JP5138504B2 - Ferritic stainless steel for exhaust gas flow path members - Google Patents

Ferritic stainless steel for exhaust gas flow path members Download PDF

Info

Publication number
JP5138504B2
JP5138504B2 JP2008209904A JP2008209904A JP5138504B2 JP 5138504 B2 JP5138504 B2 JP 5138504B2 JP 2008209904 A JP2008209904 A JP 2008209904A JP 2008209904 A JP2008209904 A JP 2008209904A JP 5138504 B2 JP5138504 B2 JP 5138504B2
Authority
JP
Japan
Prior art keywords
mass
less
steel
ferritic stainless
stainless steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2008209904A
Other languages
Japanese (ja)
Other versions
JP2008297631A (en
Inventor
学 奥
佳幸 藤村
敏郎 名越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2008209904A priority Critical patent/JP5138504B2/en
Publication of JP2008297631A publication Critical patent/JP2008297631A/en
Application granted granted Critical
Publication of JP5138504B2 publication Critical patent/JP5138504B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2530/00Selection of materials for tubes, chambers or housings
    • F01N2530/02Corrosion resistive metals
    • F01N2530/04Steel alloys, e.g. stainless steel

Description

本発明は、エキゾーストマニホールド,フロントパイプ,センターパイプ,触媒コンバーター外筒等、自動車をはじめとする各種内燃機関の排ガス流路部材として使用され、耐熱性,低温靭性,溶接性に優れたフェライト系ステンレス鋼に関する。   The present invention relates to a ferritic stainless steel that is used as an exhaust gas passage member for various internal combustion engines including automobiles, such as an exhaust manifold, a front pipe, a center pipe, and a catalytic converter outer cylinder, and has excellent heat resistance, low temperature toughness, and weldability. .

自動車の排ガス流路部材は、運転中に排気ガスが直接触れる高温雰囲気に曝され、運転,停止の繰返しに起因する熱応力や運転中のエンジンの振動が加わる。寒冷地では、冬期の始動時に低温での機械的応力も加わる。そのため、排気系部材に使用される材料には、非常に過酷な環境における耐久性が必要とされる。   The exhaust gas flow path member of an automobile is exposed to a high temperature atmosphere that the exhaust gas directly touches during operation, and is subjected to thermal stress and vibration of the engine during operation due to repeated operation and stop. In cold regions, mechanical stress at low temperatures is also applied at the start of winter. Therefore, the material used for the exhaust system member is required to have durability in a very severe environment.

ステンレス鋼の板材やパイプを排ガス流路部材に使用する場合、耐熱性に優れることは勿論、溶接や加工で製品形状に組み立てられるため、溶接性,加工性に優れていることも重要な要求特性である。成形時の二次加工や使用時の低温での機械的負荷に耐える靭性(低温靭性)も必要になる。   When stainless steel plates and pipes are used as exhaust gas flow path members, they are not only excellent in heat resistance, but are also required to have excellent weldability and workability because they are assembled into product shapes by welding and processing. It is. Toughness (low temperature toughness) that can withstand secondary mechanical processing during molding and mechanical loads at low temperatures during use is also required.

フェライト系ステンレス鋼は、オーステナイト系ステンレス鋼と比較して熱膨張が小さく、熱疲労特性,耐スケール剥離性に優れている。鋼材コストも低いため、排ガス流路部材にフェライト系ステンレス鋼が使用されるケースが多い。
フェライト系ステンレス鋼は、オーステナイト系ステンレス鋼よりも高温強度が本質的に低いため、高温強度を改善する改良が施されてきた。たとえば、SUS430J1l系のNb添加鋼,Nb,Si複合添加鋼(特開平3−274245号公報),Nb,Mo複合添加鋼(特開平5−125491号公報)等がある。なかでも、Nb、Mo複合添加鋼は、高温強度が最も高く、優れた熱疲労特性が要求される部位に使用されている。しかし、Nb,Mo複合添加鋼は、他の鋼種に比べ加工性や低温靭性が劣る傾向にある。加工性,低温靭性を改善した事例は散見されるものの、必ずしも十分とは言い難い。高価な元素Moを多量に含むため鋼材コストが高いことも欠点である。
Ferritic stainless steel has smaller thermal expansion than austenitic stainless steel, and is excellent in thermal fatigue characteristics and scale peel resistance. Since the steel material cost is also low, ferritic stainless steel is often used for the exhaust gas flow path member.
Ferritic stainless steel has inherently lower high temperature strength than austenitic stainless steel, and therefore has been improved to improve high temperature strength. For example, SUS430J1l-based Nb-added steel, Nb, Si composite-added steel (JP-A-3-274245), Nb, Mo composite-added steel (JP-A-5-125491), and the like. Among these, Nb and Mo composite-added steel has the highest high-temperature strength and is used in parts that require excellent thermal fatigue characteristics. However, Nb and Mo composite-added steels tend to be inferior in workability and low temperature toughness as compared with other steel types. Although there are some cases where workability and low temperature toughness are improved, it is not necessarily sufficient. It is also a disadvantage that the steel material cost is high because it contains a large amount of expensive element Mo.

ところで、排気ガス経路部材が曝される環境下で最も重視される高温強度(耐熱疲労破壊)と高温酸化特性(異常酸化限界温度)の相関性をみると、高温強度,高温酸化特性を必ずしも高いレベルで両立させる必要のない部位もある。具体的には、排気ガス温度があまり高くなくても構造が非常に複雑な部位では、高温酸化特性よりも高温強度が重視され、構造の複雑さに対応できる加工性や低温靭性も重視される。かかる部位に対しても、現状ではNb,Mo複合添加鋼を使用せざるを得ず、耐熱性は十分であっても、加工性,低温靭性,コストの面で改良の余地がある。   By the way, looking at the correlation between high-temperature strength (heat-resistant fatigue failure) and the high-temperature oxidation characteristics (abnormal oxidation limit temperature), which are most important in an environment where the exhaust gas path member is exposed, the high-temperature strength and high-temperature oxidation characteristics are not necessarily high. Some parts do not need to be balanced at the level. Specifically, in areas where the structure is very complex even if the exhaust gas temperature is not very high, high-temperature strength is more important than high-temperature oxidation characteristics, and workability and low-temperature toughness that can handle the complexity of the structure are also important. . At present, Nb and Mo composite-added steel must be used for such parts, and there is room for improvement in terms of workability, low temperature toughness, and cost, even though the heat resistance is sufficient.

本発明は、このような問題を解消すべく案出されたものであり、高価なMoを合金成分として使用することなく、Nb,Mo複合添加鋼に匹敵する耐熱性を有し、加工性,低温靭性,溶接性にも優れた排ガス流路部材用フェライト系ステンレス鋼を提供することを目的とする。   The present invention has been devised to solve such problems, and without using expensive Mo as an alloy component, it has heat resistance comparable to that of Nb, Mo composite added steel, workability, An object of the present invention is to provide a ferritic stainless steel for exhaust gas passage members that is excellent in low temperature toughness and weldability.

本発明の排ガス流路部材用フェライト系ステンレス鋼は、その目的を達成するため、C:0.03質量%以下,Si:1.0質量%以下,Mn:1.5質量%以下,Ni:0.6質量%以下,Cr:10〜20質量%,Nb:0.50質量%以下,Ti:0.05〜0.30質量%,Cu:1.0〜2.0質量%,Al:0.03質量%以下,V:0.03〜0.20質量%,N:0.03質量%以下を含み、且つNb≧8(C+N)を満足していることを特徴とする(ただし、Cr:14〜19質量%、Si:0.5質量%以下、Mn:0.5質量%以下、Al:0.1質量%以下、Ti:0.02〜0.40質量%、Nb:0〜0.5質量%、Cu:1.0質量%、V:0〜1.0質量%、Ni:0〜1.0質量%、Ca:0〜0.005質量%で、残部がFeと不可避不純物からなり、不純物としてのC:0.015質量%以下、N:0.015質量%以下、P:0.04質量%以下であり、かつ、下記(1)〜(4)式を満たすフェライト系ステンレス鋼を除く)。
C(質量%)+N(質量%)≦0.025 (質量%) ・・・(1)
Ti(質量%)/(C(質量%)+N(質量%))≧5・・・(2)
0.5×C(質量%)≦S(質量%)≦0.001(質量%)・・・(3)
Ti(質量%)/Mn(質量%)≧0.5 ・・・(4)
このフェライト系ステンレス鋼は、Moを合金成分として含んでおらず、二次加工性を更に高めるため0.0005〜0.02質量%のBを含むこともできる。
In order to achieve the object of the ferritic stainless steel for exhaust gas flow path member of the present invention, C: 0.03% by mass or less, Si: 1.0% by mass or less, Mn: 1.5% by mass or less, Ni: 0.6 mass% or less, Cr: 10 to 20 mass%, Nb: 0.50 mass% or less, Ti: 0.05 to 0.30 mass%, Cu: 1.0 to 2.0 mass%, Al: 0.03% by mass or less, V: 0.03 to 0.20% by mass, N: 0.03% by mass or less, and satisfying Nb ≧ 8 (C + N) (however, Cr: 14 to 19% by mass, Si: 0.5% by mass or less, Mn: 0.5% by mass or less, Al: 0.1% by mass or less, Ti: 0.02 to 0.40% by mass, Nb: 0 -0.5 mass%, Cu: 1.0 mass%, V: 0-1.0 mass%, Ni: 0-1.0 mass%, Ca: 0-0.0 mass% 5% by mass, the balance being Fe and inevitable impurities, C as impurities: 0.015% by mass or less, N: 0.015% by mass or less, P: 0.04% by mass or less, and the following ( 1) to (4) except for ferritic stainless steels that satisfy the equations (4).
C (mass%) + N (mass%) ≦ 0.025 (mass%) (1)
Ti (mass%) / (C (mass%) + N (mass%)) ≧ 5 (2)
0.5 × C (mass%) ≦ S (mass%) ≦ 0.001 (mass%) (3)
Ti (mass%) / Mn (mass%) ≧ 0.5 (4)
This ferritic stainless steel does not contain Mo as an alloy component, and can further contain 0.0005 to 0.02 mass% B in order to further improve the secondary workability.

排ガス流路部材が曝される環境における耐熱特性を満足する材料として従来からSUH409L系,SUS430J1l系,SUS429系のステンレス鋼が使用されているが、最高温度が800〜900℃程度に留まるものの従来鋼種より格段に高い高温強度が要求される部位もある。高温強度が要求される部位は、構造が非常に複雑で熱応力が繰返し加わることから熱疲労破壊が生じやすい個所でもある。しかも、当該部位の構成材料には、Mo添加鋼では得られない加工性や低温靭性等が要求される。   Conventionally, SUH409L, SUS430J1l, and SUS429 stainless steels have been used as materials that satisfy the heat resistance characteristics in the environment to which the exhaust gas flow path member is exposed, but the conventional steel types have a maximum temperature of about 800 to 900 ° C. There are also parts that require much higher high-temperature strength. The site where high temperature strength is required is also a place where thermal fatigue failure is likely to occur because the structure is very complicated and thermal stress is repeatedly applied. In addition, workability and low-temperature toughness that cannot be obtained with Mo-added steel are required for the constituent material of the part.

本発明者等は、かかる部位の構成材料に要求される特性を満足させるため、種々の合金元素の影響を調査した。その結果、V,Cuの複合添加により900℃以下の高温強度,加工性,低温靭性が改善され、Nb,Mo添加鋼と同レベルが得られることを見出した。
微量のVを添加し、Cu含有量を変えたNb含有フェライト系ステンレス鋼について、700℃及び800℃の高温引張り試験で0.2%耐力を測定した。その結果、Vの微量添加及びCu含有量の規制により、900℃以下の高温強度が飛躍的に上昇し、Nb,Mo複合添加鋼に匹敵する高温強度が得られることを見出した。
The present inventors investigated the influence of various alloy elements in order to satisfy the characteristics required for the constituent materials of such parts. As a result, it was found that the combined addition of V and Cu improved the high-temperature strength at 900 ° C. or lower, workability, and low-temperature toughness, and the same level as the Nb and Mo-added steel was obtained.
With respect to Nb-containing ferritic stainless steel in which a small amount of V was added and the Cu content was changed, 0.2% yield strength was measured by a high-temperature tensile test at 700 ° C and 800 ° C. As a result, it has been found that the high temperature strength of 900 ° C. or lower is dramatically increased by the addition of a small amount of V and the Cu content, and a high temperature strength comparable to that of the Nb, Mo composite added steel can be obtained.

図1は、17Cr−0.4Nb−0.1V鋼の基本組成に種々の含有量でCuを添加した鋼の引張試験結果である。図1では、比較のためNb,Mo複合添加鋼である18Cr−2Mo−0.4Nbを基本成分とするSUS444系鋼の強度レベルも併せ示している。
図1の結果から明らかなように、700℃及び800℃における0.2%耐力は、Cu量の増加に伴い急激に上昇している。Cu含有量を0.8質量%以上にすると、Moを約2質量%含むSUS444系と同等又はそれ以上の0.2%耐力が得られている。900℃における0.2%耐力に関しては、V,Cuの増量ではSUS444系鋼のレベルに達しないものの、Nb含有フェライト系ステンレス鋼以上に0.2%耐力を向上させることを別の実験で確認している。すなわち、900℃以下の温度域においてV,Cuの複合添加は高温強度の改善に有効であり、900℃以上でも大きな弊害が現れない。
FIG. 1 shows the results of a tensile test of steel obtained by adding Cu at various contents to the basic composition of 17Cr-0.4Nb-0.1V steel. In FIG. 1, the strength level of SUS444 series steel which has 18Cr-2Mo-0.4Nb which is Nb and Mo compound addition steel as a basic component is also shown for the comparison.
As is clear from the results of FIG. 1, the 0.2% proof stress at 700 ° C. and 800 ° C. increases rapidly as the amount of Cu increases. When the Cu content is 0.8% by mass or more, 0.2% proof stress equivalent to or higher than that of the SUS444 system containing about 2% by mass of Mo is obtained. As for 0.2% proof stress at 900 ° C, it was confirmed in another experiment that the increase in V and Cu did not reach the level of SUS444 steel, but improved 0.2% proof stress over Nb-containing ferritic stainless steel. doing. That is, the combined addition of V and Cu is effective in improving the high-temperature strength in the temperature range of 900 ° C. or lower, and no serious adverse effect appears at 900 ° C. or higher.

Nb,Cu,Vの複合添加で、高温強度が高いレベルに確保される理由は十分に解明されていないが、短時間及び長時間加熱後の何れにおいてもNb系析出物,Cu系析出物がNb単独添加鋼に比較して微細分散した組織が観察される。この観察結果から、Vが焼鈍ままの状態又は加熱初期に優先析出することにより、Nb系析出物,Cu系析出物の生成が抑制され、結果として微細なNb系析出物,Cu系析出物が分散析出し、析出強化に寄与するものと推察される。加熱初期に微細分散した析出物が長時間加熱によっても凝集せず、析出強化が長時間まで有効に作用していることも一因と推察される。   The reason why the combined addition of Nb, Cu, and V ensures a high level of high-temperature strength has not been fully elucidated, but Nb-based precipitates and Cu-based precipitates are observed in both short time and long time heating. A finely dispersed structure is observed as compared with the steel containing Nb alone. From this observation result, generation of Nb-based precipitates and Cu-based precipitates is suppressed by preferentially precipitating V in the annealed state or in the initial stage of heating. As a result, fine Nb-based precipitates and Cu-based precipitates are formed. It is presumed that the dispersion precipitates and contributes to precipitation strengthening. Presumably, the finely dispersed precipitates at the initial stage of heating do not aggregate even when heated for a long time, and the precipitation strengthening works effectively for a long time.

更に、強力な炭窒化物生成元素であるVがC,Nと結合するため、Nb添加量が同一の場合には高温強度の向上に有効な固溶NbをV無添加鋼よりも多く確保できる。換言すると、V無添加鋼と同レベルの高温強度が低減したNb含有量で達成でき、結果として加工性,低温靭性の改善に寄与する。
しかも、Nb,Vが共存する系では、焼鈍ままの状態でのNb系,V系炭窒化物の量が多くなる。Nb系,V系炭窒化物の増加に伴って溶接熱影響部の結晶粒が粗大化しにくくなり、靭性が改善される。Cr系炭化物の生成も抑制されるので、耐粒界腐食感受性も向上する。
Further, since V, which is a strong carbonitride-forming element, is combined with C and N, when the amount of Nb added is the same, more solute Nb effective in improving the high temperature strength can be secured than in the steel without V addition. . In other words, it can be achieved with the Nb content in which the high temperature strength at the same level as that of the V-free steel is reduced, and as a result, it contributes to the improvement of workability and low temperature toughness.
In addition, in a system in which Nb and V coexist, the amount of Nb-based and V-based carbonitrides in an annealed state increases. As the Nb-based and V-based carbonitrides increase, the crystal grains in the weld heat-affected zone are less likely to be coarsened, and the toughness is improved. Since the formation of Cr-based carbide is also suppressed, the intergranular corrosion resistance is improved.

以下、本発明が対象とするフェライト系ステンレス鋼の合金成分,含有量等を説明する。
C:0.03質量%以下
N:0.03質量%以下
C及びNは、一般的にはクリープ強度等の高温強度向上に有効な元素とされているが、過剰に含まれると酸化特性,加工性,低温靭性,溶接性が低下する。C,Nを炭窒化物として固定する元素としてV,Nbを添加している本成分系では、C,N濃度に見合った量のV,Nbを添加する必要がなる。V,Nbの増量に起因した原料費の上昇を抑えるため、C,N共に0.03質量%以下(好ましくは、0.015質量%以下)に規制した。
Hereinafter, the alloy components, contents, and the like of the ferritic stainless steel targeted by the present invention will be described.
C: 0.03 mass% or less
N: 0.03 mass% or less C and N are generally effective elements for improving high-temperature strength such as creep strength, but if included excessively, oxidation characteristics, workability, low-temperature toughness, weldability Decreases. In this component system in which V and Nb are added as elements for fixing C and N as carbonitrides, it is necessary to add V and Nb in amounts corresponding to the C and N concentrations. In order to suppress an increase in raw material cost due to the increase in V and Nb, both C and N were regulated to 0.03% by mass or less (preferably 0.015% by mass or less).

Si:1.0質量%以下
高温酸化特性の改善に非常に有効な元素であるが、900℃以下の高温強度の上昇にはさほど効果的でない。逆にSiを過剰添加すると、硬さが上昇し、加工性,低温靭性が低下する。したがって、Si含有量を1.0質量%以下(好ましくは、0.1〜0.5質量%)に規制した。
Mn:1.5質量%以下
フェライト系ステンレス鋼の高温酸化特性、特にスケール剥離性を改善する合金元素であるが、Mnの過剰添加は加工性,溶接性を劣化させる。また、オーステナイト相安定化元素であるため、Crの添加量が少ない鋼種にMnを過剰添加するとマルテンサイト相が生成し易くなり、熱疲労特性,加工性の劣化を招く。したがって、Mn含有量を1.5質量%以下(好ましくは、0.5質量%以下)に規制した。
Si: 1.0% by mass or less Si is an element that is very effective for improving high-temperature oxidation characteristics, but is not so effective in increasing high-temperature strength at 900 ° C. or less. Conversely, when Si is excessively added, the hardness increases, and the workability and low temperature toughness decrease. Therefore, the Si content is regulated to 1.0% by mass or less (preferably 0.1 to 0.5% by mass).
Mn: 1.5% by mass or less Although Mn is an alloy element that improves high-temperature oxidation characteristics of ferritic stainless steel, particularly scale peelability, excessive addition of Mn deteriorates workability and weldability. Moreover, since it is an austenite phase stabilizing element, when Mn is excessively added to a steel type with a small amount of Cr, a martensite phase is likely to be generated, resulting in deterioration of thermal fatigue characteristics and workability. Therefore, the Mn content is regulated to 1.5% by mass or less (preferably 0.5% by mass or less).

Ni:0.6質量%以下
オーステナイト相安定化元素であり、Cr含有量の少ない鋼種にNiを過剰添加するとMnと同様にマルテンサイト相を生成し、熱疲労特性,加工性を低下させる。原料価格が高いことからも、Niの過剰添加は避けるべきである。そこで、Ni含有量を0.6質量%以下(好ましくは、0.5質量%以下)に規制した。
Cr:10〜20質量%
フェライト相を安定させると共に、高温材料に重視される耐酸化性の改善に不可欠な元素である。耐酸化性の面からはCr含有量が多いほど好ましいが、過剰添加すると鋼材が脆化し、硬さの上昇によって加工性も劣化する。したがって、Cr含有量を10〜20質量%の範囲で選定する。Cr含有量は、好ましくは材料の使用温度に合わせて調整される。たとえば、950℃までの耐高温酸化特性には16〜19質量%が好ましく、900℃以下での耐高温酸化性には12〜16質量%が十分である。
Ni: 0.6 mass% or less An austenite phase stabilizing element. When Ni is added excessively to a steel type having a low Cr content, a martensite phase is generated in the same manner as Mn, and thermal fatigue characteristics and workability are lowered. The excessive addition of Ni should also be avoided due to the high raw material price. Therefore, the Ni content is regulated to 0.6% by mass or less (preferably 0.5% by mass or less).
Cr: 10 to 20% by mass
In addition to stabilizing the ferrite phase, it is an essential element for improving oxidation resistance, which is important for high-temperature materials. From the standpoint of oxidation resistance, the higher the Cr content, the better. However, if excessively added, the steel material becomes brittle, and the workability deteriorates due to the increase in hardness. Therefore, the Cr content is selected in the range of 10 to 20% by mass. The Cr content is preferably adjusted according to the use temperature of the material. For example, 16 to 19% by mass is preferable for high temperature oxidation resistance up to 950 ° C., and 12 to 16% by mass is sufficient for high temperature oxidation resistance at 900 ° C. or less.

Nb:8(C+N)〜0.50質量%
C,Nを炭窒化物として固定し、炭窒化物を固定した残りの固溶Nbは高温強度を上昇させる作用を呈する。しかし、過剰量のNbを添加すると、加工性,低温靭性が劣化し、溶接高温割れ感受性が高くなる。C,Nの固定にはNb≧8(C+N)を満足するNb含有量が必要であるが、加工性,低温靭性,溶接高温割れ感受性に及ぼす悪影響を抑えるためNb含有量の上限を0.5質量%に設定する.好ましくは、8(C+N)+0.10≦Nb≦0.45を満足するNb含有量が選定される。
Cu:0.8〜2.0質量%
本成分系においては、高温強度の改善のために非常に重要な元素である。本発明者等が検討した温度範囲では、Cuのほぼ全量が焼鈍状態のマトリックスに固溶しており、加熱中に析出する。析出したCuはMo添加鋼と同様に初期には強化作用を発揮するが、長時間加熱では強化作用が徐々に消失する。必要な高温強度を得る上では、図1からも明らかなように0.8質量%以上のCu含有量が必要である。しかし、Cu含有量の増加に伴い、加工性,低温靭性,溶接性が低下する。加工性,低温靭性,溶接性に及ぼす悪影響を抑えるため、Cu含有量の上限を2.0質量%に規制する。好ましいCu含有量は、1.0〜1.7質量%の範囲である。
Nb: 8 (C + N) to 0.50 mass%
C and N are fixed as carbonitride, and the remaining solid solution Nb to which carbonitride is fixed exhibits the effect of increasing the high-temperature strength. However, when an excessive amount of Nb is added, workability and low-temperature toughness deteriorate, and the weld hot cracking susceptibility increases. Nb content satisfying Nb ≧ 8 (C + N) is necessary for fixing C and N, but the upper limit of Nb content is set to 0.5% in order to suppress adverse effects on workability, low temperature toughness and weld hot cracking susceptibility. Set to mass%. Preferably, an Nb content satisfying 8 (C + N) + 0.10 ≦ Nb ≦ 0.45 is selected.
Cu: 0.8-2.0 mass%
In this component system, it is a very important element for improving high-temperature strength. In the temperature range investigated by the present inventors, almost the entire amount of Cu is dissolved in the annealed matrix and precipitates during heating. Precipitated Cu exhibits a strengthening action in the initial stage as in the case of Mo-added steel, but the strengthening action gradually disappears when heated for a long time. In order to obtain the necessary high-temperature strength, a Cu content of 0.8% by mass or more is necessary as is apparent from FIG. However, with increasing Cu content, workability, low temperature toughness, and weldability deteriorate. In order to suppress adverse effects on workability, low temperature toughness and weldability, the upper limit of Cu content is regulated to 2.0 mass%. A preferable Cu content is in the range of 1.0 to 1.7% by mass.

Al:0.03質量%以下
製鋼時に脱酸剤として添加され、耐高温酸化性を改善する作用も呈する。しかし、Alの過剰添加は、表面性状を劣化させ、加工性,溶接性,低温靭性に悪影響を及ぼす。したがって、Al含有量は少ないほど好ましく、上限を0.03質量%(好ましくは、0.02質量%)に規制する。
V:0.03〜0.20質量%
Nb,Cuと複合添加すると、フェライト系ステンレス鋼の高温強度が向上する。また、Nbとの共存により、加工性,低温靭性,耐粒界腐食感受性が改善され、溶接熱影響部の靭性も改善される。これらの効果は0.03質量%以上のV含有量で現れるが、0.20質量%を超える過剰添加は加工性,低温靭性の低下を招く。したがって、V含有量を0.03〜0.20質量%(好ましくは、0.04〜0.15質量%)の範囲で選定する。
Al: 0.03% by mass or less Al is added as a deoxidizer during steelmaking, and also exhibits an effect of improving high-temperature oxidation resistance. However, excessive addition of Al deteriorates the surface properties and adversely affects workability, weldability, and low temperature toughness. Therefore, the lower the Al content, the better. The upper limit is regulated to 0.03% by mass (preferably 0.02% by mass).
V: 0.03-0.20 mass%
When combined with Nb and Cu, the high temperature strength of ferritic stainless steel is improved. In addition, coexistence with Nb improves workability, low-temperature toughness, and intergranular corrosion susceptibility, and also improves the toughness of the heat affected zone. Although these effects appear at a V content of 0.03% by mass or more, excessive addition exceeding 0.20% by mass leads to deterioration of workability and low temperature toughness. Therefore, the V content is selected in the range of 0.03 to 0.20 mass% (preferably 0.04 to 0.15 mass%).

Ti:0.05〜0.30質量%
鋼のr値(ランクフォード値)を向上させて成形性を改善する元素であり、0.05質量%以上で添加効果が顕著になる。しかし、過剰量のTiを添加すると、TiNの生成に起因して鋼材の表面性状が劣化し、溶接性,低温靭性にも悪影響が現れる。したがって、成形性向上のためにTiを添加する場合でもTi含有量を可能な限り低減することが望まれる。そこで、Ti含有量の上限を0.30質量%(好ましくは、0.20質量%)に規制した。
B:0.0005〜0.02質量%
鋼の二次加工性を向上させ、多段成形時の割れを抑制する元素であり、0.0005質量%以上でBの添加効果が顕著になる。しかし、Bを多量に添加すると、製造性や溶接性が劣化する。したがって、0.0005〜0.02質量%(好ましくは、0.001〜0.01質量%)の範囲にB含有量を選定する。
Mo:0.10質量%未満
本発明のフェライト系ステンレス鋼では、高価なMoを添加しないことを前提にしているが、ステンレス鋼の製造時に不可避的不純物として混入しやすい元素である。Moが多量に混入すると加工性,低温靭性,溶接性を劣化させる等の弊害があるので、混入量を0.10質量%未満に規制することが望ましい。
Ti: 0.05-0.30 mass%
It is an element that improves the r value (Rankford value) of steel and improves formability, and the effect of addition becomes noticeable at 0.05% by mass or more. However, when an excessive amount of Ti is added, the surface properties of the steel material deteriorate due to the formation of TiN, and the weldability and low temperature toughness are also adversely affected. Therefore, it is desired to reduce the Ti content as much as possible even when adding Ti to improve the moldability. Therefore, the upper limit of the Ti content is regulated to 0.30% by mass (preferably 0.20% by mass).
B: 0.0005 to 0.02 mass%
It is an element that improves the secondary workability of steel and suppresses cracking during multi-stage forming, and the effect of adding B becomes remarkable at 0.0005% by mass or more. However, if a large amount of B is added, the productivity and weldability deteriorate. Therefore, the B content is selected in the range of 0.0005 to 0.02 mass% (preferably 0.001 to 0.01 mass%).
Mo: Less than 0.10% by mass The ferritic stainless steel of the present invention is premised on that expensive Mo is not added, but is an element that is easily mixed as an inevitable impurity during the production of stainless steel. If a large amount of Mo is mixed, there are harmful effects such as deterioration of workability, low temperature toughness, and weldability. Therefore, it is desirable to limit the mixing amount to less than 0.10% by mass.

以上に掲げた元素以外については特に規制されるものではないが、一般的な不純物であるP,S,O等は可能な限り低減することが好ましい。熱間加工性,耐酸化性等を考慮すると、P,S,Oの上限をそれぞれ0.04質量%,0.03質量%,0.02質量%とすることが好ましい。耐熱性の改善に有効なW,Zr,Y,REM(希土類元素)や、熱間加工性の改善に有効なCa,Mg,Co等も必要に応じて適宜添加できる。   Although elements other than those listed above are not particularly restricted, it is preferable to reduce general impurities such as P, S, and O as much as possible. Considering hot workability, oxidation resistance and the like, it is preferable that the upper limit of P, S, and O is 0.04 mass%, 0.03% by mass, and 0.02 mass%, respectively. W, Zr, Y, REM (rare earth elements) effective for improving heat resistance, Ca, Mg, Co, etc. effective for improving hot workability can be added as necessary.

フェライト系ステンレス鋼の製造条件には特段の制約が加わるものではなく、Cuを予め固溶させておく限り、熱延焼鈍板のままで優れた耐熱性が得られる。熱延で所望の板厚の鋼板が製造できない場合、冷延及び焼鈍を1回又は複数回繰り返すことによって、熱延焼鈍板と同等の耐熱性を有する鋼板を製造できる。必要に応じて製造工程の何れかの段階でCuを微細に分散させるとき、より優れた高温強度が得られる。優れた特性は、熱延焼鈍板,冷延焼鈍板等を所望形状に加工又は溶接(管の成形等も含む)した後でも維持される。   The production conditions of the ferritic stainless steel are not particularly restricted, and as long as Cu is dissolved in advance, excellent heat resistance can be obtained with the hot-rolled annealed plate. When a steel plate having a desired plate thickness cannot be produced by hot rolling, a steel plate having heat resistance equivalent to that of the hot rolled annealing plate can be produced by repeating cold rolling and annealing one or more times. When Cu is finely dispersed at any stage of the manufacturing process as required, a better high temperature strength can be obtained. The excellent characteristics are maintained even after hot-rolled annealed plates, cold-rolled annealed plates, etc. are processed or welded (including tube forming) into a desired shape.

次いで、実施例によって本発明をより具体的に説明する。
表1,2の組成をもつ各種フェライト系ステンレス鋼を真空溶解炉で溶製し、30kgのインゴットに鋳造した。インゴットを鍛造し、熱間圧延,焼鈍,冷間圧延,仕上げ焼鈍を経て板厚2.0mm及び1.2mmの冷延焼鈍板を製造した。表中、No.1〜参考鋼No.7〜10は本発明鋼,No.11〜19は比較鋼である。比較鋼のうち、No.11はSUS430J1l相当鋼,No.15はSUH409L相当鋼,No.16は14Cr−Si−Nb鋼,No.17はSUS444相当鋼であり、何れの鋼種もエキゾーストマニホールド用として使用実績がある。
Next, the present invention will be described more specifically with reference to examples.
Various ferritic stainless steels having the compositions shown in Tables 1 and 2 were melted in a vacuum melting furnace and cast into a 30 kg ingot. The ingot was forged, and cold-rolled annealed plates having thicknesses of 2.0 mm and 1.2 mm were manufactured through hot rolling, annealing, cold rolling, and finish annealing. In the table, No. 1-6 is a reference steel, No. 7-10 are steels of the present invention , No. 11 to 19 are comparative steels. Among the comparative steels, No. 11 is SUS430J1l equivalent steel, No. 11; 15 is SUH409L equivalent steel, No.15. 16 is 14Cr—Si—Nb steel, No. 16; No. 17 is SUS444 equivalent steel, and all steel types have a track record of use for exhaust manifolds.

Figure 0005138504
Figure 0005138504

Figure 0005138504
Figure 0005138504

板厚2.0mmの冷延焼鈍板を高温引張試験,高温酸化試験,室温引張試験,シャルピー衝撃試験に供し、板厚1.2mmの冷延焼鈍板を溶接高温割れ試験に供した。
高温引張試験では、JISG0567に準拠して800℃で試験片を引っ張り、0.2%耐力を測定した。
高温酸化試験では、JISZ2281に準拠して850℃,900℃,950℃,1000℃,1100℃の各温度に試験片を200時間連続加熱した。加熱された試験片について異常酸化(板厚方向に貫通するこぶ状の厚い酸化物)の発生状況を目視観察し、異常酸化が生じない限界温度を求めた。
A cold-rolled annealed plate having a thickness of 2.0 mm was subjected to a high-temperature tensile test, a high-temperature oxidation test, a room temperature tensile test, and a Charpy impact test, and a cold-rolled annealed plate having a thickness of 1.2 mm was subjected to a welding hot crack test.
In the high-temperature tensile test, the test piece was pulled at 800 ° C. in accordance with JISG0567 and the 0.2% yield strength was measured.
In the high-temperature oxidation test, the test piece was continuously heated to 850 ° C., 900 ° C., 950 ° C., 1000 ° C., and 1100 ° C. for 200 hours in accordance with JISZ2281. The heated specimen was visually observed for the occurrence of abnormal oxidation (thick oxide penetrating in the thickness direction), and the limit temperature at which abnormal oxidation did not occur was determined.

室温引張試験では、JISZ2241に準拠して板厚2.0mmの冷延焼鈍板を13B号試験片に加工し、引張試験後の破断伸びを求めた。
シャルピー衝撃試験では、JISZ2242に準拠し、板厚2.0mmのサブサイズ試験片を用いて、−75℃,−50℃,−25℃,0℃,25℃の各温度で試験片に衝撃を加え、延性−靭性遷移温度を求めた。
溶接高温割れ試験では、40mm×20mmの試験片の両端を保持し、長手方向に引張り応力を付与した状態でTIG溶接し、割れが発生し始める最小のひずみ量を求めた。得られた臨界ひずみ量を溶接高温割れ感受性の指標とした。
In the room temperature tensile test, a cold-rolled annealed plate having a thickness of 2.0 mm was processed into a No. 13B test piece in accordance with JISZ2241, and the elongation at break after the tensile test was determined.
In the Charpy impact test, the test piece was impacted at −75 ° C., −50 ° C., −25 ° C., 0 ° C., and 25 ° C. using a sub-size test piece having a thickness of 2.0 mm in accordance with JISZ2242. In addition, the ductility-toughness transition temperature was determined.
In the welding hot cracking test, both ends of a 40 mm × 20 mm test piece were held and subjected to TIG welding in a state in which a tensile stress was applied in the longitudinal direction, and the minimum strain amount at which cracking started to occur was determined. The obtained critical strain amount was used as an index of the hot cracking sensitivity.

以上の試験結果を表3に示す。
No.1〜10の本発明鋼および参考鋼は何れも、Ti添加鋼(No.15),Nb、Si添加鋼(No.16)に比較して800℃の0.2%耐力が格段に大きく、Nb,Mo複合添加鋼(No.17)に匹敵又は凌駕する0.2%耐力値であった。室温引張り試験による伸び,シャルピー衝撃試験による延性脆性遷移温度,溶接高温割れ試験による臨界ひずみもNb,Mo複合添加鋼(No.17)と同等以上の特性を有しており、Moを添加しなくても目標性能が得られることが確認された。異常酸化に関しては、No.4,No.5,No.12の結果からも判るように、Cr含有量が少なくなるほど限界温度が低くなっている。異常酸化に及ぼすCr含有量の影響から、適用箇所の温度に応じてCr含有量の適正量を設定する必要性が理解できる。
The above test results are shown in Table 3.
No. Inventive steels 1 to 10 and reference steels 1 to 10 each have a 0.2% proof stress of 800 ° C. significantly higher than Ti-added steel (No. 15), Nb, and Si-added steel (No. 16). It was a 0.2% proof stress value comparable or superior to that of Nb, Mo composite added steel (No. 17). Elongation at room temperature tensile test, ductile brittle transition temperature by Charpy impact test, critical strain by welding hot cracking test have characteristics equal to or better than Nb and Mo composite added steel (No. 17), no Mo added However, it was confirmed that the target performance was obtained. Regarding abnormal oxidation, no. 4, no. 5, no. As can be seen from the result of 12, the lower the Cr content, the lower the limit temperature. From the influence of the Cr content on the abnormal oxidation, it can be understood that it is necessary to set an appropriate amount of Cr according to the temperature of the application location.

V,Cuが不足する比較鋼No.11,No.15,No.16,No.19は、加工性,低温靭性,溶接性は十分なレベルにあるものの、800℃の高温強度が劣っている。Cuを過剰に含む比較鋼No.12は、高温強度に優れているものの、加工性,溶接性がNb,Mo複合添加鋼よりも劣り、製品形状への加工や溶接に支障をきたした。
Cu含有量が規定範囲にあってもSi含有量が多すぎる比較鋼No.13や、Nb含有量が多すぎる比較鋼No.14は、高温強度に優れていても、加工性,低温靭性,溶接性が本発明鋼よりも劣っていた。
Comparative steel No. lacking V and Cu. 11, no. 15, no. 16, no. Although No. 19 has sufficient workability, low temperature toughness and weldability, the high temperature strength at 800 ° C. is inferior. Comparative steel containing excessive Cu No. Although No. 12 was excellent in high temperature strength, the workability and weldability were inferior to those of the Nb and Mo composite added steel, which hindered the processing and welding into the product shape.
Even when the Cu content is within the specified range, the comparative steel No. 13 and comparative steel No. 1 with too much Nb content. No. 14 was inferior to the steel of the present invention in workability, low temperature toughness and weldability even though it was excellent in high temperature strength.

V含有量が少なくAl含有量が多い比較鋼No.18は、耐熱性や加工性が本発明鋼と同程度であるものの、低温靭性に劣り、製品加工時や使用時に靭性不足に起因するトラブルの発生が予測される。Vが不足する比較鋼No.19は、高温強度が不足している。
Moを含む比較鋼No.17は、本発明鋼と同程度の性能を有するが、低温靭性が若干低くなっている。しかも、Moを約2質量%含有しているので、素材コストが本発明鋼より高くなることが避けられない。
Comparative Steel No. 1 with low V content and high Al content. No. 18 has the same heat resistance and workability as the steel of the present invention, but is inferior in low temperature toughness, and troubles due to insufficient toughness during product processing and use are expected. Comparative steel No. No. 19 lacks high temperature strength.
Comparative steel No. containing Mo No. 17 has the same performance as the steel of the present invention, but the low-temperature toughness is slightly lower. And since Mo is contained about 2 mass%, it is inevitable that material cost will become higher than this invention steel.

Figure 0005138504
Figure 0005138504

以上に説明したように、フェライト系ステンレス鋼に含まれる各種合金元素の含有量、特にV,Cuの範囲を厳格に規制することにより、高価なMoを必要とせず、優れた耐熱性を確保しながら加工性,低温靭性,溶接性が改善され、排気ガス経路部材用として好適なフェライト 系ステンレス鋼が得られる。このフェライト系ステンレス鋼は、優れた特性を活用して自動車エンジンを始め、エキゾーストマニホールド,フロントパイプ,センターパイプ,触媒コンバーター外筒等等の排ガス流路部材に使用される。   As explained above, by strictly regulating the content of various alloy elements contained in ferritic stainless steel, especially the range of V and Cu, expensive Mo is not required and excellent heat resistance is ensured. However, workability, low temperature toughness, and weldability are improved, and ferritic stainless steel suitable for exhaust gas path members can be obtained. This ferritic stainless steel is used for exhaust gas passage members such as automobile engines, exhaust manifolds, front pipes, center pipes, catalytic converter outer cylinders and the like by utilizing excellent characteristics.

図1は、高温での0.2%耐力に及ぼすCuの影響を示すグラフである。FIG. 1 is a graph showing the effect of Cu on 0.2% yield strength at high temperatures.

Claims (3)

C:0.03質量%以下,Si:1.0質量%以下,Mn:1.5質量%以下,Ni:0.6質量%以下,Cr:10〜20質量%,Nb:0.50質量%以下,Ti:0.05〜0.30質量%,Cu:1.0〜2.0質量%,Al:0.03質量%以下,V:003〜0.20質量%,N:0.03質量%以下を含み、且つNb≧8(C+N)を満足し、残部がFe及び不可避的不純物からなることを特徴とする自動車排ガス流路部材用フェライト系ステンレス鋼(ただし、Cr:14〜19質量%、Si:0.5質量%以下、Mn:0.5質量%以下、Al:0.1質量%以下、Ti:0.02〜0.40質量%、Nb:0〜0.5質量%、Cu:1.0質量%、V:0〜1.0質量%、Ni:0〜1.0質量%、Ca:0〜0.005質量%で、残部がFeと不可避不純物からなり、不純物としてのC:0.015質量%以下、N:0.015質量%以下、P:0.04質量%以下であり、かつ、下記(1)〜(4)式を満たすフェライト系ステンレス鋼を除く)。
C(質量%)+N(質量%)≦0.025 (質量%) ・・・(1)
Ti(質量%)/(C(質量%)+N(質量%))≧5・・・(2)
0.5×C(質量%)≦S(質量%)≦0.001(質量%)・・・(3)
Ti(質量%)/Mn(質量%)≧0.5 ・・・(4)
C: 0.03 mass% or less, Si: 1.0 mass% or less, Mn: 1.5 mass% or less, Ni: 0.6 mass% or less, Cr: 10 to 20 mass%, Nb: 0.50 mass %: Ti: 0.05 to 0.30 mass%, Cu: 1.0 to 2.0 mass%, Al: 0.03 mass% or less, V: 003 to 0.20 mass%, N: 0.00. Ferritic stainless steel for automobile exhaust gas flow path members (provided that Cr: 14-19), characterized in that it contains not more than 03% by mass and satisfies Nb ≧ 8 (C + N), and the balance consists of Fe and inevitable impurities % By mass, Si: 0.5% by mass or less, Mn: 0.5% by mass or less, Al: 0.1% by mass or less, Ti: 0.02 to 0.40% by mass, Nb: 0 to 0.5% by mass %, Cu: 1.0 mass%, V: 0 to 1.0 mass%, Ni: 0 to 1.0 mass%, Ca: 0 to 0.0 mass% 5% by mass, the balance being Fe and inevitable impurities, C as impurities: 0.015% by mass or less, N: 0.015% by mass or less, P: 0.04% by mass or less, and the following ( 1) to (4) except for ferritic stainless steels that satisfy the equations (4).
C (mass%) + N (mass%) ≦ 0.025 (mass%) (1)
Ti (mass%) / (C (mass%) + N (mass%)) ≧ 5 (2)
0.5 × C (mass%) ≦ S (mass%) ≦ 0.001 (mass%) (3)
Ti (mass%) / Mn (mass%) ≧ 0.5 (4)
不可避的不純物として含まれるMoが0.10質量%未満に規制されている請求項1記載の自動車排ガス流路部材用フェライト系ステンレス鋼。   The ferritic stainless steel for automobile exhaust gas passage members according to claim 1, wherein Mo contained as an inevitable impurity is regulated to less than 0.10% by mass. 更に0.0005〜0.02質量%のBを含む請求項1または2に記載の自動車排ガス流路部材用フェライト系ステンレス鋼。   The ferritic stainless steel for automobile exhaust gas passage members according to claim 1 or 2, further comprising 0.0005 to 0.02 mass% B.
JP2008209904A 2001-07-05 2008-08-18 Ferritic stainless steel for exhaust gas flow path members Expired - Lifetime JP5138504B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008209904A JP5138504B2 (en) 2001-07-05 2008-08-18 Ferritic stainless steel for exhaust gas flow path members

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001204444 2001-07-05
JP2001204444 2001-07-05
JP2008209904A JP5138504B2 (en) 2001-07-05 2008-08-18 Ferritic stainless steel for exhaust gas flow path members

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003510470A Division JP4197492B2 (en) 2001-07-05 2002-07-04 Ferritic stainless steel for exhaust gas flow path members

Publications (2)

Publication Number Publication Date
JP2008297631A JP2008297631A (en) 2008-12-11
JP5138504B2 true JP5138504B2 (en) 2013-02-06

Family

ID=19040911

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2003510470A Expired - Lifetime JP4197492B2 (en) 2001-07-05 2002-07-04 Ferritic stainless steel for exhaust gas flow path members
JP2008209904A Expired - Lifetime JP5138504B2 (en) 2001-07-05 2008-08-18 Ferritic stainless steel for exhaust gas flow path members

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2003510470A Expired - Lifetime JP4197492B2 (en) 2001-07-05 2002-07-04 Ferritic stainless steel for exhaust gas flow path members

Country Status (8)

Country Link
US (4) US20040170518A1 (en)
EP (1) EP1413640B1 (en)
JP (2) JP4197492B2 (en)
KR (1) KR20040007764A (en)
CN (1) CN1225566C (en)
DE (1) DE60204323T2 (en)
ES (1) ES2240764T3 (en)
WO (1) WO2003004714A1 (en)

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7466749B2 (en) 2005-05-12 2008-12-16 Qualcomm Incorporated Rate selection with margin sharing
CA2776892C (en) 2006-05-09 2014-12-09 Nippon Steel & Sumikin Stainless Steel Corporation Ferritic stainless steel excellent in resistance to crevice corrosion and formability
JP5000281B2 (en) * 2006-12-05 2012-08-15 新日鐵住金ステンレス株式会社 High-strength stainless steel sheet with excellent workability and method for producing the same
JP4948998B2 (en) 2006-12-07 2012-06-06 日新製鋼株式会社 Ferritic stainless steel and welded steel pipe for automotive exhaust gas flow path members
JP5010301B2 (en) * 2007-02-02 2012-08-29 日新製鋼株式会社 Ferritic stainless steel for exhaust gas path member and exhaust gas path member
JP5297630B2 (en) 2007-02-26 2013-09-25 新日鐵住金ステンレス株式会社 Ferritic stainless steel plate with excellent heat resistance
JP5390175B2 (en) * 2007-12-28 2014-01-15 新日鐵住金ステンレス株式会社 Ferritic stainless steel with excellent brazeability
JP5387057B2 (en) * 2008-03-07 2014-01-15 Jfeスチール株式会社 Ferritic stainless steel with excellent heat resistance and toughness
JP4386144B2 (en) 2008-03-07 2009-12-16 Jfeスチール株式会社 Ferritic stainless steel with excellent heat resistance
JP5274074B2 (en) * 2008-03-28 2013-08-28 新日鐵住金ステンレス株式会社 Heat-resistant ferritic stainless steel sheet with excellent oxidation resistance
JP5239643B2 (en) * 2008-08-29 2013-07-17 Jfeスチール株式会社 Ferritic stainless steel with excellent thermal fatigue properties, high temperature fatigue properties, oxidation resistance and workability
JP5239642B2 (en) * 2008-08-29 2013-07-17 Jfeスチール株式会社 Ferritic stainless steel with excellent thermal fatigue properties, high temperature fatigue properties and oxidation resistance
JP5239644B2 (en) * 2008-08-29 2013-07-17 Jfeスチール株式会社 Ferritic stainless steel with excellent thermal fatigue properties, high temperature fatigue properties, oxidation resistance and toughness
JP5462583B2 (en) * 2008-10-24 2014-04-02 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet for EGR cooler
JP2010116622A (en) * 2008-11-14 2010-05-27 Nisshin Steel Co Ltd Ferritic stainless steel for heat pipe and steel sheet, and heat pipe and high temperature waste heat recovery device
JP5546911B2 (en) 2009-03-24 2014-07-09 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet with excellent heat resistance and workability
JP2010236001A (en) * 2009-03-31 2010-10-21 Nisshin Steel Co Ltd Ferritic stainless steel
JP4702493B1 (en) 2009-08-31 2011-06-15 Jfeスチール株式会社 Ferritic stainless steel with excellent heat resistance
JP5586704B2 (en) * 2009-12-04 2014-09-10 ポスコ Cold-rolled steel sheet for processing excellent in heat resistance and method for producing the same
JP5546922B2 (en) 2010-03-26 2014-07-09 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet with excellent heat resistance and workability and method for producing the same
JP5822439B2 (en) * 2010-06-22 2015-11-24 日新製鋼株式会社 Low Cr stainless steel with excellent heat resistance and age-hardening characteristics and automobile exhaust gas path member made of such steel
KR20150119496A (en) * 2010-09-16 2015-10-23 닛폰 스틸 앤드 스미킨 스테인레스 스틸 코포레이션 Heat-resistant ferrite-type stainless steel plate having excellent oxidation resistance
EP2623623B1 (en) * 2010-10-01 2016-03-23 Hitachi Metals, Ltd. Heat-resistant ferritic cast steel having excellent melt flowability, freedom from gas defect, toughness, and machinability, and exhaust system component comprising same
JP5152387B2 (en) 2010-10-14 2013-02-27 Jfeスチール株式会社 Ferritic stainless steel with excellent heat resistance and workability
JP5609571B2 (en) 2010-11-11 2014-10-22 Jfeスチール株式会社 Ferritic stainless steel with excellent oxidation resistance
CN103348023B (en) 2011-02-08 2015-11-25 新日铁住金不锈钢株式会社 The manufacture method of ferrite-group stainless steel hot-rolled steel sheet and manufacture method and ferrite series stainless steel plate
JP5659061B2 (en) 2011-03-29 2015-01-28 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet excellent in heat resistance and workability and manufacturing method thereof
JP5304935B2 (en) * 2011-10-14 2013-10-02 Jfeスチール株式会社 Ferritic stainless steel
JP5234214B2 (en) * 2011-10-14 2013-07-10 Jfeスチール株式会社 Ferritic stainless steel
JP6037882B2 (en) 2012-02-15 2016-12-07 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet with excellent scale peel resistance and method for producing the same
JP6071608B2 (en) 2012-03-09 2017-02-01 新日鐵住金ステンレス株式会社 Ferritic stainless steel plate with excellent oxidation resistance
JP6196453B2 (en) * 2012-03-22 2017-09-13 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet with excellent scale peel resistance and method for producing the same
UA111115C2 (en) 2012-04-02 2016-03-25 Ейкей Стіл Пропертіс, Інк. cost effective ferritic stainless steel
FI125855B (en) * 2012-06-26 2016-03-15 Outokumpu Oy Ferritic stainless steel
FI124995B (en) * 2012-11-20 2015-04-15 Outokumpu Oy Ferritic stainless steel
EP2980251B1 (en) 2013-03-27 2017-12-13 Nippon Steel & Sumikin Stainless Steel Corporation Hot-rolled ferritic stainless-steel plate, process for producing same, and steel strip
CN105960476B (en) 2014-02-05 2018-10-30 杰富意钢铁株式会社 Ferrite-group stainless steel hot-roll annealing steel plate, its manufacturing method and the cold rolled annealed steel plate of ferrite-group stainless steel
KR101899229B1 (en) * 2014-05-14 2018-09-14 제이에프이 스틸 가부시키가이샤 Ferritic stainless steel
US10400318B2 (en) 2014-05-14 2019-09-03 Jfe Steel Corporation Ferritic stainless steel
CN107002200A (en) * 2014-12-11 2017-08-01 杰富意钢铁株式会社 Ferrite-group stainless steel and its manufacture method
JP6370275B2 (en) * 2015-08-17 2018-08-08 日新製鋼株式会社 Damping ferritic stainless steel material and manufacturing method
CN105537875B (en) * 2016-01-18 2018-03-09 山西太钢不锈钢股份有限公司 A kind of manufacture method of ferritic stainless steel welded tube
JP6744740B2 (en) * 2016-03-28 2020-08-19 日鉄ステンレス株式会社 Ferritic stainless steel plate for exhaust manifold
JP6749808B2 (en) * 2016-07-29 2020-09-02 日鉄ステンレス株式会社 Ferritic stainless steel sheet having excellent carburization resistance and oxidation resistance, and method for producing the same
CN106319373B (en) * 2016-08-16 2018-07-17 盐城市科瑞达科技咨询服务有限公司 A kind of minute spherical ferritic stainless steel powder and preparation method thereof
KR102206415B1 (en) * 2016-09-02 2021-01-22 제이에프이 스틸 가부시키가이샤 Ferritic stainless steel
KR101835021B1 (en) * 2016-09-28 2018-03-09 주식회사 포스코 Ferritic stainless steel for exhaust system heat exchanger and method of manufacturing the same
WO2018135028A1 (en) * 2017-01-19 2018-07-26 日新製鋼株式会社 Ferritic stainless steel and ferritic stainless steel for car exhaust gas pathway member
WO2018181060A1 (en) 2017-03-27 2018-10-04 新日鐵住金ステンレス株式会社 Ferrite stainless steel sheet and production method therefor, and exhaust components
KR102259806B1 (en) * 2019-08-05 2021-06-03 주식회사 포스코 Ferritic stainless steel with improved creep resistance at high temperature and method for manufacturing the ferritic stainless steel
WO2023170996A1 (en) * 2022-03-07 2023-09-14 日鉄ステンレス株式会社 Ferritic stainless steel sheet and exhaust parts

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2696584B2 (en) * 1990-03-24 1998-01-14 日新製鋼株式会社 Ferrite heat-resistant stainless steel with excellent low-temperature toughness, weldability and heat resistance
JP3485591B2 (en) * 1993-03-26 2004-01-13 日新製鋼株式会社 Ferritic stainless steel for exhaust gas flow path components and manufacturing method
JPH08144021A (en) * 1994-11-18 1996-06-04 Sumitomo Metal Ind Ltd Production of ferritic stainless steel and cold rolled sheet therefrom
JP3536568B2 (en) * 1997-01-24 2004-06-14 Jfeスチール株式会社 Ferritic stainless steel for engine exhaust parts with excellent heat resistance and muffler corrosion resistance at welds
JP3536567B2 (en) * 1997-01-24 2004-06-14 Jfeスチール株式会社 Ferritic stainless steel for engine exhaust components with excellent heat resistance, workability and muffler corrosion resistance

Also Published As

Publication number Publication date
ES2240764T3 (en) 2005-10-16
US20090053093A1 (en) 2009-02-26
WO2003004714A1 (en) 2003-01-16
US20110176954A1 (en) 2011-07-21
CN1524130A (en) 2004-08-25
US20040170518A1 (en) 2004-09-02
KR20040007764A (en) 2004-01-24
JP2008297631A (en) 2008-12-11
DE60204323D1 (en) 2005-06-30
EP1413640A4 (en) 2004-12-15
JPWO2003004714A1 (en) 2004-10-28
CN1225566C (en) 2005-11-02
JP4197492B2 (en) 2008-12-17
EP1413640B1 (en) 2005-05-25
DE60204323T2 (en) 2006-01-26
EP1413640A1 (en) 2004-04-28
US20100119404A1 (en) 2010-05-13

Similar Documents

Publication Publication Date Title
JP5138504B2 (en) Ferritic stainless steel for exhaust gas flow path members
US9279172B2 (en) Heat-resistance ferritic stainless steel
JP5387057B2 (en) Ferritic stainless steel with excellent heat resistance and toughness
JP5141296B2 (en) Ferritic stainless steel with excellent high temperature strength and toughness
TWI531665B (en) Ferritic stainless steel having excellent oxidation resistance
JP5540637B2 (en) Ferritic stainless steel with excellent heat resistance
WO1991014796A1 (en) Heat-resistant ferritic stainless steel excellent in low-temperature toughness, weldability and heat resistance
JP2011190524A (en) Ferritic stainless steel having excellent oxidation resistance, secondary processing brittleness resistance and weld zone toughness
KR20140117686A (en) Ferritic stainless steel plate having excellent heat resistance and excellent workability
KR20150021124A (en) Ferrite stainless steel sheet having high thermal resistance and processability, and method for manufacturing the same
WO2018181060A1 (en) Ferrite stainless steel sheet and production method therefor, and exhaust components
JP2012102397A (en) Ferritic stainless steel excellent in heat resistance and workability
JP4185425B2 (en) Ferritic steel sheet with improved formability and high temperature strength, high temperature oxidation resistance and low temperature toughness at the same time
JP3427502B2 (en) Ferrite stainless steel for automotive exhaust system components
JP2000336462A (en) High purity ferritic stainless steel excellent in high temperature strength
JP2803538B2 (en) Ferritic stainless steel for automotive exhaust manifold
JP2000303149A (en) Ferritic stainless steel for automotive exhaust system parts
JP5428396B2 (en) Ferritic stainless steel with excellent heat resistance and weldability
JP2514367B2 (en) Automotive engine manifold steel
JP6820757B2 (en) Ferritic stainless steel sheets for fastening parts with excellent heat resistance, fastening parts, and circular clamps for heat-resistant tubular members
JP2896077B2 (en) Ferrite stainless steel with excellent high-temperature oxidation resistance and scale adhesion
JP5810722B2 (en) Ferritic stainless steel with excellent thermal fatigue characteristics and workability
JPH0741905A (en) Steel for automotive exhaust system
JPH0741917A (en) Steel for automotive exhaust system
JP2022123245A (en) Ferritic stainless steel sheet

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121114

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5138504

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151122

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term