JP5141296B2 - Ferritic stainless steel with excellent high temperature strength and toughness - Google Patents
Ferritic stainless steel with excellent high temperature strength and toughness Download PDFInfo
- Publication number
- JP5141296B2 JP5141296B2 JP2008042877A JP2008042877A JP5141296B2 JP 5141296 B2 JP5141296 B2 JP 5141296B2 JP 2008042877 A JP2008042877 A JP 2008042877A JP 2008042877 A JP2008042877 A JP 2008042877A JP 5141296 B2 JP5141296 B2 JP 5141296B2
- Authority
- JP
- Japan
- Prior art keywords
- mass
- less
- toughness
- steel
- ferritic stainless
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Heat Treatment Of Sheet Steel (AREA)
Description
本発明は、フェライト系ステンレス鋼に関し、特に、自動車やオートバイ等の排気管や触媒外筒材ならびに火力発電プラントの排気ダクト等の高温環境下で使用される排気ガス経路部材(以下、「排気系部材」と略記する。)に用いられる、高温強度と靭性とを兼ね備えたフェライト系ステンレス鋼に関するものである。 The present invention relates to ferritic stainless steel, and more particularly, to exhaust gas path members (hereinafter referred to as “exhaust system”) used in high-temperature environments such as exhaust pipes and catalyst outer cylinders of automobiles and motorcycles and exhaust ducts of thermal power plants. It is related to ferritic stainless steel having both high-temperature strength and toughness, which is used for "member".
自動車のエキゾーストマニホールドや排気パイプ、コンバータケース、マフラー等に代表される排気系部材に用いられる材料には、成形性と耐熱性に優れることが要求される。そのため、このような用途には、従来、室温での成形性に優れかつ高温での耐力も比較的高い、NbとSiを添加したType429(14Cr−0.9Si−0.4Nb系)鋼のようなCr含有鋼が多く使用されている。しかし、エンジン性能の向上に伴い、排ガス温度が上昇する傾向にあり、その温度が900℃近くまで上昇してくると、Type429鋼では、高温耐力が不足するようになってきている。 Materials used for exhaust system members typified by automobile exhaust manifolds, exhaust pipes, converter cases, and mufflers are required to be excellent in moldability and heat resistance. Therefore, for such applications, type 429 (14Cr-0.9Si-0.4Nb) steel added with Nb and Si, which has excellent moldability at room temperature and relatively high proof stress at high temperature, has been conventionally used. Many Cr-containing steels are used. However, as the engine performance improves, the exhaust gas temperature tends to rise, and when the temperature rises to near 900 ° C., Type 429 steel has become insufficient in high-temperature proof stress.
この問題に対しては、NbとMoを添加して高温耐力を向上させたCr含有鋼や、JIS G4305に規定されているSUS444(19Cr−0.2Nb−1.8Mo)鋼等が開発されている。しかし、自動車の燃費向上や排気ガスの規制強化に対応して、エンジンから排出されるガスの温度はさらに上昇する趨勢にあり、自動車の排気系部材に用いられる材料には、より優れた耐熱性が要求されるようになってきている。また、排気系部材に用いられる材料の高温強度を高めることは、部材の薄肉化を可能とし、自動車車体の軽量化にも寄与するため、高温強度の向上に対する要求はますます強くなっている。 In order to solve this problem, Cr-containing steel in which Nb and Mo are added to improve high-temperature yield strength, SUS444 (19Cr-0.2Nb-1.8Mo) steel defined in JIS G4305, and the like have been developed. Yes. However, in response to improvements in automobile fuel efficiency and stricter exhaust gas regulations, the temperature of exhaust gas from engines tends to rise further, and materials used for automobile exhaust system members have better heat resistance. Is becoming required. In addition, increasing the high-temperature strength of the materials used for exhaust system members enables thinning of the members and contributes to the weight reduction of the automobile body, so that the demand for improvement of the high-temperature strength is increasing.
このような状況下において、排気系部材用の材料が各種開発されている。例えば、特許文献1〜5には、Nb,Moの添加に加えてさらにWを添加することにより、高温強度や耐酸化性を向上させたCr含有鋼やフェライト系ステンレス鋼が開示されている。また、特許文献6には、Nb,Mo,Wの添加に加え、さらにCuを添加することにより、低熱膨張化して、熱疲労特性を向上した鋼が開示されている。また、特許文献7,8には、Nb,Mo,Wの添加に加えてさらにCuを添加することにより、高温強度を向上させたCr含有鋼やフェライト系ステンレス鋼が開示されている。
しかしながら、特許文献1〜5に開示されたCr含有鋼やフェライトステンレス鋼は、排気系部材に用いるには、耐熱性が不十分である。また、特許文献6〜8に開示されたCr含有鋼やフェライト系ステンレス鋼は、Nb,Mo,W,Cuのような合金元素を多量に添加する必要があるため、鋼板の加工性が低下し、部品への加工を温間で行わなければならないという問題がある。特に、Cuを1%超え添加すると、鋼板製造工程の最終焼鈍冷却時にε−Cuが析出し、室温加工性が低下するという問題がある。 However, the Cr-containing steel and ferritic stainless steel disclosed in Patent Documents 1 to 5 are insufficient in heat resistance for use in exhaust system members. In addition, Cr-containing steels and ferritic stainless steels disclosed in Patent Documents 6 to 8 need to add a large amount of alloy elements such as Nb, Mo, W, and Cu, so that the workability of the steel sheet is lowered. There is a problem that the processing of parts must be performed warmly. In particular, when Cu is added in excess of 1%, there is a problem that ε-Cu is precipitated at the time of final annealing cooling in the steel sheet manufacturing process, and the room temperature workability is lowered.
そこで、本発明の目的は、従来技術が抱える上記問題点を有利に解決し、高温強度に優れると共に、靭性にも優れるフェライト系ステンレス鋼を提供することにある。ここで、本発明でいう「高温強度に優れる」とは、900℃における0.2%耐力が27MPa以上かつ650℃における0.2%耐力が280MPaであることをいう。また、「靭性に優れる」とは、0℃においてシャルピー衝撃試験を行ったときの脆性破面率が5%以下であることをいう。 Accordingly, an object of the present invention is to advantageously solve the above-mentioned problems of the prior art, and to provide a ferritic stainless steel having excellent high temperature strength and excellent toughness. Here, “excelling in high temperature strength” in the present invention means that the 0.2% yield strength at 900 ° C. is 27 MPa or more and the 0.2% yield strength at 650 ° C. is 280 MPa. Further, “excellent toughness” means that the brittle fracture surface ratio is 5% or less when a Charpy impact test is performed at 0 ° C.
発明者らは、上記課題を解決するために、フェライト系ステンレス鋼が有する成分系に着目し、鋭意検討を重ねた。その結果、フェライト系ステンレス鋼に、(Mo+W)を3.0〜5.8mass%添加し、さらにCuを1.2〜1.8mass%添加することにより幅広い温度域で高い高温強度を得ることができること、また、上記Cu添加に伴う靭性の低下をSi含有量の低減と適正量のAl添加により改善し得ることを見出し、本発明を完成させた。 In order to solve the above-mentioned problems, the inventors paid attention to the component system possessed by the ferritic stainless steel and conducted extensive studies. As a result, it is possible to obtain high high-temperature strength in a wide temperature range by adding 3.0 to 5.8 mass% of (Mo + W) and 1.2 to 1.8 mass% of Cu to ferritic stainless steel. In addition, the present inventors have found that the reduction in toughness associated with the addition of Cu can be improved by reducing the Si content and adding an appropriate amount of Al.
すなわち、本発明は、C:0.015mass%以下、Si:0.10mass%以下、Mn:2.0mass%以下、P:0.040mass%以下、S:0.010mass%以下、Al:0.01〜0.10mass%、N:0.015mass%以下、Cr:12.0〜20.0mass%、Ni:1.0mass%以下、Cu:1.2〜1.8mass%、Mo:0.8〜3.0mass%、W:1.0〜3.01mass%かつ(Mo+W):3.0〜5.8mass%を満たして含有し、さらに、Nb:0.3mass%以上かつ下記式;
0.25≦Nb−(93/12)×C−(93/14)×N≦0.50
ただし、上式中のNb,CおよびNは、各元素の質量(mass%)
を満たして含有し、残部がFeおよび不可避的不純物からなる成分組成を有するフェライト系ステンレス鋼である。
That is, the present invention includes C: 0.015 mass% or less, Si: 0.10 mass% or less, Mn: 2.0 mass% or less, P: 0.040 mass% or less, S: 0.010 mass% or less, Al: 0.00. 01 to 0.10 mass%, N: 0.015 mass% or less, Cr: 12.0 to 20.0 mass%, Ni: 1.0 mass% or less, Cu: 1.2 to 1.8 mass%, Mo: 0.8 ~3.0mass%, W: 1.0~ 3.01 mass % and (Mo + W): containing meets 3.0~5.8mass%, further, Nb: not more than 0.3 mass% or more and the following formula;
0.25 ≦ Nb− (93/12) × C− (93/14) × N ≦ 0.50
However, Nb, C and N in the above formula are the mass of each element (mass%)
Is a ferritic stainless steel having a component composition consisting of Fe and inevitable impurities.
本発明は、上記成分組成に加えてさらに、B:0.003mass%以下、Ti:0.25mass%以下、REM:0.08mass%以下、Zr:0.5mass%以下、V:0.5mass%以下およびCo:0.5mass%以下のうちから選ばれる1種または2種以上を含有することを特徴とする。 In addition to the above component composition, the present invention further includes B: 0.003 mass% or less, Ti: 0.25 mass% or less, REM: 0.08 mass% or less, Zr: 0.5 mass% or less, V: 0.5 mass% 1 or 2 or more types chosen from below and Co: 0.5 mass% or less are characterized by the above-mentioned.
本発明によれば、900℃という高温で高い強度を有し、しかも0℃における靭性に優れる自動車排気系部材に用いて好適なフェライト系ステンレス鋼を提供することができる。したがって、本発明のフェライト系ステンレス鋼は、同様の特性が要求される火力発電システムの排気経路部材や固体酸化物形の燃料電池用部材としても用いることができる。さらに、本発明のフェライト系ステンレス鋼は、耐食性の向上に有効なMo,Wを含有しているので、耐食性を要求される使途にも好適に用いることができる。 According to the present invention, a ferritic stainless steel suitable for use in an automobile exhaust system member having high strength at a high temperature of 900 ° C. and excellent toughness at 0 ° C. can be provided. Therefore, the ferritic stainless steel of the present invention can be used as an exhaust path member of a thermal power generation system and a member for a solid oxide fuel cell that require similar characteristics. Furthermore, since the ferritic stainless steel of the present invention contains Mo and W which are effective for improving corrosion resistance, it can be suitably used for applications requiring corrosion resistance.
まず、本発明を開発する契機となった基礎実験について説明する。
C:0.006mass%、N:0.007mass%、Mn:0.4mass%、Cr:15mass%、Nb:0.45mass%、Mo:1.5mass%、W:2.7mass%、Cu:1.51mass%およびAl:0.041mass%をベース組成とし、Siの含有量を0〜0.4mass%の範囲で種々に変化させた鋼を溶製し、熱間圧延し、冷間圧延し、仕上焼鈍して板厚2mmの冷延鋼板を作製し、この冷延鋼板から幅2mmのサブサイズのシャルピー衝撃試験片を採取し、0℃の温度でシャルピー衝撃試験を行い、脆性破面率を求めた。なお、試験片のVノッチの方向は、圧延方向に対して90°方向(TD方向)とした。
First, basic experiments that have triggered the development of the present invention will be described.
C: 0.006 mass%, N: 0.007 mass%, Mn: 0.4 mass%, Cr: 15 mass%, Nb: 0.45 mass%, Mo: 1.5 mass%, W: 2.7 mass%, Cu: 1 .51 mass% and Al: 0.041 mass% as the base composition, and variously changing the content of Si in the range of 0 to 0.4 mass%, melting, hot rolling, cold rolling, Finish annealed to produce a cold-rolled steel sheet with a thickness of 2 mm, take a sub-size Charpy impact test piece with a width of 2 mm from this cold-rolled steel sheet, conduct a Charpy impact test at a temperature of 0 ° C, and determine the brittle fracture surface ratio. Asked. In addition, the direction of the V notch of the test piece was 90 ° direction (TD direction) with respect to the rolling direction.
図1は、上記試験の結果を示したものである。図1から、Siの含有量を低減することにより靭性が顕著に改善され、Si:0.10mass%以下では、脆性破面率が5%以下となることがわかる。 FIG. 1 shows the results of the above test. As can be seen from FIG. 1, the toughness is remarkably improved by reducing the Si content, and when the Si content is 0.10 mass% or less, the brittle fracture surface ratio is 5% or less.
次に、上記と同様にして、C:0.006mass%、N:0.007mass%、Si:0.06mass%、Mn:0.4mass%、Nb:0.49mass%、Cr:16mass%、Mo:1.7mass%、W:2.3mass%およびCu:1.39mass%をベース組成とし、Alの含有量を0〜0.2mass%の範囲で種々に変化させた冷延鋼板(板厚:2mm)を作製し、シャルピー衝撃試験を行い、0℃における脆性破面率を求めた。 Next, in the same manner as described above, C: 0.006 mass%, N: 0.007 mass%, Si: 0.06 mass%, Mn: 0.4 mass%, Nb: 0.49 mass%, Cr: 16 mass%, Mo Cold rolled steel sheet (sheet thickness: 1.7 mass%, W: 2.3 mass% and Cu: 1.39 mass%) and variously changing the Al content in the range of 0 to 0.2 mass% 2 mm), a Charpy impact test was performed, and the brittle fracture surface ratio at 0 ° C. was determined.
図2は、上記試験の結果を示したものであり、Alの含有量を0.01mass%以上とすることにより、靭性が改善され、脆性破面率が5%以下となることがわかる。以上の結果から、靭性を確保するためには、Siを0.1mass%以下とした上で、Alを0.01mass%以上添加する必要があることがわかった。
本発明は、上記知見に基づき、さらに検討を加えて開発されたものである。
FIG. 2 shows the results of the above test, and it can be seen that by setting the Al content to 0.01 mass% or more, the toughness is improved and the brittle fracture surface ratio is 5% or less. From the above results, it was found that in order to ensure toughness, it was necessary to add 0.01 mass% or more of Al after Si was 0.1 mass% or less.
The present invention has been developed based on the above findings and further studies.
次に、本発明のフェライトステンレス鋼が有すべき成分組成について説明する。
C:0.015mass%以下
Cは、鋼の強度を高めるのに有効な成分であり、所望の強度を確保するためには0.001mass%以上含有するのが好ましい。しかし、Cを0.015mass%超え含有すると、靭性および成形性の劣化が顕著となるため、本発明では、0.015mass%以下とする。なお、成形性を確保する観点からは、C含有量は低いほど望ましく、0.008mass%以下とするのが好ましい。より好ましくは、Cは0.002〜0.008mass%の範囲である。
Next, the component composition that the ferritic stainless steel of the present invention should have will be described.
C: 0.015 mass% or less C is a component effective for increasing the strength of steel, and is preferably contained in an amount of 0.001 mass% or more in order to ensure a desired strength. However, if C is contained in excess of 0.015 mass%, the deterioration of toughness and formability becomes remarkable, so in the present invention, it is set to 0.015 mass% or less. In addition, from the viewpoint of ensuring moldability, the lower the C content, the better, and 0.008 mass% or less is preferable. More preferably, C is in the range of 0.002 to 0.008 mass%.
Si:0.10mass%以下
Siは、本発明のフェライト系ステンレス鋼の靭性を向上させるために、含有量を厳しく制限する必要がある重要な元素である。図1に示したように、Si低減による靭性向上効果は、Alの含有量を0.01mass%以上とした上で、Si含有量を0.10mass%以下に規制することにより、初めて得られる。したがって、上限は0.10mass%とする。好ましくは、Si:0.08mass%以下である
Si: 0.10 mass% or less Si is an important element that needs to be strictly limited in content in order to improve the toughness of the ferritic stainless steel of the present invention. As shown in FIG. 1, the effect of improving toughness by reducing Si can be obtained for the first time by limiting the Si content to 0.10 mass% or less after setting the Al content to 0.01 mass% or more. Therefore, the upper limit is 0.10 mass%. Preferably, Si: 0.08 mass% or less
Mn:2.0mass%以下
Mnは、脱酸剤として、また、鋼板強度を高める成分として添加されるが、過剰な添加は、高温でγ相を生成して耐熱性を低下させる。よって、本発明では、Mn含有量は2.0mass%以下とする。好ましくは1.5mass%以下である。
Mn: 2.0 mass% or less Mn is added as a deoxidizer and as a component for increasing the strength of the steel sheet. However, excessive addition generates a γ phase at a high temperature to lower the heat resistance. Therefore, in the present invention, the Mn content is set to 2.0 mass% or less. Preferably it is 1.5 mass% or less.
P:0.040mass%以下
Pは、鋼中に不可避に混入する不純物であり、靭性を低下させる有害な元素であるので、できるだけ低減するのが望ましい。よって、本発明では、0.040mass%以下とする。好ましくは0.030mass%以下である。
P: 0.040 mass% or less P is an impurity that is inevitably mixed in steel, and is a harmful element that lowers toughness. Therefore, it is desirable to reduce it as much as possible. Therefore, in this invention, it is 0.040 mass% or less. Preferably it is 0.030 mass% or less.
S:0.010mass%以下
Sは、鋼中に不可避に混入する不純物であり、鋼板の伸びおよびr値を低下させるほか、ラーベス相の析出を促進して鋼を硬質化し、成形性を低下させる元素である。また、ステンレス鋼の基本特性である耐食性を低下させる元素でもあるので、できるだけ低減するのが望ましい。よって、本発明では、Sを0.010mass%以下とする。
S: 0.010 mass% or less S is an impurity inevitably mixed in the steel, and lowers the elongation and r-value of the steel sheet, promotes precipitation of the Laves phase, hardens the steel, and lowers formability. It is an element. Moreover, since it is also an element which reduces the corrosion resistance which is the basic characteristic of stainless steel, it is desirable to reduce it as much as possible. Therefore, in this invention, S is made into 0.010 mass% or less.
Al:0.01〜0.10mass%
Alは、本発明のフェライト系ステンレス鋼の靭性向上に必要な重要な元素であるが、図2に示したように、Siを0.10mass%以下に制限した上で、Alを0.01mass%以上添加することにより、初めてその効果が得られる。一方、0.10mass%を超え添加すると、靭性向上効果は飽和する他、冷延焼鈍後の脱スケール性が低下するため、製造性が悪くなる。よって、Alの含有量は0.01〜0.10mass%とする。好ましくは、0.015〜0.08mass%の範囲である。
Al: 0.01-0.10 mass%
Al is an important element necessary for improving the toughness of the ferritic stainless steel of the present invention. As shown in FIG. 2, after limiting Si to 0.10 mass% or less, Al is 0.01 mass%. The effect is acquired for the first time by adding above. On the other hand, when it is added in excess of 0.10 mass%, the toughness improving effect is saturated, and the descalability after cold rolling annealing is lowered, resulting in poor productivity. Therefore, the Al content is 0.01 to 0.10 mass%. Preferably, it is the range of 0.015-0.08 mass%.
N:0.015mass%未満
Nは、鋼の靭性および成形性を低下させる元素であり、0.015mass%超え含有すると、この影響が顕著となる。このため、Nは、できるだけ低減するのが望ましく、0.015mass%以下とする。好ましくは0.010mass%以下である。
N: Less than 0.015 mass% N is an element that lowers the toughness and formability of steel, and when it exceeds 0.015 mass%, this effect becomes significant. For this reason, it is desirable to reduce N as much as possible, and it is 0.015 mass% or less. Preferably it is 0.010 mass% or less.
Cr:12.0〜20.0mass%
Crは、フェライト系ステンレス鋼の耐食性、耐酸化性を確保するために必要な成分である。上記効果を得るためには、12.0mass%以上の添加が必要である。一方、Crは、鋼中に固溶して室温強度を高め、硬質化するので、延性の低下を招く。特に、Cr含有量が20.0mass%を超えると、この影響が顕著となるので、Crの上限は20.0mass%とする。よって、本発明では、Crは12.0〜20.0mass%の範囲とする。好ましくは14.0〜19.0mass%の範囲である。
Cr: 12.0 to 20.0 mass%
Cr is a component necessary for ensuring the corrosion resistance and oxidation resistance of ferritic stainless steel. In order to acquire the said effect, addition of 12.0 mass% or more is required. On the other hand, Cr dissolves in the steel to increase the room temperature strength and harden, which causes a decrease in ductility. In particular, when the Cr content exceeds 20.0 mass%, this effect becomes significant, so the upper limit of Cr is 20.0 mass%. Therefore, in this invention, Cr is taken as the range of 12.0-20.0 mass%. Preferably it is the range of 14.0-19.0 mass%.
Ni:1.0mass%以下
Niは、鋼の靭性を向上させる元素である。しかし、Niは、高価であるばかりでなく、強力なγ相形成元素であり、高温でγ相の生成を促進し、耐酸化性を低下させる。よって、Niは1.0mass%以下とする。好ましくは、0.05〜0.6mass%の範囲である。
Ni: 1.0 mass% or less Ni is an element that improves the toughness of steel. However, Ni is not only expensive but also a strong γ-phase-forming element, promotes the formation of γ-phase at high temperatures, and reduces oxidation resistance. Therefore, Ni is set to 1.0 mass% or less. Preferably, it is the range of 0.05-0.6 mass%.
Cu:1.2〜1.8mass%
Cuは、500〜750℃の温度域でε−Cuとして析出することにより、室温〜析出温度の広範な温度範囲での強度向上に寄与する重要な成分である。特に、本発明が目標とする650℃における0.2%耐力:280MPa以上を達成するためには、1.2mass%以上のCu添加が必要である。一方、Cu含有量が1.8mass%を超えると、鋼板製造における最終焼鈍での冷却時にε−Cuが多量に析出し、例えSiとAlの含有量の最適化を行っても、鋼板の靭性低下が顕著となる。よって、本発明では、Cu含有量は、強度向上と靭性確保を図る観点から、1.2〜1.8mass%の範囲とする。
Cu: 1.2-1.8 mass%
Cu is an important component that contributes to improving the strength in a wide temperature range from room temperature to the precipitation temperature by precipitating as ε-Cu in the temperature range of 500 to 750 ° C. In particular, in order to achieve the target 0.2% proof stress at 650 ° C. of 280 MPa or more, which is the target of the present invention, it is necessary to add 1.2 mass% or more of Cu. On the other hand, if the Cu content exceeds 1.8 mass%, a large amount of ε-Cu precipitates during cooling in the final annealing in steel sheet production, and even if the Si and Al contents are optimized, the toughness of the steel sheet The decrease is remarkable. Therefore, in the present invention, the Cu content is set to a range of 1.2 to 1.8 mass% from the viewpoint of improving strength and securing toughness.
Mo:0.8〜3.0mass%
Moは、鋼中に固溶状態で存在することにより、高温耐力を増加させ、耐食性や耐酸化性を向上させる効果を有する重要な成分である。このような効果は、0.8mass%以上の添加で認められる。一方、3.0mass%超え含有すると、ラーベス相の析出が顕著となり、固溶状態で存在するMo量が減少するため、高温耐力や耐食性向上への寄与が小さくなるとともに、常温での強度が増して加工性が低下する。よって、Moは0.8〜3.0mass%の範囲とする。好ましくは、1.0〜3.0mass%の範囲である。
Mo: 0.8-3.0 mass%
Mo is an important component having the effect of increasing the high temperature proof stress and improving the corrosion resistance and oxidation resistance by being present in a solid solution state in the steel. Such an effect is recognized by addition of 0.8 mass% or more. On the other hand, when the content exceeds 3.0 mass%, precipitation of the Laves phase becomes prominent, and the amount of Mo existing in a solid solution state decreases, so that the contribution to improving high-temperature proof stress and corrosion resistance is reduced, and the strength at room temperature is increased. Processability is reduced. Therefore, Mo is set to a range of 0.8 to 3.0 mass%. Preferably, it is the range of 1.0-3.0 mass%.
W:1.0〜5.0mass%
Wは、Moと同様、鋼中に固溶状態で存在することにより、高温耐力を増加させ、耐食性や耐酸化性を向上させる効果を有するため、本発明では重要な成分である。このような効果は、1.0mass%以上の含有で認められる。一方、5.0mass%を超えるとラーベス相の析出が顕著となり、固溶状態で存在するW量が飽和し、また、靭性や加工性が低下する。よって、Wは1.0〜5.0mass%の範囲とする。好ましくは2.0〜4.0mass%の範囲である。
W: 1.0-5.0 mass%
W, like Mo, is an important component in the present invention because it has the effect of increasing high-temperature proof stress and improving corrosion resistance and oxidation resistance by being present in a solid solution state in steel. Such an effect is recognized by containing 1.0 mass% or more. On the other hand, if it exceeds 5.0 mass%, the Laves phase precipitates significantly, the amount of W present in the solid solution state is saturated, and the toughness and workability deteriorate. Therefore, W is set to a range of 1.0 to 5.0 mass%. Preferably it is the range of 2.0-4.0 mass%.
(Mo+W):3.0〜5.8mass%
MoおよびWは、上述したように同様の効果を有する成分である。しかし、本発明が目標とする高温強度、即ち、900℃における0.2%耐力:27MPa以上、650℃における0.2%耐力:280MPa以上を達成するためには、MoとWの合計量(Mo+W)は3.0mass%以上が必要である。一方、(Mo+W)が5.8mass%を超えると、上述した効果が飽和すると共に、靭性や加工性の低下が起こるようになる。よって、(Mo+W)は、3.0〜5.8mass%の範囲とする。好ましくは3.5〜5.0mass%の範囲である。
(Mo + W): 3.0 to 5.8 mass%
Mo and W are components having the same effect as described above. However, in order to achieve the high temperature strength targeted by the present invention, that is, 0.2% proof stress at 900 ° C .: 27 MPa or more and 0.2% proof stress at 650 ° C .: 280 MPa or more, the total amount of Mo and W ( Mo + W) needs to be 3.0 mass% or more. On the other hand, when (Mo + W) exceeds 5.8 mass%, the above-described effects are saturated, and toughness and workability are lowered. Therefore, (Mo + W) is in the range of 3.0 to 5.8 mass%. Preferably it is the range of 3.5-5.0 mass%.
Nb:0.3mass%以上かつ、
Nb−(93/12)×C−(93/14)×N):0.25〜0.50mass%
Nbは、C,Nを固定し、高温強度や成形性、耐食性、溶接部の耐粒界腐食性を高める効果のある元素である。このような効果は、Nb:0.3mass%以上でかつ、
Nb−(93/12)×C−(93/14)×N):0.25mass%以上
で認められる。ここで、上記式は、添加されたNb量からC,Nの固定に消費されたNb量を差し引いたいわゆる「有効Nb」を意味する。一方、上記有効Nbが0.50mass%を超えて含有すると、ラーベス相が多量に析出し、Nbの高温強度向上効果が飽和するとともに、靭性や表面性状を劣化させる。このため、本発明では、Nbは0.3mass%以上、かつ、有効Nb:0.25〜0.50mass%の範囲とする。なお、特に優れた高温強度が要求される場合には、有効Nbは0.30mass%以上であることが好ましい。
Nb: 0.3 mass% or more and
Nb- (93/12) × C- (93/14) × N): 0.25 to 0.50 mass%
Nb is an element that has the effect of fixing C and N and enhancing high-temperature strength, formability, corrosion resistance, and intergranular corrosion resistance of welds. Such an effect is Nb: 0.3 mass% or more and
Nb- (93/12) × C- (93/14) × N): recognized at 0.25 mass% or more. Here, the above formula means a so-called “effective Nb” obtained by subtracting the amount of Nb consumed for fixing C and N from the amount of added Nb. On the other hand, when the effective Nb content exceeds 0.50 mass%, a large amount of Laves phase is precipitated, the high temperature strength improving effect of Nb is saturated, and toughness and surface properties are deteriorated. For this reason, in this invention, Nb shall be 0.3 mass% or more and it is set as the range of effective Nb: 0.25-0.50 mass%. When particularly excellent high-temperature strength is required, the effective Nb is preferably 0.30 mass% or more.
本発明のフェライト系ステンレス鋼は、上記成分に加えてさらに、B,Ti,REM,Zr,VおよびCoのうちから選ばれる1種または2種以上を下記の範囲で含有することができる。
B:0.003mass%以下
Bは、加工性、特に2次加工性の向上に有効な元素である。この効果は、B:0.0005mass%以上で発現する。一方、0.003mass%を超える含有は、BNを多量に生成して加工性の低下を招く。よって、Bを添加する場合は、0.003mass%以下とするのが好ましい。
In addition to the above components, the ferritic stainless steel of the present invention may further contain one or more selected from B, Ti, REM, Zr, V and Co in the following range.
B: 0.003 mass% or less B is an element effective for improving workability, particularly secondary workability. This effect is manifested at B: 0.0005 mass% or more. On the other hand, if the content exceeds 0.003 mass%, a large amount of BN is generated, resulting in a decrease in workability. Therefore, when adding B, it is preferable to set it as 0.003 mass% or less.
Ti:0.25mass%以下
Tiは、伸びやr値を向上させるのに有効な成分である。しかしながら、0.25mass%を超えて添加すると、本発明の成分系においても靭性の低下が顕著になるため、Tiを添加する場合は0.25mass%以下に限定される。
Ti: 0.25 mass% or less Ti is an effective component for improving elongation and r value. However, if added in excess of 0.25 mass%, the toughness is significantly reduced even in the component system of the present invention. Therefore, when adding Ti, the content is limited to 0.25 mass% or less.
REM:0.08mass%以下、Zr:0.5mass%
REM(希土類元素),Zrは、いずれも耐酸化性を改善する元素であり、必要に応じて含有することができる。しかし、REM:0.08mass%を超える含有は、鋼を脆化させる。また、Zr:0.5mass%を超える含有は、Zr金属間化合物が析出し、やはり鋼を脆化させる。このため、REMを添加する場合は0.08mass%以下、Zrを添加する場合は0.5mass%以下とするのが好ましい。
REM: 0.08 mass% or less, Zr: 0.5 mass%
REM (rare earth element) and Zr are both elements that improve oxidation resistance, and can be contained as necessary. However, the content exceeding REM: 0.08 mass% embrittles the steel. Further, if the Zr content exceeds 0.5 mass%, a Zr intermetallic compound precipitates, and the steel is also embrittled. For this reason, when adding REM, it is preferable to set it as 0.08 mass% or less, and when adding Zr, it is preferable to set it as 0.5 mass% or less.
V:0.5mass%以下
Vは、成形性の向上に有効な元素である。しかし、0.5mass%を超える過剰な含有は、粗大なV(C,N)が析出して表面性状を劣化させる。このため、Vを添加する場合は、0.5mass%以下とするのが好ましい。
V: 0.5 mass% or less V is an element effective for improving moldability. However, excessive content exceeding 0.5 mass% causes coarse V (C, N) to precipitate and deteriorates the surface properties. For this reason, when adding V, it is preferable to set it as 0.5 mass% or less.
Co:0.5mass%以下
Coは、靭性の向上に有効な元素であるが、0.5mass%超え添加しても、その効果は飽和する。また、Coは高価な成分でもあるので、添加する場合は0.5mass%以下が好ましい。
なお、本発明の鋼板は、上記成分以外の残部は、Feおよび不可避的不純物である。ただし、本発明の作用効果を害さない範囲であれば、上記以外の成分の含有を拒むものではない。
Co: 0.5 mass% or less Co is an element effective for improving toughness, but the effect is saturated even when added in excess of 0.5 mass%. Moreover, since Co is also an expensive component, when adding it, 0.5 mass% or less is preferable.
In the steel sheet of the present invention, the balance other than the above components is Fe and inevitable impurities. However, as long as the effects of the present invention are not impaired, the inclusion of components other than those described above is not rejected.
本発明に係るフェライト系ステンレス鋼の製造方法は、とくに限定されるものではなく、公知の方法を適用することができる。例えば、本発明に適合する成分組成を有する鋼を転炉や電気炉等の公知の方法で溶製し、さらに必要に応じて取鍋精錬、真空精錬等の2次精錬を施したのち連続鋳造法あるいは造塊−分塊圧延法で鋼片(スラブ)とする。その後、熱間圧延、熱延板焼鈍、酸洗、冷間圧延、仕上焼鈍、酸洗等の各工程を順次経て冷延焼鈍板とするのが好ましい。なお、上記冷間圧延は、1回または中間焼鈍を挟む2回以上行ってもよい。また、冷間圧延以外に、仕上焼鈍、酸洗工程も繰り返して行ってもよい。また、熱延板焼鈍は、省略してもよい。さらに、鋼板表面に光沢性が要求される場合には、スキンパス圧延を施してもよい。 The manufacturing method of the ferritic stainless steel according to the present invention is not particularly limited, and a known method can be applied. For example, steel having a component composition suitable for the present invention is melted by a known method such as a converter or an electric furnace, and further subjected to secondary refining such as ladle refining or vacuum refining, and then continuous casting. Steel strip (slab) is formed by the method or ingot-bundling rolling method. Then, it is preferable to make it a cold-rolled annealing board through each process, such as hot rolling, hot-rolled sheet annealing, pickling, cold rolling, finish annealing, pickling. The cold rolling may be performed once or twice or more with intermediate annealing. Further, in addition to cold rolling, finish annealing and pickling steps may be repeated. Moreover, you may abbreviate | omit hot-rolled sheet annealing. Furthermore, when glossiness is required on the steel sheet surface, skin pass rolling may be performed.
表1に示したNo.1〜16の成分組成を有する鋼を真空溶解炉で溶製し、50kgの鋼塊とした後、これらの鋼塊を1170℃に加熱し、熱間圧延して板厚5mmの熱延板とした。次いで、これらの熱延板を、熱延板焼鈍(焼鈍温度:1040℃)し、酸洗し、冷間圧延(冷延圧下率:60%)し、仕上焼鈍(焼鈍温度:1050℃、平均冷却速度:20℃/sec)し、酸洗して、板厚2mmの冷延焼鈍板とした。なお、参考例として、特許文献6〜8に実施例として記載された鋼板についても、同様にして冷延焼鈍板を作製し、表1にNo.17〜20として示した。 No. shown in Table 1. Steel having a component composition of 1 to 16 is melted in a vacuum melting furnace to form 50 kg steel ingots, and these steel ingots are heated to 1170 ° C. and hot-rolled to obtain a hot rolled sheet having a thickness of 5 mm. did. Subsequently, these hot-rolled sheets are subjected to hot-rolled sheet annealing (annealing temperature: 1040 ° C.), pickling, cold rolling (cold rolling reduction ratio: 60%), and finish annealing (annealing temperature: 1050 ° C., average). (Cooling rate: 20 ° C./sec) and pickled to obtain a cold-rolled annealed plate having a thickness of 2 mm. As reference examples, cold-rolled annealed plates were prepared in the same manner for the steel sheets described as Examples in Patent Documents 6 to 8, and No. 1 is shown in Table 1. Shown as 17-20.
上記のようにして得た各種冷延焼鈍板について、下記の評価試験に供した。
(1)高温強度
それぞれの冷延焼鈍板から、圧延方向を引張方向とした引張試験片を各2本ずつ採取し、JIS G0567の規定に準拠して、900℃および650℃の温度において、歪速度:0.3%/minで高温引張試験を行い、900℃における0.2%耐力(σ0.2at900℃)および650℃における0.2%耐力(σ0.2at650℃)を測定した。そして、高温強度の評価は、σ0.2at900℃は、27MPa以上を良(○)、27MPa未満を不良(×)と、また、σ0.2at650℃は、280MPa以上を良(○)、280MPa未満を不良(×)と判定した。
(2)靭性
それぞれの冷延焼鈍板より、幅2mmで、ノッチの方向を圧延方向に90°方向としたサブサイズのシャルピー衝撃試験片を採取し、0℃においてシャルピー衝撃試験をそれぞれ5本実施し、得られた破面を観察して脆性破面率の平均値を求めた。なお、靭性の評価は、脆性破面率が5%以下のものを良(○)、5%超えのものを不良(×)と判定した。
The various cold-rolled annealed plates obtained as described above were subjected to the following evaluation tests.
(1) High-temperature strength Two tensile test pieces each having the rolling direction as the tensile direction were sampled from each cold-rolled annealed sheet, and strains were measured at 900 ° C. and 650 ° C. in accordance with JIS G0567. Speed: Perform high-temperature tensile test at 0.3% / min and measure 0.2% yield strength (σ 0.2 at 900 ° C.) at 900 ° C. and 0.2% yield strength (σ 0.2 at 650 ° C.) at 650 ° C. did. The evaluation of the high-temperature strength is as follows: σ 0.2 at 900 ° C. is good (◯) for 27 MPa or more, poor (×) if it is less than 27 MPa, and σ 0.2 at 650 ° C. is good (◯) for 280 MPa or more. Less than 280 MPa was determined to be defective (x).
(2) Toughness From each cold-rolled annealed plate, sub-size Charpy impact test pieces with a width of 2 mm and a notch direction of 90 ° in the rolling direction were collected, and five Charpy impact tests were conducted at 0 ° C. Then, the obtained fracture surface was observed to determine the average value of the brittle fracture surface ratio. In the evaluation of toughness, a case where the brittle fracture surface ratio was 5% or less was judged as good (◯), and a case where it exceeded 5% was judged as bad (×).
上記試験の結果を表2に示す。表2から、本発明例の鋼板は、いずれも900℃における0.2%耐力が27MPa以上、650℃における0.2%耐力が280MPa以上の優れた高温強度を有し、しかも、0℃における脆性破面率が5%以下と靭性にも優れていることがわかる。一方、本発明の範囲外である比較例あるいは先行技術の鋼板は、いずれも両特性のいずれか1以上を満足していないことがわかる。 The results of the above test are shown in Table 2. From Table 2, the steel sheets of the examples of the present invention all have excellent high-temperature strength such that the 0.2% proof stress at 900 ° C. is 27 MPa or more, the 0.2% proof stress at 650 ° C. is 280 MPa or more, and at 0 ° C. It can be seen that the brittle fracture surface ratio is 5% or less and excellent in toughness. On the other hand, it can be seen that none of the comparative examples or the prior art steel sheets that are outside the scope of the present invention satisfy one or more of both properties.
本発明の鋼板は、自動車排気系部材の他、火力発電システムの排気経路部材や固体酸化物形の燃料電池用部材としても用いることができる。また、本発明の鋼板は、耐食性鋼板としても用いることができる。 The steel sheet of the present invention can be used as an exhaust path member of a thermal power generation system or a solid oxide fuel cell member in addition to an automobile exhaust system member. The steel plate of the present invention can also be used as a corrosion resistant steel plate.
Claims (2)
0.25≦Nb−(93/12)×C−(93/14)×N≦0.50
ただし、上式中のNb,CおよびNは、各元素の質量(mass%)
を満たして含有し、残部がFeおよび不可避的不純物からなる成分組成を有するフェライト系ステンレス鋼。 C: 0.015 mass% or less, Si: 0.10 mass% or less, Mn: 2.0 mass% or less, P: 0.040 mass% or less, S: 0.010 mass% or less, Al: 0.01 to 0.10 mass% N: 0.015 mass% or less, Cr: 12.0 to 20.0 mass%, Ni: 1.0 mass% or less, Cu: 1.2 to 1.8 mass%, Mo: 0.8 to 3.0 mass%, W: 1.0 to 3.01 mass% and (Mo + W): 3.0 to 5.8 mass%, and Nb: 0.3 mass% or more and the following formula:
0.25 ≦ Nb− (93/12) × C− (93/14) × N ≦ 0.50
However, Nb, C and N in the above formula are the mass of each element (mass%)
And ferritic stainless steel having a component composition in which the balance is composed of Fe and inevitable impurities.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008042877A JP5141296B2 (en) | 2008-02-25 | 2008-02-25 | Ferritic stainless steel with excellent high temperature strength and toughness |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008042877A JP5141296B2 (en) | 2008-02-25 | 2008-02-25 | Ferritic stainless steel with excellent high temperature strength and toughness |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009197306A JP2009197306A (en) | 2009-09-03 |
JP5141296B2 true JP5141296B2 (en) | 2013-02-13 |
Family
ID=41141130
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008042877A Active JP5141296B2 (en) | 2008-02-25 | 2008-02-25 | Ferritic stainless steel with excellent high temperature strength and toughness |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5141296B2 (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4831256B2 (en) * | 2010-01-28 | 2011-12-07 | Jfeスチール株式会社 | High corrosion resistance ferritic stainless hot rolled steel sheet with excellent toughness |
CN102791897A (en) | 2010-03-11 | 2012-11-21 | 新日铁住金不锈钢株式会社 | Highly oxidation-resistant ferrite stainless steel plate, highly heat-resistant ferrite stainless steel plate, and manufacturing method therefor |
JP5659061B2 (en) | 2011-03-29 | 2015-01-28 | 新日鐵住金ステンレス株式会社 | Ferritic stainless steel sheet excellent in heat resistance and workability and manufacturing method thereof |
JP6037882B2 (en) | 2012-02-15 | 2016-12-07 | 新日鐵住金ステンレス株式会社 | Ferritic stainless steel sheet with excellent scale peel resistance and method for producing the same |
JP6071608B2 (en) * | 2012-03-09 | 2017-02-01 | 新日鐵住金ステンレス株式会社 | Ferritic stainless steel plate with excellent oxidation resistance |
JP5793459B2 (en) | 2012-03-30 | 2015-10-14 | 新日鐵住金ステンレス株式会社 | Heat-resistant ferritic stainless steel cold-rolled steel sheet excellent in workability, ferritic stainless hot-rolled steel sheet for cold-rolled material, and production method thereof |
FI125855B (en) * | 2012-06-26 | 2016-03-15 | Outokumpu Oy | Ferritic stainless steel |
KR101692660B1 (en) | 2013-03-06 | 2017-01-03 | 닛폰 스틸 앤드 스미킨 스테인레스 스틸 코포레이션 | Ferritic stainless steel sheet having excellent heat resistance |
CA2907970C (en) | 2013-03-27 | 2021-05-25 | Nippon Steel & Sumikin Stainless Steel Corporation | Hot-rolled ferritic stainless-steel plate, process for producing same, and steel strip |
JP6749808B2 (en) * | 2016-07-29 | 2020-09-02 | 日鉄ステンレス株式会社 | Ferritic stainless steel sheet having excellent carburization resistance and oxidation resistance, and method for producing the same |
JP6796708B2 (en) | 2017-03-27 | 2020-12-09 | 日鉄ステンレス株式会社 | Ferritic stainless steel sheet and its manufacturing method, and exhaust parts |
CN112593151A (en) * | 2020-11-26 | 2021-04-02 | 衡阳鸿常机化有限公司 | Corrosion-resistant seamless steel pipe and preparation process thereof |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3903855B2 (en) * | 2002-06-14 | 2007-04-11 | Jfeスチール株式会社 | Ferritic stainless steel that is soft at room temperature and excellent in high-temperature oxidation resistance |
JP4604714B2 (en) * | 2003-12-26 | 2011-01-05 | Jfeスチール株式会社 | Ferritic Cr-containing steel material and manufacturing method thereof |
-
2008
- 2008-02-25 JP JP2008042877A patent/JP5141296B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2009197306A (en) | 2009-09-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5141296B2 (en) | Ferritic stainless steel with excellent high temperature strength and toughness | |
JP4197492B2 (en) | Ferritic stainless steel for exhaust gas flow path members | |
US9279172B2 (en) | Heat-resistance ferritic stainless steel | |
JP5546911B2 (en) | Ferritic stainless steel sheet with excellent heat resistance and workability | |
JP4702493B1 (en) | Ferritic stainless steel with excellent heat resistance | |
TWI431122B (en) | Ferritic stainless steel excellent in heat resistance and toughness | |
JP5609571B2 (en) | Ferritic stainless steel with excellent oxidation resistance | |
JP5012243B2 (en) | Ferritic stainless steel with excellent high-temperature strength, heat resistance and workability | |
JP5540637B2 (en) | Ferritic stainless steel with excellent heat resistance | |
WO2011118854A1 (en) | Ferrite stainless steel sheet having high thermal resistance and processability, and method for manufacturing the same | |
JP5125600B2 (en) | Ferritic stainless steel with excellent high-temperature strength, steam oxidation resistance and workability | |
JP3903855B2 (en) | Ferritic stainless steel that is soft at room temperature and excellent in high-temperature oxidation resistance | |
JP5152387B2 (en) | Ferritic stainless steel with excellent heat resistance and workability | |
JP5677819B2 (en) | Ferritic stainless steel plate with excellent oxidation resistance | |
JP4154932B2 (en) | Ferritic stainless steel with excellent high-temperature strength, high-temperature oxidation resistance, and high-temperature salt damage resistance | |
JP3744403B2 (en) | Soft Cr-containing steel | |
JP5796398B2 (en) | Ferritic stainless steel with excellent thermal and high temperature fatigue properties | |
JP6665936B2 (en) | Ferritic stainless steel | |
JP5417764B2 (en) | Ferritic stainless steel with excellent thermal fatigue properties and oxidation resistance | |
JP5810722B2 (en) | Ferritic stainless steel with excellent thermal fatigue characteristics and workability | |
JP5141295B2 (en) | Ferritic stainless steel with excellent thermal fatigue properties | |
JP5343444B2 (en) | Ferritic stainless steel with excellent thermal fatigue properties, oxidation resistance and workability | |
JP5796397B2 (en) | Ferritic stainless steel with excellent thermal fatigue properties and oxidation resistance | |
JP2024142069A (en) | Ferritic Stainless Steel Sheet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100823 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120704 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120724 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120907 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20121023 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20121105 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20151130 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 5141296 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |