JP5125600B2 - Ferritic stainless steel with excellent high-temperature strength, steam oxidation resistance and workability - Google Patents

Ferritic stainless steel with excellent high-temperature strength, steam oxidation resistance and workability Download PDF

Info

Publication number
JP5125600B2
JP5125600B2 JP2008042905A JP2008042905A JP5125600B2 JP 5125600 B2 JP5125600 B2 JP 5125600B2 JP 2008042905 A JP2008042905 A JP 2008042905A JP 2008042905 A JP2008042905 A JP 2008042905A JP 5125600 B2 JP5125600 B2 JP 5125600B2
Authority
JP
Japan
Prior art keywords
mass
less
ferritic stainless
steel
stainless steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008042905A
Other languages
Japanese (ja)
Other versions
JP2009197307A (en
Inventor
康 加藤
知正 平田
工 宇城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2008042905A priority Critical patent/JP5125600B2/en
Publication of JP2009197307A publication Critical patent/JP2009197307A/en
Application granted granted Critical
Publication of JP5125600B2 publication Critical patent/JP5125600B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Description

本発明は、フェライト系ステンレス鋼に関し、特に、自動車やオートバイの排気管や触媒外筒材、火力発電プラントの排気ダクト等の高温環境下で使用される部材に用いられる、高温強度、耐水蒸気酸化性および加工性に優れるフェライト系ステンレス鋼に関するものである。   The present invention relates to ferritic stainless steel, and in particular, high temperature strength, steam oxidation resistance used for members used in high temperature environments such as automobile and motorcycle exhaust pipes, catalyst outer cylinders, and exhaust ducts of thermal power plants. The present invention relates to ferritic stainless steel having excellent properties and workability.

自動車のエキゾーストマニホールドや排気パイプ、コンバータケース、マフラー等に代表される排気系部材に用いられる材料には、成形性と耐熱性に優れることが要求される。そのため、このような用途には、従来、室温での成形性に優れかつ高温での耐力も比較的高い、NbとSiを添加したType429(14Cr−0.9Si−0.4Nb系)鋼のようなCr含有鋼が多く使用されている。しかし、エンジン性能の向上に伴い、排ガス温度が上昇する傾向にあり、その温度が900℃近くまで上昇してくると、Type429鋼では、高温耐力が不足するようになってきている。   Materials used for exhaust system members typified by automobile exhaust manifolds, exhaust pipes, converter cases, and mufflers are required to be excellent in moldability and heat resistance. Therefore, for such applications, type 429 (14Cr-0.9Si-0.4Nb) steel added with Nb and Si, which has excellent moldability at room temperature and relatively high proof stress at high temperature, has been conventionally used. Many Cr-containing steels are used. However, as the engine performance improves, the exhaust gas temperature tends to rise, and when the temperature rises to near 900 ° C., Type 429 steel has become insufficient in high-temperature proof stress.

この問題に対しては、NbとMoを添加して高温耐力を向上させたCr含有鋼や、JIS G4305に規定されているSUS444(19Cr−0.2Nb−1.8Mo)鋼等が開発されている。しかし、自動車の燃費向上や排気ガスの規制強化に対応して、エンジンから排出されるガスの温度はさらに上昇する趨勢にあり、自動車の排気系部材に用いられる材料には、より優れた耐熱性が要求されるようになってきている。また、排気系部材に用いられる材料の高温強度を高めることは、部材の薄肉化を可能とし、自動車車体の軽量化にも寄与するため、高温強度の向上に対する要求はますます強くなっている。   In order to solve this problem, Cr-containing steel in which Nb and Mo are added to improve high-temperature yield strength, SUS444 (19Cr-0.2Nb-1.8Mo) steel defined in JIS G4305, and the like have been developed. Yes. However, in response to improvements in automobile fuel efficiency and stricter exhaust gas regulations, the temperature of exhaust gas from engines tends to rise further, and materials used for automobile exhaust system members have better heat resistance. Is becoming required. In addition, increasing the high-temperature strength of the materials used for exhaust system members enables thinning of the members and contributes to the weight reduction of the automobile body, so that the demand for improvement of the high-temperature strength is increasing.

このような状況下において、排気系部材用の材料が各種開発されている。例えば、特許文献1〜5には、Nb,Moの添加に加えてさらにWを添加することにより、高温強度や耐酸化性を向上させたCr含有鋼やフェライト系ステンレス鋼が開示されている。また、特許文献6〜8には、Nb,Mo,Wの添加に加えてさらにCuを添加することにより、高温強度を向上させたCr含有鋼やフェライト系ステンレス鋼が開示されている。
特開2002−212685号公報 特開2003−213377号公報 特開2004−018921号公報 特開2004−018914号公報 特開2004−076154号公報 特開2005−206944号公報 特開2001−303202号公報 特開2002−004011号公報
Under such circumstances, various materials for exhaust system members have been developed. For example, Patent Documents 1 to 5 disclose Cr-containing steel and ferritic stainless steel in which high temperature strength and oxidation resistance are improved by adding W in addition to addition of Nb and Mo. Patent Documents 6 to 8 disclose Cr-containing steels and ferritic stainless steels that have improved high-temperature strength by adding Cu in addition to the addition of Nb, Mo, and W.
Japanese Patent Laid-Open No. 2002-212585 JP 2003-213377 A JP 2004-018921 A JP 2004-018914 A JP 2004-076154 A JP 2005-206944 A JP 2001-303202 A JP 2002-004011 A

しかしながら、特許文献1〜5に開示されたCr含有鋼やフェライトステンレス鋼は、排気系部材に用いるには、耐熱性が不十分である。また、特許文献6〜8に開示されたCr含有鋼やフェライト系ステンレス鋼は、Nb,Mo,W,Cuのような合金元素を多量に添加する必要があるため、鋼板の加工性が低下し、部品への加工を温間で行わなければならないという問題がある。特に、Cuを1%超え添加すると、鋼板製造工程の最終焼鈍冷却時にε−Cuが析出し、室温加工性が低下するという問題がある。また、Cuを1%超え添加すると、900℃以上の水蒸気を含んだ環境中では、耐酸化性が低下するという、従来知られていなかった新たな問題点が明らかになってきた。   However, the Cr-containing steel and ferritic stainless steel disclosed in Patent Documents 1 to 5 are insufficient in heat resistance for use in exhaust system members. In addition, Cr-containing steels and ferritic stainless steels disclosed in Patent Documents 6 to 8 need to add a large amount of alloy elements such as Nb, Mo, W, and Cu, so that the workability of the steel sheet is lowered. There is a problem that the processing of parts must be performed warmly. In particular, when Cu is added in excess of 1%, there is a problem that ε-Cu is precipitated at the time of final annealing cooling in the steel sheet manufacturing process, and the room temperature workability is lowered. Further, when Cu is added in excess of 1%, a new problem that has not been known so far has been revealed that oxidation resistance is reduced in an environment containing water vapor of 900 ° C. or higher.

そこで、本発明の目的は、従来技術が抱える上記問題点を有利に解決し、900℃という高温でも高い強度と優れた耐水蒸気酸化性を有するとともに、室温での加工性に優れるフェライト系ステンレス鋼を提案することにある。ここで、本発明でいう「高い強度」とは、900℃における0.2%耐力が27MPa以上かつ650℃における0.2%耐力が280MPa以上であることをいう。また、「優れた耐水蒸気酸化性」とは、露点が+55℃の空気中に1000℃×200時間保持したときの酸化増量が5mg/cm以下であることをいう。また、「室温での加工性に優れる」とは、室温(20℃)での孔拡げ率が120%以上であることをいう。 Accordingly, an object of the present invention is to advantageously solve the above-mentioned problems of the prior art, and has a high strength and excellent steam oxidation resistance even at a high temperature of 900 ° C., and a ferritic stainless steel having excellent workability at room temperature. Is to propose. Here, “high strength” in the present invention means that the 0.2% yield strength at 900 ° C. is 27 MPa or more and the 0.2% yield strength at 650 ° C. is 280 MPa or more. “Excellent steam oxidation resistance” means that the increase in oxidation when held in air having a dew point of + 55 ° C. for 1000 hours × 200 hours is 5 mg / cm 2 or less. Further, “excellent processability at room temperature” means that the hole expansion rate at room temperature (20 ° C.) is 120% or more.

発明者らは、上記課題を解決するために、フェライト系ステンレス鋼が有する成分系に着目し、鋭意検討を重ねた。その結果、フェライト系ステンレス鋼に、Nbを0.3〜1.0mass%、(Mo+W)を3.0〜5.8mass%添加し、さらにCuを1.0〜2.5mass%添加することにより幅広い温度域で高い高温強度を得ることができることを見出した。また、上記Cu添加に伴う穴拡げ性の低下に対しては、適正量のAlを添加し、さらに、Cr,Mo,W,Al,Cuの含有量を、下記(1)式;
0.2×Cr+10×Si+0.3×Mo+0.2×W+2×(Nb−0.4)+5×(Cu−1)≦11 ・・・(1)
を満たすよう適正範囲に制御すること、また、上記Cu添加による耐水蒸気酸化性の低下に対しては、Si含有量を低減した上で、さらに、Cr,Mo,W,NbおよびCuの含有量を、下記(2)式;
Cr+2×Mo+0.5×W+12×Al−4×Cu≧13.5 ・・・(2)
を満たすよう適正範囲に制御することが有効であることを見出し、本発明を完成させた。
In order to solve the above-mentioned problems, the inventors paid attention to the component system possessed by the ferritic stainless steel and conducted extensive studies. As a result, by adding 0.3 to 1.0 mass% of Nb, 3.0 to 5.8 mass% of (Mo + W), and further adding 1.0 to 2.5 mass% of Cu to ferritic stainless steel. It has been found that high high-temperature strength can be obtained in a wide temperature range. Moreover, with respect to the decrease in hole expansibility associated with the addition of Cu, an appropriate amount of Al is added, and the content of Cr, Mo, W, Al, and Cu is expressed by the following formula (1);
0.2 × Cr + 10 × Si + 0.3 × Mo + 0.2 × W + 2 × (Nb−0.4) + 5 × (Cu−1) ≦ 11 (1)
In addition, the content of Cr, Mo, W, Nb and Cu is further reduced after reducing the Si content with respect to the decrease in steam oxidation resistance due to the addition of Cu. Is the following formula (2):
Cr + 2 × Mo + 0.5 × W + 12 × Al-4 × Cu ≧ 13.5 (2)
The present inventors have found that it is effective to control within an appropriate range so as to satisfy the above condition, and completed the present invention.

すなわち、本発明は、C:0.015mass%以下、Si:0.10mass%以下、Mn:2.0mass%以下、P:0.040mass%以下、S:0.010mass%以下、Cr:14.0〜20.0mass%、Ni:1.0mass%以下、N:0.015mass%以下、Nb:0.3〜1.0mass%、Cu:1.0〜2.5mass%、Al:0.01〜0.30mass%、Mo:0.8〜3.0mass%、W:1.0〜5.0mass%かつ(Mo+W):3.0〜5.8mass%を満たして含有し、さらに、上記成分が下記(1)式および(2)式;
0.2×Cr+10×Si+0.3×Mo+0.2×W+2×(Nb−0.4)+5×(Cu−1)≦11 ・・・(1)
Cr+2×Mo+0.5×W+12×Al−4×Cu≧13.5 ・・・(2)
を満たして含有し、残部がFeおよび不可避的不純物からなる成分組成を有するフェライト系ステンレス鋼である。
That is, the present invention includes C: 0.015 mass% or less, Si: 0.10 mass% or less, Mn: 2.0 mass% or less, P: 0.040 mass% or less, S: 0.010 mass% or less, Cr: 14. 0 to 20.0 mass%, Ni: 1.0 mass% or less, N: 0.015 mass% or less, Nb: 0.3 to 1.0 mass%, Cu: 1.0 to 2.5 mass%, Al: 0.01 -0.30mass%, Mo: 0.8-3.0mass%, W: 1.0-5.0mass% and (Mo + W): 3.0-5.8mass% are satisfy | filled, Furthermore, the said component Are the following formulas (1) and (2);
0.2 × Cr + 10 × Si + 0.3 × Mo + 0.2 × W + 2 × (Nb−0.4) + 5 × (Cu−1) ≦ 11 (1)
Cr + 2 × Mo + 0.5 × W + 12 × Al-4 × Cu ≧ 13.5 (2)
Is a ferritic stainless steel having a component composition consisting of Fe and inevitable impurities.

本発明のフェライト系ステンレス鋼は、上記成分組成に加えてさらに、B:0.003mass%以下、Ti:0.25mass%以下、REM:0.08mass%以下、Zr:0.5mass%以下およびCo:0.5mass%以下のうちから選ばれる1種または2種以上を含有することを特徴とする。
Ferritic stainless steels of the present invention, in addition to the above chemical composition, B: 0.003 mass% or less, Ti: 0.25 mass% or less, REM: 0.08 mass% or less, Zr: 0.5 mass% hereinafter Contact And Co: one or more selected from 0.5 mass% or less.

本発明によれば、900℃という高温でも、耐熱性に優れるだけでなく、高い耐力と優れた耐水蒸気酸化性を有し、しかも、室温での加工性にも優れるフェライト系ステンレス鋼を得ることができる。そのため、本発明のフェライト系ステンレス鋼は、自動車排気系部材や火力発電システムの排気経路部材、固体酸化物形の燃料電池用部材の材料として好適に用いることができる。さらに、本発明のフェライト系ステンレス鋼は、耐食性向上に有効なMo,Wを含有しているので、耐食性が要求される使途にも用いることができる。   According to the present invention, it is possible to obtain a ferritic stainless steel not only having excellent heat resistance even at a high temperature of 900 ° C., but also having high proof stress and excellent steam oxidation resistance, and also excellent workability at room temperature. Can do. Therefore, the ferritic stainless steel of the present invention can be suitably used as a material for automobile exhaust system members, exhaust path members of thermal power generation systems, and solid oxide fuel cell members. Furthermore, since the ferritic stainless steel of the present invention contains Mo and W effective for improving the corrosion resistance, it can be used in applications where corrosion resistance is required.

本発明を開発する契機となった基礎実験について説明する。
C:0.005〜0.007mass%、N:0.004〜0.006mass%、Mn:0.4mass%、Cr:15〜17mass%、Nb:0.4〜0.6mass%、Mo:1.5mass%、W:2.7mass%、Cu:1.6mass%およびAl:0.03mass%をベース組成とし、Siの含有量を種々に変化させた鋼を実験室的に溶製し、熱間圧延し、冷間圧延し、仕上焼鈍して板厚2mmの冷延鋼板とし、下記の穴拡げ試験に供した。
The basic experiment that triggered the development of the present invention will be described.
C: 0.005-0.007 mass%, N: 0.004-0.006 mass%, Mn: 0.4 mass%, Cr: 15-17 mass%, Nb: 0.4-0.6 mass%, Mo: 1 .5 mass%, W: 2.7 mass%, Cu: 1.6 mass% and Al: 0.03 mass% as base compositions, and variously changing the Si content in the laboratory, It was cold-rolled, cold-rolled, and annealed to obtain a cold-rolled steel sheet having a thickness of 2 mm, which was subjected to the following hole expansion test.

穴拡げ試験は、試験片の中央に初期孔径d(=10mmφ)の孔を打ち抜き加工し、この孔に円錐状のポンチを押し込み、孔の周辺部に発生した亀裂が板厚を貫通したときの孔径dを測定するものであり、このとき下記式で求められる値λを穴拡げ率と定義する。
穴拡げ率λ(%)={(d−d)/d}×100
In the hole expansion test, a hole having an initial hole diameter d 0 (= 10 mmφ) is punched in the center of the test piece, a conical punch is pushed into the hole, and a crack generated in the periphery of the hole penetrates the plate thickness. The value λ obtained by the following formula is defined as the hole expansion rate.
Hole expansion rate λ (%) = {(d−d 0 ) / d 0 } × 100

図1は、その結果を示したものであり、鋼板の成分組成が下記(1)式;
0.2×Cr+10×Si+0.3×Mo+0.2×W+2×(Nb−0.4)+5×(Cu−1)≦11 ・・・(1)
を満たす場合に、穴拡げ率120%以上が得られることがわかる。
FIG. 1 shows the result, and the component composition of the steel sheet is the following formula (1);
0.2 × Cr + 10 × Si + 0.3 × Mo + 0.2 × W + 2 × (Nb−0.4) + 5 × (Cu−1) ≦ 11 (1)
It can be seen that a hole expansion ratio of 120% or more is obtained when the above condition is satisfied.

次に、C:0.006mass%、N:0.007mass%N、Si:0.06mass%、Mn:0.4mass%、Cr:16mass%、Nb:0.49mass%、Mo:1.7mass%、W:2.3mass%およびCu:1.39mass%をベース組成とし、Alの含有量を種々に変化させた鋼を実験室的に溶製し、熱間圧延し、冷間圧延し、仕上焼鈍して板厚2mmの冷延鋼板とした。次いで、この冷延鋼板から試験片を採取し、露点+55℃で1000℃に加熱した大気雰囲気の炉中に200時間保持する水蒸気酸化試験に供し、試験前後の重量変化から酸化増量を測定した。   Next, C: 0.006 mass%, N: 0.007 mass% N, Si: 0.06 mass%, Mn: 0.4 mass%, Cr: 16 mass%, Nb: 0.49 mass%, Mo: 1.7 mass% , W: 2.3 mass% and Cu: 1.39 mass%, and various steels with various contents of Al were melted in the laboratory, hot-rolled, cold-rolled, and finished. A cold rolled steel sheet having a thickness of 2 mm was obtained by annealing. Next, a test piece was collected from the cold-rolled steel sheet, and subjected to a steam oxidation test that was held in an atmospheric furnace heated to 1000 ° C. at a dew point of + 55 ° C. for 200 hours, and an increase in oxidation was measured from a change in weight before and after the test.

図2は、その結果を示したものであり、鋼の成分組成が下記(2)式;
Cr+2×Mo+0.5×W+12×Al−4×Cu≧13.5 ・・・(2)
を満たす場合に、酸化増量が5mg/cm以下となり、優れた耐水蒸気酸化性が得られることがわかった。
本発明は、上記知見に基づき、さらに検討を加えて開発されたものである。
FIG. 2 shows the result, and the component composition of steel is the following formula (2);
Cr + 2 × Mo + 0.5 × W + 12 × Al-4 × Cu ≧ 13.5 (2)
When satisfying the above, it was found that the oxidation increase was 5 mg / cm 2 or less, and excellent steam oxidation resistance was obtained.
The present invention has been developed based on the above findings and further studies.

次に、本発明の係るフェライト系ステンレス鋼が有すべき成分組成について説明する。
C:0.015mass%以下
Cは、鋼の強度を高めるのに有効な元素であり、所望の強度を確保するためには0.001mass%以上含有するのが好ましい。一方、Cを0.015mass%超え含有すると、靭性および成形性の劣化が顕著となる。よって、本発明では、C:0.015mass%以下とする。なお、成形性を確保する観点からは、C含有量は低いほど望ましく、0.008mass%以下とするのが好ましい。より好ましくは、Cは0.002〜0.008mass%である。
Next, the component composition that the ferritic stainless steel according to the present invention should have will be described.
C: 0.015 mass% or less C is an element effective for increasing the strength of steel, and is preferably contained in an amount of 0.001 mass% or more in order to ensure a desired strength. On the other hand, when C is contained exceeding 0.015 mass%, deterioration of toughness and formability becomes remarkable. Therefore, in the present invention, C: 0.015 mass% or less. In addition, from the viewpoint of ensuring moldability, the lower the C content, the better, and 0.008 mass% or less is preferable. More preferably, C is 0.002 to 0.008 mass%.

Si:0.10mass%以下
Siは、本発明のフェライト系ステンレス鋼のように、Nb,Mo,Wを含有し、さらにCuを1mass%以上含有する鋼の場合、上述した基礎実験からわかるように、穴拡げ性を改善するには、(1)式左辺の値が低いほどよく、したがって、影響係数の大きいSiの含有量は低いほど望ましい。そこで、本発明では、室温での穴拡げ性や靭性の向上を図る観点から、Siの含有量を0.10mass%以下とする。より好ましくは、Si:0.07mass%以下である
Si: 0.10 mass% or less Si, as in the ferritic stainless steel of the present invention, contains Nb, Mo, W and further contains 1 mass% or more of Cu, as can be seen from the basic experiment described above. In order to improve hole expansibility, the lower the value on the left side of equation (1), the better. Therefore, the lower the Si content, the greater the influence coefficient, the better. Therefore, in the present invention, from the viewpoint of improving hole expandability and toughness at room temperature, the Si content is set to 0.10 mass% or less. More preferably, it is Si: 0.07 mass% or less

Mn:2.0mass%以下
Mnは、脱酸剤として、また、鋼板強度を高めるために添加されるが、過剰なMnの添加は、高温でのγ相の生成を促進し、耐熱性を低下させる。よって、本発明では、Mn含有量を2.0mass%以下とする。好ましくは1.5mass%以下である。
Mn: 2.0 mass% or less Mn is added as a deoxidizer and to increase the strength of the steel sheet, but the addition of excess Mn promotes the formation of a γ phase at high temperatures and reduces heat resistance. Let Therefore, in this invention, Mn content shall be 2.0 mass% or less. Preferably it is 1.5 mass% or less.

P:0.040mass%以下
Pは、鋼中に不可避に混入する不純物であり、靭性を低下させる有害な元素であるので、できるだけ低減するのが望ましい。よって、本発明では、0.040mass%以下とする。好ましくは0.030mass%以下である。
P: 0.040 mass% or less P is an impurity that is inevitably mixed in steel, and is a harmful element that lowers toughness. Therefore, it is desirable to reduce it as much as possible. Therefore, in this invention, it is 0.040 mass% or less. Preferably it is 0.030 mass% or less.

S:0.010mass%以下
Sは、鋼中に不可避に混入する不純物であり、鋼板の伸びおよびr値を低下させるほか、ラーベス相の析出を促進して鋼を硬質化し、成形性を低下させる有害な元素である。また、ステンレス鋼の基本特性である耐食性を低下させる元素でもあるので、できるだけ低減するのが望ましい。よって、本発明では、Sを0.010mass%以下とする。
S: 0.010 mass% or less S is an impurity inevitably mixed in the steel, and lowers the elongation and r-value of the steel sheet, promotes precipitation of the Laves phase, hardens the steel, and lowers formability. It is a harmful element. Moreover, since it is also an element which reduces the corrosion resistance which is the basic characteristic of stainless steel, it is desirable to reduce it as much as possible. Therefore, in this invention, S is made into 0.010 mass% or less.

Cr:14.0〜20.0mass%
Crは、フェライト系ステンレス鋼の耐食性を確保するために必要な成分であり、特に、本発明の鋼では、耐水蒸気酸化性を向上させる重要な元素である。上記効果を得るためには、Crは14.0mass%以上添加する必要がある。一方、Crは、鋼を固溶強化し、室温での硬さを上昇させて延性を低下させる。特に、Crを20.0mass%超え含有すると、この影響が顕著となるため、Cr含有量は20.0mass%以下とする。よって、本発明では、Crは14.0〜20.0mass%の範囲とする。
Cr: 14.0 to 20.0 mass%
Cr is a component necessary for ensuring the corrosion resistance of ferritic stainless steel, and is an important element for improving the steam oxidation resistance particularly in the steel of the present invention. In order to acquire the said effect, it is necessary to add Cr 14.0 mass% or more. On the other hand, Cr strengthens the solid solution and raises the hardness at room temperature to lower the ductility. In particular, when Cr is contained in excess of 20.0 mass%, this effect becomes significant, so the Cr content is 20.0 mass% or less. Therefore, in this invention, Cr is taken as the range of 14.0-20.0 mass%.

Ni:1.0mass%以下
Niは、鋼の靭性を向上させる元素である。しかし、Niは、高価であるばかりでなく、強力なγ相形成元素であり、高温でγ相の生成を促し、耐酸化性を低下させる。よって、Niは1.0mass%以下とする。好ましくは、0.05〜0.6mass%の範囲である。
Ni: 1.0 mass% or less Ni is an element that improves the toughness of steel. However, Ni is not only expensive, but is a strong γ-phase-forming element, promotes the formation of γ-phase at high temperatures, and reduces oxidation resistance. Therefore, Ni is set to 1.0 mass% or less. Preferably, it is the range of 0.05-0.6 mass%.

N:0.015mass%以下
Nは、鋼の靭性および成形性を低下させる元素であり、0.015mass%超え含有すると、この影響が顕著となる。このため、Nは、できるだけ低減するのが好ましく、本発明では、0.015mass%以下とする。好ましくは0.010mass%以下である。
N: 0.015 mass% or less N is an element that lowers the toughness and formability of steel, and when it exceeds 0.015 mass%, this effect becomes significant. For this reason, it is preferable to reduce N as much as possible. In the present invention, N is set to 0.015 mass% or less. Preferably it is 0.010 mass% or less.

Nb:0.3〜1.0mass%
Nbは、C,Nを固定し、高温強度や成形性、耐食性、溶接部の耐粒界腐食性を向上する元素である。このような効果は、Nb:0.3mass%以上の含有で認められる。一方、1.0mass%超え含有すると、鋼が脆化する。よって、Nbは0.3〜1.0mass%の範囲とする。好ましくは0.4〜0.6mass%の範囲である。
Nb: 0.3-1.0 mass%
Nb is an element that fixes C and N and improves high temperature strength, formability, corrosion resistance, and intergranular corrosion resistance of welds. Such an effect is recognized by containing Nb: 0.3 mass% or more. On the other hand, when it contains exceeding 1.0 mass%, steel will embrittle. Therefore, Nb is set to a range of 0.3 to 1.0 mass%. Preferably it is the range of 0.4-0.6 mass%.

Cu:1.0〜2.5mass%
Cuは、500〜750℃の温度域でε−Cuとして析出することにより、室温〜析出温度の広範な温度範囲での強度の向上に有効に寄与する。特に、本発明が目的とする650℃における0.2%耐力:280MPa以上を達成するためには、1.0mass%以上のCu添加が必要である。一方、Cuの含有量が2.5mass%を超えると、鋼板製造の最終焼鈍における冷却時にε−Cuが多量に析出し、穴拡げ性の低下や靭性の低下が著しくなる。よって、高強度化と加工性、靭性との両立を図るため、Cuは1.0〜2.5mass%の範囲とする。
Cu: 1.0-2.5 mass%
Cu precipitates as ε-Cu in the temperature range of 500 to 750 ° C., thereby effectively contributing to improvement of strength in a wide temperature range from room temperature to the precipitation temperature. In particular, in order to achieve 0.2% proof stress at 650 ° C., which is the object of the present invention: 280 MPa or more, 1.0 mass% or more of Cu must be added. On the other hand, if the Cu content exceeds 2.5 mass%, a large amount of ε-Cu precipitates during cooling in the final annealing of steel sheet production, and the hole expandability and the toughness decrease significantly. Therefore, in order to achieve both high strength, workability, and toughness, Cu is set in the range of 1.0 to 2.5 mass%.

Al:0.01〜0.30mass%
Alは、耐水蒸気酸化性の向上に必要な元素であり、後述する(2)式左辺の係数からわかるように、比較的少量の添加でも大きな効果が得られる。しかし、Alの含有量が0.01mass%以下では、本発明が目的とする耐水蒸気酸化性は得られない。一方、0.3mass%を超えて添加すると、穴拡げ性に対して悪影響を及ぼすようになる。よって、本発明では、Alの含有量は0.01〜0.30mass%の範囲とする。より好ましくは、0.02〜0.10mass%の範囲である。
Al: 0.01-0.30 mass%
Al is an element necessary for improving the steam oxidation resistance. As can be seen from the coefficient on the left side of the formula (2) described later, a large effect can be obtained even with a relatively small amount of addition. However, when the Al content is 0.01 mass% or less, the steam oxidation resistance aimed by the present invention cannot be obtained. On the other hand, when it exceeds 0.3 mass%, it will have a bad influence on hole expansibility. Therefore, in the present invention, the Al content is in the range of 0.01 to 0.30 mass%. More preferably, it is the range of 0.02-0.10 mass%.

Mo:0.8〜3.0mass%
Moは、鋼中に固溶状態で存在することにより、高温での耐力を増加させ、耐食性や耐酸化性を向上させる効果を有する、本発明では重要な成分である。このような効果は、0.8mass%以上の添加で認められる。一方、3.0mass%超え含有すると、ラーベス相の析出が顕著となり、固溶状態で存在するMo量が減少して、高温耐力や耐食性の向上への寄与が小さくなるとともに、常温での強度が増して加工性が低下する。よって、Moは0.8〜3.0mass%の範囲とする。好ましくは、1.0〜3.0mass%の範囲である。
Mo: 0.8-3.0 mass%
Mo is an important component in the present invention that has the effect of increasing the yield strength at high temperatures and improving the corrosion resistance and oxidation resistance by being present in a solid solution state in steel. Such an effect is recognized by addition of 0.8 mass% or more. On the other hand, when the content exceeds 3.0 mass%, precipitation of the Laves phase becomes remarkable, the amount of Mo existing in the solid solution state decreases, and the contribution to the improvement of high-temperature proof stress and corrosion resistance becomes small, and the strength at normal temperature is reduced. Increases the workability. Therefore, Mo is set to a range of 0.8 to 3.0 mass%. Preferably, it is the range of 1.0-3.0 mass%.

W:1.0〜5.0mass%
Wは、Moと同様、鋼中に固溶状態で存在することにより、高温耐力を増加させ、耐食性や耐酸化性を向上させる効果を有するため、本発明では重要な成分である。このような効果は、1.0mass%以上の含有で認められる。一方、5.0mass%を超えるとラーベス相の析出が顕著となり、固溶状態で存在するW量が飽和するばかりか、靭性や加工性が低下する。よって、Wは1.0〜5.0mass%の範囲とする。好ましくは2.0〜4.0mass%の範囲である。
W: 1.0-5.0 mass%
W, like Mo, is an important component in the present invention because it has the effect of increasing high-temperature proof stress and improving corrosion resistance and oxidation resistance by being present in a solid solution state in steel. Such an effect is recognized by containing 1.0 mass% or more. On the other hand, if it exceeds 5.0 mass%, the Laves phase precipitates significantly, the amount of W existing in a solid solution state is saturated, and the toughness and workability are reduced. Therefore, W is set to a range of 1.0 to 5.0 mass%. Preferably it is the range of 2.0-4.0 mass%.

(Mo+W):3.0〜5.8mass%
MoおよびWは、上述したように同様の効果を有する成分である。しかし、本発明が目標とする高温強度、即ち、900℃における0.2%耐力:27MPa以上、650℃における0.2%耐力:280MPa以上を達成するためには、MoとWの合計量(Mo+W)は3.0mass%以上が必要である。一方、(Mo+W)が5.8mass%を超えると、上述した効果が飽和すると共に、靭性や加工性の低下が起こるようになる。よって、(Mo+W)は、3.0〜5.8mass%の範囲とする。好ましくは3.5〜5.0mass%の範囲である。
(Mo + W): 3.0 to 5.8 mass%
Mo and W are components having the same effect as described above. However, in order to achieve the high temperature strength targeted by the present invention, that is, 0.2% proof stress at 900 ° C .: 27 MPa or more and 0.2% proof stress at 650 ° C .: 280 MPa or more, the total amount of Mo and W ( Mo + W) needs to be 3.0 mass% or more. On the other hand, when (Mo + W) exceeds 5.8 mass%, the above-described effects are saturated, and toughness and workability are lowered. Therefore, (Mo + W) is in the range of 3.0 to 5.8 mass%. Preferably it is the range of 3.5-5.0 mass%.

0.2×Cr+10×Si+0.3×Mo+0.2×W+2×(Nb−0.4)+5×(Cu−1)≦11 ・・・(1)
鋼板の穴拡げ性は、種々の冶金学的要因に影響される。特に、本発明の鋼板のように、高温強度特性を得るため、Nb,Mo,W,Cuを多量に含有する成分系では、Nb,Mo,W添加によるラーベス(Laves)相の析出や、Cu添加によるε−Cu相の析出が生じている。このような鋼板では、加工時に、これらの析出相と母相との界面が亀裂発生の起点となり、穴拡げ性が低下する。特に、図1に示したように、(1)式の左辺の値が11を超える場合には、穴拡げ性は急激に低下する。よって、本発明では、0.2×Cr+10×Si+0.3×Mo+0.2×W+2×(Nb−0.4)+5×(Cu−1)≦11を満たすよう各成分組成を適正範囲に制御する必要がある。
0.2 × Cr + 10 × Si + 0.3 × Mo + 0.2 × W + 2 × (Nb−0.4) + 5 × (Cu−1) ≦ 11 (1)
The hole expandability of the steel sheet is affected by various metallurgical factors. In particular, in order to obtain high-temperature strength characteristics as in the steel sheet of the present invention, in a component system containing a large amount of Nb, Mo, W, and Cu, Laves phase precipitation due to addition of Nb, Mo, and W, Cu Precipitation of the ε-Cu phase is caused by the addition. In such a steel sheet, at the time of processing, the interface between these precipitation phases and the parent phase becomes a starting point of crack generation, and the hole expandability decreases. In particular, as shown in FIG. 1, when the value of the left side of equation (1) exceeds 11, the hole expansibility is drastically lowered. Therefore, in the present invention, each component composition is controlled within an appropriate range so as to satisfy 0.2 × Cr + 10 × Si + 0.3 × Mo + 0.2 × W + 2 × (Nb−0.4) + 5 × (Cu−1) ≦ 11. There is a need.

ここで、上記(1)式の左辺は、穴拡げ性に影響を及ぼす各成分の寄与度を表す式である。この式から、係数の大きいSi,Cuを適正範囲に制御することが、穴拡げ性の改善には極めて重要であることがわかる。   Here, the left side of the expression (1) is an expression representing the contribution of each component that affects the hole expandability. From this equation, it can be seen that controlling Si and Cu having a large coefficient within an appropriate range is extremely important for improving hole expansibility.

Cr+2×Mo+0.5×W+12×Al−4×Cu≧13.5 ・・・(2)
Cuは、耐水蒸気酸化性を低下させる成分である。したがって、Cuのよる悪影響を除くためには、耐水蒸気酸化性を向上する成分であるCr,Mo,WおよびAlとのバランスを適正範囲とする必要がある。特に、本発明のように、耐酸化性向上元素であるSiを低減した成分系では、このバランスを保つことは極めて重要である。図2に示したように、本発明の成分系では、耐水蒸気酸化性を向上するには、上述した(2)式の左辺を13.5以上とすることが必要であり、この条件を満たすことにより、水蒸気酸化による酸化増量を、本発明の目標値、即ち、露点+55℃の空気中で1000℃×200時間連続加熱する水蒸気酸化試験を行ったときの酸化増量を5mg/cm以下とすることができる。よって、本発明では、Cr+2×Mo+0.5×W+12×Al−4×Cu≧13.5を満たすよう各成分組成を適正範囲に制御する。
Cr + 2 × Mo + 0.5 × W + 12 × Al-4 × Cu ≧ 13.5 (2)
Cu is a component that reduces steam oxidation resistance. Therefore, in order to eliminate the adverse effects caused by Cu, it is necessary to make the balance with Cr, Mo, W and Al, which are components improving the steam oxidation resistance, within an appropriate range. In particular, in the component system in which Si, which is an element for improving oxidation resistance, is reduced as in the present invention, it is extremely important to maintain this balance. As shown in FIG. 2, in the component system of the present invention, in order to improve the steam oxidation resistance, the left side of the above-described formula (2) needs to be 13.5 or more, and this condition is satisfied. Therefore, the increase in oxidation due to steam oxidation is set to 5 mg / cm 2 or less when the steam oxidation test is performed by continuously heating the target value of the present invention, that is, dew point + 55 ° C. in air at 1000 ° C. for 200 hours. can do. Therefore, in this invention, each component composition is controlled to an appropriate range so that Cr + 2 × Mo + 0.5 × W + 12 × Al-4 × Cu ≧ 13.5 may be satisfied.

本発明のフェライト系ステンレス鋼は、上記成分に加えてさらに、B,Ti,REM,Zr,VおよびCoのうちから選ばれる1種または2種以上を下記の範囲で含有することができる。
B:0.003mass%以下
Bは、加工性、特に2次加工性の向上に有効な元素である。この効果は、B:0.0005mass%以上で発現する。一方、0.003mass%を超える含有は、BNを多量に生成して加工性の低下を招く。よって、Bを添加する場合は、0.003mass%以下とするのが好ましい。
In addition to the above components, the ferritic stainless steel of the present invention may further contain one or more selected from B, Ti, REM, Zr, V and Co in the following range.
B: 0.003 mass% or less B is an element effective for improving workability, particularly secondary workability. This effect is manifested at B: 0.0005 mass% or more. On the other hand, if the content exceeds 0.003 mass%, a large amount of BN is generated, resulting in a decrease in workability. Therefore, when adding B, it is preferable to set it as 0.003 mass% or less.

Ti:0.25mass%以下
Tiは、伸びやr値を向上させるのに有効な成分である。しかしながら、0.25mass%を超えて添加すると、耐水蒸気酸化性の低下が顕著になる。よって、Tiを添加する場合には0.25mass%以下とする。
Ti: 0.25 mass% or less Ti is an effective component for improving elongation and r value. However, when it exceeds 0.25 mass%, the reduction in steam oxidation resistance becomes significant. Therefore, when adding Ti, it shall be 0.25 mass% or less.

REM:0.08mass%以下、Zr:0.5mass%
REM(希土類元素),Zrは、いずれも耐酸化性を改善する元素であり、必要に応じて含有することができる。しかし、REM:0.08mass%を超える含有は、鋼を脆化させる。また、Zr:0.5mass%を超える含有は、Zr金属間化合物が析出し、やはり鋼を脆化させる。このため、REMを添加する場合は0.08mass%以下、Zrを添加する場合は0.5mass%以下とするのが好ましい。
REM: 0.08 mass% or less, Zr: 0.5 mass%
REM (rare earth element) and Zr are both elements that improve oxidation resistance, and can be contained as necessary. However, the content exceeding REM: 0.08 mass% embrittles the steel. Further, if the Zr content exceeds 0.5 mass%, a Zr intermetallic compound precipitates, and the steel is also embrittled. For this reason, when adding REM, it is preferable to set it as 0.08 mass% or less, and when adding Zr, it is preferable to set it as 0.5 mass% or less.

V:0.5mass%以下
Vは、成形性の向上に有効な元素である。しかし、0.5mass%を超える過剰な含有は、粗大なV(C,N)が析出して表面性状を劣化させる。このため、Vを添加する場合は、0.5mass%以下とするのが好ましい。
V: 0.5 mass% or less V is an element effective for improving moldability. However, excessive content exceeding 0.5 mass% causes coarse V (C, N) to precipitate and deteriorates the surface properties. For this reason, when adding V, it is preferable to set it as 0.5 mass% or less.

Co:0.5mass%以下
Coは、靭性の向上に有効な元素であるが、0.5mass%超え添加しても、その効果は飽和する。また、Coは高価な成分でもあるので、添加する場合は0.5mass%以下が好ましい。
なお、本発明の鋼板は、上記成分以外の残部は、Feおよび不可避的不純物である。ただし、本発明の作用効果を害さない範囲であれば、上記以外の成分の含有を拒むものではない。
Co: 0.5 mass% or less Co is an element effective for improving toughness, but the effect is saturated even when added in excess of 0.5 mass%. Moreover, since Co is also an expensive component, when adding it, 0.5 mass% or less is preferable.
In the steel sheet of the present invention, the balance other than the above components is Fe and inevitable impurities. However, as long as the effects of the present invention are not impaired, the inclusion of components other than those described above is not rejected.

本発明のフェライト系ステンレス鋼の製造方法は、とくに限定されるものではなく、公知の方法を適用することができる。例えば、本発明に適合する成分組成を有する鋼を転炉や電気炉等の公知の方法で溶製し、さらに必要に応じて取鍋精錬、真空精錬等の2次精錬を施したのち連続鋳造法あるいは造塊−分塊圧延法で鋼片(スラブ)とする。その後、熱間圧延、熱延板焼鈍、酸洗、冷間圧延、仕上焼鈍、酸洗の各工程を順次経て冷延焼鈍板とするのが好ましい。なお、上記冷間圧延は、1回または中間焼鈍を挟む2回以上行ってもよい。また、冷間圧延以外に、仕上焼鈍、酸洗工程も繰り返して行ってもよい。また、熱延板焼鈍は、省略してもよい。さらに、鋼板表面に光沢性が要求される場合には、スキンパス等を施してもよい。   The manufacturing method of the ferritic stainless steel of this invention is not specifically limited, A well-known method is applicable. For example, steel having a component composition suitable for the present invention is melted by a known method such as a converter or an electric furnace, and further subjected to secondary refining such as ladle refining or vacuum refining, and then continuous casting. Steel strip (slab) is formed by the method or ingot-bundling rolling method. Then, it is preferable to make it a cold-rolled annealing board through each process of hot rolling, hot-rolled sheet annealing, pickling, cold rolling, finish annealing, and pickling sequentially. The cold rolling may be performed once or twice or more with intermediate annealing. Further, in addition to cold rolling, finish annealing and pickling steps may be repeated. Moreover, you may abbreviate | omit hot-rolled sheet annealing. Furthermore, when glossiness is required on the steel sheet surface, a skin pass or the like may be applied.

表1に示した成分組成を有するNo.1〜20の鋼を真空溶解炉で溶製し、50kgの鋼塊とした後、これらの鋼塊を1170℃に加熱後、熱間圧延して板厚5mmの熱延板とした。次いで、これらの熱延板を、熱延板焼鈍(焼鈍温度:1040℃)し、酸洗し、冷間圧延(冷延圧下率:60%)し、仕上焼鈍(焼鈍温度:1050℃、平均冷却速度:20℃/sec)し、酸洗して、板厚2mmの冷延焼鈍板とした。なお、参考例として、特許文献6〜8に実施例として記載された鋼板についても、同様にして冷延焼鈍板を作製し、表1にNo.21〜24として示した。   No. having the component composition shown in Table 1. Steels 1 to 20 were melted in a vacuum melting furnace to form 50 kg steel ingots. These steel ingots were heated to 1170 ° C. and then hot-rolled to form hot rolled sheets having a thickness of 5 mm. Subsequently, these hot-rolled sheets are subjected to hot-rolled sheet annealing (annealing temperature: 1040 ° C.), pickling, cold rolling (cold rolling reduction ratio: 60%), and finish annealing (annealing temperature: 1050 ° C., average). (Cooling rate: 20 ° C./sec) and pickled to obtain a cold-rolled annealed plate having a thickness of 2 mm. As reference examples, cold-rolled annealed plates were prepared in the same manner for the steel sheets described as Examples in Patent Documents 6 to 8, and No. 1 is shown in Table 1. Shown as 21-24.

上記のようにして得た各種冷延焼鈍板について、下記の評価試験に供した。
(1)高温強度
それぞれの冷延焼鈍板から、圧延方向を引張方向とした引張試験片を各2本ずつ採取し、JIS G0567の規定に準拠して、900℃および650℃の温度で、歪速度:0.3%/minで高温引張試験を行い、900℃における0.2%耐力(σ0.2at900℃)および650℃における0.2%耐力(σ0.2at650℃)を測定した。そして、高温強度の評価は、σ0.2at900℃は、27MPa以上を良(○)、27MPa未満を不良(×)と、また、σ0.2at650℃は、280MPa以上を良(○)、280MPa未満を不良(×)と判定した。
(2)穴拡げ性
それぞれの冷延焼鈍板に、d=10mmφの初期穴を打ち抜きして開けた後、その穴に円錐ポンチを押し込んで穴拡げ試験を行い、穴の周囲に板厚を貫通する割れが発生した時の穴径dを測定し、穴拡げ率λを下記式;
穴拡げ率λ(%)={(d−d)/d}×100
から求めた。孔拡げ性の評価は、各冷延焼鈍板についてそれぞれ5回の試験を実施し、そのλの平均値が120%以上を良(○)、120%未満を不良(×)と判定した。
(3)耐水蒸気酸化性
それぞれの冷延焼鈍板から、30mm×20mmのサンプルを切り出し、このサンプル上部に4mmφの穴を開け、表面および端面をエメリー紙(#320)で研磨後、脱脂し、1000℃に加熱し、露点+55℃に加湿した大気雰囲気の炉内に吊り下げ、200時間保持した。上記試験後、サンプルの質量を測定し、試験前の質量との差を算出し、酸化増量を求めた。この水蒸気酸化試験は、2回実施し、その平均値が5mg/cm以下のものを耐水蒸気酸化性が良(○)、5mg/cmを超えたものを耐水蒸気酸化性不良(×)と判定した。
The various cold-rolled annealed plates obtained as described above were subjected to the following evaluation tests.
(1) High-temperature strength Two tensile test pieces each having the rolling direction as the tensile direction were sampled from each cold-rolled annealed plate, and strains were measured at temperatures of 900 ° C. and 650 ° C. in accordance with JIS G0567. Speed: Perform high-temperature tensile test at 0.3% / min and measure 0.2% yield strength (σ 0.2 at 900 ° C.) at 900 ° C. and 0.2% yield strength (σ 0.2 at 650 ° C.) at 650 ° C. did. The evaluation of the high-temperature strength is as follows: σ 0.2 at 900 ° C. is good (◯) for 27 MPa or more, poor (×) if it is less than 27 MPa, and σ 0.2 at 650 ° C. is good (◯) for 280 MPa or more. Less than 280 MPa was determined to be defective (x).
(2) Hole expandability After punching an initial hole of d 0 = 10 mmφ in each cold-rolled annealed plate, a conical punch is pushed into the hole and a hole expansion test is performed. Measure the hole diameter d when the penetrating crack occurs, and calculate the hole expansion rate λ by the following formula:
Hole expansion rate λ (%) = {(d−d 0 ) / d 0 } × 100
I asked for it. For the evaluation of the hole expandability, each cold-rolled annealed plate was subjected to five tests, and the average value of λ was determined to be good (◯) and less than 120% as poor (x).
(3) Steam oxidation resistance A 30 mm × 20 mm sample was cut out from each cold-rolled annealed plate, a 4 mmφ hole was made in the upper part of the sample, and the surface and end face were polished with emery paper (# 320), degreased, It was heated to 1000 ° C., suspended in a furnace in an air atmosphere humidified to a dew point of + 55 ° C., and held for 200 hours. After the test, the mass of the sample was measured, the difference from the mass before the test was calculated, and the oxidation increase was determined. This steam oxidation test was carried out twice. When the average value was 5 mg / cm 2 or less, the steam oxidation resistance was good (◯), and when it exceeded 5 mg / cm 2 , the steam oxidation resistance was poor (×). It was determined.

上記試験の結果を表2に示す。表2から、本発明例の鋼板は、いずれも900℃における0.2%耐力(σ0.2at900℃)が27MPa以上、650℃における0.2%耐力(σ0.2at650℃)が280MPa以上という優れた高温強度を有し、しかも、穴拡げ率が120%以上と加工性に優れ、さらに、酸化増量5mg/cm以下と耐水蒸気酸化性にも優れていることがわかる。これに対して、本発明の範囲外である比較例あるいは先行技術の鋼板は、いずれも、上記特性のうちの1以上を満足していないことがわかる。 The results of the above test are shown in Table 2. From Table 2, all the steel sheets of the present invention have a 0.2% yield strength (σ 0.2 at 900 ° C.) at 900 ° C. of 27 MPa or more and a 0.2% yield strength (σ 0.2 at 650 ° C.) at 650 ° C. It can be seen that it has excellent high-temperature strength of 280 MPa or more, excellent workability with a hole expansion rate of 120% or more, and excellent oxidation resistance with an increase in oxidation of 5 mg / cm 2 or less. On the other hand, it can be seen that none of the comparative examples or the prior art steel sheets outside the scope of the present invention satisfy one or more of the above characteristics.

Figure 0005125600
Figure 0005125600

Figure 0005125600
Figure 0005125600

本発明のフェライト系ステンレス鋼は、自動車排気系部材や火力発電システムの排気経路部材、固体酸化物形の燃料電池用部材の材料として好適に用いることができる他、さら耐食性が要求される用途にも用いることができる。   The ferritic stainless steel of the present invention can be suitably used as a material for automobile exhaust system members, exhaust path members of thermal power generation systems, solid oxide fuel cell members, and for applications that require further corrosion resistance. Can also be used.

孔拡げ率に及ぼす(1)式左辺の影響を示すグラフである。It is a graph which shows the influence of (1) Formula left side which acts on a hole expansion rate. 酸化増量に及ぼす(2)式左辺の影響を示すグラフである。It is a graph which shows the influence of the (2) type | formula left side which acts on oxidation increase.

Claims (2)

C:0.015mass%以下、Si:0.10mass%以下、Mn:2.0mass%以下、P:0.040mass%以下、S:0.010mass%以下、Cr:14.0〜20.0mass%、Ni:1.0mass%以下、N:0.015mass%以下、Nb:0.3〜1.0mass%、Cu:1.0〜2.5mass%、Al:0.01〜0.30mass%、Mo:0.8〜3.0mass%、W:1.0〜5.0mass%かつ(Mo+W):3.0〜5.8mass%を満たして含有し、さらに、上記成分が下記(1)式および(2)式;
0.2×Cr+10×Si+0.3×Mo+0.2×W+2×(Nb−0.4)+5×(Cu−1)≦11 ・・・(1)
Cr+2×Mo+0.5×W+12×Al−4×Cu≧13.5 ・・・(2)
を満たして含有し、残部がFeおよび不可避的不純物からなる成分組成を有するフェライト系ステンレス鋼。
C: 0.015 mass% or less, Si: 0.10 mass% or less, Mn: 2.0 mass% or less, P: 0.040 mass% or less, S: 0.010 mass% or less, Cr: 14.0 to 20.0 mass% Ni: 1.0 mass% or less, N: 0.015 mass% or less, Nb: 0.3 to 1.0 mass%, Cu: 1.0 to 2.5 mass%, Al: 0.01 to 0.30 mass%, Mo: 0.8 to 3.0 mass%, W: 1.0 to 5.0 mass%, and (Mo + W): 3.0 to 5.8 mass% are satisfied. Further, the above components are represented by the following formula (1) And (2) formula;
0.2 × Cr + 10 × Si + 0.3 × Mo + 0.2 × W + 2 × (Nb−0.4) + 5 × (Cu−1) ≦ 11 (1)
Cr + 2 × Mo + 0.5 × W + 12 × Al-4 × Cu ≧ 13.5 (2)
And ferritic stainless steel having a component composition in which the balance is composed of Fe and inevitable impurities.
上記成分組成に加えてさらに、B:0.003mass%以下、Ti:0.25mass%以下、REM:0.08mass%以下、Zr:0.5mass%以下およびCo:0.5mass%以下のうちから選ばれる1種または2種以上を含有することを特徴とする請求項1に記載のフェライト系ステンレス鋼。 In addition to the above chemical composition, B: 0.003 mass% or less, Ti: 0.25 mass% or less, REM: 0.08 mass% or less, Zr: 0.5 mass% hereinafter Contact and Co: less 0.5 mass% The ferritic stainless steel according to claim 1, comprising one or more selected from among them.
JP2008042905A 2008-02-25 2008-02-25 Ferritic stainless steel with excellent high-temperature strength, steam oxidation resistance and workability Active JP5125600B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008042905A JP5125600B2 (en) 2008-02-25 2008-02-25 Ferritic stainless steel with excellent high-temperature strength, steam oxidation resistance and workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008042905A JP5125600B2 (en) 2008-02-25 2008-02-25 Ferritic stainless steel with excellent high-temperature strength, steam oxidation resistance and workability

Publications (2)

Publication Number Publication Date
JP2009197307A JP2009197307A (en) 2009-09-03
JP5125600B2 true JP5125600B2 (en) 2013-01-23

Family

ID=41141131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008042905A Active JP5125600B2 (en) 2008-02-25 2008-02-25 Ferritic stainless steel with excellent high-temperature strength, steam oxidation resistance and workability

Country Status (1)

Country Link
JP (1) JP5125600B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011111871A1 (en) 2010-03-11 2011-09-15 新日鐵住金ステンレス株式会社 Highly oxidation-resistant ferrite stainless steel plate, highly heat-resistant ferrite stainless steel plate, and manufacturing method therefor
JP5659061B2 (en) 2011-03-29 2015-01-28 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet excellent in heat resistance and workability and manufacturing method thereof
JP6037882B2 (en) 2012-02-15 2016-12-07 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet with excellent scale peel resistance and method for producing the same
JP6071608B2 (en) * 2012-03-09 2017-02-01 新日鐵住金ステンレス株式会社 Ferritic stainless steel plate with excellent oxidation resistance
JP5793459B2 (en) 2012-03-30 2015-10-14 新日鐵住金ステンレス株式会社 Heat-resistant ferritic stainless steel cold-rolled steel sheet excellent in workability, ferritic stainless hot-rolled steel sheet for cold-rolled material, and production method thereof
FI125855B (en) 2012-06-26 2016-03-15 Outokumpu Oy Ferritic stainless steel
EP2966187B1 (en) * 2013-03-06 2018-05-02 Nippon Steel & Sumikin Stainless Steel Corporation Ferritic stainless steel sheet having excellent heat resistance
WO2014157576A1 (en) 2013-03-27 2014-10-02 新日鐵住金ステンレス株式会社 Hot-rolled ferritic stainless-steel plate, process for producing same, and steel strip
KR102306578B1 (en) 2017-03-27 2021-09-29 닛테츠 스테인레스 가부시키가이샤 Ferritic stainless steel sheet, manufacturing method thereof, and exhaust parts

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5178157B2 (en) * 2007-11-13 2013-04-10 日新製鋼株式会社 Ferritic stainless steel material for automobile exhaust gas path members

Also Published As

Publication number Publication date
JP2009197307A (en) 2009-09-03

Similar Documents

Publication Publication Date Title
JP4702493B1 (en) Ferritic stainless steel with excellent heat resistance
TWI399443B (en) Heat-resistant fat iron-based stainless steel
JP5546911B2 (en) Ferritic stainless steel sheet with excellent heat resistance and workability
JP5141296B2 (en) Ferritic stainless steel with excellent high temperature strength and toughness
JP5125600B2 (en) Ferritic stainless steel with excellent high-temperature strength, steam oxidation resistance and workability
TWI431122B (en) Ferritic stainless steel excellent in heat resistance and toughness
JP5274074B2 (en) Heat-resistant ferritic stainless steel sheet with excellent oxidation resistance
KR101878245B1 (en) Ferritic stainless steel excellent in oxidation resistance
JP5709875B2 (en) Heat-resistant ferritic stainless steel sheet with excellent oxidation resistance
JP5546922B2 (en) Ferritic stainless steel sheet with excellent heat resistance and workability and method for producing the same
JP5012243B2 (en) Ferritic stainless steel with excellent high-temperature strength, heat resistance and workability
WO2011111871A1 (en) Highly oxidation-resistant ferrite stainless steel plate, highly heat-resistant ferrite stainless steel plate, and manufacturing method therefor
JP5540637B2 (en) Ferritic stainless steel with excellent heat resistance
JP3903855B2 (en) Ferritic stainless steel that is soft at room temperature and excellent in high-temperature oxidation resistance
WO2003106722A1 (en) Heat-resistant ferritic stainless steel and method for production thereof
JP5703075B2 (en) Ferritic stainless steel plate with excellent heat resistance
JP5677819B2 (en) Ferritic stainless steel plate with excellent oxidation resistance
JP4154932B2 (en) Ferritic stainless steel with excellent high-temperature strength, high-temperature oxidation resistance, and high-temperature salt damage resistance
JP3744403B2 (en) Soft Cr-containing steel
JP5796398B2 (en) Ferritic stainless steel with excellent thermal and high temperature fatigue properties
JP5417764B2 (en) Ferritic stainless steel with excellent thermal fatigue properties and oxidation resistance
JP5810722B2 (en) Ferritic stainless steel with excellent thermal fatigue characteristics and workability
JP5343444B2 (en) Ferritic stainless steel with excellent thermal fatigue properties, oxidation resistance and workability
JP5343445B2 (en) Ferritic stainless steel with excellent thermal fatigue properties, oxidation resistance and toughness
JP5796397B2 (en) Ferritic stainless steel with excellent thermal fatigue properties and oxidation resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121002

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121015

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5125600

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151109

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250