WO2003004714A1 - Ferritic stainless steel for member of exhaust gas flow passage - Google Patents

Ferritic stainless steel for member of exhaust gas flow passage Download PDF

Info

Publication number
WO2003004714A1
WO2003004714A1 PCT/JP2002/006768 JP0206768W WO03004714A1 WO 2003004714 A1 WO2003004714 A1 WO 2003004714A1 JP 0206768 W JP0206768 W JP 0206768W WO 03004714 A1 WO03004714 A1 WO 03004714A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
less
steel
stainless steel
temperature
Prior art date
Application number
PCT/JP2002/006768
Other languages
French (fr)
Japanese (ja)
Inventor
Manabu Oku
Yoshitomo Fujimura
Toshirou Nagoya
Original Assignee
Nisshin Steel Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co., Ltd. filed Critical Nisshin Steel Co., Ltd.
Priority to JP2003510470A priority Critical patent/JP4197492B2/en
Priority to US10/482,718 priority patent/US20040170518A1/en
Priority to DE60204323T priority patent/DE60204323T2/en
Priority to KR10-2004-7000076A priority patent/KR20040007764A/en
Priority to EP02743819A priority patent/EP1413640B1/en
Publication of WO2003004714A1 publication Critical patent/WO2003004714A1/en
Priority to US13/042,542 priority patent/US20110176954A1/en
Priority to US13/632,418 priority patent/US20130263979A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2530/00Selection of materials for tubes, chambers or housings
    • F01N2530/02Corrosion resistive metals
    • F01N2530/04Steel alloys, e.g. stainless steel

Definitions

  • the present invention is used as an exhaust gas flow path member of various internal combustion engines such as automobiles, such as an exhaust manifold, a front pipe, a center pipe, a catalytic converter outer cylinder, etc., and has heat resistance, low temperature toughness, Related to ferritic stainless steel with excellent weldability. Background art
  • Exhaust gas flow path members of automobiles are exposed to a high-temperature atmosphere that is in direct contact with the exhaust gas during operation, and are subjected to thermal stress due to repeated operation and shutdown and vibration of the engine during operation. In cold climates, cold winters are also subject to mechanical stress at low temperatures. Therefore, the materials used for exhaust system components must be durable in extremely harsh environments.
  • a stainless steel plate or pipe is used as an exhaust gas flow path member, it is important to have excellent heat resistance, as well as excellent weldability and workability because it can be assembled into a product shape by welding and processing. It is a characteristic. Toughness (low-temperature toughness) that can withstand secondary processing during molding and mechanical load at low temperature during use is also required.
  • Ferritic stainless steel has a smaller thermal expansion than austenitic stainless steel, and is superior in thermal fatigue properties and scale peel resistance. Since the cost of steel is low, ferrite stainless steel is often used for exhaust gas flow passage members. Ferritic stainless steels have inherently lower high-temperature strength than austenitic stainless steels, and improvements have been made to improve high-temperature strength. For example, there are SUS430J11-based Nb-added steel, Nb / Si composite-added steel (JP-A-3-274245), and Nb / Mo composite-added steel (JP-A-5-125491). Of these, Nb and Mo complex addition steels have the highest high-temperature strength and are used in places where excellent thermal fatigue properties are required.
  • Nb and Mo composite additive steels tend to have lower workability and lower temperature toughness than other steel types. Cases of improved workability and low-temperature toughness are occasionally seen, Is not enough. Another disadvantage is the high cost of steel because it contains a large amount of expensive elemental Mo.
  • the present invention has been devised to solve such a problem, and does not use expensive Mo as an alloy component, has heat resistance comparable to that of Nb and Mo composite added steel,
  • An object of the present invention is to provide a ferritic stainless steel having excellent low-temperature toughness and weldability for exhaust gas flow path members.
  • the ferritic stainless steel for exhaust gas flow passage members of the present invention has the following characteristics: C: 0.03% by mass, Si: 1.0% by mass, Mn: 1.5% by mass, Ni: 0.6% by mass, Cr: : 10 to 20% by mass, Nb: 0.50% by mass or less, Cu: 0.8 to 2.0% by mass, A1: 0.03% by mass or less, V: 0.03 to 0.20% by mass, N: 0.03% by mass or less, and Nb ⁇ 8 (C + N).
  • This ferritic stainless steel does not contain Mo as an alloying component and contains 0.05 to 0.30% by mass of i and Z to further enhance formability or 0.0005 to 0.02% by mass ⁇ to further enhance secondary workability. You can also. BRIEF DESCRIPTION OF THE FIGURES
  • Fig. 1 is a graph showing the effect of Cu on 0.2% proof stress at high temperatures.
  • SUH409L, SUS430J11, and SUS429 stainless steels have been used as materials that satisfy the heat resistance characteristics in the environment where the exhaust gas flow path members are exposed, but although the maximum temperature remains at about 800 to 900 ° C.
  • Some parts require significantly higher high-temperature strength than conventional steel grades. Areas requiring high-temperature strength are also places where the structure is extremely complex and thermal fatigue is likely to occur due to repeated application of thermal stress.
  • the constituent material of the relevant part is required to have workability and low-temperature toughness that cannot be obtained with Mo-added steel.
  • the present inventors have investigated the effects of various alloying elements in order to satisfy the characteristics required for the constituent material of such a portion. As a result, it was found that the combined addition of V and Cu improved the high-temperature strength below 900 ° C, workability, and low-temperature toughness, and achieved the same level as Nb and Mo-added steel.
  • Figure 1 shows the results of a tensile test of steels with various contents of Cu added to the basic composition of 17Cr-0.4Nb-0.1V steel.
  • Fig. 1 also shows the strength level of SUS444-based steel containing 18Cr-2Mo-0.4Nb, which is a Nb and Mo composite added steel, as a basic component for comparison.
  • the 0.2% resistance at 700 and 80 CTC increases sharply with increasing Cu content.
  • the Cu content is 0.8% by mass or more, a 0.2% proof stress equivalent to or higher than the SUS444 system containing about 2% by mass of Mo is obtained.
  • the 0.2% resistance to heat at 900 ° C it was confirmed by another experiment that the increase in V and Cu did not reach the level of SUS444 steel, but the 0.2% resistance was improved more than the Nb-containing ferritic stainless steel. ing.
  • the combined addition of V and Cu is effective in improving the high-temperature strength in a temperature range of 900 or less, and no significant adverse effect appears at 900 or more.
  • Nb-based precipitates A structure in which Cu-based precipitates are finely dispersed compared to the steel with Nb added alone is observed. From these observation results, it is found that V preferentially precipitates in the as-annealed state or in the early stage of heating, thereby suppressing the formation of Nb-based precipitates and Cu-based precipitates. As a result, fine Nb-based precipitates and Cu-based precipitates It is presumed that they are dispersed and contribute to precipitation strengthening. Presumably, this is because the finely dispersed precipitates do not agglomerate even after heating for a long time in the early stage of heating, and the precipitation strengthening works effectively for a long time.
  • V which is a strong carbonitride forming element
  • bonds with N more solid-solution Nb effective for improving high-temperature strength can be secured than V-free steel when the amount of Nb added is the same.
  • the same high-temperature strength as V-free steel can be achieved with a reduced Nb content, and as a result, contributes to the improvement of workability and low-temperature toughness.
  • the amount of Nb and V carbonitrides in the as-annealed state increases.
  • the grain size of the weld heat affected zone becomes less likely to become coarse and the toughness is improved. Since the generation of Cr-based carbides is also suppressed, the intergranular corrosion resistance is also improved.
  • C and N are generally considered to be effective elements for improving high-temperature strength such as creep strength, but if they are contained excessively, oxidation properties, workability, low-temperature toughness, and weldability are reduced.
  • V and Nb are added as elements that fix C and N as carbonitrides, it is necessary to add V and Nb in amounts corresponding to the C and ⁇ concentrations.
  • both C and N were regulated to 0.03% by mass or less (preferably 0.015% by mass or less).
  • Si is a very effective element for improving high temperature oxidation characteristics, but is not so effective for increasing the high temperature strength below 900.
  • Si content was regulated to 1.0% by mass or less (preferably, 0 :! to 0.5% by mass).
  • Mn 1.5 mass% or less
  • Mn content was regulated to 1.5% by mass or less (preferably 0.5% by mass or less).
  • Ni 0.6 mass% or less
  • Ni is excessively added to a steel type with a low Cr content, a martensitic phase is formed similarly to Mn, and the thermal fatigue properties and workability are reduced. Due to the high price of raw materials, excessive addition of Ni should be avoided. Therefore, the Ni content was regulated to 0.6% by mass or less (preferably 0.5% by mass or less). Cr: 10-20% by mass
  • the Cr content is selected in the range of 10 to 20% by mass.
  • the Cr content is preferably adjusted to the working temperature of the material. For example, for high-temperature oxidation resistance up to 950 ° C, 16 to 19% by mass is preferable, and for high-temperature oxidation resistance at 900 ° C or lower, 12 to 16% by mass is sufficient.
  • Nb the remaining solid solution Nb to which the carbonitrides are fixed has the effect of increasing the high-temperature strength.
  • the Nb content that satisfies Nb ⁇ 8 (C + N) is required for fixing C and N, but the upper limit of the Nb content is set to suppress adverse effects on workability, low-temperature toughness, and susceptibility to welding hot cracking. Is set to 0.5% by mass.
  • an Nb content satisfying 8 (C + N) + 0.10 ⁇ Nb ⁇ 0.45 is selected.
  • the high-temperature strength of ferritic stainless steel improves.
  • coexistence with Nb improves workability, low-temperature toughness, intergranular corrosion susceptibility, and toughness of the heat affected zone.
  • These effects appear at a V content of 0.03% by mass or more, but an excessive addition exceeding 0.20% by mass causes deterioration in workability and low-temperature toughness. Therefore, the V content is selected in the range of 0.03 to 0.20 mass% (preferably 0.04 to 0.15 mass).
  • the r-value (Rankford value) of steel It is an element that improves the r-value (Rankford value) of steel to improve formability.
  • the effect of addition becomes significant at 0.05% by mass or more.
  • the surface properties of the steel material deteriorate due to the formation of TiN, and the weldability and low-temperature toughness are adversely affected. Therefore, it is desired to reduce the Ti content as much as possible even when Ti is added for improving formability. Therefore, the upper limit of the Ti content is restricted to 0.30% by mass (preferably 0.20% by mass).
  • the B content is selected in the range of 0.0005 to 0.02% by mass (preferably 0.001 to 0.01% by mass).
  • the ferritic stainless steel of the present invention is based on the premise that expensive Mo is not added, but is an element that is easily mixed as an inevitable impurity during the production of stainless steel. If a large amount of Mo is mixed in, it will adversely affect workability, low-temperature toughness, and weldability, etc. Therefore, it is desirable to limit the amount of Mo mixed to less than 0.10% by mass.
  • P, S, 0, etc. which are common impurities, as much as possible.
  • the upper limits of P, S, and 0 be 0.04 mass%, 0.03 mass%, and 0.02 mass%, respectively.
  • W, Zr, Y, REM (rare earth element), which is effective for improving heat resistance, and Ca, Mg, Co, which is effective for improving hot workability, can be added as needed.
  • Table 2 Composition and composition of test material (comparative steel)
  • a 2.0-mm-thick cold-rolled annealed plate was subjected to a high-temperature tensile test, a high-temperature oxidation test, a room-temperature tensile test, and a Charpy impact test, and a 1.2-mm-thick cold-rolled annealed plate was subjected to a weld hot cracking test.
  • test piece was pulled at 800 ° C in accordance with JISG0567, and 0.2% resistance was measured.
  • the test piece was continuously heated at 850 ° C, 900 ° C, 950 ° C, 1000 ° C, and 1100 ° C for 200 hours in accordance with JISZ2281.
  • the heated test specimens were visually observed for the occurrence of abnormal oxidation (thick oxide penetrating in the plate thickness direction), and the critical temperature at which abnormal oxidation did not occur was determined.
  • a test piece was used at a temperature of -75 ° C, -50t, -25, 0 ° C, and 25 ° C using a subsize test piece with a thickness of 2.0 nm in accordance with JISZ2242.
  • a shock was applied to the steel to determine the ductility-toughness transition temperature.
  • TIG welding was performed with both ends of a 40 mm X 20 mm test piece held and tensile stress applied in the longitudinal direction, and the minimum strain at which cracking began to occur was determined. The obtained critical strain amount was used as an index of the hot cracking susceptibility.
  • Each of the steels Nos. 1 to 10 of the present invention has a much higher 0.2% proof stress at 800 compared to the Ti-added steel (No. 15), Nb, and Si-added steel (No. 16). It had a 0.2% power resistance comparable to or surpassed that of the Mo-added steel (No. 17). Elongation by room-temperature tensile test, ductile-brittle transition temperature by Charpy impact test, and critical strain by welding hot cracking test have properties equal to or higher than those of Nb and Mo composite-added steel (No. 17). It was confirmed that the target performance could be obtained without doing so. As for abnormal oxidation, as can be seen from the results of Nos. 4, 5, and 12, the lower the Cr content, the lower the critical temperature. From the effect of Cr content on abnormal oxidation, it can be understood that it is necessary to set an appropriate amount of Cr content according to the temperature of the application site.
  • Comparative steels No.11, No.15, No.16 and No.19 which lack V and Cu, have sufficient workability, low-temperature toughness and weldability, but inferior high-temperature strength at 800 ° C. ing.
  • comparative steel No. 12 which contains an excessive amount of steel, has excellent high-temperature strength, its workability and weldability are inferior to those of Nb and Mo composite-added steels, and it hinders processing into product shapes and welding.
  • the comparative steel No. 13 containing too much Si and the comparative steel No. 14 containing too much Nb have excellent workability and low-temperature toughness even if they have excellent high-temperature strength.
  • the weldability was inferior to the steel of the present invention.
  • Comparative steel No. 17 containing Mo has the same performance as the steel of the present invention, but has a slightly lower low-temperature toughness. Moreover, since Mo is contained at about 2% by mass, it is inevitable that the material cost will be higher than that of the steel of the present invention.
  • Critical strain 3% by mass or more is indicated by ⁇ , and less than 3% by mass is indicated by X.
  • the underline indicates that the property does not satisfy the purpose of the present invention.
  • ferritic stainless steel As described above, by strictly controlling the content of various alloying elements contained in ferritic stainless steel, especially the range of V and Cu, high heat resistance is secured without the need for expensive Mo. While improving workability, low-temperature toughness, and weldability, ferritic stainless steel suitable for exhaust gas path members can be obtained. This ferritic stainless steel is used in exhaust gas flow passage members, such as automobile engines, exhaust pipes, front pipes, center pipes, and outer tubes of catalytic converters, utilizing its excellent properties.

Abstract

A ferritic stainless steel for use in a member of an exhaust gas flow passage, which has a chemical composition, in mass %: C: 0.03 % or less, Si: 1.0 % or less, Mn: 1.5 % or less, Ni: 0.6 % or less, Cr: 10 to 20 %, Nb: 0.50 % or less, Cu: 0.8 to 2.0 %, Al: 0.03 % or less, V: 0.03 to 0.20 %, N: 0.03 % or less, provided that Nb ≥ 8(C+N) is satisfied, and balance: Fe and inevitable impurities. The Mo content of the ferritic stainless steel as an impurity is preferably controlled to 0.10 mass % or less, and Ti and B may be optionally contained in amounts of 0.05 to 0.30 and 0.0005 to 0.02 mass %, respectively. The ferritic stainless steel exhibits a thermal resistance comparable to that of a ferritic stainless steel containing Nb and Mo added thereto, and also is excellent in formability, the toughness at a low temperature and weldability.

Description

明 細 書 排ガス流路部材用フェライト系ステンレス鋼 技術分野  Description Ferrite stainless steel for exhaust gas flow passage members Technical field
本発明は、 ェキゾ一ストマ二ホールド, フロントパイプ, センタ一パイプ, 触 媒コンパ一ター外筒等、 自動車をはじめとする各種内燃機関の排ガス流路部材と して使用され、 耐熱性, 低温靭性, 溶接性に優れたフェライト系ステンレス鋼に 関する。 背景技術  INDUSTRIAL APPLICABILITY The present invention is used as an exhaust gas flow path member of various internal combustion engines such as automobiles, such as an exhaust manifold, a front pipe, a center pipe, a catalytic converter outer cylinder, etc., and has heat resistance, low temperature toughness, Related to ferritic stainless steel with excellent weldability. Background art
自動車の排ガス流路部材は、 運転中に排気ガスが直接触れる高温雰囲気に曝さ れ、 運転, 停止の繰返しに起因する熱応力や運転中のエンジンの振動が加わる。 寒冷地では、 冬期の始動時に低温での機械的応力も加わる。 そのため、 排気系部 材に使用される材料には、 非常に過酷な環境における耐久性が必要とされる。 ステンレス鋼の板材ゃパイプを排ガス流路部材に使用する場合、 耐熱性に優れ ることは勿論、 溶接や加工で製品形状に組み立てられるため、 溶接性, 加工性に 優れていることも重要な要求特性である。 成形時の二次加工や使用時の低温での 機械的負荷に耐える靭性 (低温靭性) も必要になる。  Exhaust gas flow path members of automobiles are exposed to a high-temperature atmosphere that is in direct contact with the exhaust gas during operation, and are subjected to thermal stress due to repeated operation and shutdown and vibration of the engine during operation. In cold climates, cold winters are also subject to mechanical stress at low temperatures. Therefore, the materials used for exhaust system components must be durable in extremely harsh environments. When a stainless steel plate or pipe is used as an exhaust gas flow path member, it is important to have excellent heat resistance, as well as excellent weldability and workability because it can be assembled into a product shape by welding and processing. It is a characteristic. Toughness (low-temperature toughness) that can withstand secondary processing during molding and mechanical load at low temperature during use is also required.
フェライト系ステンレス鋼は、 オーステナィト系ステンレス鋼と比較して熱膨 張が小さく、 熱疲労特性, 耐スケール剥離性に優れている。 鋼材コストも低いた め、 排ガス流路部材にフェライト系ステンレス鋼が使用されるケースが多い。 フェライト系ステンレス鋼は、 オーステナイト系ステンレス鋼よりも高温強度 が本質的に低いため、 高温強度を改善する改良が施されてきた。 たとえば、 SUS430J11系の Nb添加鋼, Nb,Si複合添加鋼 (特開平 3— 274245号公報), Nb,Mo複合添加鋼 (特開平 5-125491号公報) 等がある。 なかでも、 Nb、 Mo複 合添加鋼は、 高温強度が最も高く、 優れた熱疲労特性が要求される部位に使用さ れている。 しかし、 Nb,Mo複合添加鋼は、 他め鋼種に比べ加工性や低温靭性が 劣る傾向にある。 加工性, 低温靭性を改善した事例は散見されるものの、 必ずし も十分とは言い難い。 高価な元素 Moを多量に含むため鋼材コストが高いことも 欠点である。 Ferritic stainless steel has a smaller thermal expansion than austenitic stainless steel, and is superior in thermal fatigue properties and scale peel resistance. Since the cost of steel is low, ferrite stainless steel is often used for exhaust gas flow passage members. Ferritic stainless steels have inherently lower high-temperature strength than austenitic stainless steels, and improvements have been made to improve high-temperature strength. For example, there are SUS430J11-based Nb-added steel, Nb / Si composite-added steel (JP-A-3-274245), and Nb / Mo composite-added steel (JP-A-5-125491). Of these, Nb and Mo complex addition steels have the highest high-temperature strength and are used in places where excellent thermal fatigue properties are required. However, Nb and Mo composite additive steels tend to have lower workability and lower temperature toughness than other steel types. Cases of improved workability and low-temperature toughness are occasionally seen, Is not enough. Another disadvantage is the high cost of steel because it contains a large amount of expensive elemental Mo.
ところで、 排気ガス経路部材が曝される環境下で最も重視される高温強度 (耐 熱疲労破壊) と高温酸化特性 (異常酸化限界温度) の相関性をみると、 高温強度, 高温酸化特性を必ずしも高いレベルで両立させる必要のない部位もある。 具体的 には、 排気ガス温度があまり高くなくても構造が非常に複雑な部位では、 高温酸 化特性よりも高温強度が重視され、 構造の複雑さに対応できる加工性や低温靭性 も重視される。 かかる部位に対しても、 現状では Nb,Mo複合添加鋼を使用せざ るを得ず、 耐熱性は十分であっても、 加工性, 低温靭性, コストの面で改良の余 地がある。 発明の開示  By the way, the correlation between high-temperature strength (thermal fatigue fracture) and high-temperature oxidation characteristics (abnormal oxidation limit temperature), which is most important in an environment where the exhaust gas path members are exposed, shows that high-temperature strength and high-temperature oxidation characteristics do not necessarily match. Some sites do not need to be balanced at a high level. Specifically, in areas where the structure is very complex even if the exhaust gas temperature is not too high, high-temperature strength is more important than high-temperature oxidation characteristics, and workability and low-temperature toughness that can cope with the complexity of the structure are also important. You. At present, Nb and Mo composite-added steel must be used for such parts, and there is still room for improvement in workability, low-temperature toughness, and cost, even if the heat resistance is sufficient. Disclosure of the invention
本発明は、 このような問題を解消すべく案出されたものであり、 高価な Moを 合金成分として使用することなく、 Nb,Mo複合添加鋼に匹敵する耐熱性を有し、 加工性, 低温靭性, 溶接性にも優れた排ガス流路部材用フェライト系ステンレス 鋼を提供することを目的とする。  The present invention has been devised to solve such a problem, and does not use expensive Mo as an alloy component, has heat resistance comparable to that of Nb and Mo composite added steel, An object of the present invention is to provide a ferritic stainless steel having excellent low-temperature toughness and weldability for exhaust gas flow path members.
本発明の排ガス流路部材用フェライト系ステンレス鋼は、 その目的を達成する ため、 C: 0.03 質量%以下, Si: 1.0質量%以下, Mn: 1.5 質量%以下, Ni: 0.6質量%以下, Cr: 10〜20質量%, Nb: 0.50質量%以下, Cu: 0.8〜2.0質 量%, A1: 0.03質量%以下, V: 0.03-0.20質量%, N: 0.03質量%以下を含 み、 且つ Nb≥8(C+N)を満足していることを特徴とする。  In order to achieve the object, the ferritic stainless steel for exhaust gas flow passage members of the present invention has the following characteristics: C: 0.03% by mass, Si: 1.0% by mass, Mn: 1.5% by mass, Ni: 0.6% by mass, Cr: : 10 to 20% by mass, Nb: 0.50% by mass or less, Cu: 0.8 to 2.0% by mass, A1: 0.03% by mass or less, V: 0.03 to 0.20% by mass, N: 0.03% by mass or less, and Nb ≥8 (C + N).
このフェライト系ステンレス鋼は、 Mo を合金成分として含んでおらず、 成形 性を更に高めるため 0.05~0.30質量%の i及び Z又は二次加工性を更に高める ため 0.0005〜0.02質量%の βを含むこともできる。 図面の簡単な説明  This ferritic stainless steel does not contain Mo as an alloying component and contains 0.05 to 0.30% by mass of i and Z to further enhance formability or 0.0005 to 0.02% by mass β to further enhance secondary workability. You can also. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 高温での 0.2%耐力に及ぼす Cuの影響を示すグラフ 発明を実施するための最良の形態 排ガス流路部材が曝される環境における耐熱特性を満足する材料として従来か ら SUH409L系, SUS430J11系, SUS429系のステンレス鋼が使用されている が、 最高温度が 800〜900°C程度に留まるものの従来鋼種より格段に高い高温強 度が要求される部位もある。 高温強度が要求される部位は、 構造が非常に複雑で 熱応力が繰返し加わることから熱疲労破壊が生じやすい個所でもある。 しかも、 当該部位の構成材料には、 Mo添加鋼では得られない加工性や低温靭性等が要求 される。 Fig. 1 is a graph showing the effect of Cu on 0.2% proof stress at high temperatures. Conventionally, SUH409L, SUS430J11, and SUS429 stainless steels have been used as materials that satisfy the heat resistance characteristics in the environment where the exhaust gas flow path members are exposed, but although the maximum temperature remains at about 800 to 900 ° C. Some parts require significantly higher high-temperature strength than conventional steel grades. Areas requiring high-temperature strength are also places where the structure is extremely complex and thermal fatigue is likely to occur due to repeated application of thermal stress. In addition, the constituent material of the relevant part is required to have workability and low-temperature toughness that cannot be obtained with Mo-added steel.
本発明者等は、 かかる部位の構成材料に要求ざれる特性を満足させるため、 種々の合金元素の影響を調査した。 その結果、 V, Cu の複合添加により 900°C 以下の高温強度, 加工性, 低温靭性が改善され、 Nb,Mo添加鋼と同レベルが得 られることを見出した。  The present inventors have investigated the effects of various alloying elements in order to satisfy the characteristics required for the constituent material of such a portion. As a result, it was found that the combined addition of V and Cu improved the high-temperature strength below 900 ° C, workability, and low-temperature toughness, and achieved the same level as Nb and Mo-added steel.
微量の Vを添加し、 Cu含有量を変えた Nb含有フェライト系ステンレス鋼に ついて、 700で及び 800 の高温引張り試験で 0.2%耐カを測定した。 その結果、 Vの微量添加及び Cu含有量の規制により、 900°C以下の高温強度が飛躍的に上 昇し、 Nb,Mo複合添加鋼に匹敵する高温強度が得られることを見出した。  For Nb-containing ferritic stainless steels with a small amount of V added and varied Cu content, 0.2% resistance was measured in 700 and 800 high temperature tensile tests. As a result, it was found that the high-temperature strength of 900 ° C or less was dramatically increased by the addition of a small amount of V and the regulation of the Cu content, and a high-temperature strength comparable to that of Nb and Mo composite-added steel was obtained.
図 1は、 17Cr— 0.4Nb— 0.1V鋼の基本組成に種々の含有量で Cuを添加した 鋼の引張試験結果である。 図 1 では、 比較のため Nb,Mo複合添加鋼である 18Cr-2Mo-0.4Nb を基本成分とする SUS444系鋼の強度レベルも併せ示して いる。  Figure 1 shows the results of a tensile test of steels with various contents of Cu added to the basic composition of 17Cr-0.4Nb-0.1V steel. Fig. 1 also shows the strength level of SUS444-based steel containing 18Cr-2Mo-0.4Nb, which is a Nb and Mo composite added steel, as a basic component for comparison.
図 1の結果から明らかなように、 700で及び 80CTCにおける 0.2%耐カは、 Cu 量の増加に伴い急激に上昇している。 Cu含有量を 0.8質量%以上にすると、 Mo を約 2質量%含む SUS444系と同等又はそれ以上の 0.2%耐力が得られている。 900°Cにおける 0.2%耐カに関しては、 V, Cuの増量では SUS444系鋼のレベル に達しないものの、 Nb含有フェライト系ステンレス鋼以上に 0.2%耐カを向上 させることを別の実験で確認している。 すなわち、 900で以下の温度域において V, Cuの複合添加は高温強度の改善に有効であり、 900で以上でも大きな弊害が 現れない。  As is evident from the results in Fig. 1, the 0.2% resistance at 700 and 80 CTC increases sharply with increasing Cu content. When the Cu content is 0.8% by mass or more, a 0.2% proof stress equivalent to or higher than the SUS444 system containing about 2% by mass of Mo is obtained. Regarding the 0.2% resistance to heat at 900 ° C, it was confirmed by another experiment that the increase in V and Cu did not reach the level of SUS444 steel, but the 0.2% resistance was improved more than the Nb-containing ferritic stainless steel. ing. In other words, the combined addition of V and Cu is effective in improving the high-temperature strength in a temperature range of 900 or less, and no significant adverse effect appears at 900 or more.
Nb, Cu, Vの複合添加で、 高温強度が高いレベルに確保される理由は十分に 解明されていないが、 短時間及び長時間加熱後の何れにおいても Nb系析出物, Cu系析出物が Nb単独添加鋼に比較して微細分散した組織が観察される。 この 観察結果から、 Vが焼鈍ままの状態又は加熱初期に優先析出することにより、 Nb系析出物, Cu系析出物の生成が抑制され、 結果として微細な Nb系析出物, Cu系析出物が分散析出し、 析出強化に寄与するものと推察される。 加熱初期に 微細分散した析出物が長時間加熱によっても凝集せず、 析出強化が長時間まで有 効に作用していることも一因と推察される。 The reason why the high-temperature strength is maintained at a high level by the combined addition of Nb, Cu, and V is not fully understood, but Nb-based precipitates, A structure in which Cu-based precipitates are finely dispersed compared to the steel with Nb added alone is observed. From these observation results, it is found that V preferentially precipitates in the as-annealed state or in the early stage of heating, thereby suppressing the formation of Nb-based precipitates and Cu-based precipitates. As a result, fine Nb-based precipitates and Cu-based precipitates It is presumed that they are dispersed and contribute to precipitation strengthening. Presumably, this is because the finely dispersed precipitates do not agglomerate even after heating for a long time in the early stage of heating, and the precipitation strengthening works effectively for a long time.
更に、 強力な炭窒化物生成元素である Vが Nと結合するため、 Nb添加量 が同一の場合には高温強度の向上に有効な固溶 Nb を V無添加鋼よりも多く確 保できる。 換言すると、 V無添加鋼と同レベルの高温強度が低減した Nb含有量 で達成でき、 結果として加工性, 低温靭性の改善に寄与する。  Furthermore, since V, which is a strong carbonitride forming element, bonds with N, more solid-solution Nb effective for improving high-temperature strength can be secured than V-free steel when the amount of Nb added is the same. In other words, the same high-temperature strength as V-free steel can be achieved with a reduced Nb content, and as a result, contributes to the improvement of workability and low-temperature toughness.
しかも、 Nb, Vが共存する系では、 焼鈍ままの状態での Nb系, V系炭窒化 物の量が多くなる。 Nb系, V系炭窒化物の増加に伴って溶接熱影響部の結晶粒 が粗大化しにくくなり、 靭性が改善される。 Cr系炭化物の生成も抑制されるの で、 耐粒界腐食感受性も向上する。  In addition, in a system in which Nb and V coexist, the amount of Nb and V carbonitrides in the as-annealed state increases. With the increase in Nb-based and V-based carbonitrides, the grain size of the weld heat affected zone becomes less likely to become coarse and the toughness is improved. Since the generation of Cr-based carbides is also suppressed, the intergranular corrosion resistance is also improved.
以下、 本発明が対象とするフェライト系ステンレス鋼の合金成分, 含有量等を 説明する。  Hereinafter, the alloy components and contents of the ferritic stainless steel targeted by the present invention will be described.
C: 0.03質量%以下  C: 0.03 mass% or less
N: 0.03質量%以下 N: 0.03 mass% or less
C及び Nは、 一般的にはクリープ強度等の高温強度向上に有効な元素とされ ているが、 過剰に含まれると酸化特性, 加工性, 低温靭性, 溶接性が低下する。 C, Nを炭窒化物として固定する元素として V, Nb を添加している本成分系で は、 C, Ν濃度に見合った量の V, Nbを添加する必要がなる。 V, Nbの増量に 起因した原料費の上昇を抑えるため、 C, N共に 0.03質量%以下 (好ましくは、 0.015質量%以下) に規制した。  C and N are generally considered to be effective elements for improving high-temperature strength such as creep strength, but if they are contained excessively, oxidation properties, workability, low-temperature toughness, and weldability are reduced. In this component system in which V and Nb are added as elements that fix C and N as carbonitrides, it is necessary to add V and Nb in amounts corresponding to the C and Ν concentrations. In order to suppress a rise in raw material costs due to an increase in V and Nb, both C and N were regulated to 0.03% by mass or less (preferably 0.015% by mass or less).
Si: 1.0質量%以下 Si: 1.0 mass% or less
高温酸化特性の改善に非常に有効な元素であるが、 900で以下の高温強度の上 昇にはさほど効果的でない。 逆に Siを過剰添加すると、 硬さが上昇し、 加工性, 低温靭性が低下する。 したがって、 Si含有量を 1.0質量%以下 (好ましくは、 0.:!〜 0.5質量%) に規制した。 Mn: 1.5質量%以下 It is a very effective element for improving high temperature oxidation characteristics, but is not so effective for increasing the high temperature strength below 900. Conversely, when Si is excessively added, the hardness increases, and the workability and low-temperature toughness decrease. Therefore, the Si content was regulated to 1.0% by mass or less (preferably, 0 :! to 0.5% by mass). Mn: 1.5 mass% or less
フェライト系ステンレス鋼の高温酸化特性、 特にスケール剥離性を改善する合 金元素であるが、 Mn の過剰添加は加工性, 溶接性を劣化させる。 また、 オース テナイト相安定化元素であるため、 Crの添加量が少ない鋼種に Mnを過剩添加 するとマルテンサイト相が生成し易くなり、 熱疲労特性, 加工性の劣化を招く。 したがって、 Mn含有量を 1.5質量%以下 (好ましくは、 0.5質量%以下) に規 制した。  Although it is an alloy element that improves the high-temperature oxidation properties of ferritic stainless steel, especially scale exfoliation, excessive addition of Mn deteriorates workability and weldability. In addition, since it is an austenite phase stabilizing element, if Mn is excessively added to a steel type containing a small amount of Cr, a martensitic phase is likely to be formed, leading to deterioration of thermal fatigue characteristics and workability. Therefore, the Mn content was regulated to 1.5% by mass or less (preferably 0.5% by mass or less).
Ni: 0.6質量%以下  Ni: 0.6 mass% or less
オーステナイト相安定化元素であり、 C r含有量の少ない鋼種に Niを過剰添 加すると Mn と同様にマルテンサイト相を生成し、 熱疲労特性, 加工性を低下 させる。 原料価格が高いことからも、 Ni の過剰添加は避けるべきである。 そこ で、 Ni含有量を 0.6質量%以下 (好ましくは、 0.5質量%以下) に規制した。 Cr: 10~20質量%  An austenite phase stabilizing element. When Ni is excessively added to a steel type with a low Cr content, a martensitic phase is formed similarly to Mn, and the thermal fatigue properties and workability are reduced. Due to the high price of raw materials, excessive addition of Ni should be avoided. Therefore, the Ni content was regulated to 0.6% by mass or less (preferably 0.5% by mass or less). Cr: 10-20% by mass
フェライト相を安定させると共に、 高温材料に重視される耐酸化性の改善に不 可欠な元素である。 耐酸化性の面からは Cr含有量が多いほど好ましいが、 過剰 添加すると鋼材が脆化し、 硬さの上昇によって加工性も劣化する。 したがって、 Cr含有量を 10〜20質量%の範囲で選定する。 Cr含有量は、 好ましくは材料の 使用温度に合わせて調整される。 たとえば、 950°Cまでの耐高温酸化特性には 16〜: 19質量%が好ましく、 900°C以下での耐高温酸化性には 12〜; 16質量%が十 分である。  It is an indispensable element that stabilizes the ferrite phase and improves oxidation resistance, which is important for high-temperature materials. From the standpoint of oxidation resistance, the higher the Cr content, the better, but if added excessively, the steel material becomes brittle and the workability is degraded due to the increase in hardness. Therefore, the Cr content is selected in the range of 10 to 20% by mass. The Cr content is preferably adjusted to the working temperature of the material. For example, for high-temperature oxidation resistance up to 950 ° C, 16 to 19% by mass is preferable, and for high-temperature oxidation resistance at 900 ° C or lower, 12 to 16% by mass is sufficient.
Nb: 8(C+N〜0.50質量%  Nb: 8 (C + N to 0.50 mass%
C, Nを炭窒化物として固定し、 炭窒化物を固定した残りの固溶 Nbは高温強 度を上昇させる作用を呈する。 しかし、 過剰量の Nbを添加すると、 加工性, 低 温靭性が劣化し、 溶接高温割れ感受性が高くなる。 C, Nの固定には Nb≥8(C + N)を満足する Nb含有量が必要であるが、 加工性, 低温靭性, 溶接高温割れ感 受性に及ぼす悪影響を抑えるため Nb含有量の上限を 0.5質量%に設定する. 好 ましくは、 8(C + N) + 0.10≤Nb≤0.45を満足する Nb含有量が選定される。 Cu: 0.8〜2.0質量%  C and N are fixed as carbonitrides, and the remaining solid solution Nb to which the carbonitrides are fixed has the effect of increasing the high-temperature strength. However, when an excessive amount of Nb is added, workability and low-temperature toughness deteriorate, and the susceptibility to welding hot cracking increases. The Nb content that satisfies Nb ≥ 8 (C + N) is required for fixing C and N, but the upper limit of the Nb content is set to suppress adverse effects on workability, low-temperature toughness, and susceptibility to welding hot cracking. Is set to 0.5% by mass. Preferably, an Nb content satisfying 8 (C + N) + 0.10≤Nb≤0.45 is selected. Cu: 0.8 to 2.0 mass%
本成分系においては、 高温強度の改善のために非常に重要な元素である。 本発 明者等が検討した温度範囲では、 Cu のほぼ全量が焼鈍状態のマトリックスに固 溶しており、 加熱中に析出する。 析出した Cuは Mo添加鋼と同様に初期には強 化作用を発揮するが、 長時間加熱では強化作用が徐々に消失する。 必要な高温強 度を得る上では、 図 1からも明らかなように 0.8質量%以上の Cu含有量が必要 である。 しかし、 Cu含有量の増加に伴い、 加工性, 低温靭性, 溶接性が低下す る。 加工性, 低温靭性, 溶接性に及ぼす悪影響を抑えるため、 Cu含有量の上限 を 2.0質量%に規制する。 好ましい Cu含有量は、 1.0~1.7質量%の範囲である。 A1: 0.03質量%以下 In this component system, it is a very important element for improving the high-temperature strength. Departure In the temperature range studied by the authors, almost all of Cu is dissolved in the annealed matrix and precipitates during heating. The precipitated Cu exerts a strengthening effect at the initial stage, similar to the Mo-added steel, but the strengthening effect gradually disappears with prolonged heating. In order to obtain the required high-temperature strength, as is clear from Fig. 1, a Cu content of 0.8% by mass or more is required. However, as the Cu content increases, the workability, low-temperature toughness, and weldability decrease. The upper limit of the Cu content is regulated to 2.0% by mass in order to suppress adverse effects on workability, low-temperature toughness, and weldability. The preferred Cu content is in the range of 1.0 to 1.7% by mass. A1: 0.03 mass% or less
製鋼時に脱酸剤として添加され、 耐高温酸化性を改善する作用も呈する。 しか し、 A1の過剰添加は、 表面性状を劣化させ、 加工性, 溶接性, 低温靭性に悪影 響を及ぼす。 したがって、 A1含有量は少ないほど好ましく、 上限を 0.03質量% It is added as a deoxidizer during steelmaking and also has the effect of improving high-temperature oxidation resistance. However, excessive addition of A1 deteriorates the surface properties and adversely affects workability, weldability, and low-temperature toughness. Therefore, the smaller the A1 content, the better, and the upper limit is 0.03% by mass.
(好ましくは、 0.02質量%) に規制する。 (Preferably 0.02% by mass).
V: 0.03〜0.20質量% V: 0.03 to 0.20 mass%
Nb, Cuと複合添加すると、 フェライト系ステンレス鋼の高温強度が向上する。 また、 Nb との共存により、 加工性, 低温靭性, 耐粒界腐食感受性が改善され、 溶接熱影響部の靭性も改善される。 これらの効果は 0.03質量%以上の V含有量 で現れるが、 0.20質量%を超える過剰添加は加工性, 低温靭性の低下を招く。 したがって、 V含有量を 0.03〜0.20質量% (好ましくは、 0.04〜0.15質量 ) の範囲で選定する。  When combined with Nb and Cu, the high-temperature strength of ferritic stainless steel improves. In addition, coexistence with Nb improves workability, low-temperature toughness, intergranular corrosion susceptibility, and toughness of the heat affected zone. These effects appear at a V content of 0.03% by mass or more, but an excessive addition exceeding 0.20% by mass causes deterioration in workability and low-temperature toughness. Therefore, the V content is selected in the range of 0.03 to 0.20 mass% (preferably 0.04 to 0.15 mass).
Ti: 0.05〜0.30質量% Ti: 0.05 to 0.30 mass%
鋼の r値 (ランクフォード値) を向上させて成形性を改善する元素であり、 0.05質量%以上で添加効果が顕著になる。 しかし、 過剰量の Tiを添加すると、 TiN の生成に起因して鋼材の表面性状が劣化し、 溶接性, 低温靭性にも悪影響 が現れる。 したがって、 成形性向上のために Tiを添加する場合でも Ti含有量を 可能な限り低減することが望まれる。 そこで、 Ti含有量の上限を 0.30質量% (好ましくは、 0.20質量%) に規制した。  It is an element that improves the r-value (Rankford value) of steel to improve formability. The effect of addition becomes significant at 0.05% by mass or more. However, when an excessive amount of Ti is added, the surface properties of the steel material deteriorate due to the formation of TiN, and the weldability and low-temperature toughness are adversely affected. Therefore, it is desired to reduce the Ti content as much as possible even when Ti is added for improving formability. Therefore, the upper limit of the Ti content is restricted to 0.30% by mass (preferably 0.20% by mass).
B: 0.0005~0.02質量% B: 0.0005 to 0.02 mass%
鋼の二次加工性を向上させ、 多段成形時の割れを抑制する元素であり、 0.0005質量%以上で Bの添加効果が顕著になる。 しかし、 Bを多量に添加する と、 製造性や溶接性が劣化する。 したがって、 0.0005〜0.02質量% (好ましく は、 0.001〜0.01質量%) の範囲に B含有量を選定する。 It is an element that improves the secondary workability of steel and suppresses cracking during multi-stage forming. At 0.0005% by mass or more, the effect of adding B becomes remarkable. However, add a large amount of B As a result, the manufacturability and weldability deteriorate. Therefore, the B content is selected in the range of 0.0005 to 0.02% by mass (preferably 0.001 to 0.01% by mass).
Mo: 0.10質量%未満 Mo: less than 0.10% by mass
本発明のフェライト系ステンレス鋼では、 高価な Moを添加しないことを前提 にしているが、 ステンレス鋼の製造時に不可避的不純物として混入しやすい元素 である。 Moが多量に混入すると加工性, 低温靭性, 溶接性を劣化させる等の弊 害があるので、 混入量を 0.10質量%未満に規制することが望ましい。  The ferritic stainless steel of the present invention is based on the premise that expensive Mo is not added, but is an element that is easily mixed as an inevitable impurity during the production of stainless steel. If a large amount of Mo is mixed in, it will adversely affect workability, low-temperature toughness, and weldability, etc. Therefore, it is desirable to limit the amount of Mo mixed to less than 0.10% by mass.
以上に掲げた元素以外については特に規制されるものではないが、 一般的な不 純物である P, S, 0等は可能な限り低減することが好ましい。 熱間加工性, 耐 酸化性等を考慮すると、 P, S, 0の上限をそれぞれ 0.04質量%, 0.03質量%, 0.02質量%とすることが好ましい。 耐熱性の改善に有効な W, Zr, Y, REM (希土類元素) や、 熱間加工性の改善に有効な Ca, Mg, Co等も必要に応じて 適宜添加できる。  There is no particular restriction on the elements other than those listed above, but it is preferable to reduce P, S, 0, etc., which are common impurities, as much as possible. In consideration of hot workability, oxidation resistance, and the like, it is preferable that the upper limits of P, S, and 0 be 0.04 mass%, 0.03 mass%, and 0.02 mass%, respectively. W, Zr, Y, REM (rare earth element), which is effective for improving heat resistance, and Ca, Mg, Co, which is effective for improving hot workability, can be added as needed.
フェライト系ステンレス鋼の製造条件には特段の制約が加わるものではなく、 Cu を予め固溶させておく限り、 熱延焼鈍板のままで優れた耐熱性が得られる。 熱延で所望の板厚の鋼板が製造できない場合、 冷延及び焼鈍を 1回又は複数回繰 り返すことによって、 熱延焼鈍板と同等の耐熱性を有する鋼板を製造できる。 必 要に応じて製造工程の何れかの段階で C uを微細に分散させるとき、 より優れた 高温強度が得られる。 優れた特性は、 熱延焼鈍板, 冷延焼鈍扳等を所望形状に加 ェ又は溶接 (管の成形等も含む) した後でも維持される。 次いで、 実施例によって本発明をより具体的に説明する。  There are no particular restrictions on the manufacturing conditions for ferritic stainless steel, and as long as Cu is dissolved in advance, excellent heat resistance can be obtained as a hot-rolled annealed sheet. When a steel sheet having a desired thickness cannot be produced by hot rolling, cold rolling and annealing are repeated once or more times to produce a steel sheet having heat resistance equivalent to that of a hot rolled annealed sheet. If necessary, when Cu is finely dispersed at any stage of the manufacturing process, better high-temperature strength can be obtained. Excellent properties are maintained even after hot-rolled annealed sheets, cold-rolled annealed sheets, etc. are added or welded to the desired shape (including tube forming). Next, the present invention will be described more specifically with reference to examples.
表 1, 2 の組成をもつ各種フェライト系ステンレス鋼を真空溶解炉で溶製し、 30k のインゴットに铸造した。 インゴットを鍛造し、 熱間圧延, 焼鈍, 冷間圧 延, 仕上げ焼鈍を経て板厚 2.0mm及び 1.2mmの冷延焼鈍板を製造した。 表中、 No.;!〜 10 は本発明鋼, No.ll〜: 19 は比較鋼である。 比較鋼のうち、 No.ll は SUS430JU相当鋼, No.15は SUH409L相当鋼, No.16は 14Cr— Si— Nb鋼, No.17 は SUS444相当鋼であり、 何れの鋼種もェキゾ一ストマ二ホールド用と して使用実績がある。 表 1 :供試材の成分 '組成 (本発明鋼) Various ferritic stainless steels having the compositions shown in Tables 1 and 2 were melted in a vacuum melting furnace and made into 30k ingots. The ingot was forged and subjected to hot rolling, annealing, cold rolling, and finish annealing to produce 2.0 mm and 1.2 mm cold-rolled annealed sheets. In the table, Nos.! To 10 are the steels of the present invention, and Nos. 11 to 19 are comparative steels. Among the comparative steels, No.ll was SUS430JU equivalent steel, No.15 was SUH409L equivalent steel, No.16 was 14Cr—Si—Nb steel, No.17 was SUS444 equivalent steel, and all steel types were exhaust manifolds. It has been used for holding. Table 1: Composition of test material 'Composition (Steel of the present invention)
Figure imgf000010_0001
Figure imgf000010_0001
B: ρυπι単 [Nb]=Nb - 8[C + N] 一:検出限界以下 B: ρυπι single [Nb] = Nb-8 [C + N] One: below detection limit
表 2 :供試材の成分,組成 (比較鋼) Table 2: Composition and composition of test material (comparative steel)
Figure imgf000011_0001
Figure imgf000011_0001
B : ppm単位 [Nb〗=Nb - 8[C+N] 一 :検出限界以下  B: ppm unit [Nb〗 = Nb-8 [C + N] i: Below the detection limit
下線は、 本発明で規定した範囲を外れることを示す。 An underline indicates that the value is out of the range defined in the present invention.
板厚 2.0mmの冷延焼鈍板を高温引張試験, 高温酸化試験, 室温引張試験, シ ャルピー衝撃試験に供し、 板厚 1.2mm の冷延焼鈍板を溶接高温割れ試験に供し た。 A 2.0-mm-thick cold-rolled annealed plate was subjected to a high-temperature tensile test, a high-temperature oxidation test, a room-temperature tensile test, and a Charpy impact test, and a 1.2-mm-thick cold-rolled annealed plate was subjected to a weld hot cracking test.
高温引張試験では、 JISG0567 に準拠して 800°Cで試験片を引っ張り、 0.2% 耐カを測定した。  In the high-temperature tensile test, the test piece was pulled at 800 ° C in accordance with JISG0567, and 0.2% resistance was measured.
高温酸化試験では、 JISZ2281 に準拠して 850°C, 900°C, 950°C, 1000°C, 1100°Cの各温度に試験片を 200時間連続加熱した。 加熱された試験片について 異常酸化 (板厚方向に貫通するこぶ状の厚い酸化物) の発生状況を目視観察し、 異常酸化が生じない限界温度を求めた。  In the high temperature oxidation test, the test piece was continuously heated at 850 ° C, 900 ° C, 950 ° C, 1000 ° C, and 1100 ° C for 200 hours in accordance with JISZ2281. The heated test specimens were visually observed for the occurrence of abnormal oxidation (thick oxide penetrating in the plate thickness direction), and the critical temperature at which abnormal oxidation did not occur was determined.
室温引張試験では、 JISZ2241に準拠して板厚 2.0mmの冷延焼鈍板を 13B号 試験片に加工し、 引張試験後の破断伸びを求めた。  In the room temperature tensile test, a cold-rolled annealed plate having a thickness of 2.0 mm was processed into a No. 13B test piece in accordance with JISZ2241, and the breaking elongation after the tensile test was determined.
シャルビ一衝撃試験では、 JISZ2242 に準拠し、 板厚 2.0nmi のサブサイズ試 験片を用いて、 -75°C, -50t, -25で, 0°C , 25°Cの各温度で試験片に衝撃を加 え、 延性—靭性遷移温度を求めた。  In the Charpy impact test, a test piece was used at a temperature of -75 ° C, -50t, -25, 0 ° C, and 25 ° C using a subsize test piece with a thickness of 2.0 nm in accordance with JISZ2242. A shock was applied to the steel to determine the ductility-toughness transition temperature.
溶接高温割れ試験では、 40mm X 20mm の試験片の両端を保持し、 長手方向 に引張り応力を付与した状態で TIG溶接し、 割れが発生し始める最小のひずみ 量を求めた。 得られた臨界ひずみ量を溶接高温割れ感受性の指標とした。  In the welding hot cracking test, TIG welding was performed with both ends of a 40 mm X 20 mm test piece held and tensile stress applied in the longitudinal direction, and the minimum strain at which cracking began to occur was determined. The obtained critical strain amount was used as an index of the hot cracking susceptibility.
以上の試験結果を表 3に示す。  Table 3 shows the test results.
本発明鋼 No.l ~ 10 の鋼は何れも、 Ti 添加鋼 (No.l5), Nb, Si 添加鋼 (No.16) に比較して 800での 0.2%耐力が格段に大きく、 Nb,Mo複合添加鋼 (No.17) に匹敵又は凌駕する 0.2%耐カ値であった。 室温引張り試験による伸 び, シャルピー衝撃試験による延性脆性遷移温度, 溶接高温割れ試験による臨界 ひずみも Nb,Mo複合添加鋼 (No.17) と同等以上の特性を有しており、 Moを添 加しなくても目標性能が得られることが確認された。 異常酸化に関しては、 No.4, No.5, No.12の結果からも判るように、 Cr含有量が少なくなるほど限界 温度が低くなつている。 異常酸化に及ぼす Cr含有量の影響から、 適用箇所の温 度に応じて Cr含有量の適正量を設定する必要性が理解できる。  Each of the steels Nos. 1 to 10 of the present invention has a much higher 0.2% proof stress at 800 compared to the Ti-added steel (No. 15), Nb, and Si-added steel (No. 16). It had a 0.2% power resistance comparable to or surpassed that of the Mo-added steel (No. 17). Elongation by room-temperature tensile test, ductile-brittle transition temperature by Charpy impact test, and critical strain by welding hot cracking test have properties equal to or higher than those of Nb and Mo composite-added steel (No. 17). It was confirmed that the target performance could be obtained without doing so. As for abnormal oxidation, as can be seen from the results of Nos. 4, 5, and 12, the lower the Cr content, the lower the critical temperature. From the effect of Cr content on abnormal oxidation, it can be understood that it is necessary to set an appropriate amount of Cr content according to the temperature of the application site.
V, Cuが不足する比較鋼 No.11, No.15, No.16, No.19は、 加工性, 低温靭 性, 溶接性は十分なレベルにあるものの、 800°Cの高温強度が劣っている。 Cu を過剰に含む比較鋼 No.12 は、 高温強度に優れているものの、 加工性, 溶接性 が Nb,Mo複合添加鋼よりも劣り、 製品形状への加工や溶接に支障をきたした。 Comparative steels No.11, No.15, No.16 and No.19, which lack V and Cu, have sufficient workability, low-temperature toughness and weldability, but inferior high-temperature strength at 800 ° C. ing. Cu Although comparative steel No. 12, which contains an excessive amount of steel, has excellent high-temperature strength, its workability and weldability are inferior to those of Nb and Mo composite-added steels, and it hinders processing into product shapes and welding.
Cu含有量が規定範囲にあっても Si含有量が多すぎる比較鋼 No.13や、 Nb含 有量が多すぎる比較鋼 No.14は、 高温強度に優れていても、 加工性, 低温靭性, 溶接性が本発明鋼よりも劣っていた。  Even though the Cu content is within the specified range, the comparative steel No. 13 containing too much Si and the comparative steel No. 14 containing too much Nb have excellent workability and low-temperature toughness even if they have excellent high-temperature strength. However, the weldability was inferior to the steel of the present invention.
V含有量が少なく A1含有量が多い比較鋼 No.18は、 耐熱性や加工性が本発明 鋼と同程度であるものの、 低温靭性に劣り、 製品加工時や使用時に靭性不足に起 因するトラブルの発生が予測される。 Vが不足する比較鋼 No.19 は、 高温強度 が不足している。  Comparative steel No. 18 with low V content and high A1 content, although having similar heat resistance and workability to the steel of the present invention, is inferior in low-temperature toughness, resulting from insufficient toughness during product processing and use. Trouble is expected to occur. Comparative steel No. 19, which lacks V, lacks high-temperature strength.
Moを含む比較鋼 No.17は、 本発明鋼と同程度の性能を有するが、 低温靭性が 若干低くなつている。 しかも、 Moを約 2質量%含有しているので、 素材コスト が本発明鋼より高くなることが避けられない。 Comparative steel No. 17 containing Mo has the same performance as the steel of the present invention, but has a slightly lower low-temperature toughness. Moreover, since Mo is contained at about 2% by mass, it is inevitable that the material cost will be higher than that of the steel of the present invention.
表 3 : 評価試験結果 Table 3: Evaluation test results
Figure imgf000014_0001
Figure imgf000014_0001
臨界ひずみ 3質量%以上を〇、 3質量%未満を Xで示す。 下線は、 当該特性が本発明の目的を満足しないことを示す。 産業上の利用可能性 Critical strain 3% by mass or more is indicated by 〇, and less than 3% by mass is indicated by X. The underline indicates that the property does not satisfy the purpose of the present invention. Industrial applicability
以上に説明したように、 フェライト系ステンレス鋼に含まれる各種合金元素の 含有量、 特に V, Cuの範囲を厳格に規制することにより、 高価な Moを必要と せず、 優れた耐熱性を確保しながら加工性, 低温靭性, 溶接性が改善され、 排気 ガス経路部材用として好適なフェライト系ステンレス鋼が得られる。 このフェラ イト系ステンレス鋼は、 優れた特性を活用して自動車エンジンを始め、 ェキゾ一 ストマ二ホールド, フロントパイプ, センターパイプ, 触媒コンパ一ター外筒等 等の排ガス流路部材に使用される。  As described above, by strictly controlling the content of various alloying elements contained in ferritic stainless steel, especially the range of V and Cu, high heat resistance is secured without the need for expensive Mo. While improving workability, low-temperature toughness, and weldability, ferritic stainless steel suitable for exhaust gas path members can be obtained. This ferritic stainless steel is used in exhaust gas flow passage members, such as automobile engines, exhaust pipes, front pipes, center pipes, and outer tubes of catalytic converters, utilizing its excellent properties.

Claims

請求の範囲 The scope of the claims
1. C: 0.03質量%以下, Si: 1.0質量%以下, Mn: 1.5質量%以下, Ni: 0.6 質量%以下, Cr: 10〜20質量%, Nb: 0.50質量%以下, Cu: 0.8〜2.0質 量%, A1: 0.03質量%以下, V: 0.03〜0.20質量%, N: 0.03質量%以下を 含み、 且つ Nb≥8(C+N)を満足し、 残部が Fe 及び不可避的不純物からなる ことを特徴とする自動車排ガス流路部材用フェライト系ステンレス鋼。 1. C: 0.03% by mass or less, Si: 1.0% by mass or less, Mn: 1.5% by mass or less, Ni: 0.6% by mass or less, Cr: 10 to 20% by mass, Nb: 0.50% by mass or less, Cu: 0.8 to 2.0% % By mass, A1: 0.03% by mass or less, V: 0.03 to 0.20% by mass, N: 0.03% by mass or less, and satisfies Nb≥8 (C + N), with the balance being Fe and unavoidable impurities A ferritic stainless steel for a vehicle exhaust gas flow passage member.
2. 不可避的不純物として含まれる Moが 0.10質量%未満に規制されている請 求項 1記載の自動車排ガス流路部材用フェライト系ステンレス鋼。  2. The ferrite stainless steel for automobile exhaust gas flow path members according to claim 1, wherein Mo contained as an inevitable impurity is regulated to less than 0.10% by mass.
3. 更に 0.05~0.30質量%の Tiを含む請求項 1又は 2記載の自動車排ガス流 路部材用フェライト系ステンレス鋼。 3. The ferritic stainless steel for an automobile exhaust gas flow passage member according to claim 1, further comprising 0.05 to 0.30% by mass of Ti.
4. 更に 0.0005~0.02質量%の Bを含む請求項 1〜3何れかに記載の自動車排 ガス流路部材用フェライト系ステンレス鋼。 4. The ferritic stainless steel for a vehicle exhaust gas flow path member according to claim 1, further comprising 0.0005 to 0.02% by mass of B.
PCT/JP2002/006768 2001-07-05 2002-07-04 Ferritic stainless steel for member of exhaust gas flow passage WO2003004714A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2003510470A JP4197492B2 (en) 2001-07-05 2002-07-04 Ferritic stainless steel for exhaust gas flow path members
US10/482,718 US20040170518A1 (en) 2001-07-05 2002-07-04 Ferritic stainless steel for member of exhaust gas flow passage
DE60204323T DE60204323T2 (en) 2001-07-05 2002-07-04 FERRITIC STAINLESS STEEL FOR AN ELEMENT OF AN EXHAUST GAS PASSAGE
KR10-2004-7000076A KR20040007764A (en) 2001-07-05 2002-07-04 Ferritic stainless steel for member of exhaust gas flow passage
EP02743819A EP1413640B1 (en) 2001-07-05 2002-07-04 Ferritic stainless steel for member of exhaust gas flow passage
US13/042,542 US20110176954A1 (en) 2001-07-05 2011-03-08 Ferritic Stainless Steel for Use as Conduit Members for Emission of Automotive Exhaust Gas
US13/632,418 US20130263979A1 (en) 2001-07-05 2012-10-01 Ferritic Stainless Steel for Use as Conduit Members for Emission of Automotive Exhaust Gas

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001204444 2001-07-05
JP2001-204444 2001-07-05

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/233,122 Continuation US20090053093A1 (en) 2001-07-05 2008-11-06 Ferritic Stainless Steel for Use as Conduit Members For Emission of Automotive Exhaust Gas

Publications (1)

Publication Number Publication Date
WO2003004714A1 true WO2003004714A1 (en) 2003-01-16

Family

ID=19040911

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/006768 WO2003004714A1 (en) 2001-07-05 2002-07-04 Ferritic stainless steel for member of exhaust gas flow passage

Country Status (8)

Country Link
US (4) US20040170518A1 (en)
EP (1) EP1413640B1 (en)
JP (2) JP4197492B2 (en)
KR (1) KR20040007764A (en)
CN (1) CN1225566C (en)
DE (1) DE60204323T2 (en)
ES (1) ES2240764T3 (en)
WO (1) WO2003004714A1 (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1930461A1 (en) 2006-12-07 2008-06-11 Nisshin Steel Co., Ltd. Ferritic stainless steel for automobile exhaust gas passage components and welded steel pipe
JP2008138270A (en) * 2006-12-05 2008-06-19 Nippon Steel & Sumikin Stainless Steel Corp High strength stainless steel sheet having excellent workability, and its production method
WO2008093888A1 (en) 2007-02-02 2008-08-07 Nisshin Steel Co., Ltd. Ferritic stainless steel for exhaust gas passage member
WO2008105134A1 (en) 2007-02-26 2008-09-04 Nippon Steel & Sumikin Stainless Steel Corporation Ferritic stainless steel sheet having excellent heat resistance
WO2009110640A1 (en) 2008-03-07 2009-09-11 Jfeスチール株式会社 Ferritic stainless steel having excellent heat resistance
WO2009110641A1 (en) 2008-03-07 2009-09-11 Jfeスチール株式会社 Ferritic stainless steel with excellent heat resistance and toughness
JP2009235555A (en) * 2008-03-28 2009-10-15 Nippon Steel & Sumikin Stainless Steel Corp Heat resistant ferritic stainless steel sheet having excellent oxidation resistance
JP2010053417A (en) * 2008-08-29 2010-03-11 Jfe Steel Corp Ferritic stainless steel excellent in thermal fatigue property, high temperature fatigue property and oxidation resistance
JP2010053418A (en) * 2008-08-29 2010-03-11 Jfe Steel Corp Ferritic stainless steel excellent in thermal fatigue property, high temperature fatigue property, oxidation resistance and workability
JP2010053420A (en) * 2008-08-29 2010-03-11 Jfe Steel Corp Ferritic stainless steel excellent in thermal fatigue property, high temperature fatigue property, oxidation resistance and toughness
WO2010110466A1 (en) 2009-03-24 2010-09-30 新日鐵住金ステンレス株式会社 Ferritic stainless steel plate having excellent heat resistance and excellent workability
JP2010236001A (en) * 2009-03-31 2010-10-21 Nisshin Steel Co Ltd Ferritic stainless steel
WO2011024568A1 (en) 2009-08-31 2011-03-03 Jfeスチール株式会社 Ferritic stainless steel having excellent heat resistance
WO2011068328A2 (en) * 2009-12-04 2011-06-09 주식회사 포스코 Cold rolled steel sheet for processing with excellent heat resistance, and preparation method thereof
WO2011118854A1 (en) 2010-03-26 2011-09-29 新日鐵住金ステンレス株式会社 Ferrite stainless steel sheet having high thermal resistance and processability, and method for manufacturing the same
JP2012007195A (en) * 2010-06-22 2012-01-12 Nisshin Steel Co Ltd LOW Cr STAINLESS STEEL EXCELLENT IN HEAT RESISTANCE AND AGE HARDENING CHARACTERISTICS, AND AUTOMOTIVE EXHAUST-GAS PATH MEMBER COMPRISING THE STEEL
WO2012036313A1 (en) * 2010-09-16 2012-03-22 新日鐵住金ステンレス株式会社 Heat-resistant ferrite-type stainless steel plate having excellent oxidation resistance
WO2012050226A1 (en) 2010-10-14 2012-04-19 Jfeスチール株式会社 Ferritic stainless steel excellent in heat resistance and workability
WO2012133573A1 (en) 2011-03-29 2012-10-04 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet having excellent heat resistance and processability, and method for producing same
WO2014157576A1 (en) * 2013-03-27 2014-10-02 新日鐵住金ステンレス株式会社 Hot-rolled ferritic stainless-steel plate, process for producing same, and steel strip
US8855226B2 (en) 2005-05-12 2014-10-07 Qualcomm Incorporated Rate selection with margin sharing
US9157137B2 (en) 2010-11-11 2015-10-13 Jfe Steel Corporation Ferritic stainless steel excellent in oxidation resistance
US9399809B2 (en) 2011-02-08 2016-07-26 Nippon Steel & Sumikin Stainless Steel Corporation Hot rolled ferritic stainless steel sheet, method for producing same, and method for producing ferritic stainless steel sheet
KR20160103100A (en) 2014-02-05 2016-08-31 제이에프이 스틸 가부시키가이샤 Hot-rolled and annealed ferritic stainless steel sheet, method for producing same, and cold-rolled and annealed ferritic stainless steel sheet
KR20160145675A (en) 2014-05-14 2016-12-20 제이에프이 스틸 가부시키가이샤 Ferritic stainless steel
JP2017179398A (en) * 2016-03-28 2017-10-05 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet for exhaust manifold and exhaust manifold
US9885099B2 (en) 2012-03-09 2018-02-06 Nippon Steel & Sumikin Stainless Steel Corporation Ferritic stainless steel sheet
KR20190132455A (en) 2017-03-27 2019-11-27 닛테츠 스테인레스 가부시키가이샤 Ferritic stainless steel sheet and its manufacturing method, and exhaust parts
WO2023170996A1 (en) * 2022-03-07 2023-09-14 日鉄ステンレス株式会社 Ferritic stainless steel sheet and exhaust parts

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2776892C (en) 2006-05-09 2014-12-09 Nippon Steel & Sumikin Stainless Steel Corporation Ferritic stainless steel excellent in resistance to crevice corrosion and formability
JP5390175B2 (en) * 2007-12-28 2014-01-15 新日鐵住金ステンレス株式会社 Ferritic stainless steel with excellent brazeability
JP5462583B2 (en) * 2008-10-24 2014-04-02 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet for EGR cooler
JP2010116622A (en) * 2008-11-14 2010-05-27 Nisshin Steel Co Ltd Ferritic stainless steel for heat pipe and steel sheet, and heat pipe and high temperature waste heat recovery device
EP2623623B1 (en) * 2010-10-01 2016-03-23 Hitachi Metals, Ltd. Heat-resistant ferritic cast steel having excellent melt flowability, freedom from gas defect, toughness, and machinability, and exhaust system component comprising same
JP5304935B2 (en) * 2011-10-14 2013-10-02 Jfeスチール株式会社 Ferritic stainless steel
JP5234214B2 (en) * 2011-10-14 2013-07-10 Jfeスチール株式会社 Ferritic stainless steel
JP6037882B2 (en) 2012-02-15 2016-12-07 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet with excellent scale peel resistance and method for producing the same
JP6196453B2 (en) * 2012-03-22 2017-09-13 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet with excellent scale peel resistance and method for producing the same
UA111115C2 (en) 2012-04-02 2016-03-25 Ейкей Стіл Пропертіс, Інк. cost effective ferritic stainless steel
FI125855B (en) * 2012-06-26 2016-03-15 Outokumpu Oy Ferritic stainless steel
FI124995B (en) * 2012-11-20 2015-04-15 Outokumpu Oy Ferritic stainless steel
KR101899229B1 (en) * 2014-05-14 2018-09-14 제이에프이 스틸 가부시키가이샤 Ferritic stainless steel
CN107002200A (en) * 2014-12-11 2017-08-01 杰富意钢铁株式会社 Ferrite-group stainless steel and its manufacture method
JP6370275B2 (en) * 2015-08-17 2018-08-08 日新製鋼株式会社 Damping ferritic stainless steel material and manufacturing method
CN105537875B (en) * 2016-01-18 2018-03-09 山西太钢不锈钢股份有限公司 A kind of manufacture method of ferritic stainless steel welded tube
JP6749808B2 (en) * 2016-07-29 2020-09-02 日鉄ステンレス株式会社 Ferritic stainless steel sheet having excellent carburization resistance and oxidation resistance, and method for producing the same
CN106319373B (en) * 2016-08-16 2018-07-17 盐城市科瑞达科技咨询服务有限公司 A kind of minute spherical ferritic stainless steel powder and preparation method thereof
KR102206415B1 (en) * 2016-09-02 2021-01-22 제이에프이 스틸 가부시키가이샤 Ferritic stainless steel
KR101835021B1 (en) * 2016-09-28 2018-03-09 주식회사 포스코 Ferritic stainless steel for exhaust system heat exchanger and method of manufacturing the same
WO2018135028A1 (en) * 2017-01-19 2018-07-26 日新製鋼株式会社 Ferritic stainless steel and ferritic stainless steel for car exhaust gas pathway member
KR102259806B1 (en) * 2019-08-05 2021-06-03 주식회사 포스코 Ferritic stainless steel with improved creep resistance at high temperature and method for manufacturing the ferritic stainless steel

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0478790A1 (en) * 1990-03-24 1992-04-08 Nisshin Steel Co., Ltd. Heat-resistant ferritic stainless steel excellent in low-temperature toughness, weldability and heat resistance
JPH06279950A (en) * 1993-03-26 1994-10-04 Nisshin Steel Co Ltd Ferritic stainless steel for exhaust gas passage constituting member and its production
JPH10204591A (en) * 1997-01-24 1998-08-04 Kawasaki Steel Corp Ferritic stainless steel for engine exhaust member, excellent in muffler corrosion resistance in weld zone as well as in heat resistance
JPH10204590A (en) * 1997-01-24 1998-08-04 Kawasaki Steel Corp Ferritic stainless steel for engine exhaust member, excellent in heat resistance, workability, and muffler corrosion resistance

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08144021A (en) * 1994-11-18 1996-06-04 Sumitomo Metal Ind Ltd Production of ferritic stainless steel and cold rolled sheet therefrom

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0478790A1 (en) * 1990-03-24 1992-04-08 Nisshin Steel Co., Ltd. Heat-resistant ferritic stainless steel excellent in low-temperature toughness, weldability and heat resistance
JPH06279950A (en) * 1993-03-26 1994-10-04 Nisshin Steel Co Ltd Ferritic stainless steel for exhaust gas passage constituting member and its production
JPH10204591A (en) * 1997-01-24 1998-08-04 Kawasaki Steel Corp Ferritic stainless steel for engine exhaust member, excellent in muffler corrosion resistance in weld zone as well as in heat resistance
JPH10204590A (en) * 1997-01-24 1998-08-04 Kawasaki Steel Corp Ferritic stainless steel for engine exhaust member, excellent in heat resistance, workability, and muffler corrosion resistance

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8855226B2 (en) 2005-05-12 2014-10-07 Qualcomm Incorporated Rate selection with margin sharing
JP2008138270A (en) * 2006-12-05 2008-06-19 Nippon Steel & Sumikin Stainless Steel Corp High strength stainless steel sheet having excellent workability, and its production method
JP2008144199A (en) * 2006-12-07 2008-06-26 Nisshin Steel Co Ltd Ferritic stainless steel for automobile exhaust gas passage member, and welded steel pipe
EP1930461A1 (en) 2006-12-07 2008-06-11 Nisshin Steel Co., Ltd. Ferritic stainless steel for automobile exhaust gas passage components and welded steel pipe
US7943085B2 (en) 2006-12-07 2011-05-17 Nisshin Steel Co., Ltd. Ferritic stainless steel for automobile exhaust gas passage components and welded steel pipe
WO2008093888A1 (en) 2007-02-02 2008-08-07 Nisshin Steel Co., Ltd. Ferritic stainless steel for exhaust gas passage member
JP2008189974A (en) * 2007-02-02 2008-08-21 Nisshin Steel Co Ltd Ferritic stainless steel for exhaust gas passage member
WO2008105134A1 (en) 2007-02-26 2008-09-04 Nippon Steel & Sumikin Stainless Steel Corporation Ferritic stainless steel sheet having excellent heat resistance
US8062584B2 (en) 2007-02-26 2011-11-22 Nippon Steel & Sumikin Stainless Steel Corporation Ferritic stainless steel sheet superior in heat resistance
US9279172B2 (en) 2008-03-07 2016-03-08 Jfe Steel Corporation Heat-resistance ferritic stainless steel
WO2009110640A1 (en) 2008-03-07 2009-09-11 Jfeスチール株式会社 Ferritic stainless steel having excellent heat resistance
WO2009110641A1 (en) 2008-03-07 2009-09-11 Jfeスチール株式会社 Ferritic stainless steel with excellent heat resistance and toughness
JP2009235555A (en) * 2008-03-28 2009-10-15 Nippon Steel & Sumikin Stainless Steel Corp Heat resistant ferritic stainless steel sheet having excellent oxidation resistance
JP2010053420A (en) * 2008-08-29 2010-03-11 Jfe Steel Corp Ferritic stainless steel excellent in thermal fatigue property, high temperature fatigue property, oxidation resistance and toughness
JP2010053418A (en) * 2008-08-29 2010-03-11 Jfe Steel Corp Ferritic stainless steel excellent in thermal fatigue property, high temperature fatigue property, oxidation resistance and workability
JP2010053417A (en) * 2008-08-29 2010-03-11 Jfe Steel Corp Ferritic stainless steel excellent in thermal fatigue property, high temperature fatigue property and oxidation resistance
WO2010110466A1 (en) 2009-03-24 2010-09-30 新日鐵住金ステンレス株式会社 Ferritic stainless steel plate having excellent heat resistance and excellent workability
JP2010236001A (en) * 2009-03-31 2010-10-21 Nisshin Steel Co Ltd Ferritic stainless steel
US8153055B2 (en) 2009-08-31 2012-04-10 Jfe Steel Corporation Ferritic stainless steel with excellent heat resistance
WO2011024568A1 (en) 2009-08-31 2011-03-03 Jfeスチール株式会社 Ferritic stainless steel having excellent heat resistance
WO2011068328A3 (en) * 2009-12-04 2011-11-03 주식회사 포스코 Cold rolled steel sheet for processing with excellent heat resistance, and preparation method thereof
WO2011068328A2 (en) * 2009-12-04 2011-06-09 주식회사 포스코 Cold rolled steel sheet for processing with excellent heat resistance, and preparation method thereof
US8980018B2 (en) 2010-03-26 2015-03-17 Nippon Steel & Sumikin Stainless Steel Corporation Ferritic stainless steel sheet excellent in heat resistance and workability and method of production of same
WO2011118854A1 (en) 2010-03-26 2011-09-29 新日鐵住金ステンレス株式会社 Ferrite stainless steel sheet having high thermal resistance and processability, and method for manufacturing the same
JP2012007195A (en) * 2010-06-22 2012-01-12 Nisshin Steel Co Ltd LOW Cr STAINLESS STEEL EXCELLENT IN HEAT RESISTANCE AND AGE HARDENING CHARACTERISTICS, AND AUTOMOTIVE EXHAUST-GAS PATH MEMBER COMPRISING THE STEEL
WO2012036313A1 (en) * 2010-09-16 2012-03-22 新日鐵住金ステンレス株式会社 Heat-resistant ferrite-type stainless steel plate having excellent oxidation resistance
KR20150140423A (en) 2010-09-16 2015-12-15 닛폰 스틸 앤드 스미킨 스테인레스 스틸 코포레이션 Heat-resistant ferrite-type stainless steel plate having excellent oxidation resistance
JP5709875B2 (en) * 2010-09-16 2015-04-30 新日鐵住金ステンレス株式会社 Heat-resistant ferritic stainless steel sheet with excellent oxidation resistance
KR20130058070A (en) 2010-10-14 2013-06-03 제이에프이 스틸 가부시키가이샤 Ferritic stainless steel excellent in heat resistance and workability
WO2012050226A1 (en) 2010-10-14 2012-04-19 Jfeスチール株式会社 Ferritic stainless steel excellent in heat resistance and workability
US9157137B2 (en) 2010-11-11 2015-10-13 Jfe Steel Corporation Ferritic stainless steel excellent in oxidation resistance
US9399809B2 (en) 2011-02-08 2016-07-26 Nippon Steel & Sumikin Stainless Steel Corporation Hot rolled ferritic stainless steel sheet, method for producing same, and method for producing ferritic stainless steel sheet
US10072323B2 (en) 2011-02-08 2018-09-11 Nippon Steel & Sumikin Stainless Steel Corporation Hot rolled ferritic stainless steel sheet, method for producing same, and method for producing ferritic stainless steel sheet
WO2012133573A1 (en) 2011-03-29 2012-10-04 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet having excellent heat resistance and processability, and method for producing same
US9885099B2 (en) 2012-03-09 2018-02-06 Nippon Steel & Sumikin Stainless Steel Corporation Ferritic stainless steel sheet
US10385429B2 (en) 2013-03-27 2019-08-20 Nippon Steel & Sumikin Stainless Steel Corporation Hot-rolled ferritic stainless-steel plate, process for producing same, and steel strip
JP5885884B2 (en) * 2013-03-27 2016-03-16 新日鐵住金ステンレス株式会社 Ferritic stainless hot-rolled steel sheet, manufacturing method thereof, and steel strip
WO2014157576A1 (en) * 2013-03-27 2014-10-02 新日鐵住金ステンレス株式会社 Hot-rolled ferritic stainless-steel plate, process for producing same, and steel strip
KR20160103100A (en) 2014-02-05 2016-08-31 제이에프이 스틸 가부시키가이샤 Hot-rolled and annealed ferritic stainless steel sheet, method for producing same, and cold-rolled and annealed ferritic stainless steel sheet
US10837075B2 (en) 2014-02-05 2020-11-17 Jfe Steel Corporation Hot rolled and annealed ferritic stainless steel sheet, method of producing same, and cold rolled and annealed ferritic stainless steel sheet
US10400318B2 (en) 2014-05-14 2019-09-03 Jfe Steel Corporation Ferritic stainless steel
KR20160145675A (en) 2014-05-14 2016-12-20 제이에프이 스틸 가부시키가이샤 Ferritic stainless steel
JP2017179398A (en) * 2016-03-28 2017-10-05 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet for exhaust manifold and exhaust manifold
KR20190132455A (en) 2017-03-27 2019-11-27 닛테츠 스테인레스 가부시키가이샤 Ferritic stainless steel sheet and its manufacturing method, and exhaust parts
WO2023170996A1 (en) * 2022-03-07 2023-09-14 日鉄ステンレス株式会社 Ferritic stainless steel sheet and exhaust parts

Also Published As

Publication number Publication date
ES2240764T3 (en) 2005-10-16
US20090053093A1 (en) 2009-02-26
US20110176954A1 (en) 2011-07-21
CN1524130A (en) 2004-08-25
US20040170518A1 (en) 2004-09-02
KR20040007764A (en) 2004-01-24
JP5138504B2 (en) 2013-02-06
JP2008297631A (en) 2008-12-11
DE60204323D1 (en) 2005-06-30
EP1413640A4 (en) 2004-12-15
JPWO2003004714A1 (en) 2004-10-28
CN1225566C (en) 2005-11-02
JP4197492B2 (en) 2008-12-17
EP1413640B1 (en) 2005-05-25
DE60204323T2 (en) 2006-01-26
EP1413640A1 (en) 2004-04-28
US20100119404A1 (en) 2010-05-13

Similar Documents

Publication Publication Date Title
JP4197492B2 (en) Ferritic stainless steel for exhaust gas flow path members
JP5297630B2 (en) Ferritic stainless steel plate with excellent heat resistance
US9279172B2 (en) Heat-resistance ferritic stainless steel
JP5141296B2 (en) Ferritic stainless steel with excellent high temperature strength and toughness
TWI465587B (en) Ferritic stainless steel having excellent oxidation resistance
WO1991014796A1 (en) Heat-resistant ferritic stainless steel excellent in low-temperature toughness, weldability and heat resistance
JP5025671B2 (en) Ferritic stainless steel sheet excellent in high temperature strength and method for producing the same
JP5540637B2 (en) Ferritic stainless steel with excellent heat resistance
US20060237102A1 (en) Ferritic steel sheet concurrently improved in formability, high-temperature strength, high temperature oxidation resistance, and low temperature toughness
JP5012243B2 (en) Ferritic stainless steel with excellent high-temperature strength, heat resistance and workability
JP4309140B2 (en) Ferritic stainless steel for automotive exhaust system equipment
JP2803538B2 (en) Ferritic stainless steel for automotive exhaust manifold
JP6820757B2 (en) Ferritic stainless steel sheets for fastening parts with excellent heat resistance, fastening parts, and circular clamps for heat-resistant tubular members
JP4457492B2 (en) Stainless steel with excellent workability and weldability
JP3546714B2 (en) Cr-containing steel with excellent high-temperature strength, workability and surface properties
JP3744403B2 (en) Soft Cr-containing steel
JP4309293B2 (en) Ferritic stainless steel for automotive exhaust system parts
JP3355711B2 (en) High Cr ferritic heat resistant steel with excellent high temperature strength and toughness
JP5810722B2 (en) Ferritic stainless steel with excellent thermal fatigue characteristics and workability
JPH06136488A (en) Ferritic stainless steel excellent in workability, high temperature salt damage resistance, and high temperature strength
JP5239644B2 (en) Ferritic stainless steel with excellent thermal fatigue properties, high temperature fatigue properties, oxidation resistance and toughness
JP2022123245A (en) Ferritic stainless steel sheet
JP2002180207A (en) SOFT Cr-CONTAINING STEEL
JPH05279804A (en) Steel for automobile exhaust manifold
JP2002348640A (en) Cr-CONTAINING STEEL SUPERIOR IN CORROSION RESISTANCE, HAVING LOW YIELD STRESS AT ROOM TEMPERATURE

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2003510470

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2002743819

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 02813138X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 10482718

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020047000076

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2002743819

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWG Wipo information: grant in national office

Ref document number: 2002743819

Country of ref document: EP