin Stainless Steel Corporation Ferritic stainless steel sheet having excellent heat resistance
US10385429B2 (en) 2013-03-27 2019-08-20 Nippon Steel & Sumikin Stainless Steel Corporation Hot-rolled ferritic stainless-steel plate, process for producing same, and steel strip

Also Published As

Publication number Publication date
EP0478790A1 (en) 1992-04-08
EP0478790A4 (en) 1992-08-12
DE69110816T2 (en) 1995-11-30
CA2056362C (en) 2001-08-28
CA2056362A1 (en) 1991-09-25
KR0180206B1 (en) 1999-02-18
DE69110816D1 (en) 1995-08-03
JPH03274245A (en) 1991-12-05
KR920702434A (en) 1992-09-04
WO1991014796A1 (en) 1991-10-03
EP0478790B1 (en) 1995-06-28

Similar Documents

Publication Publication Date Title
JP2696584B2 (en) Ferrite heat-resistant stainless steel with excellent low-temperature toughness, weldability and heat resistance
JP5138504B2 (en) Ferritic stainless steel for exhaust gas flow path members
KR102234326B1 (en) Ferritic stainless steel
JP2009235573A (en) Ferritic stainless steel with excellent heat resistance and toughness
JP5540637B2 (en) Ferritic stainless steel with excellent heat resistance
EP0434887B1 (en) Heat-resistant austenitic stainless steel
JP2002241900A (en) Austenitic stainless steel having excellent sulfuric acid corrosion resistance and workability
JP3219099B2 (en) Ferrite heat-resistant stainless steel with excellent heat resistance, low temperature toughness and weldability
KR100308401B1 (en) Ferritic stainless steel with excellent high temperature oxidation resistance and scale adhesion
JPH0860306A (en) Ferritic stainless steel for automobile exhaust system member
JP5428396B2 (en) Ferritic stainless steel with excellent heat resistance and weldability
JP5743975B2 (en) Austenitic stainless steel for diesel engine EGR cooler and EGR cooler for diesel engine
JP2923825B2 (en) Ferritic stainless steel sheet for heat resistance with excellent high-temperature strength and weldability
JP2896077B2 (en) Ferrite stainless steel with excellent high-temperature oxidation resistance and scale adhesion
JP2879630B2 (en) Ferrite heat-resistant stainless steel with excellent high-temperature salt damage properties
JPH08239737A (en) Heat resistant austentic stainlss steel excellent in hot workability and sigma-embrittlement resistance
JP4309293B2 (en) Ferritic stainless steel for automotive exhaust system parts
JP3234284B2 (en) Austenitic stainless steel for flexible tubes with excellent resistance to high-temperature salt damage and high-temperature fatigue
JP5796398B2 (en) Ferritic stainless steel with excellent thermal and high temperature fatigue properties
JP2970432B2 (en) High temperature stainless steel and its manufacturing method
JP5428397B2 (en) Ferritic stainless steel with excellent heat resistance and workability
JP2009235572A (en) Ferritic stainless steel having excellent heat resistance and shape-fixability
JP5810722B2 (en) Ferritic stainless steel with excellent thermal fatigue characteristics and workability
JPH04224657A (en) Ferritic stainless steel excellent in strength at high temperature and toughness in weld heat-affected zone
JP3744083B2 (en) Heat-resistant alloy with excellent cold workability

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080919

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090919

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100919

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100919

Year of fee payment: 13