WO2009110641A1 - Ferritic stainless steel with excellent heat resistance and toughness - Google Patents

Ferritic stainless steel with excellent heat resistance and toughness Download PDF

Info

Publication number
WO2009110641A1
WO2009110641A1 PCT/JP2009/054707 JP2009054707W WO2009110641A1 WO 2009110641 A1 WO2009110641 A1 WO 2009110641A1 JP 2009054707 W JP2009054707 W JP 2009054707W WO 2009110641 A1 WO2009110641 A1 WO 2009110641A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
less
steel
toughness
stainless steel
Prior art date
Application number
PCT/JP2009/054707
Other languages
French (fr)
Japanese (ja)
Inventor
加藤康
平田知正
中村徹之
宇城工
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to US12/920,837 priority Critical patent/US20110123387A1/en
Priority to EP09718001.2A priority patent/EP2264202B1/en
Priority to ES09718001.2T priority patent/ES2519716T3/en
Priority to CN200980108061.7A priority patent/CN101965415B/en
Priority to BRPI0909643A priority patent/BRPI0909643A2/en
Priority to KR1020137010258A priority patent/KR20130049835A/en
Publication of WO2009110641A1 publication Critical patent/WO2009110641A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium

Definitions

  • the present invention relates to a Cr-containing steel, and in particular, an exhaust pipe of a motor vehicle, a exhaust case of a motorcycle, a converter case, and a thermal electric power plant.
  • High heat resistance thermal fatigue resistance, oxidation resistance
  • suitable for exhaust system members used in high-temperature environments such as ducts (exhaust air duct) and base metal
  • the present invention relates to ferritic stainless steel having excellent toughness.
  • Exhaust manifolds, exhaust pipes, compressor cases, mufflers, and other exhaust system members used in the exhaust system environment of automobiles are subject to thermal fatigue, rawness and oxidation resistance (hereinafter referred to as “exhaust manifold”). Both specialties are collectively referred to as “heat resistance.”)
  • heat resistance Both specialties are collectively referred to as “heat resistance.”
  • Cr-containing such as Ty pe 429 (14 C r -0.9 S i -0.4 Nb series)
  • the exhaust gas temperature rises to a temperature exceeding 900 ° C. It was.
  • WO 2003/004714 pamphlet has 10-20 mass% Cr steel, Nb: 0.5 Oma ss% or less, Cu: 0.8-2 Oma ss%, V
  • Ferritic stainless steel for automobile exhaust gas flow channel members with 0.03 to 0.2 Oma ss% added discloses 10 to 20 ma ss% Cr steel.
  • T i 0.05 to 0.30 ma ss%
  • Nb 0.1 to 0.60 ma ss%
  • Cu 0.8 to 2.
  • B 0.0005 to 0.02 ma ss%
  • No. 7355 discloses ferritic stainless steel for automotive exhaust system parts in which Cu: 1 to 3 mass% is added to 15 to 25 nxas s s% Cr steel. All of these steels are characterized by improved thermal fatigue properties by adding Cu.
  • the object of the present invention is to develop a technique for preventing the decrease in oxidation resistance due to the addition of Cu, thereby improving thermal fatigue characteristics and oxidation resistance without adding expensive elements such as Mo and W. It is to provide a ferritic stainless steel having excellent toughness equivalent to or better than that of Type 429.
  • excellent oxidation resistance and thermal fatigue characteristics J as used in the present invention means that it has the same or better characteristics than SUS 444. Specifically, the oxidation resistance is 9
  • Oxidation resistance at 50 ° C and thermal fatigue characteristics are 100 ° C-8 Repeated thermal fatigue characteristics between 50 ° C and SUS 444 are equivalent or better.
  • the toughness equivalent to Ty pe 429 means that the brittle fracture surface ratio of a cold-rolled sheet with a thickness of 2 mm when it is subjected to a Charpy impact test at 140 ° C is equivalent to Ty pe 429.
  • C 0.0 15 mass% or less
  • Mn 0.5 mass% or less
  • P 0.04 mass% or less
  • Cr 16 to 20 mass% or less
  • N 0.015 mass% or less
  • N b 0.3 to 0.55 mass%
  • T i 0.01 mass% or less
  • Mo 0.1 mass% or less
  • W 0.1 mass% or less
  • Cu l. 0 to 2.5 mass%
  • a 1 0.2 to 1.2 mass%, the balance being Fe and Ferritic stainless steel made of inevitable impurities.
  • the fluorescent stainless steel of the present invention further includes B: 0.003 mass% or less, REM: 0.08 mass% or less, Zr: 0.5 mass% or less, V: It is characterized by containing one or more selected from 0.5 mass% or less, Co: 0.5 mass% or less, and Ni: 0.5 mass% or less.
  • heat resistance thermal fatigue characteristics, oxidation resistance
  • Ty pe 429 presentative components are steels in Table 1
  • Ferritic stainless steel with toughness equivalent to or better than No. 24 can be obtained at low cost. Therefore, the steel of the present invention is suitable for use in automobile exhaust system members.
  • Fig. 1 is a diagram illustrating a thermal fatigue test piece.
  • Fig. 2 is a diagram for explaining temperature and restraining conditions in a thermal fatigue test.
  • Figure 3 A graph showing the effect of Cu content on thermal fatigue properties.
  • Figure 4 A graph showing the effect of A 1 content on oxidation resistance (weight gain by oxidation).
  • Figure 5 A graph showing the effect of A 1 content on oxidation resistance (spoiling amounts of scale).
  • Fig. 6 Graph showing the effect of Si content on oxidation resistance (scale peeling)
  • Fig. 7 Graph showing the effect of Mn content on toughness (brittle fracture surface ratio) It is.
  • Fig. 8 is a graph showing the effect of A 1 content on toughness (brittle fracture surface ratio).
  • Figure 9 Graph showing the effect of Ti content on toughness (brittle fracture surface ratio).
  • the inventors have prevented the deterioration of oxidation resistance due to Cu addition in the prior art, and without adding expensive elements such as Mo and W, they have excellent thermal fatigue characteristics and oxidation resistance, and are also tough.
  • Nb is changed from 0.3 to 0. & 3 3%, ⁇ 11 in the range of 1.0 to 2.5 mass%, high high-temperature strength can be obtained in a wide temperature range, thermal fatigue characteristics can be improved, and addition of Cu
  • the decrease in oxidation resistance can be prevented by adding more than 0.2 mass% of A 1. Therefore, by controlling Nb, Cu and A 1 within the proper range, Mo and W can be added.
  • this sheet bar was forged into a par with a cross section of 35 mm X 35 mm, annealed at a temperature of 1030 ° C, machined, and the thermal fatigue test specimen with the dimensions shown in Fig. 1 (thermal fatigue test specimen) ) was produced. Then, as shown in Fig. 2, a thermal treatment was performed by repeatedly applying a heat treatment in which a restraint ratio was 0.35 at a temperature of 100 ° C-850 at 100 ° C-850, and the thermal fatigue life was measured. The thermal fatigue life is
  • Figure 3 shows the results of the thermal fatigue test. From this figure, by adding more than 1.0 mass% of ⁇ 11, thermal fatigue life equal to or better than that of SUS 444 (about 1 100 cycles) can be obtained, thus improving thermal fatigue characteristics. It can be seen that it is effective to add Cu by lma ss% or more.
  • a 3 OmmX 20 mm test piece was cut out from the cold-rolled steel sheet obtained as described above, a 4 ⁇ hole was drilled at the top of the test piece, and the surface and end face were polished with # 320 emery paper, degreased. Later, it was subjected to the following test.
  • the above test piece is kept in a furnace at 950 ° C in an air atmosphere for 300 hours and heated. The difference in the mass of the test piece before and after the test was measured, and the increase in oxidation per unit area (gZm 2 ) was determined.
  • Figure 4 shows the measurement results of the increase in oxidation.
  • Fig. 5 shows the measurement results of the amount of scale peeling. From these figures, by adding more than 0.2 mass% of A 1, oxidation resistance equal to or better than SUS 444 (oxidation increase: 27 gZm 2 or less, scale peeling: less than 4 g / in 2 ) Is obtained.
  • C 0.006 ⁇ 0.007ma ss%
  • N 0.00 6 ⁇ 0.00 00 7m ass%
  • S i 0.3ma ss%
  • C r 1 7ma ss%
  • Nb 0.
  • a 50 kg steel ingot was prepared by laboratory smelting steel with various contents of Mn, A 1 and Ti based on the composition of 45 mass% and Cu: 1.5 mass%.
  • the steel ingot was hot-rolled, hot-rolled sheet annealed, cold-rolled, and finish-annealed to obtain a cold-rolled annealed sheet with a thickness of 2 mm.
  • a sub-size Charpy impact test specimen was taken from this cold-rolled annealed plate and subjected to a Charpy impact test at a temperature of 40 ° C. The brittle fracture surface ratio was measured and the toughness was evaluated.
  • Figure 7 shows the effect of Mn content on toughness at A 1: 0.25 mass% and T i: 0.006 mass%.
  • Figure 8 shows the effect of Mn: 0.1 mass% and Ti: 0. The effect of A 1 content on toughness at 0 05 ma ss%.
  • Figure 9 shows the toughness of Ti content at A 1: 25 mass% and Mn: 0.1 mass%. It shows the effect on From these figures, to obtain toughness equivalent to or better than Ty pe 42 9, Mn: 0 ⁇ 3 mass% or less, A 1: 1 ⁇ 2 ma ss ° / 0 or less, T i: 0.0 lma ss% It turns out that it must be:
  • the present invention has been completed by further studying the above findings.
  • C is an element effective for increasing the strength of steel, but if it exceeds 0.015 mass%, the toughness and formability deteriorate significantly. Therefore, in the present invention, C is set to not more than 0.015 ma s s%. From the viewpoint of ensuring moldability, the lower the C, the better.
  • the lower limit is preferably 0.008 ma s s%.
  • C is preferably 0.001 lma s s% or more. More preferably, it is in the range of 0., 002 to 0.008 ma s s%.
  • Si is added as a deoxidizer. It is preferable to add more than 0.05 mass%. In addition, Si has an effect of improving the oxidation resistance which is the main subject of the present invention, but cannot be as effective as A 1. On the other hand, as can be seen from FIG. 6, excessive addition of Si exceeding 0.5 mass% reduces the scale peel resistance and does not provide oxidation resistance equal to or better than SUS444. Therefore, the upper limit of S i is 0.5 ma s s%.
  • Mn 0.5 ma s s. /. Less than
  • Mn is an element that increases the strength of steel and also has a function as a deoxidizer. It is preferable to add 0.05 mass% or more. However, excessive addition tends to generate ⁇ y phase at high temperatures, which reduces heat resistance. Also, as can be seen from Figure 7, 0.5ina s If added in excess of s%, a toughness equal to or higher than that of Type 4 29 cannot be obtained, and the object of the present invention cannot be achieved. Therefore, in the present invention, Mn is set to 0.5 mass% or less.
  • P is a harmful element that lowers toughness and should be reduced as much as possible. Therefore, in the present invention, P is set to 0.04 mass% or less. Preferably, it is 0.03 mass% or less.
  • S is a harmful element that lowers the elongation value and adversely affects the formability and lowers the corrosion resistance, which is a basic characteristic of stainless steel, so it is desirable to reduce it as much as possible. Therefore, in the present invention, S is set to 0.006 mass s s% or less. Preferably, it is 0.003 s s% or less.
  • Cr is an important element effective for improving the corrosion resistance and oxidation resistance characteristic of stainless steel, but if it is less than 16 mass%, sufficient oxidation resistance cannot be obtained.
  • Cr is an element that solidifies and strengthens steel at room temperature and hardens' low ductility.In particular, when it exceeds 20% by mass, the above-mentioned adverse effects become significant, and it is equivalent to or higher than Ty pe 429. The toughness cannot be obtained. Therefore: In the present invention, Cr is in the range of 16-20 mass%. Preferably, it is in the range of 16 to 19 mass%.
  • N is an element that lowers the toughness and formability of steel, and when the content exceeds 0.015 mass%, the above reduction becomes significant. Therefore, N is set to 0.01 5 ma s s% or less. Note that N is further reduced when higher toughness is required, and is preferably less than 0.010 mass%.
  • Nb forms and fixes carbon nitride with C and N, has the effect of improving corrosion resistance and formability, and intergranular corrosion resistance of welds, and also increases the high temperature strength and improves thermal fatigue properties. It is an element that has fruit. Such an effect is recognized with addition of 0.3 mass% or more. 4707. On the other hand, if it exceeds 0.55 mass%, the Laves phase tends to precipitate and the brittleness decreases. Therefore, Nb is in the range of 0.3 to 0.55 mass%. Preferably, it is in the range of 0.4 to 0.5 ma ss%.
  • T i is an element that easily binds to N and forms coarse T i N compared to Nb, and this coarse T i N acts as a notch and significantly reduces toughness. In particular, as shown in FIG. 9, this adverse effect becomes significant when the Ti content exceeds 0.01 mass%. Therefore, in the present invention, it is limited to T 3 ⁇ 40.0.1% or less.
  • Mo is an expensive element and is not actively added for the purpose of the present invention. However, it may be mixed in less than 0.1 ma s s% from the raw material scrap. Therefore, Mo is set to 0.1 m a s s% or less.
  • W is an expensive element like Mo, and is not actively added for the purpose of the present invention. However, it may be mixed in less than 0.1 ma s s% from raw materials such as scrap. Therefore, W is less than 0. lma s s%.
  • Cu is an extremely effective element for improving thermal fatigue properties. As shown in Fig. 3, it is necessary to add Cu in an amount of 1.0 mass% or more in order to obtain thermal fatigue characteristics equivalent to or better than SUS444. However, if the addition exceeds 2.5 mass%, ⁇ -Cu precipitates during cooling after heat treatment, hardens the steel, and tends to cause embrittlement during hot working. More importantly, the addition of Cu improves the thermal fatigue resistance, but decreases the oxidation resistance of the steel itself, and overall, the heat resistance decreases. The cause of this is not sufficiently clear, but Cu is concentrated in the decreasing Cr layer immediately below the scale, which suppresses the re-diffusion of Cr, an element that improves the inherent oxidation resistance of stainless steel. It is thought to do. Therefore, Cu is in the range of 1.0 to 2.5 mass%. More preferably, it is in the range of 1.1 to 1.8 ma ss%. 4707
  • Al is an indispensable element for improving the oxidation resistance of Cu-added steel.
  • SUS 444 which is the object of the present invention
  • addition of 0.2 mass% or more is necessary.
  • the steel becomes hard and no toughness equivalent to Ty pe 42 9 can be obtained, so the upper limit is 1.2 mass% To do.
  • it is in the range of 0.3 to 1. Oma s s%.
  • the ferritic stainless steel of the present invention further contains one or more selected from B, REM, Zr, V, Co and Ni in the following range. Can be added.
  • B is an element effective for improving workability, particularly secondary workability. This remarkable effect can be obtained by addition of 0.005 5 mass% or more. However, if it exceeds 0.03 mass%, BN is formed and workability is lowered. Therefore, when adding B, it should be 0.003 mass s s% or less. More preferably, it is in the range of 0.0 0 0 5 to 0.002 ma s s%.
  • REM rare earth element
  • Zr are both elements that improve oxidation resistance, and can be added as necessary in the present invention.
  • the addition of more than 0.08 mass% of REM causes the steel to become brittle, and the addition of more than 0.5 mass% of Z ⁇ causes the Zr intermetallic compound to precipitate, making the steel brittle. Therefore, when adding REM, it should be less than 0.08 mass%, and when adding Zr, it should be less than 0.5 mass%.
  • V 0.5ma s s% or less
  • V is an element effective for improving workability and oxidation resistance.
  • V is preferably added in an amount of 0.15 mass% or more. Force and 0.5 mas Excessive addition exceeding s% precipitates coarse V (C, N) and degrades the surface properties. Therefore, when V is added, it is preferable to add 0.5 mass% or less, and it is preferable to add in the range of 0.15 to 0.4 mass%.
  • Co is an element effective in improving toughness, and it is preferable to add 0.02 mass s s% or more.
  • Co is an expensive element, and the above effect is saturated even when added in excess of 0.5 mass%. Therefore, when adding Co, it is preferable to be 0.5 mass% or less. More preferably, it is in the range of 0.02 to 0.2 ma s s%.
  • N i 0.5ma s s% or less
  • Ni is an element that improves toughness. In order to obtain the effect, 0.05 mass s s% or more is preferable. However, Ni is expensive and is a strong ⁇ -phase-forming element, so it generates a ⁇ -phase at high temperatures and reduces oxidation resistance. Therefore, when Ni is added, the content is preferably 0.5 mass% or less. More preferably, it is in the range of 0.05 to 0.4 ma s s%.
  • the method for producing stainless steel of the present invention can be suitably used as long as it is an ordinary method for producing fluorescent stainless steel, and is not particularly limited.
  • steel is produced in a known melting furnace such as a converter or an electric furnace, or further subjected to secondary refinement such as ladle or vacuum refinement to obtain steel having the above-described component composition of the present invention,
  • the molten steel is made into a steel slab (slab) by continuous forging or ingot lump rolling, hot-rolled to hot-rolled sheet, and subjected to hot-rolled sheet annealing as necessary. It is preferable to produce a cold-rolled annealed plate through steps such as pickling, cold rolling, finish annealing, and pickling.
  • the cold rolling may be performed once or twice or more with intermediate annealing, and the steps of cold rolling, finish annealing, and pickling may be performed repeatedly. Further, depending on the case, the hot-rolled sheet annealing may be omitted, and when the gloss of the steel sheet surface is required, a skin pass may be applied after cold rolling or after finishing annealing.
  • the slab heating temperature before hot rolling is 1000-1250 ° C
  • the hot-rolled sheet annealing temperature is 900-1100 ° C
  • the final annealing temperature is 900-1 1 2 4707
  • a range of 0 ° C. is preferred.
  • the ferritic stainless steel of the present invention obtained as described above is then subjected to processing such as cutting, bending, and pressing according to the respective use, and the exhaust pipe of an automobile car pie. It is considered as various exhaust system members used in high temperature environments such as a compressor case and an exhaust duct of a thermal power plant.
  • the stainless steel of the present invention used for the above-mentioned member is not limited to a cold-rolled annealed plate, and may be used as a hot-rolled plate or a hot-rolled plate annealed, and further subjected to descaling as necessary. It may be used.
  • the welding method for assembling the above-mentioned members is not particularly limited, and normal arc welding such as MIG (Metal Inert Gas), MAG (Metal Active Gas), TIG (Tungsten Inert Gas), or spot welding.
  • Methods such as electric resistance welding such as welding and seam welding, high-frequency resistance welding used in electrical welding, high-frequency induction welding, and laser welding can be used.
  • the mass of the sample after the test was measured, the difference from the pre-test mass measured in advance was determined, and the scale peeling amount (g / m 2 ) was determined. Each test was conducted twice, and the oxidation resistance was evaluated using the average value.
  • Example 1 The remaining steel ingot of 50 kg copper ingot divided into two in Example 1 was heated to 1 1 70 ° C. and hot-rolled to obtain a sheet par of thickness: 3 OmmX width: 150 mm. The sheet par was then forged into a 35 mm par, annealed at a temperature of 1 0303 ⁇ 4, machined, and processed into a thermal fatigue test piece with the dimensions shown in Fig. 1 for the following thermal fatigue test. Provided. As reference examples, as in Example 1, SUS 444, Type 429, and WO 2003/004714 pamphlet, Japanese Patent Application Laid-Open No. 2006-1-17985, and Japanese Patent Application Laid-Open No. 2000-297355. Similarly, a sample was prepared and subjected to a thermal fatigue test. ⁇ Thermal fatigue test> ⁇
  • the thermal fatigue life was measured by raising and lowering the temperature between 100 ° C and 850 ° C with a restraint ratio of 0.35. At this time, the heating rate and the cooling rate are 10 ° O sec and the holding time at 100 ° C is 2 mi. n The holding time at 85 ° C. was 5 min. The thermal fatigue life is calculated by dividing the load detected at 100 ° C by the cross-sectional area of the soaking parallel part of the specimen and calculating the stress continuously. Therefore, the minimum number of cycles when the stress began to decrease was determined.
  • Table 2 summarizes the results of the atmospheric continuous oxidation test, the atmospheric repeated oxidation test, and the Charpy impact test of Example 1 and the thermal fatigue resistance test of Example 2.
  • all of the steels of the inventive examples suitable for the present invention have oxidation resistance and thermal fatigue characteristics equal to or better than SUS 4 4 4, and It has toughness equal to or better than 29 and meets the goals of the present invention.
  • comparative steels outside the scope of the present invention or prior art reference steels are not excellent in both oxidation resistance and heat fatigue resistance and toughness of the base metal. The target characteristics of the invention are not obtained. Industrial applicability
  • the steel of the present invention is not only suitable for exhaust system members such as automobiles, but is also suitable as a solid oxide type fuel cell member for an exhaust system member of a thermal power generation system that requires similar characteristics. Can be used.
  • Reference example 1 Invention steel No.3 of WO2003 / 004714
  • Reference example 2 Invention steel No.7 of Kai 2006-117985
  • Reference example 3 Invention steel of Kai 2000-297355 o.5

Abstract

Provided is a ferritic stainless steel having excellent thermal fatigue characteristics and oxidation resistance, without the addition of expensive elements such as molybdenum and tungsten, and having toughness equivalent to or greater than that of Type 429. Specifically, the ferritic stainless steel has, by mass: no more than 0.015% carbon, no more than 0.5% silicon, no more than 0.5% manganese, no more than 0.04% phosphorus, no more than 0.006% sulfur, no more than 16% to 20% chromium, no more than 0.015% nitrogen, between 0.3% and 0.55% niobium, no more than 0.1% titanium, no more than 0.1% molybdenum, no more than 0.1% tungsten, between 1.0% and 2.5% copper, and between 0.2% to 1.2% aluminum, with the remainder comprising iron and unavoidable impurities.

Description

明細書  Specification
耐熱性と靭性に優れるフェライト系ステンレス鋼 技術分野  Ferritic stainless steel with excellent heat resistance and toughness
本発明は、 C r含有鋼に係り、 とくに自動車(automobile)ゃォートパイ(motorcycle )の排気管(exhaust pipe)、 コンパ一ターケース (converter case)や火力発電プラン ト(thermal electric power plant)の排気ダクト(exhaust air duct)等の高温環境下 で使用される排気系部材に用いて好適な、 高い耐熱性 (耐熱疲労特性 (thermal fatigu e resistance)、 耐酸化性(oxidation resistance)) と母材の靭性(toughness)に優れ るフェライト系ステンレス鋼(ferritic stainless steel)に関するものである。 背景技術  The present invention relates to a Cr-containing steel, and in particular, an exhaust pipe of a motor vehicle, a exhaust case of a motorcycle, a converter case, and a thermal electric power plant. High heat resistance (thermal fatigue resistance, oxidation resistance) suitable for exhaust system members used in high-temperature environments such as ducts (exhaust air duct) and base metal The present invention relates to ferritic stainless steel having excellent toughness. Background art
自動車の排気系環境下で使用されるェキゾーストマ二ホールド(exhaust manifold) 、 排気パイプ、 コンパ一ターケース、 マフラー(muffler)等の排気系部材には、 熱疲労 特ゃ生や耐酸化性 (以下、 両特 ι·生をまとめて 「耐熱性」 と呼ぶ。 ) に優れることが要求 されている。 このような耐熱性が求められる用途には、 現在、 Nbと S iを添加した 、 例えば、 Ty p e 429 (14 C r -0. 9 S i -0. 4Nb系) のような C r含 有鋼が多く使用されている。 し力 し、 エンジン性能の向上に伴って、 排ガス温度(exha ust gas temperature)が 900 °Cを超えるような温度まで上昇してくると、 Ty p e 429では、 熱疲労特性が不十分となってきた。  Exhaust manifolds, exhaust pipes, compressor cases, mufflers, and other exhaust system members used in the exhaust system environment of automobiles are subject to thermal fatigue, rawness and oxidation resistance (hereinafter referred to as “exhaust manifold”). Both specialties are collectively referred to as “heat resistance.”) In applications where such heat resistance is required, Nb and Si are now added, for example, Cr-containing such as Ty pe 429 (14 C r -0.9 S i -0.4 Nb series) A lot of steel is used. However, as the engine performance improves, the exhaust gas temperature (exhaust gas temperature) rises to a temperature exceeding 900 ° C. It was.
この問題に対しては、 Nbと Moを添加して髙温耐力(high temperature proof str ess)を向上させた C r含有鋼や、 J I S G 4305に規定される S U S 444 (1 9 C r -0. 2Nb - 1. 8Mo) 、 Nb , Mo, Wを添加したフェライト系ステン レス鋼等が開発されている (例えば、 特開 2004— 01892 1号公報参照) 。 し かしながら、 昨今における Moや W等の希少金属原料の異常な高騰から、 安価な原料 を用いて同等の耐熱性を有する材料の開発が要求されるようになってきた。  To solve this problem, Cr-containing steel with improved high temperature proof stress by adding Nb and Mo, and SUS 444 (19 9 Cr −0. 2Nb-1.8Mo), ferritic stainless steels with addition of Nb, Mo and W have been developed (see, for example, Japanese Patent Application Laid-Open No. 2004-018921). However, due to the unusually high price of rare metal raw materials such as Mo and W in recent years, the development of materials having equivalent heat resistance using inexpensive raw materials has been required.
高価な元素である Moや Wを用いない耐熱性 (heat resistance)に優れた材料として は、 例えば、 WO 2003/004714号パンフレツトには、 1 0〜20ma s s % C r鋼に、 Nb : 0. 5 Oma s s %以下、 Cu : 0. 8〜2. Oma s s %、 VAs a material with excellent heat resistance without using expensive elements such as Mo and W For example, WO 2003/004714 pamphlet has 10-20 mass% Cr steel, Nb: 0.5 Oma ss% or less, Cu: 0.8-2 Oma ss%, V
: 0. 03〜0. 2 Oma s s %を添加した自動車排ガス流路部材用フェライ ト系ス テンレス鋼が、 また特開 2006- 1 1 7985号公報には、 1 0〜20ma s s% C r鋼に、 T i : 0. 05〜0. 30ma s s %、 Nb : 0. 10〜0. 60ma s s%、 Cu: 0. 8 ~ 2. Oma s s %, B: 0. 0005 ~0. 02ma s s%を 添加した熱疲労特性に優れたフェライト系ステンレス鋼が、 また特開 2000-29: Ferritic stainless steel for automobile exhaust gas flow channel members with 0.03 to 0.2 Oma ss% added, and Japanese Patent Application Laid-Open No. 2006-1 1 7985 discloses 10 to 20 ma ss% Cr steel. T i: 0.05 to 0.30 ma ss%, Nb: 0.1 to 0.60 ma ss%, Cu: 0.8 to 2. Oma ss%, B: 0.0005 to 0.02 ma ss% Ferritic stainless steel with excellent thermal fatigue properties with the addition of
7355号公報には、 15~25nxa s s % C r鋼に、 Cu : l~3ma s s %を添 加した自動車排気系部品用フェライト系ステンレス鋼が開示されている。 これらの鋼 はいずれも、 Cuを添加することによって、 熱疲労特性を向上させているのが特徴で ある。 No. 7355 discloses ferritic stainless steel for automotive exhaust system parts in which Cu: 1 to 3 mass% is added to 15 to 25 nxas s s% Cr steel. All of these steels are characterized by improved thermal fatigue properties by adding Cu.
し力 しながら、 発明者らの研究によれば、 上記特許文献 2〜4の技術のように Cu を添加した場合には、 耐熱疲労特性は向上するものの、 鋼自身の耐酸化性が却って低 下し、 総体的に見ると、 耐熱性が劣化することが明らかとなってきた。 また、 SUS However, according to the researches of the inventors, when Cu is added as in the techniques of Patent Documents 2 to 4 above, although the heat fatigue resistance is improved, the oxidation resistance of the steel itself is rather low. As a whole, it has become clear that heat resistance deteriorates. Also SUS
444は、 Ty ρ e 429に比べて C rの含有量が高く、 かつ多量の Moが添加され ているため、 母材の靭性に劣るという問題点も残存していた。 444 has a higher Cr content than Ty ρ e 429, and a large amount of Mo was added, so that the toughness of the base metal was inferior.
そこで、 本発明の目的は、 C u添加による耐酸化性の低下を防止する技術を開発す ることによって、 Moや W等の高価な元素を添加することなく、 熱疲労特性と耐酸化 性に優れると共に、 Ty p e 429と同等以上の靭性を有するフェライト系ステン.レ ス鋼を提供することにある。 ここで、 本発明でいう 「優れた耐酸化性と耐熱疲労特性 J とは、 SUS 444と同等以上の特性を有すること、 具体的には、 耐酸化性は、 9 Therefore, the object of the present invention is to develop a technique for preventing the decrease in oxidation resistance due to the addition of Cu, thereby improving thermal fatigue characteristics and oxidation resistance without adding expensive elements such as Mo and W. It is to provide a ferritic stainless steel having excellent toughness equivalent to or better than that of Type 429. Here, “excellent oxidation resistance and thermal fatigue characteristics J” as used in the present invention means that it has the same or better characteristics than SUS 444. Specifically, the oxidation resistance is 9
50°Cにおける耐酸化性が、 また、 熱疲労特性は、 100°C— 8 50°C間での繰り返 しの熱疲労特性が、 SUS 444と同等以上であることをいう。 また、 Ty p e 42 9と同等の靭性とは、 板厚 2mmの冷延板を一 40 °Cでシャルピー衝撃試験したとき の脆性破面率が Ty p e 429と同等であることをいう。 発明の開示 本発明は、 C : 0. 0 1 5m a s s %以下、 S i .: 0. 5 m a s s %以下、 Mn : 0. 5 m a s s %以下、 P : 0. 04ma s s %以下、 S : 0. 006 m a s s %以 下、 C r : 1 6〜20ma s s %以下、 N : 0. 01 5 m a s s %以下、 N b : 0. 3〜0. 55ma s s %、 T i : 0. 01 m a s s %以下、 Mo : 0. 1 m a s s % 以下、 W : 0. 1 ma s s %以下、 Cu : l. 0〜2. 5 m a s s %, A 1 : 0. 2 ~1. 2ma s s %を含有し、 残部が F eおよび不可避的不純物からなるフェライト 系ステンレス鋼である。 Oxidation resistance at 50 ° C and thermal fatigue characteristics are 100 ° C-8 Repeated thermal fatigue characteristics between 50 ° C and SUS 444 are equivalent or better. The toughness equivalent to Ty pe 429 means that the brittle fracture surface ratio of a cold-rolled sheet with a thickness of 2 mm when it is subjected to a Charpy impact test at 140 ° C is equivalent to Ty pe 429. Disclosure of the invention In the present invention, C: 0.0 15 mass% or less, S i.: 0.5 mass% or less, Mn: 0.5 mass% or less, P: 0.04 mass% or less, S: 0.006 mass % Or less, Cr: 16 to 20 mass% or less, N: 0.015 mass% or less, N b: 0.3 to 0.55 mass%, T i: 0.01 mass% or less, Mo: 0.1 mass% or less, W: 0.1 mass% or less, Cu: l. 0 to 2.5 mass%, A 1: 0.2 to 1.2 mass%, the balance being Fe and Ferritic stainless steel made of inevitable impurities.
また、 本発明のフヱライト系ステンレス鋼は、 上記の成分組成に加えてさらに、 B : 0. 003 m a s s %以下、 REM: 0. 08ma s s %以下、 Z r : 0. 5 m a s s %以下、 V : 0. 5ma s s %以下、 C o : 0. 5 m a s s %以下および N i : 0. 5ma s s %以下のうちから選ばれる 1種または 2種以上を含有することを特徴 とする。  In addition to the above component composition, the fluorescent stainless steel of the present invention further includes B: 0.003 mass% or less, REM: 0.08 mass% or less, Zr: 0.5 mass% or less, V: It is characterized by containing one or more selected from 0.5 mass% or less, Co: 0.5 mass% or less, and Ni: 0.5 mass% or less.
本発明によれば、 高価な Moや Wを添加することなく、 SUS 444と同等以上の 耐熱性 (熱疲労特性、 耐酸化性) を有すると共に、 Ty p e 429 (代表成分は、 表 1の鋼 No. 24参照) と同等以上の靱性を有するフェライト系ステンレス鋼を安価 に得ることができる。 したがって、 本発明の鋼は、 自動車排気系部材に用いて好適で める。 図面の簡単な説明  According to the present invention, heat resistance (thermal fatigue characteristics, oxidation resistance) equal to or higher than that of SUS 444 without adding expensive Mo or W, and Ty pe 429 (representative components are steels in Table 1) Ferritic stainless steel with toughness equivalent to or better than No. 24) can be obtained at low cost. Therefore, the steel of the present invention is suitable for use in automobile exhaust system members. Brief Description of Drawings
図 1 :熱疲労試験片を説明する図である。  Fig. 1 is a diagram illustrating a thermal fatigue test piece.
図 2 :熱疲労試験における温度、 拘束条件 (restraining conditions) を説明する 図である。  Fig. 2 is a diagram for explaining temperature and restraining conditions in a thermal fatigue test.
図 3 :熱疲労特性に及ぼす Cu含有量の影響を示すグラフである。  Figure 3: A graph showing the effect of Cu content on thermal fatigue properties.
図 4 :耐酸化性 (酸化増量 (weight gain by oxidation) ) に及ぼす A 1含有量の 影響を示すグラフである。  Figure 4: A graph showing the effect of A 1 content on oxidation resistance (weight gain by oxidation).
図 5 :耐酸化性 (スケール剥離量 (spoiling amounts of scale) ) に及ぼす A 1含 有量の影響を示すグラフである。 図 6 :耐酸化性 (スケール剥離量) に及ぼす S i含有量の影響を示すグラフである 図 7 :靭性 (脆性破面率 (brittle fracture surface ratio) ) に及ぼす Mn含有 量の影響を示すグラフである。 Figure 5: A graph showing the effect of A 1 content on oxidation resistance (spoiling amounts of scale). Fig. 6: Graph showing the effect of Si content on oxidation resistance (scale peeling) Fig. 7: Graph showing the effect of Mn content on toughness (brittle fracture surface ratio) It is.
図 8 :靭性 (脆性破面率) に及ぼす A 1含有量の影響を示すグラフである。  Fig. 8 is a graph showing the effect of A 1 content on toughness (brittle fracture surface ratio).
図 9 :靭性 (脆性破面率) に及ぼす T i含有量の影響を示すグラフである。 発明を実施するための最良の形態  Figure 9: Graph showing the effect of Ti content on toughness (brittle fracture surface ratio). BEST MODE FOR CARRYING OUT THE INVENTION
発明者らは、 従来技術が抱える Cu添加による耐酸化性の低下を防止すると共に、 M oや W等の高価な元素を添加することなく、 熱疲労特性と耐酸化性が優れると共に 、 靭性にも優れるフェライト系ステンレス鋼を開発すべく鋭意検討を重ねた。 その結 果、 Nbを 0. 3〜0. & 3 3 %、 〇11を1. 0〜2. 5ma s s %の範囲で 複合添加することによって幅広い温度域で高い高温強度が得られ、 熱疲労特性が改善 されること、 また、 Cu添加による耐酸化性の低下は、 A 1を 0. 2ma s s%以上 添加することにより防止し得ること、 したがって、 Nb, Cuおよび A 1を上記適正 範囲に制御することによって、 Moや Wを添加しなくても、 SUS 444と同等以上 の耐熱性 (熱疲労特性、 耐酸化性) が得られることを見出した。 さらに、 Cu, A 1 添加鋼の繰返し酸化試験による耐スケール剥離性は、 S iの添加量を最適化 (0. 5 ma s s %以下) することにより向上すること、 および、 靭性は、 Mn, A 1および T iの添加量を最適化 (Mn : 0. 5ma s s %以下、 A l : 1. 2 m a s s %以下 、 T i : 0. 0 1 ma s s %以下) することにより、 Ty p e 429と同等以上とす ることができることを見出し、 本発明を完成させた。 The inventors have prevented the deterioration of oxidation resistance due to Cu addition in the prior art, and without adding expensive elements such as Mo and W, they have excellent thermal fatigue characteristics and oxidation resistance, and are also tough. In order to develop an excellent ferritic stainless steel, we have made extensive studies. As a result, Nb is changed from 0.3 to 0. & 3 3%, 〇11 in the range of 1.0 to 2.5 mass%, high high-temperature strength can be obtained in a wide temperature range, thermal fatigue characteristics can be improved, and addition of Cu The decrease in oxidation resistance can be prevented by adding more than 0.2 mass% of A 1. Therefore, by controlling Nb, Cu and A 1 within the proper range, Mo and W can be added. However, it was found that heat resistance (thermal fatigue characteristics, oxidation resistance) equivalent to or better than SUS444 was obtained. In addition, the peel resistance of Cu and A 1 added steels by repeated oxidation tests can be improved by optimizing the amount of Si (0.5 mass% or less), and the toughness is Mn, By optimizing the amount of A 1 and T i added (Mn: 0.5 mass% or less, Al: 1.2 mass% or less, T i: 0.0 1 mass% or less) And the present invention was completed.
まず、 本発明を開発するに至った基礎実験について、 説明する。  First, the basic experiment that led to the development of the present invention will be described.
C: 0. 005〜0. 007ina s so/o、 N : 0. 004~0. 006ma s s % 、 S i : 0. 3 m a s s %N Mn : 0. 2 m a s s %, C r : 1 7 m a s s %s N b : 0. 45ma s s。/oおよび A 1 : 0. 35 m a s s %からなる成分組成をベースと し、 これに Cuの添加量を種々に変化させた鋼を実験室的に溶製し、 50 k g鋼塊と し、 1 1 70°Cに加熱後、 熱間圧延して厚さ: 30mmX幅: 1 5 Ommのシートバ 一とした。 その後、 このシートバーを鍛造し、 断面が 35 mmX 35 mmのパーとし 、 1030°Cの温度で焼鈍後、 機械加工し、 図 1に示したような寸法の熱疲労試験片( thermal fatigue test specimen)を作製した。 そして、 図 2に示したような、 拘束率( restraint ratio) : 0.35で 1 00°C—850で間を加熱 ·冷却する熱処理を繰り返し 付与し、 熱疲労寿命(thermal fatigue life)を測定した。 なお、 上記熱疲労寿命は、C: 0.005-0.007ina ss o / o, N: 0.004-0.006 ma ss%, Si: 0.3 mass% N Mn: 0.2 mass%, C r: 17 mass% s N b: 0.45 ma ss. Based on the composition of / o and A 1: 0.35 mass%, steel with various addition amounts of Cu was melted in the laboratory to obtain a 50 kg steel ingot. 1 1 1 After heating to 70 ° C, it was hot rolled to obtain a sheet bar having a thickness of 30 mm X width: 15 Omm. After that, this sheet bar was forged into a par with a cross section of 35 mm X 35 mm, annealed at a temperature of 1030 ° C, machined, and the thermal fatigue test specimen with the dimensions shown in Fig. 1 (thermal fatigue test specimen) ) Was produced. Then, as shown in Fig. 2, a thermal treatment was performed by repeatedly applying a heat treatment in which a restraint ratio was 0.35 at a temperature of 100 ° C-850 at 100 ° C-850, and the thermal fatigue life was measured. The thermal fatigue life is
100°Cにおいて検出された荷重(load)を、 図 1に示した試験片均熱平行部の断面積( cross section)で割って応力(stress)を算出し、 前のサイクル(cycle)の応力に対して 連続的に応力が低下し ½めたときの最小のサイクル数とした。 これは、 試験片に亀裂( crack)が発生したサイクル数に相当する。 なお、 比較として、 SUS 444 (C r :Calculate the stress by dividing the load detected at 100 ° C by the cross section of the test piece soaking parallel section shown in Fig. 1, and calculate the stress of the previous cycle. In contrast, the minimum number of cycles was obtained when the stress was continuously reduced and reduced. This corresponds to the number of cycles in which cracks occurred in the specimen. For comparison, SUS 444 (C r:
18m a s s %-Mo : 2 m a s s %-Nb : 0. 5 m a s s %鋼) についても、 同 様の試験を行った。 A similar test was conducted on 18 m s s% -Mo: 2 m s s% -Nb: 0.5 m s s% steel.
図 3は、 上記熱疲労試験の結果を示したものである。 この図から、 〇11を1. 0 m a s s %以上添加することにより、 SUS 444の熱疲労寿命 (約 1 100サイクル ) と同等以上の熱疲労寿命が得られること、 したがって、 熱疲労特性を改善するには 、 Cuを lma s s %以上添加することが有効であることがわかる。  Figure 3 shows the results of the thermal fatigue test. From this figure, by adding more than 1.0 mass% of 〇11, thermal fatigue life equal to or better than that of SUS 444 (about 1 100 cycles) can be obtained, thus improving thermal fatigue characteristics. It can be seen that it is effective to add Cu by lma ss% or more.
次に、 C : 0. 006ma s s %、 N : 0. 007 m a s s Mn : 0. 2m a s s %、 S i : 0. 3 m a s s %、 C r : 1 7 m a s s %、 N b : 0. 49 m a s s %および Cu : 1. 5ma s s %からなる成分組成をベースとし、 これに A 1の添加 量を種々に変化させた鋼を実験室的に溶製し、 50 k g鋼塊とし、 この鋼塊を、 熱間 圧延 (hot rolling)し、 熱延板焼'鈍し、 冷間圧延(cold rolling)し、 仕上焼鈍(finishi ng annealing)して、 板厚 2 mmの冷延焼鈍板とした。 上記のようにして得た冷延鋼板 から 3 OmmX 20 mmの試験片を切り出し、 この試験片上部に 4πιιηφの穴をあけ 、 表面および端面を # 320のェメリー紙(emery paper)で研磨し、 脱脂後、 下記の試 験に供した。 Next, C: 0.006 mass%, N: 0.00 mass Mn: 0.2 mass%, S i: 0.3 mass%, C r: 17 mass%, N b: 0.49 mass% And Cu: A steel composition based on a composition of 1.5 mass%, with various amounts of A 1 added to it, was melted in the laboratory to obtain a 50 kg steel ingot. Hot rolled, hot rolled sheet annealed, cold rolled, finished annealing, and finished into a cold rolled annealed sheet with a thickness of 2 mm. A 3 OmmX 20 mm test piece was cut out from the cold-rolled steel sheet obtained as described above, a 4πιιηφ hole was drilled at the top of the test piece, and the surface and end face were polished with # 320 emery paper, degreased. Later, it was subjected to the following test.
·連続酸イ匕試験 ^continuous oxidation test in air) >  · Continuous oxidation test in air)>
上記試験片を、 9 50°Cに加熱された大気雰囲気の炉中に 300時間保持し、 加熱 試験前後における試験片の質量の差を測定し、 単位面積当たりの酸化増量 (gZm2) を求めた。 The above test piece is kept in a furnace at 950 ° C in an air atmosphere for 300 hours and heated. The difference in the mass of the test piece before and after the test was measured, and the increase in oxidation per unit area (gZm 2 ) was determined.
<繰り■返し酸化試験 (cyclic oxidation test in air) >  <Cyclic oxidation test in air>
上記試験片を用いて、 大気中において、 100°CX 1 m i nと 950°CX 25m i nの温度に加熱 ·冷却を繰り返す熱処理を 600サイクル行い、 試験前後における質 量差から、 試験片表面から剥離したスケール量(scale amount) (g/m2) を測定した 。 なお、 上記試験における加熱速度おょぴ、 冷却速度は、 それぞれ 5。C/ s e c、 1 . 5°C/ s e cで行った。 Using the above test piece, in the atmosphere, heat treatment was repeated for 100 cycles of 100 ° CX 1 min and 950 ° CX 25 min in. Heating and cooling were repeated 600 cycles, and the sample was peeled from the surface of the test piece due to the difference in mass before and after the test. The scale amount (g / m 2 ) was measured. The heating rate and the cooling rate in the above test are 5 respectively. C / sec, 1.5 ° C / sec.
図 4は、 酸化増量の測定結果を示したものである。 また、 図 5は、 スケール剥離量 の測定結果を示したものである。 これらの図から、 A 1を 0. 2ma s s%以上添加 することで、 SUS 444と同等以上の耐酸化性 (酸化増量: 27 gZm2以下、 スケ ール剥離量: 4 g//in2未満) が得られることがわかる。 Figure 4 shows the measurement results of the increase in oxidation. Fig. 5 shows the measurement results of the amount of scale peeling. From these figures, by adding more than 0.2 mass% of A 1, oxidation resistance equal to or better than SUS 444 (oxidation increase: 27 gZm 2 or less, scale peeling: less than 4 g / in 2 ) Is obtained.
次に、 C : 0. 006ma s s %、 N : 0. 00 7ma s s %、 Mn : 0. 2 m a s s %、 A 1 : 0. 45 m a s s %、 C r : 1 7 m a s s %、 N b : 0. 49 m a s s %、 Cu : 1. 5ma s s %からなる成分組成をベースとし、 これに S iの添加量 を種々に変化させた鋼を実験室的に溶製し、 50 k g鋼塊とし、 上記と同様にして板 厚 2 mmの冷延焼鈍板とし、 上記と同様にして、 線り返し酸化試験を行い、 スケール 剥離量を測定し、 その結果を、 図 6に示した。 これから、 A 1を適正量添加しても、 3 1が0. 5%を超えるとスケール密着性が低下して剥離量が増え、 SUS 444と 同等の耐熱性が得られなくなることがわかった。  Next, C: 0.006 mass%, N: 0.00 mass%, Mn: 0.2 mass%, A 1: 0.45 mass%, C r: 1 7 mass%, N b: 0. A steel with a composition of 49 mass%, Cu: 1.5 mass%, with various amounts of Si added, was melted in the laboratory to form a 50 kg steel ingot. Similarly, a cold-rolled annealed sheet with a thickness of 2 mm was used, and in the same manner as described above, a linear oxidation test was performed, and the amount of scale peeling was measured. The result is shown in FIG. From this, it was found that even when an appropriate amount of A 1 was added, when 3 1 exceeded 0.5%, scale adhesion decreased and the amount of peeling increased, and heat resistance equivalent to SUS 444 could not be obtained.
最後に、 C : 0. 006~0. 007ma s s %、 N : 0. 00 6〜0. 00 7m a s s %、 S i : 0. 3ma s s %, C r : 1 7ma s s %, Nb : 0. 45 m a s s %および Cu : 1. 5m a s s %からなる成分組成をベースとし、 これに Mn, A 1および T iの含有量を種々変化させた鋼を実験室的に溶製し、 50 k g鋼塊とし、 この鋼塊を、 熱間圧延し、 熱延板焼鈍し、 冷間圧延し、 仕上焼鈍して、 板厚 2 mmの 冷延焼鈍板とした。 この冷延焼鈍板から、 サブサイズのシャルピー衝撃試験片(Charpy impact test specimen)を採取し、 一 40 °Cの温度においてシャルピー衝撃試験を行 い、 脆性破面率を測定し、 靭性を評価した。 Finally, C: 0.006 ~ 0.007ma ss%, N: 0.00 6 ~ 0.00 00 7m ass%, S i: 0.3ma ss%, C r: 1 7ma ss%, Nb: 0. A 50 kg steel ingot was prepared by laboratory smelting steel with various contents of Mn, A 1 and Ti based on the composition of 45 mass% and Cu: 1.5 mass%. The steel ingot was hot-rolled, hot-rolled sheet annealed, cold-rolled, and finish-annealed to obtain a cold-rolled annealed sheet with a thickness of 2 mm. A sub-size Charpy impact test specimen was taken from this cold-rolled annealed plate and subjected to a Charpy impact test at a temperature of 40 ° C. The brittle fracture surface ratio was measured and the toughness was evaluated.
図 7は、 A 1 : 0. 25ma s s %、 T i : 0. 006ma s s %のときにおける Mn含有量が靭性に及ぼす影響を、 図 8は、 Mn : 0. 1 m a s s %、 T i : 0. 0 05ma s s %のときにおける A 1含有量が靭性に及ぼす影響を、 また、 図 9は、 A 1 : ひ. 25 m a s s %、 Mn : 0. 1 m a s s %のときにおける T i含有量が靭性 に及ぼす影響を示したものである。 これらの図から、 Ty p e 42 9と同等以上の靭 性を得るには、 Mn : 0 · 3 m a s s %以下、 A 1 : 1 · 2ma s s °/0以下、 T i : 0. 0 lma s s %以下でなければならないことがわかった。 Figure 7 shows the effect of Mn content on toughness at A 1: 0.25 mass% and T i: 0.006 mass%. Figure 8 shows the effect of Mn: 0.1 mass% and Ti: 0. The effect of A 1 content on toughness at 0 05 ma ss%. Figure 9 shows the toughness of Ti content at A 1: 25 mass% and Mn: 0.1 mass%. It shows the effect on From these figures, to obtain toughness equivalent to or better than Ty pe 42 9, Mn: 0 · 3 mass% or less, A 1: 1 · 2 ma ss ° / 0 or less, T i: 0.0 lma ss% It turns out that it must be:
本発明は、 上記知見に、 さらに検討を加えて完成したものである。  The present invention has been completed by further studying the above findings.
次に、 本発明のフェライト系ステンレス鋼の成分組成について説明する。  Next, the component composition of the ferritic stainless steel of the present invention will be described.
C: 0. 01 5ma s s %以下 C: 0. 01 5ma s s% or less
Cは、 鋼の強度を高めるのに有効な元素であるが、 0. 0 1 5m a s s %を超えて 含有すると、 靭性および成形性の低下が顕著となる。 よって、 本発明では、 Cは 0. 015ma s s%以下とする。 なお、 成形性を確保する観点からは、 Cは低いほど好 ましく、 0. 008ma s s %以下とするのが望ましい。 一方、 排気系部材としての 強度を確保するには、 Cは 0. 00 lma s s %以上であることが好ましい。 より好 ましくは 0., 002〜0. 008ma s s %の範囲である。  C is an element effective for increasing the strength of steel, but if it exceeds 0.015 mass%, the toughness and formability deteriorate significantly. Therefore, in the present invention, C is set to not more than 0.015 ma s s%. From the viewpoint of ensuring moldability, the lower the C, the better. The lower limit is preferably 0.008 ma s s%. On the other hand, in order to ensure the strength as an exhaust system member, C is preferably 0.001 lma s s% or more. More preferably, it is in the range of 0., 002 to 0.008 ma s s%.
S i : 0. 5ma s s %以下  S i: 0.5ma s s% or less
S iは、 脱酸材として添加される。 0. 05ma s s %以上添加するのが好ましい 。 また、 S iは、 本発明が主眼とする耐酸化性を向上する効果を有するが、 A 1ほど の効果は得られない。 一方、 図 6からわかるように、 0. 5ma s s %を超える S i の過剰な添加は、 耐スケール剥離性が低下し、 SUS 444と同等以上の耐酸化性が 得られない。 よって、 S iの上限は 0. 5ma s s %とする。  Si is added as a deoxidizer. It is preferable to add more than 0.05 mass%. In addition, Si has an effect of improving the oxidation resistance which is the main subject of the present invention, but cannot be as effective as A 1. On the other hand, as can be seen from FIG. 6, excessive addition of Si exceeding 0.5 mass% reduces the scale peel resistance and does not provide oxidation resistance equal to or better than SUS444. Therefore, the upper limit of S i is 0.5 ma s s%.
Mn : 0. 5ma s s。/。以下  Mn: 0.5 ma s s. /. Less than
Mnは、 鋼の強度を高める元素であり、 また、 脱酸剤としての作用も有する。 0. 05ma s s %以上添加するのが好ましい。 しかし、 過剰な添加は、 高温で <y相が生 成しやすくなり、 耐熱性を低下させる。 また、 図 7からわかるように、 0. 5ina s s %を超えて添加すると Ty p e 4 2 9と同等以上の靭性が得られず、 本発明の目的 を達成できない。 よって、 本発明では Mnを 0. 5ma s s %以下とする。 Mn is an element that increases the strength of steel and also has a function as a deoxidizer. It is preferable to add 0.05 mass% or more. However, excessive addition tends to generate <y phase at high temperatures, which reduces heat resistance. Also, as can be seen from Figure 7, 0.5ina s If added in excess of s%, a toughness equal to or higher than that of Type 4 29 cannot be obtained, and the object of the present invention cannot be achieved. Therefore, in the present invention, Mn is set to 0.5 mass% or less.
P : 0. 04ma s s %以下 P: 0.04 ma s s% or less
Pは、 靭性を低下させる有害元素であり、 可能な限り低減するのが望ましい。 そこ で、 本発明では、 Pは 0. 04ma s s %以下とする。 好ましくは、 0. 03ma s s %以下である。  P is a harmful element that lowers toughness and should be reduced as much as possible. Therefore, in the present invention, P is set to 0.04 mass% or less. Preferably, it is 0.03 mass% or less.
S : 0. 006ma s s %以下 S: 0.006 s s% or less
Sは、 伸ぴゃ r値を低下し、 成形性に悪影響を及ぼすとともに、 ステンレス鋼の基 本特性である耐食性を低下させる有害元素でもあるため、 できるだけ低減するのが望 ましい。 よって、 本発明では、 Sは 0. 006ma s s %以下とする。 好ましくは、 0. 003ma s s %以下である。  S is a harmful element that lowers the elongation value and adversely affects the formability and lowers the corrosion resistance, which is a basic characteristic of stainless steel, so it is desirable to reduce it as much as possible. Therefore, in the present invention, S is set to 0.006 mass s s% or less. Preferably, it is 0.003 s s% or less.
C r : 1 6~20ma s s % C r: 1 6 ~ 20ma s s%
C rは、 ステンレス鋼の特徴である耐食性、 耐酸化性を向上させるのに有効な重要 元素であるが、 16ma s s %未満では、 十分な耐酸化性が得られない。 一方、 C r は、 室温において鋼を固溶強化し、 硬質化 '低延性化する元素であり、 特に 20m a s s %を超えて含有すると、 上記弊害が顕著となり、 Ty p e 429と同等以上の加 ェ性ゃ靭性が得られなくなる。 よって: 本発明では、 C rは 16~20ma s s %の 範囲とする。 好ましくは、 1 6〜1 9ma s s%の範囲である。  Cr is an important element effective for improving the corrosion resistance and oxidation resistance characteristic of stainless steel, but if it is less than 16 mass%, sufficient oxidation resistance cannot be obtained. On the other hand, Cr is an element that solidifies and strengthens steel at room temperature and hardens' low ductility.In particular, when it exceeds 20% by mass, the above-mentioned adverse effects become significant, and it is equivalent to or higher than Ty pe 429. The toughness cannot be obtained. Therefore: In the present invention, Cr is in the range of 16-20 mass%. Preferably, it is in the range of 16 to 19 mass%.
N: 0. 0 1 5ma s s %以下 N: 0.0 1 5ma s s% or less
Nは、 鋼の靭性および成形性を低下させる元素であり、 0. 0 1 5m a s s %を超 えて含有すると、 上記低下が顕著となる。 よって、 Nは 0. 01 5ma s s%以下と する。 なお、 Nは、 より高い靭性が求められる場合は、 さらに低減し、 0. 0 10m a s s%未満とするのが好ましい。  N is an element that lowers the toughness and formability of steel, and when the content exceeds 0.015 mass%, the above reduction becomes significant. Therefore, N is set to 0.01 5 ma s s% or less. Note that N is further reduced when higher toughness is required, and is preferably less than 0.010 mass%.
Nb : 0. 3〜0. 55ma s s %  Nb: 0.3 to 0.55 s s%
Nbは、 C, Nと炭窒化物を形成して固定し、 耐食性や成形性、 溶接部の耐粒界腐 食性を高める作用を有するとともに、 高温強度を上昇させて熱疲労特性を向上する効 果を有する元素である。 このような効果は、 0. 3ma s s %以上の添加で認められ 4707 る。 一方、 0. 55ma s s %を超える添加は、 L a v e s相が析出しやすくなり、 脆性が低下する。 よって、 Nbは 0. 3~0. 55ma s s %の範囲とする。 好まし くは、 0. 4〜0. 5ma s s %の範囲である。 Nb forms and fixes carbon nitride with C and N, has the effect of improving corrosion resistance and formability, and intergranular corrosion resistance of welds, and also increases the high temperature strength and improves thermal fatigue properties. It is an element that has fruit. Such an effect is recognized with addition of 0.3 mass% or more. 4707. On the other hand, if it exceeds 0.55 mass%, the Laves phase tends to precipitate and the brittleness decreases. Therefore, Nb is in the range of 0.3 to 0.55 mass%. Preferably, it is in the range of 0.4 to 0.5 ma ss%.
T i : 0. O lma s s %以下 T i: 0. Olma s s% or less
T iは、 Nbに比べて Nと結合しやすく粗大な T i Nを形成しやすい元素であり、 この粗大な T i Nは、 切り欠けとして作用し、 靭性を著しく低下させる。 特に、 図 9 示したように、 T iの含有量が 0. 0 1 ma s s %を超えると、 この悪影響が顕著と なる。 よって、 本発明では、 T ¾0. 0 1%以下に制限する。  T i is an element that easily binds to N and forms coarse T i N compared to Nb, and this coarse T i N acts as a notch and significantly reduces toughness. In particular, as shown in FIG. 9, this adverse effect becomes significant when the Ti content exceeds 0.01 mass%. Therefore, in the present invention, it is limited to T ¾0.0.1% or less.
Mo : 0. lma s s %以下 Mo: 0. lma s s% or less
Moは、 高価な元素であり、 本発明の趣旨からも積極的な添加は行わない。 しかし 、 原料であるスクラップ等から 0. 1 ma s s %以下混入することがある。 よって、 Moは 0. 1 m a s s %以下とする。  Mo is an expensive element and is not actively added for the purpose of the present invention. However, it may be mixed in less than 0.1 ma s s% from the raw material scrap. Therefore, Mo is set to 0.1 m a s s% or less.
W: 0. 1 ma s s %以下 ' W: Less than 0.1 ma s s% '
Wは、 Moと同様に高価な元素であり、 本発明の趣旨からも積極的な添加は行わな レ、。 しかし、 原料であるスクラップ等から 0. 1 ma s s %以下混入することがある 。 よって、 Wは 0. lma s s%以下とする。  W is an expensive element like Mo, and is not actively added for the purpose of the present invention. However, it may be mixed in less than 0.1 ma s s% from raw materials such as scrap. Therefore, W is less than 0. lma s s%.
C u : 1. 0〜2. 5 m a s s % C u: 1.0 to 2.5 m a s s%
Cuは、 熱疲労特性の向上には非常に有効な元素である。 図 3に示したように、 S U S 444と同等以上の耐熱疲労特性を得るには、 C uを 1. 0 m a s s %以上添加 することが必要である。 し力 し、 2. 5m a s s %を超える添加は、 熱処理後の冷却 時に ε— Cuが析出し、 鋼を硬質化するとともに、 熱間加工時に脆化を起こしやすく なる。 さらに重要なことは、 Cuの添加は、 耐熱疲労特性は向上するものの、 鋼自身 の耐酸化性が却って低下し、 総体的に見ると、 耐熱性が低下してしまうことである。 この原因は、 十分に明らかとはなっていないが、 生成したスケール直下の脱 C r層に Cuが濃化し、 ステンレス鋼本来の耐酸化性を向上する元素である C rの再拡散を抑 制するためと考えられる。 よって、 Cuは、 1. 0〜2. 5ma s s%の範囲とする 。 より好ましくは、 1. 1〜1. 8ma s s %の範囲である。 4707 Cu is an extremely effective element for improving thermal fatigue properties. As shown in Fig. 3, it is necessary to add Cu in an amount of 1.0 mass% or more in order to obtain thermal fatigue characteristics equivalent to or better than SUS444. However, if the addition exceeds 2.5 mass%, ε-Cu precipitates during cooling after heat treatment, hardens the steel, and tends to cause embrittlement during hot working. More importantly, the addition of Cu improves the thermal fatigue resistance, but decreases the oxidation resistance of the steel itself, and overall, the heat resistance decreases. The cause of this is not sufficiently clear, but Cu is concentrated in the decreasing Cr layer immediately below the scale, which suppresses the re-diffusion of Cr, an element that improves the inherent oxidation resistance of stainless steel. It is thought to do. Therefore, Cu is in the range of 1.0 to 2.5 mass%. More preferably, it is in the range of 1.1 to 1.8 ma ss%. 4707
A 1 : 0. 2〜1. 2ma s s % A 1: 0.2 to 1.2 ma s s%
A lは、 図 4およぴ図 5に示したように、 Cu添加鋼の耐酸化性を向上するために 必要不可欠な元素である。 特に、 本発明の目的である SUS 444と同等以上の耐酸 化性を得るには 0. 2ma s s %以上の添加が必要である。 一方、 図 8に示したよう に、 1. 2ma s s %を超えて添加すると、 鋼が硬質化して Ty p e 42 9と同等以 上の靱性が得られなくなるので、 上限は 1. 2ma s s %とする。 好ましくは、 0. 3〜1. Oma s s %の範囲である。  As shown in Fig. 4 and Fig. 5, Al is an indispensable element for improving the oxidation resistance of Cu-added steel. In particular, in order to obtain an oxidation resistance equal to or higher than that of SUS 444, which is the object of the present invention, addition of 0.2 mass% or more is necessary. On the other hand, as shown in Fig. 8, if added over 1.2 mass%, the steel becomes hard and no toughness equivalent to Ty pe 42 9 can be obtained, so the upper limit is 1.2 mass% To do. Preferably, it is in the range of 0.3 to 1. Oma s s%.
本発明のフェライト系ステンレス鋼は、 上記必須とする成分に加えてさらに、 B, REM, Z r , V, C oおよび N iのうちから選ばれる 1種または 2種以上を、 下記 の範囲で添加することができる。  In addition to the essential components described above, the ferritic stainless steel of the present invention further contains one or more selected from B, REM, Zr, V, Co and Ni in the following range. Can be added.
B : 0. 0 0 3ma s s %以下 B: 0.00 3 ma s s% or less
Bは、 加工性、 とくに 2次加工性を向上させるのに有効な元素である。 この顕著な 効果は、 0. 000 5ma s s %以上の添加で得ることができるが、 0. 0 0 3 m a s s %を超える多量の添加は、 BNを生成して加工性を低下させる。 よって、 Bを添 加する場合は、 0. 00 3ma s s %以下とする。 より好ましくは、 0. 0 0 0 5〜 0. 00 2ma s s %の範囲である。  B is an element effective for improving workability, particularly secondary workability. This remarkable effect can be obtained by addition of 0.005 5 mass% or more. However, if it exceeds 0.03 mass%, BN is formed and workability is lowered. Therefore, when adding B, it should be 0.003 mass s s% or less. More preferably, it is in the range of 0.0 0 0 5 to 0.002 ma s s%.
REM: 0. 0 8ma s s %以下、 Z r : 0. 5 m a s s %以下  REM: 0.08 ma s s% or less, Z r: 0.5 m s s% or less
REM (希土類元素) および Z rはいずれも、 耐酸化性を改善する元素であり、 本 発明では、 必要に応じて添加することができる。 その効果を得るためには、 それぞれ 、 0. 0 1 ma s s %以上、 0. 05 m a s s %以上添加するのが好ましい。 しかし 、 REMの 0. 0 8ma s s %を超える添加は、 鋼を脆化させ、 また、 Z ΐの0. 5 ma s s %を超える添加は、 Z r金属間化合物が析出して、 鋼を脆化させ 「る。 よつ て、 REMを添加する場合は 0. 0 8ma s s %以下、 Z rを添加する場合は 0. 5 ma s s %以下とする。  REM (rare earth element) and Zr are both elements that improve oxidation resistance, and can be added as necessary in the present invention. In order to obtain the effect, it is preferable to add 0.01 mass% or more and 0.05 mass% or more, respectively. However, the addition of more than 0.08 mass% of REM causes the steel to become brittle, and the addition of more than 0.5 mass% of Z 、 causes the Zr intermetallic compound to precipitate, making the steel brittle. Therefore, when adding REM, it should be less than 0.08 mass%, and when adding Zr, it should be less than 0.5 mass%.
V: 0. 5ma s s %以下  V: 0.5ma s s% or less
Vは、 加工性おょぴ耐酸化性の向上に有効な元素であり、 特に耐酸化性向上の効果 を得るためには、 0. 1 5ma s s %以上の添加が好ましい。 し力 し、 0. 5 m a s s%を超える過剰な添加は、 粗大な V (C, N) を析出し、 表面性状を劣化させる。 よって、 Vを添加する場合は、 0. 5ma s s%以下添加するのが好ましく、 0. 1 5〜0. 4m a s s %の範囲で添加するのが好ましい。 V is an element effective for improving workability and oxidation resistance. In order to obtain an effect of improving oxidation resistance, V is preferably added in an amount of 0.15 mass% or more. Force and 0.5 mas Excessive addition exceeding s% precipitates coarse V (C, N) and degrades the surface properties. Therefore, when V is added, it is preferable to add 0.5 mass% or less, and it is preferable to add in the range of 0.15 to 0.4 mass%.
C o : 0. 5ma s s %以下 C o: 0.5ma s s% or less
C oは、 靭性の向上に有効な元素であり、 0. 02ma s s%以上添加するのが好 ましい。 しかし、 C oは、 高価な元素であり、 また、 0. 5ma s s %を超えて添加 しても、 上記効果は飽和する。 よって、 C oを添加する場合は 0. 5ma s s %以下 とするのが好ましい。 より好ましくは、 0. 02〜0. 2 ma s s %の範囲である。 N i : 0. 5ma s s %以下  Co is an element effective in improving toughness, and it is preferable to add 0.02 mass s s% or more. However, Co is an expensive element, and the above effect is saturated even when added in excess of 0.5 mass%. Therefore, when adding Co, it is preferable to be 0.5 mass% or less. More preferably, it is in the range of 0.02 to 0.2 ma s s%. N i: 0.5ma s s% or less
N iは、 靭性を向上させる元素である。 その効果を得るためには、 0. 05ma s s%以上が好ましい。 しかし、 N iは、 高価であり、 また、 強力な γ相形成元素であ るため、 高温で γ相を生成し、 耐酸化性を低下させる。 よって、 N iを添加する場合 は、 0. 5ma s s %以下とするのが好ましい。 より好ましくは、 0. 05〜0. 4 ma s s %の範囲である。  Ni is an element that improves toughness. In order to obtain the effect, 0.05 mass s s% or more is preferable. However, Ni is expensive and is a strong γ-phase-forming element, so it generates a γ-phase at high temperatures and reduces oxidation resistance. Therefore, when Ni is added, the content is preferably 0.5 mass% or less. More preferably, it is in the range of 0.05 to 0.4 ma s s%.
次に、 本発明のフェライト系ステンレス鋼の製造方法について説明する。  Next, the manufacturing method of the ferritic stainless steel of this invention is demonstrated.
本発明のステンレス鋼の製造方法は、 フヱライト系ステンレス鋼の通常の製造方法 であれば好適に用いることができ、 特に限定されるものではない。 例えば、 転炉、 電 気炉等の公知の溶解炉で鋼を溶製し、 あるいはさらに取鍋精鍊、 真空精鍊等の 2次精 鍊を経て上述した本発明の成分組成を有する鋼とし、 次いで、 その溶鋼を連続铸造法 あるいは造塊一分塊圧延法で鋼片 (スラブ) とし、 熱間圧延して熱延板とし、 必要に 応じて熱延板焼鈍を施し、 さらにその熱延板を酸洗し、 冷間圧延し、 仕上焼鈍し、 酸 洗する等の工程を経て冷延焼鈍板とするのが好ましい。 上記冷間圧延は、 1回または 中間焼鈍を挟む 2回以上の冷間圧延を行ってもよく、 また、 冷間圧延、 仕上焼鈍、 酸 洗の各工程は、 繰り返して行ってもよい。 さらに、 場合によっては、 熱延板焼鈍は省 略してもよく、 鋼板表面の光沢性が要求される場合には、 冷延後あるいは仕上焼鈍後 、 スキンパスを施してもよい。 なお、 上記熱間圧延前のスラブ加熱温度は 1000〜 1 250 °C、 熱延板焼鈍温度は 900〜 1 1 00 °C、 仕上焼鈍温度は 900〜 1 1 2 4707 The method for producing stainless steel of the present invention can be suitably used as long as it is an ordinary method for producing fluorescent stainless steel, and is not particularly limited. For example, steel is produced in a known melting furnace such as a converter or an electric furnace, or further subjected to secondary refinement such as ladle or vacuum refinement to obtain steel having the above-described component composition of the present invention, The molten steel is made into a steel slab (slab) by continuous forging or ingot lump rolling, hot-rolled to hot-rolled sheet, and subjected to hot-rolled sheet annealing as necessary. It is preferable to produce a cold-rolled annealed plate through steps such as pickling, cold rolling, finish annealing, and pickling. The cold rolling may be performed once or twice or more with intermediate annealing, and the steps of cold rolling, finish annealing, and pickling may be performed repeatedly. Further, depending on the case, the hot-rolled sheet annealing may be omitted, and when the gloss of the steel sheet surface is required, a skin pass may be applied after cold rolling or after finishing annealing. The slab heating temperature before hot rolling is 1000-1250 ° C, the hot-rolled sheet annealing temperature is 900-1100 ° C, and the final annealing temperature is 900-1 1 2 4707
0 °cの範囲であるのが好ましい。 上記のようにして得た本発明のフェライ ト系ステンレス鋼は、 その後、 それ ぞれの用途の応じて切断加工、 曲げ加工、 プレス加工等の加工を施されて、 自 動車ゃォートパイの排気管、 コンパーターケースや火力発電プラントの排気ダ ク ト等の高温環境下で使用される各種排気系部材とされる。 なお、 上記部材に 用いる本発明のステンレス鋼は、 冷延焼鈍板に限定されるものではなく、 熱延 板あるいは熱延板焼鈍として用いてもよく、 さらに必要に応じて脱スケール処 理して用いてもよい。 また、 上記部材に組み立てる際の溶接方法は、 特に限定 されるものではなく MIG(Metal Inert Gas) 、 MAG (Metal Active Gas) 、 TIG(T ungsten Inert Gas) 等の通常のアーク溶接や, スポッ ト溶接, シーム溶接等 の電気抵抗溶接、 およぴ電鏠溶接に用いられる高周波抵抗溶接、 高周波誘導溶 接、 レーザ溶接などの方法を用いることができる。 実施例 1 A range of 0 ° C. is preferred. The ferritic stainless steel of the present invention obtained as described above is then subjected to processing such as cutting, bending, and pressing according to the respective use, and the exhaust pipe of an automobile car pie. It is considered as various exhaust system members used in high temperature environments such as a compressor case and an exhaust duct of a thermal power plant. The stainless steel of the present invention used for the above-mentioned member is not limited to a cold-rolled annealed plate, and may be used as a hot-rolled plate or a hot-rolled plate annealed, and further subjected to descaling as necessary. It may be used. In addition, the welding method for assembling the above-mentioned members is not particularly limited, and normal arc welding such as MIG (Metal Inert Gas), MAG (Metal Active Gas), TIG (Tungsten Inert Gas), or spot welding. Methods such as electric resistance welding such as welding and seam welding, high-frequency resistance welding used in electrical welding, high-frequency induction welding, and laser welding can be used. Example 1
表 1に示す成分組成を有する No. 1〜27の鋼を真空溶解炉で溶製し、 鎳造して 50 k g鋼塊とし、 鍛造して 2分割した。 その後、 2分割した片方の鋼塊を、 1 1 7 0°Cに加熱後、 熱間圧延して板厚 5 mmの熱延板とし、 1020°Cの温度で熱延板焼 鈍し、 酸洗し、 圧下率 60%の冷間圧延し、 1030°Cの温度で仕上焼鈍し、 平均冷 却速度 20°CZ sで冷却し、 酸洗して板厚が 2 mmの冷延焼鈍板とし、 以下の耐酸化 性試験およぴ衝搫試験に供した。 なお、 参考として、 表 1の No. 28〜 32に示した S US 444, Ty p e 429および WO 2003/0047 14号パンフレツト、 特 開 2006— 1 1 7 985号公報、 特開 2000— 2 9 7355号公報の発明鋼につ いても、 上記と同様にして冷延焼鈍板を作製し、 同様の評価試験に供した。  Steel Nos. 1 to 27 having the composition shown in Table 1 were melted in a vacuum melting furnace, forged into 50 kg steel ingots, and forged into two parts. After that, one of the two steel ingots was heated to 1 1700 ° C and hot-rolled to form a hot-rolled sheet with a thickness of 5 mm, and annealed at a temperature of 1020 ° C. Washed, cold-rolled at a rolling reduction of 60%, finish annealed at a temperature of 1030 ° C, cooled at an average cooling rate of 20 ° CZ s, pickled and cold-rolled annealed plate with a thickness of 2 mm The samples were subjected to the following oxidation resistance test and impact test. For reference, S US 444, Type 429 and WO 2003/0047 No. 14 pamphlet shown in No. 28 to 32 of Table 1, JP 2006-1 1 7985, JP 2000-2 9 7355 As for the inventive steel of No. 1, a cold-rolled annealed plate was produced in the same manner as described above and subjected to the same evaluation test.
く大 中連 酸化 験 ^continuance oxidation test in air) >  ^ Daiance oxidation test in air)>
上記のようにして得た各種冷延焼鈍板から 30 mm X 20 mmのサンプルを切り出 し、 サンプル上部に 4 mm φの穴をあけ、 表面および端面を # 320のエメリー紙で 研磨し、 脱脂後、 950°Cに加熱保持された大気雰囲気の炉内に吊り下げて、 300 時間保持した。 試験後、 サンプルの質量を測定し、 予め測定しておいた試験前の質量 との差を求め、 酸化増量 (gZm2) を算出した。 なお、 試験は各 2回実施し、 その平 均値で耐連続酸化性を評価した。 Cut a 30 mm x 20 mm sample from the various cold-rolled annealed plates obtained above, drill a 4 mm diameter hole at the top of the sample, polish the surface and edge with # 320 emery paper, and degrease After that, it was suspended in a furnace in an air atmosphere heated and maintained at 950 ° C. and held for 300 hours. After the test, measure the mass of the sample, and measure the mass before the test. The increase in oxidation (gZm 2 ) was calculated. Each test was conducted twice, and the average oxidation resistance was evaluated for continuous oxidation resistance.
く大気中繰り返し酸化試験 (cyclic oxidation test in air) > Cyclic oxidation test in air>
上記各種の冷延焼鈍板から 3 OmmX 20 mmのサンプルを切り出し、 サンプル上 部に 4 mm φの穴をあけ、 表面およぴ端面を # 320のエメリー紙で研磨し、 脱脂後 、 大気雰囲気中で、 100°Cと 9 50°Cとの間を昇温 ·降温を繰り返す酸化試験を行 つた。 なお、 昇温、 降温速度はそれぞれ 5°CZs e c、 1. 5°C/s e cとし、 保持 時間は 100°Cが 1 m i n、 950 °Cが 25 m i nとし、 これを 600サイクル行つ た。 耐繰り返し酸化性の評価は、 試験後のサンプルの質量を測定し、 予め測定してお いた試験前の質量との差を求め、 スケール剥離量 (g/m2) を求めた。 なお、 試験は 各 2回実施し、 その平均値で耐繰り返し酸化性を評価した。 Cut out a sample of 3 OmmX 20 mm from the above various cold-rolled annealed plates, drill a 4 mm diameter hole on the top of the sample, polish the surface and end face with # 320 emery paper, degrease, and in the atmosphere Thus, an oxidation test was repeated in which the temperature was raised and lowered between 100 ° C and 950 ° C. The temperature rising and cooling rates were 5 ° CZsec and 1.5 ° C / sec, respectively, and the holding time was 100 ° C for 1 min and 950 ° C for 25 min, and this was performed for 600 cycles. For the evaluation of the resistance to repeated oxidation, the mass of the sample after the test was measured, the difference from the pre-test mass measured in advance was determined, and the scale peeling amount (g / m 2 ) was determined. Each test was conducted twice, and the oxidation resistance was evaluated using the average value.
くシャノレピー衝撃試験 > Kusanorepy Impact Test>
上記各種の冷延焼鈍板から、 Vノツチを圧延方向に直角に入れたシャルピー衝撃試 験片を各 3本ずつ採取し、 一 40°Cの温度でのシャルピー衝擊試験を行い、 脆性破面 率を測定し、 3本の平均値を求めて、 靱性を評価した。  Three Charpy impact specimens with V-notches perpendicular to the rolling direction were sampled from each of the above cold-rolled annealed plates and subjected to a Charpy impact test at a temperature of 40 ° C. Was measured and the average value of the three was obtained to evaluate toughness.
実施例 2 Example 2
実施例 1において 2分割した 50 k g銅塊の残りの鋼塊を、 1 1 70°Cに加熱後、 熱間圧延して厚さ : 3 OmmX幅: 150 mmのシートパーとした。 その後、 このシ ートパーを鍛造し、 3 5 mm口のパーとし、 1 030¾の温度で焼鈍後、 機械加工し 、 図 1に示した寸法の熱疲労試験片に加工し、 下記の熱疲労試験に供した。 なお、 参 考例として、 実施例 1と同様、 SUS 444、 Ty p e 429および WO 2003/ 004714号パンフレツト、 特開 2006- 1 1 79 85号公報、 特開 2000— 29735 5号公報の発明鋼についても同様に試料を作製し、 熱疲労試験に供した。 <熱疲労試験(thermal fatigue test) >■  The remaining steel ingot of 50 kg copper ingot divided into two in Example 1 was heated to 1 1 70 ° C. and hot-rolled to obtain a sheet par of thickness: 3 OmmX width: 150 mm. The sheet par was then forged into a 35 mm par, annealed at a temperature of 1 030¾, machined, and processed into a thermal fatigue test piece with the dimensions shown in Fig. 1 for the following thermal fatigue test. Provided. As reference examples, as in Example 1, SUS 444, Type 429, and WO 2003/004714 pamphlet, Japanese Patent Application Laid-Open No. 2006-1-17985, and Japanese Patent Application Laid-Open No. 2000-297355. Similarly, a sample was prepared and subjected to a thermal fatigue test. <Thermal fatigue test> ■
熱疲労試験は、 拘束率 0. 35で、 100 °Cと 850 °Cの温度間を操り返して昇温 •降温し、 熱疲労寿命を測定した。 この際、 昇温速度(heating rate)および、 降温速 度(cooling rate)は、 それぞれ 1 0°O s e cとし、 1 00 °Cでの保持時間は 2 m i n、 8 5 0 °Cでの保持時間(holding time)は 5 m i nとした。 また、 熱疲労寿命(ther mal fatigue life)は、 1 0 0 °Cにおいて検出された荷重を試験片均熱平行部の断面積 で割って応力を算出し、 前のサイクルの応力に対して連続的に応力が低下し始めたと きの最小のサイクル数とした。 In the thermal fatigue test, the thermal fatigue life was measured by raising and lowering the temperature between 100 ° C and 850 ° C with a restraint ratio of 0.35. At this time, the heating rate and the cooling rate are 10 ° O sec and the holding time at 100 ° C is 2 mi. n The holding time at 85 ° C. was 5 min. The thermal fatigue life is calculated by dividing the load detected at 100 ° C by the cross-sectional area of the soaking parallel part of the specimen and calculating the stress continuously. Therefore, the minimum number of cycles when the stress began to decrease was determined.
上記実施例 1の大気中連続酸化試験、 大気中繰返し酸化試験、 シャルピー衝撃試験 の結果および実施例 2の耐熱疲労性試験の結果を表 2にまとめて示した。 表 2から明 らかなように、 本発明に適合している発明例の鋼は、 いずれも S U S 4 4 4と同等以 上の耐酸化特性と耐熱疲労特性を有していると共に、 T y p e 4 2 9と同等以上の靭 性を有して.おり、 本発明の目標を満たしている。 これに対して、 本発明の範囲を外れ る比較例の鋼あるいは先行技術の参考例の鋼は、 耐酸化特性、 耐熱疲労特性おょぴ母 材の靭性のすべてが同時に優れるものはなく、 本発明の目標とする特性が得られてい ない。 産業上の利用可能性  Table 2 summarizes the results of the atmospheric continuous oxidation test, the atmospheric repeated oxidation test, and the Charpy impact test of Example 1 and the thermal fatigue resistance test of Example 2. As is clear from Table 2, all of the steels of the inventive examples suitable for the present invention have oxidation resistance and thermal fatigue characteristics equal to or better than SUS 4 4 4, and It has toughness equal to or better than 29 and meets the goals of the present invention. On the other hand, comparative steels outside the scope of the present invention or prior art reference steels are not excellent in both oxidation resistance and heat fatigue resistance and toughness of the base metal. The target characteristics of the invention are not obtained. Industrial applicability
本発明の鋼は、 自動車等の排気系部材用として好適であるだけでなく、 同様の特性 が要求される火力発電システムの排気系部材ゃ固体酸化物タィプの燃料電池用部材と しても好適に用いることができる。 The steel of the present invention is not only suitable for exhaust system members such as automobiles, but is also suitable as a solid oxide type fuel cell member for an exhaust system member of a thermal power generation system that requires similar characteristics. Can be used.
表 1一 1 Table 1 1 1
2 2
参考例 1: WO2003/004714の発明鋼 No.3、 参考例 2: 開 2006-117985の発明鋼 No.7、 参考例 3: 開 2000-297355の発明鋼 o.5 Reference example 1: Invention steel No.3 of WO2003 / 004714, Reference example 2: Invention steel No.7 of Kai 2006-117985, Reference example 3: Invention steel of Kai 2000-297355 o.5
TJP2009/054707 2TJP2009 / 054707 2
(注) 参考例 1: WO 2003/004714の発明鋼 No.3  (Note) Reference example 1: Invention steel No. 3 of WO 2003/004714
参考例 2:開 2006-117985の発明鋼 No.7.  Reference Example 2: Invention Steel No.7 of Kai 2006-117985
参考例 3:開 2000-297355の発明鋼 No.5  Reference Example 3: Invented steel No. 5 of Kai 2000-297355

Claims

請求の範囲 The scope of the claims
1. C : 0. 0 1 5m a s s %以下、 S i : 0. 5 m a s s %以下、 Mn : 0. 5 m a s s %以下、 P : 0. 04ma s s %以下、 S : 0. 006 m a s s %以下、 C r : 1 6~2 Oma s s %以下、 N : 0. 0 1 5 m a s s %以下、 N b : 0. 3 ~ 0. 55ma s s %、 T i : 0. 0 1 m a s s %以下、 Mo : 0. 1 m a s s %以下、 W : 0. 1 m a s s 0 /。以下、 Cu : l . 0〜2. 5 m a s s % A 1 : 0. 2〜1. 2 ma s s %を含有し、 残部が F eおよび不可避的不純物からなるフェライト系ステン レス鋼。 1. C: 0.0 1 5 mass% or less, S i: 0.5 mass% or less, Mn: 0.5 mass% or less, P: 0.04 mass% or less, S: 0.006 mass% or less, C r: 1 6 ~ 2 Oma ss% or less, N: 0.0 1 5 mass% or less, N b: 0.3 ~ 0.55 mass%, T i: 0.0 1 mass% or less, Mo: 0 1 mass% or less, W: 0. 1 mass 0 /. The following is a ferritic stainless steel containing Cu: l. 0 to 2.5 mass% A1: 0.2 to 1.2 mass%, the balance being Fe and inevitable impurities.
2. 上記の成分組成に加えてさらに、 B : 0. 00 3 m a s s %以下、 REM: 0. 08ma s s %以下、 Z r : 0. 5 m a s s。/。以下、 V : 0. 5 m a s s %以下、 C o : 0. 5ma s s %以下おょぴ N i : 0. 5 m a s s %以下のうちから選ばれる 1 種または 2種以上を含有する請求項 1に記載のフェライト系ステンレス鋼。 2. In addition to the above component composition, B: 0.003 m s s% or less, REM: 0.08 m s s% or less, Z r: 0.5 m s s%. /. Or less, V: 0.5 mass% or less, C o: 0.5 mass% or less, Op N i: One or more selected from 0.5 mass% or less The ferritic stainless steel described.
PCT/JP2009/054707 2008-03-07 2009-03-05 Ferritic stainless steel with excellent heat resistance and toughness WO2009110641A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US12/920,837 US20110123387A1 (en) 2008-03-07 2009-03-05 Ferritic stainless steel excellent in heat resistance and toughness
EP09718001.2A EP2264202B1 (en) 2008-03-07 2009-03-05 Ferritic stainless steel with excellent heat resistance and toughness
ES09718001.2T ES2519716T3 (en) 2008-03-07 2009-03-05 Ferritic stainless steel with excellent thermal resistance and toughness
CN200980108061.7A CN101965415B (en) 2008-03-07 2009-03-05 Ferritic stainless steel with excellent heat resistance and toughness
BRPI0909643A BRPI0909643A2 (en) 2008-03-07 2009-03-05 Excellent ferritic stainless steel in heat resistance and toughness
KR1020137010258A KR20130049835A (en) 2008-03-07 2009-03-05 Ferritic stainless steel with excellent heat resistance and toughness

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-057613 2008-03-07
JP2008057613 2008-03-07

Publications (1)

Publication Number Publication Date
WO2009110641A1 true WO2009110641A1 (en) 2009-09-11

Family

ID=41056185

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/054707 WO2009110641A1 (en) 2008-03-07 2009-03-05 Ferritic stainless steel with excellent heat resistance and toughness

Country Status (10)

Country Link
US (1) US20110123387A1 (en)
EP (1) EP2264202B1 (en)
JP (1) JP5387057B2 (en)
KR (2) KR20100105800A (en)
CN (1) CN101965415B (en)
BR (1) BRPI0909643A2 (en)
ES (1) ES2519716T3 (en)
RU (1) RU2443796C1 (en)
TW (1) TWI431122B (en)
WO (1) WO2009110641A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012050226A1 (en) * 2010-10-14 2012-04-19 Jfeスチール株式会社 Ferritic stainless steel excellent in heat resistance and workability
CN102725432A (en) * 2010-01-28 2012-10-10 杰富意钢铁株式会社 Highly corrosion-resistant hot-rolled ferrite stainless steel sheet having excellent toughness
CN102741445A (en) * 2010-02-02 2012-10-17 杰富意钢铁株式会社 Highly corrosion-resistant cold-rolled ferrite stainless steel sheet having excellent toughness, and process for production thereof
US20130040220A1 (en) * 2011-08-12 2013-02-14 Korea Institute Of Science And Technology Oxidation-resistant ferritic stainless steel, method of manufacturing the same, and fuel cell interconnector using the ferritic stainless steel
WO2015174079A1 (en) * 2014-05-14 2015-11-19 Jfeスチール株式会社 Ferritic stainless steel
EP2639325A4 (en) * 2010-11-11 2016-08-17 Jfe Steel Corp Ferritic stainless steel with excellent oxidation resistance

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5600012B2 (en) * 2010-02-09 2014-10-01 日新製鋼株式会社 Ferritic stainless steel with excellent oxidation resistance and secondary work brittleness resistance, as well as steel and secondary work products
JP5304935B2 (en) * 2011-10-14 2013-10-02 Jfeスチール株式会社 Ferritic stainless steel
JP5234214B2 (en) * 2011-10-14 2013-07-10 Jfeスチール株式会社 Ferritic stainless steel
CN102392184B (en) * 2011-12-15 2013-04-24 钢铁研究总院 High temperature resistant oxyferrite heat resistant steel bar and preparation process thereof
DE102013004905A1 (en) * 2012-03-23 2013-09-26 Salzgitter Flachstahl Gmbh Zunderarmer tempered steel and process for producing a low-dispersion component of this steel
JP2015532681A (en) * 2012-09-03 2015-11-12 アペラム・ステンレス・フランス Ferritic stainless steel sheet, manufacturing method thereof, and particularly for use in exhaust pipes
MX2015013765A (en) * 2013-03-27 2016-02-26 Nippon Steel & Sumikin Sst Hot-rolled ferritic stainless-steel plate, process for producing same, and steel strip.
CN103305766B (en) * 2013-05-10 2018-05-25 宝钢不锈钢有限公司 A kind of High-strength high-plasticity ferritic stainless steel and its manufacturing method
MY160981A (en) * 2013-07-29 2017-03-31 Jfe Steel Corp Ferritic stainless steel having excellent corrosion resistance of weld zone
WO2017135240A1 (en) * 2016-02-02 2017-08-10 日新製鋼株式会社 HOT ROLLED Nb-CONTAINING FERRITIC STAINLESS STEEL SHEET AND METHOD FOR PRODUCING SAME, AND COLD ROLLED Nb-CONTAINING FERRITIC STAINLESS STEEL SHEET AND METHOD FOR PRODUCING SAME
RU2650353C1 (en) * 2017-09-18 2018-04-11 Юлия Алексеевна Щепочкина Steel
WO2019151125A1 (en) * 2018-01-31 2019-08-08 Jfeスチール株式会社 Ferritic stainless steel
JP7278476B2 (en) * 2020-04-15 2023-05-19 日鉄ステンレス株式会社 Ferritic stainless steel material and manufacturing method thereof
CN114318153B (en) * 2021-12-31 2022-11-08 长春工业大学 Al-modified Cu-rich phase reinforced ferrite stainless steel and preparation method thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000297355A (en) 1999-04-13 2000-10-24 Sumitomo Metal Ind Ltd Ferritic stainless steel for automotive exhaust system parts
JP2001316773A (en) * 2000-05-02 2001-11-16 Nippon Steel Corp Heat resistant ferritic stainless steel for catalyst carrier excellent in weldability and workability
WO2003004714A1 (en) 2001-07-05 2003-01-16 Nisshin Steel Co., Ltd. Ferritic stainless steel for member of exhaust gas flow passage
JP2004018921A (en) 2002-06-14 2004-01-22 Jfe Steel Kk Ferritic stainless steel soft at room temperature and excellent in high-temperature oxidation resistance
JP2004307918A (en) * 2003-04-04 2004-11-04 Nippon Steel Corp Al-CONTAINING HEAT-RESISTANT FERRITIC STAINLESS STEEL SHEET SUPERIOR IN WORKABILITY AND OXIDATION RESISTANCE, AND MANUFACTURING METHOD THEREFOR
JP2005187857A (en) * 2003-12-25 2005-07-14 Jfe Steel Kk Chromium-containing ferritic steel sheet having excellent crack resistance after hydroforming
JP2005314740A (en) * 2004-04-28 2005-11-10 Nippon Steel & Sumikin Stainless Steel Corp Ferritic stainless steel having excellent heat resistance and workability and its production method
JP2006117985A (en) 2004-10-20 2006-05-11 Nisshin Steel Co Ltd Ferritic stainless steel material superior in thermal fatigue characteristic, and automotive waste-gas path member
JP2008285693A (en) * 2007-05-15 2008-11-27 Nippon Steel & Sumikin Stainless Steel Corp Ferritic stainless steel sheet having superior thermal fatigue resistance for component of automotive exhaust system

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01287249A (en) * 1988-12-27 1989-11-17 Nkk Corp Austenitic stainless steel tube and its manufacture
RU2033465C1 (en) * 1991-12-04 1995-04-20 Маркелова Татьяна Александровна Ferrite steel
DE69221096T2 (en) * 1991-12-19 1998-02-26 Sumitomo Metal Ind Exhaust manifold
WO1995020683A1 (en) * 1994-01-26 1995-08-03 Kawasaki Steel Corporation Method of manufacturing stainless steel sheet of high corrosion resistance
FR2720410B1 (en) * 1994-05-31 1996-06-28 Ugine Savoie Sa Ferritic stainless steel with improved machinability.
JPH08199244A (en) * 1995-01-25 1996-08-06 Nisshin Steel Co Ltd Production of ferritic stainless steel sheet excellent in burring workability
JPH08260110A (en) * 1995-03-23 1996-10-08 Nisshin Steel Co Ltd Sheet or thin-walled tube of ferritic stainless steel excellent in high temperature oxidation resistance and adhesion of scale
JP3411767B2 (en) * 1996-01-30 2003-06-03 Jfeスチール株式会社 High-strength, high-ductility ferrite single-phase Cr-containing steel sheet and method for producing the same
JP3744084B2 (en) * 1996-10-25 2006-02-08 大同特殊鋼株式会社 Heat-resistant alloy with excellent cold workability and overaging characteristics
JP3397167B2 (en) * 1999-04-16 2003-04-14 住友金属工業株式会社 Ferritic stainless steel for automotive exhaust system parts
FR2792561B1 (en) * 1999-04-22 2001-06-22 Usinor PROCESS OF CONTINUOUS CASTING BETWEEN CYLINDERS OF FERRITIC STAINLESS STEEL STRIPS FREE OF MICROCRIQUES
JP4301638B2 (en) * 1999-05-27 2009-07-22 新日鐵住金ステンレス株式会社 High purity ferritic stainless steel with excellent high temperature strength
JP4675066B2 (en) * 2004-06-23 2011-04-20 日新製鋼株式会社 Ferritic stainless steel for solid oxide fuel cell separator

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000297355A (en) 1999-04-13 2000-10-24 Sumitomo Metal Ind Ltd Ferritic stainless steel for automotive exhaust system parts
JP2001316773A (en) * 2000-05-02 2001-11-16 Nippon Steel Corp Heat resistant ferritic stainless steel for catalyst carrier excellent in weldability and workability
WO2003004714A1 (en) 2001-07-05 2003-01-16 Nisshin Steel Co., Ltd. Ferritic stainless steel for member of exhaust gas flow passage
JP2004018921A (en) 2002-06-14 2004-01-22 Jfe Steel Kk Ferritic stainless steel soft at room temperature and excellent in high-temperature oxidation resistance
JP2004307918A (en) * 2003-04-04 2004-11-04 Nippon Steel Corp Al-CONTAINING HEAT-RESISTANT FERRITIC STAINLESS STEEL SHEET SUPERIOR IN WORKABILITY AND OXIDATION RESISTANCE, AND MANUFACTURING METHOD THEREFOR
JP2005187857A (en) * 2003-12-25 2005-07-14 Jfe Steel Kk Chromium-containing ferritic steel sheet having excellent crack resistance after hydroforming
JP2005314740A (en) * 2004-04-28 2005-11-10 Nippon Steel & Sumikin Stainless Steel Corp Ferritic stainless steel having excellent heat resistance and workability and its production method
JP2006117985A (en) 2004-10-20 2006-05-11 Nisshin Steel Co Ltd Ferritic stainless steel material superior in thermal fatigue characteristic, and automotive waste-gas path member
JP2008285693A (en) * 2007-05-15 2008-11-27 Nippon Steel & Sumikin Stainless Steel Corp Ferritic stainless steel sheet having superior thermal fatigue resistance for component of automotive exhaust system

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102725432A (en) * 2010-01-28 2012-10-10 杰富意钢铁株式会社 Highly corrosion-resistant hot-rolled ferrite stainless steel sheet having excellent toughness
CN102725432B (en) * 2010-01-28 2015-04-15 杰富意钢铁株式会社 Highly corrosion-resistant hot-rolled ferrite stainless steel sheet having excellent toughness
CN102741445A (en) * 2010-02-02 2012-10-17 杰富意钢铁株式会社 Highly corrosion-resistant cold-rolled ferrite stainless steel sheet having excellent toughness, and process for production thereof
CN102741445B (en) * 2010-02-02 2014-12-17 杰富意钢铁株式会社 Highly corrosion-resistant cold-rolled ferrite stainless steel sheet having excellent toughness, and process for production thereof
WO2012050226A1 (en) * 2010-10-14 2012-04-19 Jfeスチール株式会社 Ferritic stainless steel excellent in heat resistance and workability
CN103154294A (en) * 2010-10-14 2013-06-12 杰富意钢铁株式会社 Ferritic stainless steel excellent in heat resistance and workability
EP2628814A1 (en) * 2010-10-14 2013-08-21 JFE Steel Corporation Ferritic stainless steel excellent in heat resistance and workability
EP2628814A4 (en) * 2010-10-14 2015-01-21 Jfe Steel Corp Ferritic stainless steel excellent in heat resistance and workability
JP2012102397A (en) * 2010-10-14 2012-05-31 Jfe Steel Corp Ferritic stainless steel excellent in heat resistance and workability
EP2639325A4 (en) * 2010-11-11 2016-08-17 Jfe Steel Corp Ferritic stainless steel with excellent oxidation resistance
US20130040220A1 (en) * 2011-08-12 2013-02-14 Korea Institute Of Science And Technology Oxidation-resistant ferritic stainless steel, method of manufacturing the same, and fuel cell interconnector using the ferritic stainless steel
WO2015174079A1 (en) * 2014-05-14 2015-11-19 Jfeスチール株式会社 Ferritic stainless steel
JP5900715B1 (en) * 2014-05-14 2016-04-06 Jfeスチール株式会社 Ferritic stainless steel
US10400318B2 (en) 2014-05-14 2019-09-03 Jfe Steel Corporation Ferritic stainless steel

Also Published As

Publication number Publication date
JP5387057B2 (en) 2014-01-15
KR20130049835A (en) 2013-05-14
EP2264202A4 (en) 2013-12-25
KR20100105800A (en) 2010-09-29
ES2519716T3 (en) 2014-11-07
EP2264202A1 (en) 2010-12-22
EP2264202B1 (en) 2014-10-08
CN101965415A (en) 2011-02-02
RU2443796C1 (en) 2012-02-27
US20110123387A1 (en) 2011-05-26
TWI431122B (en) 2014-03-21
BRPI0909643A2 (en) 2015-09-22
JP2009235573A (en) 2009-10-15
TW200946694A (en) 2009-11-16
CN101965415B (en) 2014-01-01

Similar Documents

Publication Publication Date Title
WO2009110641A1 (en) Ferritic stainless steel with excellent heat resistance and toughness
TWI399443B (en) Heat-resistant fat iron-based stainless steel
US8153055B2 (en) Ferritic stainless steel with excellent heat resistance
JP5609571B2 (en) Ferritic stainless steel with excellent oxidation resistance
KR101554835B1 (en) Ferritic stainless steel
WO2014050016A1 (en) Ferritic stainless steel
KR101553789B1 (en) Ferritic stainless steel
JP5152387B2 (en) Ferritic stainless steel with excellent heat resistance and workability
WO2003106722A1 (en) Heat-resistant ferritic stainless steel and method for production thereof
JP5125600B2 (en) Ferritic stainless steel with excellent high-temperature strength, steam oxidation resistance and workability
JP5428396B2 (en) Ferritic stainless steel with excellent heat resistance and weldability
JP2009235572A (en) Ferritic stainless steel having excellent heat resistance and shape-fixability
JP5428397B2 (en) Ferritic stainless steel with excellent heat resistance and workability
JP6665936B2 (en) Ferritic stainless steel
JP5796398B2 (en) Ferritic stainless steel with excellent thermal and high temperature fatigue properties

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980108061.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09718001

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 3063/KOLNP/2010

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20107019883

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009718001

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010140956

Country of ref document: RU

WWE Wipo information: entry into national phase

Ref document number: 12920837

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0909643

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20100903