KR20150140423A - Heat-resistant ferrite-type stainless steel plate having excellent oxidation resistance - Google Patents
Heat-resistant ferrite-type stainless steel plate having excellent oxidation resistance Download PDFInfo
- Publication number
- KR20150140423A KR20150140423A KR1020157034409A KR20157034409A KR20150140423A KR 20150140423 A KR20150140423 A KR 20150140423A KR 1020157034409 A KR1020157034409 A KR 1020157034409A KR 20157034409 A KR20157034409 A KR 20157034409A KR 20150140423 A KR20150140423 A KR 20150140423A
- Authority
- KR
- South Korea
- Prior art keywords
- oxidation resistance
- steel
- added
- stainless steel
- steel sheet
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/54—Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0236—Cold rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0273—Final recrystallisation annealing
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/004—Very low carbon steels, i.e. having a carbon content of less than 0,01%
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/008—Ferrous alloys, e.g. steel alloys containing tin
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/42—Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/46—Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/48—Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/50—Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/52—Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/002—Heat treatment of ferrous alloys containing Cr
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0263—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Abstract
배기계 부품 용도에 최적인, 저비용이면서 내산화성이 우수한 내열 페라이트계 스테인리스 강판이며, 질량%로, C:0% 초과 0.015% 이하, N:0% 초과 0.020% 이하, P:0.04% 이하, S:0.001% 이하, Si:0.3 내지 1.5% 이하, Mn:0.3 내지 0.7% 이하, Cr:11.0 내지 17.0%、Cu:0.8 내지 1.5%、Ni:0.05 내지 1.0%、V:0% 초과 0.5% 이하, Al:0.01 초과 내지 0.1%、Ti:10(C+N) 내지 0.3의 범위 내에서, 하기 수학식 1로 규정되는 γ값이 35이하로 되도록 서로 원소량의 조정을 행한 원소를 함유하는 내열성 및 내산화성이 우수한 페라이트계 스테인리스 강판.C: not more than 0.015%, N: not less than 0% and not more than 0.020%, P: not more than 0.04%, S: 0.001 to 0.001%, Si: 0.3 to 1.5%, Mn: 0.3 to 0.7%, Cr: 11.0 to 17.0%, Cu: 0.8 to 1.5%, Ni: 0.05 to 1.0% The heat resistance and the heat resistance of the steel sheet containing the elements adjusted in the amounts of the elements so that the? Value defined by the following formula (1) is 35 or less within a range of Al: more than 0.01 to 0.1% and Ti: 10 (C + A ferritic stainless steel sheet excellent in oxidation resistance.
Description
본 발명은, 특히 고온 강도나 내산화성이 필요한 배기계 부재 등의 사용에 최적인 내산화성이 우수한 내열성 페라이트계 스테인리스 강판에 관한 것이다.TECHNICAL FIELD The present invention relates to a heat-resistant ferritic stainless steel sheet excellent in oxidation resistance, which is most suitable for use in an exhaust system member and the like which require particularly high temperature strength and oxidation resistance.
자동차의 배기 매니폴드, 프론트 파이프 및 센터 파이프 등의 배기계 부재는, 엔진으로부터 배출되는 고온의 배기 가스를 통과시키기 때문에, 배기 부재를 구성하는 재료에는 내산화성, 고온 강도, 열 피로 특성 등 다양한 특성이 요구된다.Since exhaust gas components such as exhaust manifolds, front pipes, and center pipes of an automobile pass high temperature exhaust gas discharged from the engine, various characteristics such as oxidation resistance, high temperature strength, and thermal fatigue characteristics Is required.
종래, 자동차 배기 부재 중에서 배기 매니폴드(exhaust manifold)에는 주철이 사용되는 것이 일반적이었지만, 배기 가스 규제의 강화, 엔진 성능의 향상, 차체 경량화 등의 관점으로부터, 스테인리스강제의 배기 매니폴드가 사용되게 되었다. 배기 가스 온도는 차종이나 엔진 구조에 따라 다르지만, 600 내지 800℃ 정도가 많고, 이러한 온도 영역에서 장시간 사용되는 환경에 있어서 높은 고온 강도, 내산화성을 갖는 재료가 요망되고 있다.Conventionally, cast iron is generally used for an exhaust manifold among automotive exhaust members, but an exhaust manifold made of stainless steel is used from the viewpoints of strengthening exhaust gas regulation, improving engine performance, and reducing the weight of a vehicle body . Although the exhaust gas temperature differs depending on the vehicle type and the engine structure, a material having a high temperature strength and oxidation resistance is desired in an environment in which the temperature is 600 to 800 DEG C or so and is used for a long time in such a temperature range.
스테인리스강 중에서 오스테나이트계 스테인리스강은, 내열성이나 가공성이 우수하지만, 열팽창 계수가 크기 때문에, 배기 매니폴드와 같이 가열·냉각을 반복해 받는 부재에 적용했을 경우, 열 피로 파괴가 발생하기 쉽다.Among austenitic stainless steels, austenitic stainless steels are excellent in heat resistance and workability, but have a large coefficient of thermal expansion. Therefore, austenitic stainless steels are prone to thermal fatigue failure when they are applied to members subjected to repeated heating and cooling like exhaust manifolds.
한편, 페라이트계 스테인리스강은, 오스테나이트계 스테인리스강에 비해 열팽창 계수가 작기 때문에, 열 피로 특성이나 내 스케일 박리성이 우수하다. 또한, 오스테나이트계 스테인리스강에 비해, Ni를 함유하지 않기 때문에 재료 비용도 저렴하여, 범용적으로 사용되고 있다. 단, 페라이트계 스테인리스강은, 오스테나이트계 스테인리스강에 비해, 고온 강도가 낮기 때문에, 고온 강도를 향상시키는 기술이 개발되어 왔다. 예를 들어, SUS430J1L(Nb 첨가강), Nb-Si 첨가강, SUS444(Nb-Mo 첨가강)이 있으며, 모두 Nb 첨가가 전제로 되어 있다. 이것은, Nb에 의한 고용 강화 혹은 석출 강화에 의해 고온 강도를 높게 하는 것이었다.On the other hand, ferritic stainless steels are superior in thermal fatigue characteristics and scaling resistance because they have a smaller thermal expansion coefficient than those of austenitic stainless steels. Further, as compared with the austenitic stainless steel, since it does not contain Ni, the material cost is also low, and it is widely used. However, since ferritic stainless steels have lower high temperature strength than those of austenitic stainless steels, techniques for improving high temperature strength have been developed. For example, SUS430J1L (Nb-added steel), Nb-Si-added steel, and SUS444 (Nb-Mo added steel). This was to increase the high temperature strength by solid solution strengthening or precipitation strengthening by Nb.
그런데, Nb 첨가 강은 제품판의 경질화, 신장의 저하, 딥드로잉성의 지표가 되는 r값이 낮다는 과제도 있다. 이것은, 고용 Nb나 석출 Nb의 존재에 의해 상온에 있어서의 경질화나 재결정 집합 조직의 발달이 억제됨으로써, 배기 부품을 성형할 때의 프레스성, 형상 자유도를 저해하는 것이다. 또한, Nb는 원료 비용이 높아, 제조 비용도 상승하기 때문에, Nb 이외의 첨가 원소에 의해 고온 특성을 확보할 수 있으면 Nb 첨가량을 억제할 수 있어, 저비용으로 가공성이 우수한 내열 페라이트계 스테인리스 강판을 제공하는 것이 가능하게 된다. SUS444에 첨가되어 있는 Mo는 합금 비용이 높기 때문에, 부품 비용이 현저하게 상승하는 과제도 발생한다.However, there is another problem that the Nb-added steel has a low r value which is an index of hardening of the product plate, deterioration of elongation, and deep drawability. This is because the presence of solid Nb or precipitated Nb suppresses the development of hardened or recrystallized texture at room temperature, thereby impairing the pressability and the degree of freedom in shaping the exhaust part. Further, since Nb has a high raw material cost and a high manufacturing cost, it is possible to suppress the addition amount of Nb if the high temperature characteristics can be ensured by the addition elements other than Nb, thereby providing a heat resistant ferritic stainless steel plate excellent in workability at low cost . Since Mo added to SUS444 has a high alloy cost, there is a problem that the cost of parts is remarkably increased.
특허문헌 1 내지 6에 Cu 첨가에 관한 기술이 개시되어 있다. 특허문헌 1은, Cu 첨가는 저온 인성 향상을 위하여 0.5% 이하의 첨가가 검토되고 있으며, 내열성의 관점으로부터의 첨가는 아니다. 특허문헌 2는, 강의 내식성 및 내후성을 높이는 작용을 이용한 기술이며, 내열성의 관점으로부터의 첨가는 아니다. 특허문헌 3 내지 6은, Cu 석출물에 의한 석출 경화를 이용하여 600℃ 혹은 700 내지 800℃의 온도 영역에 있어서의 고온 강도를 향상시키는 기술이 개시되어 있다.Patent Documents 1 to 6 disclose techniques relating to Cu addition. In Patent Document 1, for the purpose of improving the low-temperature toughness, the addition of Cu is considered to be added in an amount of 0.5% or less and is not added from the viewpoint of heat resistance. Patent Document 2 is a technique which utilizes the action of enhancing the corrosion resistance and weather resistance of steel and is not added from the viewpoint of heat resistance. Patent Documents 3 to 6 disclose techniques for improving the high temperature strength at 600 ° C or 700 to 800 ° C by using precipitation hardening by Cu precipitates.
발명자들은, Nb을 무첨가로 하는 강 성분에 있어서, Cu 첨가하여 Cu 석출물의 미세 분산에 의한 고온 강도를 향상시키는 검토를 행해 왔다. 또한, 내열강판에 있어서, 중요한 내산화성에 대해서도 상세한 검토를 행해 왔다. 그 결과, Cu를 많이 첨가하는 강에 있어서는, 첨가하지 않는 강에 비해, 900℃를 초과하는 영역에서 내산화성이 지극히 저하하는 예가 나타난다. 특히, 저Cr 강에 그런 경향이 나타난다.The inventors have conducted investigations to improve the high temperature strength due to the fine dispersion of Cu precipitates by adding Cu in a steel component in which Nb is not added. Further, in the heat resistant steel sheet, significant oxidation resistance has also been studied in detail. As a result, in the case of a steel to which Cu is added in a large amount, there is an example in which the oxidation resistance is extremely lowered in a region exceeding 900 캜, as compared with a steel to which no Cu is added. Particularly, such a tendency appears in low Cr steel.
배기계 부재에서는, 비정상 상태이면서도 배기 가스 온도가 상승할 가능성도 있어, 900 ℃ 초과에서도 안정된 내산화성을 보유할 수 있는 쪽이 바람직하다. 또한, 강도가 그 만큼 요구되지 않는 부재로서도 사용 가능해진다.In the exhaust system member, there is a possibility that the exhaust gas temperature rises while being in an abnormal state, and it is preferable that the exhaust gas system can have stable oxidation resistance even when the temperature exceeds 900 deg. Further, it can be used as a member which is not required to have such a strength.
이상으로부터, 본 발명에서는, Cu 첨가 강의 내산화성을 개선하여, 내산화성이 우수한 내열 페라이트계 스테인리스 강판을 제공하는 것을 목적으로 한다.From the above, it is an object of the present invention to provide a heat-resistant ferritic stainless steel sheet having improved oxidation resistance of Cu-added steel and excellent oxidation resistance.
본 발명에서는, 저비용 재로 내열 재료를 제공하는 것을 목적으로, 고가인 Nb, Mo의 첨가를 최대한 억제하고, 비교적 저렴한 Cu를 이용하여, 배기 부품용으로 적절하게 사용할 수 있는 새로운 페라이트계 스테인리스 강판을 상세하게 검토했다. 그 결과, 내열성이 우수한 Cu 첨가 페라이트계 스테인리스강을 발명하여, 이미 출원하고 있다(일본 특허 출원 제2010-055944호, 일본 특허 출원 제2010-072889호).In the present invention, a new ferritic stainless steel sheet which can be used for exhaust parts suitably for exhaust parts by suppressing the addition of expensive Nb and Mo as much as possible and using relatively inexpensive Cu for the purpose of providing a heat- . As a result, they have already filed a patent application (Japanese Patent Application No. 2010-055944, Japanese Patent Application No. 2010-072889) to invent a Cu-added ferritic stainless steel excellent in heat resistance.
본 발명은 또한, 내산화성에 대해서도 자세한 검토를 행한 결과, Cu 첨가의 저Cr 강의 경우, 900℃를 초과하는 온도 영역에서 내산화성이 급격하게 열화하는 현상이 일어나는 것을 발견했다. 또한, 이 현상이 산화 스케일 바로 아래의 γ상의 생성과 상관이 있으며, γ상이 생성됨으로써 내산화성이 저하하는 경향이 있는 것을 발견했다. 그러나, γ상이 생성되어도 소량이라면, 충분한 내산화성을 유지할 수 있는 것도 판명되었다. 이들 새로운 지식을 기초로, 여러가지 합금 성분의 첨가를 검토한 결과, 하기 수학식 1에서 규정되는 γ값과 내산화성에는 상관이 있는 것을 발견했다.The present invention further investigates the oxidation resistance. As a result, it has been found that, in the case of a low-Cr steel containing Cu, the oxidation resistance is rapidly deteriorated in a temperature range exceeding 900 캜. It has also been found that this phenomenon is correlated with the formation of the? Phase immediately below the oxidation scale, and the oxidation resistance tends to decrease due to the generation of? Phase. However, it has also been found that sufficient oxidation resistance can be maintained if a small amount of γ phase is generated. On the basis of these new knowledge, the inventors of the present invention have examined the addition of various alloying elements and found that there is a correlation between the γ value defined by the following equation (1) and the oxidation resistance.
상기 수학식 1은, γ상의 안정도를 평가하는 식인 Castro의 식(하기 수학식 2)을 기초로 한 것이다. 수학식 2에서는 탄소, 질소가 직접 γ상의 안정화에 영향을 미친다고 하고 있다. 한편, 본 발명이 대상으로 하는 고순도 페라이트계 스테인리스강에 있어서는, 1000℃ 이하에서는 탄소, 질소가 Ti에 의해 탄질화물로서 거의 고정되어 있기 때문에, γ안정도에는 직접 기여하지 않는다. 그리고 Ti가 미치는 영향은 Ti 중에서 탄질화물로서 고정되어 있지 않은 부분으로 한정된다. 따라서, 이상과 같은 사고 방식에 기초하여 수학식 2를 변형하여, 상기 수학식 1을 유도했다.The above Equation 1 is based on the expression of Castro (Equation 2 below) which is an expression for evaluating the stability of the? Phase. In Equation (2), carbon and nitrogen directly affect the stabilization of the? Phase. On the other hand, in the high-purity ferritic stainless steel to which the present invention is applied, since carbon and nitrogen are almost fixed as carbonitride by Ti at 1000 ° C or lower, they do not directly contribute to the? Stability. The influence of Ti is limited to the portion of the Ti that is not fixed as the carbonitride. Therefore, based on the above-described thinking method, the equation (2) is modified to derive the equation (1).
상기 수학식 1은, 고순도 페라이트계 스테인리스강의 900℃ 내지 1000℃에 있어서의 γ상의 생성의 용이성을 나타내는 지표이며, 숫자가 커질수록 γ상의 생성이 용이해지는 경향에 있다. 이 수학식 1에 따라, γ 값이 일정치(35) 이하이면, 930℃에서도 이상 산화 및 스케일 박리가 일어나지 않게 되어, 내산화성이 현저하게 개선된다. 즉, 이 식을 따라, 합금 성분을 상호 조정함으로써, Cu 첨가에 의한 고온 강도의 향상을 유지하면서, 내산화성이 우수한 내열 페라이트계 스테인리스강을 얻는 것이 가능해 졌다.The above formula (1) is an index indicating the ease of formation of the? Phase at 900 to 1000 占 폚 of the high purity ferritic stainless steel. The larger the number, the easier the formation of the? Phase. According to this formula (1), when the value of? Is not more than the constant value (35), abnormal oxidation and scale separation do not occur even at 930 占 폚, and oxidation resistance is remarkably improved. That is, it is possible to obtain a heat-resistant ferritic stainless steel excellent in oxidation resistance while maintaining the improvement of high-temperature strength by Cu addition by adjusting the alloy components in accordance with this formula.
본 발명은 상기 지식에 기초해서 이루어진 것이며, 그 요지는 이하와 같다.The present invention has been made on the basis of the above knowledge, and its gist is as follows.
(1) 질량%로, C:0% 초과 0.015% 이하, N:0% 초과 0.020% 이하, P:0.04% 이하, S:0.01% 이하, Si:0.3 내지 1.5%、Mn:0.3 내지 0.7%、Cr:11.0 내지 17.0%、Cu:0.8 내지 1.5%、Ni:0.05 내지 1.0%、V:0% 초과 0.5% 이하, Al:0.01 내지 0.1%、Ti:10(C+N) 내지 0.3%의 범위 내에서, P: 0.04% or less, S: 0.01% or less, Si: 0.3-1.5%, Mn: 0.3-0.7% or less, V: more than 0% to 0.5%, Al: 0.01 to 0.1%, Ti: 10 (C + N) to 0.3% of Cr, Within the scope,
하기 수학식 1에서 규정되는 γ 값이 35 이하로 되도록 서로 원소량의 조정을 행한 원소를 함유하고, An element which has been subjected to adjustment of the amounts of the elements so that the? Value defined by the following formula (1) is 35 or less,
잔량부가 Fe 및 불가피적 불순물로 이루어지는 것을 특징으로 하는 내열성 및 내산화성이 우수한 페라이트계 스테인리스 강판.And the balance being Fe and unavoidable impurities. The ferritic stainless steel sheet of the present invention is excellent in heat resistance and oxidation resistance.
[수학식 1][Equation 1]
(2) 또한, 질량%로, Nb:0.001 내지 0.3%、Mo:0.01 내지 0.5%、B:0.0003 내지 0.0050%를 1종 이상 함유하는 것을 특징으로 하는 내열성 및 내산화성이 우수한 (1) 기재의 페라이트계 스테인리스 강판.(2) The steel sheet according to any one of (1) to (3), further comprising at least one of Nb in an amount of 0.001 to 0.3%, Mo in an amount of 0.01 to 0.5% and B in an amount of 0.0003 to 0.0050% Ferritic stainless steel plate.
(3) 또한, 질량%로, Zr:1.0% 이하, Sn:1.0% 이하, Co:0.5% 이하를 1종 이상 함유하는 것을 특징으로 하는 내열성 및 내산화성이 우수한 (1) 또는 (2) 기재의 페라이트계 스테인리스 강판.(3) The steel sheet according to any one of (1) to (2), further comprising at least one of Zr in an amount of not more than 1.0%, Sn in an amount of not more than 1.0%, and Co in an amount of not more than 0.5% Based ferritic stainless steel sheet.
본 발명에 의하면 고가인 Nb, Mo를 첨가하지 않아도 내산화성이 우수한 내열 페라이트계 스테인리스 강판이 얻어지고, 특히 자동차나 보일러 등의 배기계 부재에 적용함으로써, 환경 대책이나 부품의 저비용화 등에 큰 효과가 얻어진다. According to the present invention, a heat-resistant ferritic stainless steel sheet excellent in oxidation resistance can be obtained without adding expensive Nb and Mo, and particularly to a exhaust system member such as an automobile or a boiler, Loses.
여기서, 하한의 규정이 없는 것에 대해서는, 불가피적 불순물 레벨까지 포함하는 것을 나타낸다. 이하에 본 발명의 한정 이유에 대해서 설명한다. %는 질량%를 의미한다.Here, those having no lower limit are shown to include inevitable impurity levels. The reason for limiting the present invention will be described below. % Means mass%.
C는, 성형성과 내식성을 열화시켜, 고온 강도의 저하를 초래하기 때문에, 그 함유량은 적을수록 좋기 때문에, 0% 초과 0.015% 이하로 했다. 또한, 과도한 저감은 정련 비용이 증가하고, 내산화성도 고려하면, 0.002 내지 0.010%가 바람직하다.C deteriorates the moldability and corrosion resistance and causes deterioration of high-temperature strength. Therefore, the content of C is preferably less than 0% and not more than 0.015%. In addition, excessive reduction is preferable in the range of 0.002 to 0.010% in view of the increase in refining cost and oxidation resistance.
N은 C와 마찬가지로, 성형성과 내식성을 열화시켜, 고온 강도의 저하를 초래하기 때문에, 그 함유량은 적을수록 좋기 때문에, 0% 초과 0.020% 이하로 했다. 또한, 과도한 저감은 정련 비용이 증가하고, 내산화성도 고려하면, 0.002 내지 0.015%가 바람직하다.N, like C, deteriorates the moldability and corrosion resistance and causes deterioration of the high-temperature strength. Therefore, the content of N is preferably as small as possible, 0.020% or less. In addition, excessive reduction is preferable in the range of 0.002 to 0.015% in view of the increase in refining cost and oxidation resistance.
P는, 강 중에 불가피하게 포함되는 성분이지만, 0.04%를 초과하여 함유하면 인성이 저하하기 때문에 0.04%를 상한으로 했다.P is a component inevitably contained in the steel, but if it exceeds 0.04%, the toughness decreases, so the upper limit is 0.04%.
S는, 강 중에 불가피하게 포함되는 성분이지만, 본 발명에서는 0.01%를 초과하여 함유하면 CaS가 생성되기 쉽기 때문에, 0.01%를 상한으로 한다. 또한, S를 0.0005% 미만으로 하는 것은 제강 비용의 상당한 증대를 초래하기 때문에, 0.0005%를 하한으로 하는 것이 바람직하다.S is a component inevitably contained in the steel, but in the present invention, when it is contained in an amount exceeding 0.01%, CaS tends to be formed, so that the upper limit is 0.01%. In addition, when S is less than 0.0005%, the steelmaking cost is considerably increased, so it is preferable to set the lower limit to 0.0005%.
Si는 내산화성을 향상시키는 원소이며, 페라이트 안정화 원소이므로, 본 발명에서는 필수이며, 적극적으로 첨가한다. 0.3% 이상에서 그 효과를 발휘한다. 또한, 1.5%를 초과하면 가공성이 현저하게 저하하는 동시에, 스케일 박리를 촉진시키므로, 1.5%를 상한으로 한다. 가공성과 내산화성의 밸런스를 고려하면, 0.4% 내지 1.0%가 보다 바람직하다.Si is an element that improves oxidation resistance and is a ferrite stabilizing element and therefore is essential in the present invention and is added positively. 0.3% or more. On the other hand, if it exceeds 1.5%, the workability remarkably decreases and the scale peeling is promoted, so that the upper limit is set to 1.5%. Considering the balance between workability and oxidation resistance, 0.4% to 1.0% is more preferable.
Mn은, 내산화성을 향상시키는 원소, 특히 스케일 박리성을 개선하는 원소이며 본 발명에서는 필수 원소이다. 그러나, 산화 증량을 증가시키는 효과를 갖기 때문에, 과잉으로 첨가하면 이상 산화가 일어나기 쉬워진다. 또한, 오스테나이트 형성 원소이기 때문에, 본 발명에서는, 그 적정 범위는, 0.3 내지 0.7%로 한다. 가공성을 고려하면, 0.3 내지 0.6%가 보다 바람직하다.Mn is an element that improves oxidation resistance, particularly, an element that improves scale peelability, and is an essential element in the present invention. However, since it has an effect of increasing the amount of oxidation, excessive addition makes it easy to cause abnormal oxidation. In addition, since it is an austenite forming element, in the present invention, the appropriate range is 0.3 to 0.7%. Considering workability, 0.3 to 0.6% is more preferable.
Cr은, 본원 발명에 있어서, 내산화성이나 내식성 확보를 위하여 필수적인 원소이다. 11.0% 미만에서는, 그 효과는 발현하지 않기 때문에 하한을 11.0%로 한다. 또한, Cr는, 페라이트 안정화 원소이다. 17.0%를 초과하면, Cr양에 의해 α상이 안정되기 때문에, 각 원소의 상호 조정의 필요성이 없어져, 본 발명의 Cr양의 상한은, 17.0%로 한다. 즉, 본 발명은, 저Cr 강일수록 그 효과를 발휘하는 것이다. 바람직한 범위는 12.0% 내지 15.0%이다.In the present invention, Cr is an essential element for ensuring oxidation resistance and corrosion resistance. When the content is less than 11.0%, the effect does not appear, so the lower limit is set at 11.0%. Further, Cr is a ferrite stabilizing element. On the other hand, if the Cr content exceeds 17.0%, the α phase is stabilized by the amount of Cr, so that there is no need for mutual adjustment of each element, and the upper limit of the Cr amount of the present invention is set to 17.0%. That is, the present invention exhibits the effect as the lower the Cr steel. The preferred range is from 12.0% to 15.0%.
Cu는, 고온 강도, 특히, 600 내지 800℃ 정도의 중간 온도 영역에 있어서의 고온 강도 향상에 유효한 원소이다. 이것은, 상기 온도 영역에 있어서의 Cu 석출물의 생성에 의한 석출 강화가 주된 요인이다. 또한, 900℃ 초과에 있어서도 어느 정도의 강도 향상 효과를 갖는다. 이 효과는 0.8% 이상에서 발현하기 때문에, 하한을 0.8%로 했다. 또한, 1.5%를 초과해서 첨가하면, 내산화성, 가공성이 열화하기 때문에, 상한을 1.5%로 했다. 고온 강도와 내산화성, 가공성의 밸런스를 고려하면, 1.0 내지 1.4%가 바람직하다.Cu is an element effective for improving high-temperature strength at high temperature strength, particularly at an intermediate temperature range of about 600 to 800 占 폚. This is mainly due to precipitation strengthening by the formation of Cu precipitates in the temperature region. In addition, even at a temperature exceeding 900 캜, it has an effect of improving the strength to some extent. Since this effect occurs at 0.8% or more, the lower limit was set at 0.8%. On the other hand, if it is added in an amount exceeding 1.5%, the oxidation resistance and workability are deteriorated, so the upper limit is set to 1.5%. Considering the balance between the high-temperature strength, the oxidation resistance and the workability, 1.0 to 1.4% is preferable.
Ni는, 내식성 및 내고온 염해성을 향상시키는 원소이며, 0.05% 이상의 첨가로 그 효과가 발현된다. 그러나, 오스테나이트 안정화 원소이기 때문에, 과잉된 첨가는 내산화성을 저하시키므로, 1.0%를 상한으로 한다. 가공성을 고려하면, 미량 첨가가 바람직하고, 0.05 내지 0.50%가 보다 적합하다.Ni is an element which improves corrosion resistance and high-temperature salting resistance, and the effect is exhibited by addition of 0.05% or more. However, since it is an austenite stabilizing element, excessive addition decreases the oxidation resistance, so 1.0% is the upper limit. In view of processability, a trace amount is preferable, and 0.05 to 0.50% is more preferable.
V는, 페라이트 안정화 원소이기 때문에 첨가한다. 그러나, 0.5%를 초과하면 열연판 인성이 저하하므로, 0.5%를 상한으로 한다. 제강 비용이나 가공성을 고려하면, 0.03% 내지 0.5%가 바람직하다.V is added because it is a ferrite stabilizing element. However, if it exceeds 0.5%, the toughness of the hot rolled steel sheet is lowered, so that the upper limit is 0.5%. From the viewpoint of steelmaking cost and processability, 0.03% to 0.5% is preferable.
Al은, 탈산 원소로서 첨가되는 것 외에, 내산화성을 향상시키기 위해서 필요에 따라 첨가하는 원소이다. 또한, 페라이트 안정화 원소이며, 내산화성을 향상시킨다. 과도한 첨가는 경질화하여 균일 신장을 현저하게 저하시키는 것 외에, 인성이 현저하게 저하되기 때문에, 상한을 0.1%로 했다. 또한, 표면 흠집의 발생이나 용접성, 제조성을 고려하면, 0.01 내지 0.05%가 바람직하다.Al is not only added as a deoxidizing element but also added as needed in order to improve oxidation resistance. It is also a ferrite stabilizing element and improves oxidation resistance. Excessive addition leads to hardening to remarkably decrease the uniform elongation, and further to decrease the toughness remarkably, so that the upper limit is set to 0.1%. In consideration of generation of surface scratches, weldability, and composition, it is preferably 0.01 to 0.05%.
Ti는, C, N과 결합하여 내식성, 내입계 부식성, 상온 연성이나 딥드로잉성을 향상시키는 원소이다. 특히, 본 발명의 강판이 사용되는 배기계 부재 등에서는 통상, 용접 구조물이기 때문에, 내입계 부식성은 필수적이며, Ti 첨가량은 중요하다. 이들의 효과는 10(C+N)% 이상에서 발현하기 때문에, 10(C+N)%를 하한으로 했다. 또한, 한편, 0.3% 초과 첨가하면 내산화성이 저하하기 때문에, 0.3%를 상한으로 했다. 가공성이나 제조성을 고려하면, 10(C+N) 내지 0.25%가 바람직하다.Ti is an element which bonds with C and N to improve corrosion resistance, intercalation corrosion resistance, room temperature ductility and deep drawability. Particularly, in an exhaust system member or the like in which the steel sheet of the present invention is used, since it is usually a welded structure, the intergranular corrosion resistance is essential, and the Ti addition amount is important. Since these effects are expressed at 10 (C + N)% or more, the lower limit of 10 (C + N)% is set. On the other hand, if it is added in an amount of more than 0.3%, the oxidation resistance is lowered, so that the upper limit is set to 0.3%. From the viewpoint of workability and manufacturability, 10 (C + N) to 0.25% is preferable.
이들의 합금 원소의 범위 내에 있어서, 내산화성을 향상시키기 위해서는, 하기 수학식 1로 나타내어지는 γ값이 35 이하가 되도록 각 원소의 상호 조정을 행할 필요가 있다. 35를 초과하면 900℃를 초과하는 고온 영역에서 스케일 아래에 γ상이 형성되기 쉬워지고, 이상 산화가 일어나기 쉬워져, 바람직하지 않다. 또한, 불가피적 불순물의 효과는 제로로 하고 있다. 수학식 1을 유도한 근거는 전술한 바와 같다.In order to improve the oxidation resistance within the range of these alloying elements, it is necessary to mutually adjust the respective elements so that the value of? Represented by the following formula (1) is 35 or less. If it exceeds 35, a? Phase is easily formed under a scale in a high temperature region exceeding 900 占 폚, and abnormal oxidation tends to occur easily, which is not preferable. In addition, the effect of unavoidable impurities is set at zero. The reason for deriving Equation (1) is as described above.
[수학식 1][Equation 1]
본 발명에서는, 용도, 특성에 따라, 이하의 원소를 첨가해도 된다.In the present invention, the following elements may be added depending on the application and characteristics.
Nb는, 고가이지만, 고온 강도를 향상시키는 원소이며, 페라이트 안정화 원소이기도 하므로, 미량이라도 첨가하면 내열성 및 내산화성을 향상시킬 수 있다. 그 효과는, 0.001% 이상에서 발현한다. 0.3% 초과 첨가하면, Fe2Nb가 조대 생성해 버려, 고온 강도 향상 효과가 작아지기 때문에, 상한을 0.3%로 한다.Although Nb is expensive, it is an element that improves high-temperature strength and is a ferrite stabilizing element, so that even if a trace amount of Nb is added, heat resistance and oxidation resistance can be improved. The effect is expressed at 0.001% or more. If it is added in an amount of more than 0.3%, Fe 2 Nb is formed coarsely and the effect of improving the high-temperature strength is reduced. Therefore, the upper limit is set to 0.3%.
Mo도, 고가이지만, 고온 강도를 향상시키는 원소이며, 페라이트 안정화 원소이기도 하므로, 미량이라도 첨가하면 내열성 및 내산화성을 향상시킬 수 있다. 그 효과는, 0.01% 이상에서 발현한다. 0.5% 초과 첨가하면, 고온 강도 향상 효과가 작아지기 때문에, 상한을 0.5%로 한다.Although Mo is expensive, it is an element that improves high-temperature strength and is a ferrite stabilizing element. Therefore, if a trace amount is added, heat resistance and oxidation resistance can be improved. The effect is expressed at 0.01% or more. If it is added in an amount of more than 0.5%, the effect of improving high-temperature strength becomes small, so the upper limit is set to 0.5%.
B는, 제품의 프레스 가공시의 2차 가공성을 향상시키는 원소이며, 이 효과가 0.0003%로부터 작용하기 때문에, 하한을 0.0003%로 했다. 과도한 첨가는 경질화나 Cr과 B의 석출물 생성에 의한 입계 부식이 문제가 된다. 또 용접 균열도 문제가 되기 때문에, 0.0050%를 상한으로 했다. 또한, 제조성을 고려하면, 0.0003 내지 0.0015%가 바람직하다.B is an element for improving the secondary workability at the time of press working of a product, and since the effect acts from 0.0003%, the lower limit is set at 0.0003%. Excessive addition causes problems of hardening and intergranular corrosion due to formation of Cr and B precipitates. In addition, welding cracks become a problem, so the upper limit is 0.0050%. Further, when considering the production, it is preferably 0.0003 to 0.0015%.
Zr은, Ti보다 강력한 탄질화물 형성 원소이다. 보다 고온까지 탄질화물을 고정할 수 있기 때문에, 오스테나이트상 안정성을 저하시키는 효과를 기대할 수 있다. 그러나, 과잉의 첨가는 제조성의 저하를 초래하기 때문에, 그 상한을 1.0 %로 한다.Zr is a carbonitride-forming element stronger than Ti. The carbonitride can be fixed to a higher temperature, so that the effect of lowering the austenite phase stability can be expected. However, excessive addition causes deterioration in manufacturability, so the upper limit is set to 1.0%.
Sn은 원자 반경이 크고 고온에서의 고용 강화에 유효한 원소이면서, 상온의 기계적 특성의 저하가 작기 때문에, 필요에 따라 첨가하는 원소이다. 그러나, 과잉으로 첨가하면, 제조성이나 용접성이 저하하기 때문에, 그 상한은 1.0%로 한다.Sn is an element which is effective for strengthening solubility at a high temperature and has a large atomic radius, but is a element to be added as needed because the decrease in the mechanical properties at room temperature is small. However, if it is added in an excess amount, the composition and weldability are lowered, so the upper limit is set to 1.0%.
Co은 고온 강도를 향상시키는 원소이지만, 과잉으로 첨가하면 제조성이 저하하기 때문에, 그 상한을 0.5%로 한다.Co is an element which improves high-temperature strength, but when it is added in excess, the composition is lowered. Therefore, the upper limit is set at 0.5%.
다음에 제조 방법에 대해서 설명한다. 본 발명의 강판의 제조 방법은, 제강-열간 압연-산세-냉간 압연-어닐링·산세의 각 공정으로 이루어진다. 제강에 있어서는, 상기 필수 성분 및 필요에 따라 첨가되는 성분을 함유하는 강을, 전로 용제하고 이어서 2차 정련을 행하는 방법이 적합하다. 용제한 용강은, 공지의 주조 방법(연속 주조)에 따라서 슬래브로 한다. 슬래브는, 소정의 온도로 가열되고, 소정의 판 두께로 연속 압연으로 열간 압연된다. 냉간 압연 조건에 대해서, 스테인리스 강판의 냉간 압연은, 통상, 젠지미어 압연기에서 리버스 압연되거나, 탠덤식 압연기에서 일방향 압연되는 것이다. 본 발명에서는 어느 압연 방법을 채용해도 상관없지만, 탠덤식 압연은 젠지미어 압연에 비해 생산성에 있어서도 우수한 것 외에, 가공성의 지표인 r값을 높게 하기 때문에, 롤 직경이 400㎜ 이상의 탠덤식 압연기에서 냉간 압연을 실시하는 쪽이 바람직하다.Next, the manufacturing method will be described. The method for producing a steel sheet according to the present invention comprises the steps of steelmaking - hot rolling - pickling - cold rolling - annealing and pickling. In steelmaking, it is preferable to use a method in which a steel containing the above-mentioned essential components and a component to be added as required is passed through a converter furnace followed by secondary refining. The molten steel to be melted is made into a slab in accordance with a known casting method (continuous casting). The slab is heated to a predetermined temperature and hot-rolled to a predetermined thickness in continuous rolling. For the cold rolling conditions, the cold rolling of the stainless steel sheet is usually performed by reverse rolling in a Zenjimier mill or by one-direction rolling in a tandem mill. In the present invention, any rolling method may be employed. However, since tandem rolling is superior in productivity to zen zymed rolling as well as r value, which is an index of workability, is increased in a tandem type rolling machine having a roll diameter of 400 mm or more It is preferable to perform cold rolling.
생산성의 관점으로부터, 페라이트계 스테인리스 강판의 제조에 있어서 통상 실시되는 열연판 어닐링을 생략하는 것이 바람직하지만, 열연판 어닐링해도 상관없다.From the viewpoint of productivity, it is preferable to omit the hot-rolled sheet annealing usually performed in the production of the ferritic stainless steel sheet, but the hot-rolled sheet may be annealed.
다른 공정의 제조 방법에 대해서는 특별히 규정하지 않지만, 열연 조건, 열연판 두께, 냉연판 어닐링 온도, 분위기 등은 적절하게 선택하면 된다. 또한, 냉연·어닐링 후에 조질 압연이나 텐션 레벨러를 부여해도 상관없다. 또한, 제품판 두께에 대해서도, 요구 부재 두께에 따라 선택하면 된다.The production method of other steps is not particularly specified, but the hot rolling conditions, the hot rolled sheet thickness, the cold rolled sheet annealing temperature, the atmosphere, and the like may be appropriately selected. In addition, temper rolling or tension leveler may be applied after cold rolling and annealing. Further, the thickness of the product plate may be selected in accordance with the thickness of the required member.
[실시예][Example]
표 1에 나타내는 성분 조성의 강을 용제하여 슬래브로 주조하고, 슬래브를 열간 압연하여 5㎜ 두께의 열연 코일로 했다. 그 후, 열연 코일을 산세하여, 2mm 두께까지 냉간 압연하고, 어닐링·산세를 실시하여 제품판으로 했다. 냉연판의 어닐링 온도는, 결정립도 번호를 6 내지 8 정도로 하기 위해서, 850 내지 1000℃로 했다. 어닐링 시간은 120초이다. 표 중의 No.1 내지 15는 본 발명 강, No.16 내지 39는 비교 강이다. 또한, No.1A 강, No.2A 강은 각각 No.1 강, No.2 강과 동 성분의 강으로, 열간 압연 후, 850 내지 1000℃、120초의 열연판 어닐링을 행하고, 그 후, 다른 강과 마찬가지로 산세하고, 또한, 냉간 압연, 어닐링, 산세를 행하여, 제품판으로 한 것이다. 이와 같이 하여 얻어진 제품판으로부터, 고온 인장 시험편을 채취하고, 800℃ 및 900℃에서 인장 시험을 실시하여, 0.2% 내력을 측정했다(JISG0567에 준거). 여기서, 배기 매니폴드용 강으로서 현재 가장 범용으로 사용되고 있는 0.4Nb-1Si 강과 거의 동등 레벨이다, 800℃에서 25MPa, 900℃에서 15MPa를 합격 기준으로 했다.The steel having the composition shown in Table 1 was melted and cast into a slab, and the slab was hot-rolled to obtain a hot-rolled coil having a thickness of 5 mm. Thereafter, the hot-rolled coil was pickled, cold-rolled to a thickness of 2 mm, and subjected to annealing and pickling to obtain a product plate. The annealing temperature of the cold-rolled sheet was set at 850 to 1000 占 폚 in order to make the grain size number 6 to 8 or so. The annealing time is 120 seconds. Nos. 1 to 15 in the tables are the inventive steels, and Nos. 16 to 39 are comparative steels. The No. 1A steel and the No.2A steel were subjected to hot-rolled sheet annealing at 850 to 1000 ° C for 120 seconds, respectively, after the hot rolling with the steel having the No. 1 steel and the No. 2 steel and copper components, Followed by pickling, cold rolling, annealing and pickling. From the product plate thus obtained, a high-temperature tensile test piece was taken and subjected to a tensile test at 800 ° C and 900 ° C to measure a 0.2% proof stress (in accordance with JIS G0567). Here, it is almost equivalent to the 0.4Nb-1Si steel which is the most commonly used as the exhaust manifold steel at present, and the acceptance standard is 25 MPa at 800 ° C and 15 MPa at 900 ° C.
또한, 내산화성의 시험으로서, 대기중 900℃ 및 930℃에서 200시간의 연속 산화 시험을 행하여, 이상 산화의 발생 유무를 평가했다(JISZ2281에 준거). 또한, 상온의 가공성으로서, JIS13호 B 시험편을 제작하고 압연 방향의 인장 시험을 행하여, 파단 연신을 측정했다. 여기에서도, 기존 0.4Nb-1Si 강과 거의 동등 레벨인 32%를 합격 기준으로 했다.As a test for oxidation resistance, a continuous oxidation test was performed in air at 900 캜 and 930 캜 for 200 hours to evaluate the occurrence of abnormal oxidation (in accordance with JIS Z 2281). In addition, JIS No. 13 B test piece was produced as a workability at room temperature, and a tensile test in the rolling direction was carried out, and fracture elongation was measured. Here too, the passing standard of 32%, which is almost the same level as the existing 0.4Nb-1Si steel, was adopted.
또한, 용접부의 내 입계 부식성을 밝히기 위해서, TIG 용접법에 의한 티그(tig) 용접을 행한 후, 스트라우스 시험을 행하여, 입계 부식의 유무를 검토했다.Further, in order to clarify the intergranular corrosion resistance of the welded portion, after performing the tig welding by the TIG welding method, the Strauss test was carried out to examine whether intergranular corrosion occurred.
시험 결과를 표 1에 나타낸다.The test results are shown in Table 1.
표 1로부터 명백해진 바와 같이, 본 발명에서 규정하는 성분 조성을 갖는 강은, 고온 강도, 내산화성, 상온 신장, 내입계 부식성에 전혀 문제가 없으며, 우수한 특성을 나타내고 있는 것을 알 수 있다.As apparent from Table 1, it is found that the steel having the component composition specified in the present invention has no problems at high temperature strength, oxidation resistance, room temperature elongation and intercalation corrosion, and exhibits excellent properties.
이들에 대하여, 비교 강의 No.16, 17에서는, 각 성분 원소는 본 발명 범위에서 있으면서, γ값이 35를 초과하고 있기 때문에, 930℃에서의 이상산화가 발생하여, 내산화성이 떨어진다. No.18, 19 강은, 각각 C과 N이 상한을 벗어나, 고온 강도, 내산화성, 가공성이 떨어진다. No.20 강은, Si가 부족하여, 내산화성이 떨어진다. No.21 강은, Si가 과잉으로 첨가되어 있어, 가공성이 떨어진다. No.22는, Mn 첨가량이 적어, 내산화성이 떨어진다. No.23 강은, Mn이 과잉으로 첨가되어 있어, 내산화성과 가공성이 떨어진다. No.24는, P가 과잉으로 첨가되어 있어, 인성이 열위이며, 강판 제조 단계에서 열연판에 미소 균열이 관찰되었다. No.25 강은 S가 과잉으로 첨가되어 있어, 내식성 열화 원인인 CaS의 생성이 확인되었다. No.26 강은, Cr양이 적기 때문에 고온 강도가 낮은 동시에 내산화성도 떨어진다. No.27 강은, Cu 첨가량이 적어, 고온 강도가 떨어진다. No, 28 강은 Cu가 과잉으로 첨가되어 있어, 가공성이 떨어진다. No.29 강은, Ni가 과잉으로 첨가되어 있어, 가공성이 떨어진다. No.30 강은, V가 과잉으로 첨가되어 있어, 가공성이 떨어진다. No.31 강은, Al이 과잉으로 첨가되어 있어, 가공성이 떨어진다. No.32 강은, Ti 첨가량이 적어, 내입계 부식성이 떨어진다. No.33 강은 Ti가 과잉으로 첨가되어 있어, 가공성이 떨어진다. No.34 강은 Nb이 과잉으로 첨가되어 있어, 가공성이 떨어진다. No.35 강은, Mo가 과잉으로 첨가되어 있어, 가공성이 떨어진다. No.36 강은, B이 과잉으로 첨가되어 있어, 가공성이 떨어지는 동시에, 내입계 부식성도 떨어진다. No.37 , 38, 39 강은, 각각, Zr, Sn, Co가 과잉으로 첨가되어 있지만, 이들 강은, 가공성이 떨어지는 동시에, 강판 제조시에 열연판에 미소 균열이 관찰되어, 제조성이 떨어지는 것을 알았다.On the other hand, in the comparative steels Nos. 16 and 17, the respective element elements are in the scope of the present invention, and the γ value exceeds 35, so that the abnormal oxidation occurs at 930 ° C. and the oxidation resistance deteriorates. In No.18 and 19 steel, C and N are out of the upper limit, respectively, and high temperature strength, oxidation resistance and workability are poor. No. 20 steel lacks Si, and oxidation resistance is poor. No.21 steel is excessively added with Si, resulting in poor workability. In No. 22, the amount of Mn added is small and oxidation resistance is poor. No.23 steel is excessively added with Mn, and oxidation resistance and processability are poor. In No. 24, P was excessively added and the toughness was inferior, and micro-cracks were observed in the hot-rolled steel sheet at the steel sheet producing step. In the No.25 steel, S was excessively added, and generation of CaS, which is the cause of deterioration of corrosion resistance, was confirmed. No.26 steel has a low high-temperature strength and low oxidation resistance due to a small amount of Cr. In No.27 steel, Cu content is small and high-temperature strength is low. No, 28 steel is excessively added with Cu, resulting in poor workability. In No.29 steel, Ni is added excessively, resulting in poor workability. No. 30 steel is excessively added with V, resulting in poor workability. In No.31 steel, Al is added excessively, resulting in poor workability. In No.32 steel, the amount of Ti added is small, and the intercalation corrosion is poor. No.33 Steel is excessively added with Ti, resulting in poor workability. In No.34 steel, Nb is added excessively, resulting in poor workability. In No. 35 steel, Mo is added excessively, resulting in poor workability. In No. 36 steel, B is excessively added, resulting in poor processability and low intercalation corrosion resistance. Thirty-seven, thirty-eight, and thirty-nine steels are excessively added with Zr, Sn, and Co, respectively. However, these steels have poor workability and micro cracks are observed on the hot- .
이상의 설명으로부터 명백해진 바와 같이, 본 발명에 따르면 Nb나 Mo와 같은 고가인 합금 원소를 다량으로 첨가하지 않더라도 내산화성이 우수한 내열 스테인리스 강판을 제공할 수 있으며, 특히 배기 부재에 적용함으로써, 부품 비용의 저감이나 경량화에 의한 환경 대책 등 사회적 기여는 각별히 크다.INDUSTRIAL APPLICABILITY As apparent from the above description, according to the present invention, it is possible to provide a heat-resistant stainless steel sheet excellent in oxidation resistance even when a large amount of expensive alloying elements such as Nb and Mo is not added. Social contribution such as environmental measures by reduction and weight reduction is remarkable.
Claims (3)
C:0% 초과 0.015% 이하
N:0% 초과 0.020% 이하
P:0.04% 이하
S:0.01% 이하
Si:0.3 내지 1.5%
Mn:0.3 내지 0.7%
Cr:11.0 내지 17.0%
Cu:0.8 내지 1.5%
Ni:0.05 내지 1.0%
V:0% 초과 0.5% 이하
Al:0.01 내지 0.1%
Ti:10(C+N) 내지 0.3%
의 범위내에서, 하기 수학식 1로 규정되는 γ값이 35 이하로 되도록 서로 원소량의 조정을 행한 원소를 함유하고,
잔량부가 Fe 및 불가피적 불순물로 이루어지는 것을 특징으로 하는, 내열성 및 내산화성이 우수한 페라이트계 스테인리스 강판.
[수학식 1]
In terms of% by mass,
C: more than 0% and not more than 0.015%
N: more than 0% and not more than 0.020%
P: not more than 0.04%
S: not more than 0.01%
Si: 0.3 to 1.5%
Mn: 0.3 to 0.7%
Cr: 11.0 to 17.0%
Cu: 0.8 to 1.5%
Ni: 0.05 to 1.0%
V: more than 0% and not more than 0.5%
Al: 0.01 to 0.1%
Ti: 10 (C + N) to 0.3%
In which the amount of the elements is adjusted so that the value of? Defined by the following formula (1) becomes 35 or less,
And the balance being Fe and unavoidable impurities. The ferritic stainless steel sheet according to claim 1, wherein the ferritic stainless steel sheet has excellent heat resistance and oxidation resistance.
[Equation 1]
질량%로,
Mo:0.01 내지 0.5%
B:0.0003 내지 0.0050%
를 1종 이상 더 함유하는 것을 특징으로 하는, 내열성 및 내산화성이 우수한 페라이트계 스테인리스 강판.The method according to claim 1,
In terms of% by mass,
Mo: 0.01 to 0.5%
B: 0.0003 to 0.0050%
Wherein the ferrite-based stainless steel sheet further contains one or more of the following components:
질량%로,
Zr:1.0% 이하
Sn:1.0% 이하
Co:0.5% 이하
를 1종 이상 더 함유하는 것을 특징으로 하는, 내열성 및 내산화성이 우수한 페라이트계 스테인리스 강판.The method according to claim 1,
In terms of% by mass,
Zr: not more than 1.0%
Sn: not more than 1.0%
Co: 0.5% or less
Wherein the ferrite-based stainless steel sheet further contains one or more of the following components:
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010207925 | 2010-09-16 | ||
JPJP-P-2010-207925 | 2010-09-16 | ||
PCT/JP2011/071765 WO2012036313A1 (en) | 2010-09-16 | 2011-09-15 | Heat-resistant ferrite-type stainless steel plate having excellent oxidation resistance |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020157028102A Division KR20150119496A (en) | 2010-09-16 | 2011-09-15 | Heat-resistant ferrite-type stainless steel plate having excellent oxidation resistance |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020187003512A Division KR20180017220A (en) | 2010-09-16 | 2011-09-15 | Heat-resistant ferrite-type stainless steel plate having excellent oxidation resistance |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20150140423A true KR20150140423A (en) | 2015-12-15 |
KR102065814B1 KR102065814B1 (en) | 2020-01-13 |
Family
ID=45831765
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020157028102A KR20150119496A (en) | 2010-09-16 | 2011-09-15 | Heat-resistant ferrite-type stainless steel plate having excellent oxidation resistance |
KR1020187003512A KR20180017220A (en) | 2010-09-16 | 2011-09-15 | Heat-resistant ferrite-type stainless steel plate having excellent oxidation resistance |
KR1020137005982A KR20130060290A (en) | 2010-09-16 | 2011-09-15 | Heat-resistant ferrite-type stainless steel plate having excellent oxidation resistance |
KR1020157034409A KR102065814B1 (en) | 2010-09-16 | 2011-09-15 | Heat-resistant ferrite-type stainless steel plate having excellent oxidation resistance |
Family Applications Before (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020157028102A KR20150119496A (en) | 2010-09-16 | 2011-09-15 | Heat-resistant ferrite-type stainless steel plate having excellent oxidation resistance |
KR1020187003512A KR20180017220A (en) | 2010-09-16 | 2011-09-15 | Heat-resistant ferrite-type stainless steel plate having excellent oxidation resistance |
KR1020137005982A KR20130060290A (en) | 2010-09-16 | 2011-09-15 | Heat-resistant ferrite-type stainless steel plate having excellent oxidation resistance |
Country Status (6)
Country | Link |
---|---|
US (1) | US20130149187A1 (en) |
EP (1) | EP2617854B1 (en) |
JP (1) | JP5709875B2 (en) |
KR (4) | KR20150119496A (en) |
CN (1) | CN103097564B (en) |
WO (1) | WO2012036313A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018117508A1 (en) | 2016-12-22 | 2018-06-28 | 주식회사 포스코 | Cold-rolled steel sheet having excellent corrosion resistance and formability, and method for manufacturing same |
KR20190077874A (en) | 2017-12-26 | 2019-07-04 | 주식회사 포스코 | Cold-rolled steel sheet for exhaust system having excellent corrosion resistance and formability ad manufacturing method thereof |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5709875B2 (en) * | 2010-09-16 | 2015-04-30 | 新日鐵住金ステンレス株式会社 | Heat-resistant ferritic stainless steel sheet with excellent oxidation resistance |
JP5937861B2 (en) * | 2012-03-27 | 2016-06-22 | 新日鐵住金ステンレス株式会社 | Heat-resistant ferritic stainless steel sheet with excellent weldability |
US20140065005A1 (en) * | 2012-08-31 | 2014-03-06 | Eizo Yoshitake | Ferritic Stainless Steel with Excellent Oxidation Resistance, Good High Temperature Strength, and Good Formability |
JP5505575B1 (en) * | 2013-03-18 | 2014-05-28 | Jfeスチール株式会社 | Ferritic stainless steel sheet |
JP5505555B1 (en) * | 2013-12-26 | 2014-05-28 | Jfeスチール株式会社 | Ferritic stainless steel sheet |
CN107208213B (en) * | 2015-01-19 | 2019-01-15 | 新日铁住金不锈钢株式会社 | The exhaust system components ferrite-group stainless steel of corrosion resistance excellent after heating |
US20190382874A1 (en) * | 2017-01-19 | 2019-12-19 | Nisshin Steel Stainless Steel Corporation | Ferritic stainless steel and ferritic stainless steel for automobile exhaust gas passage member |
JP7022634B2 (en) * | 2018-03-29 | 2022-02-18 | 日鉄ステンレス株式会社 | Ferritic stainless steel sheets with excellent high-temperature salt damage resistance and automobile exhaust system parts |
CN108823488A (en) * | 2018-05-29 | 2018-11-16 | 哈尔滨工程大学 | The ferrite heat resistant steel and its heat treatment process of a kind of resistance to high temperature oxidation and resistance to salt hot corrosion |
WO2021065738A1 (en) * | 2019-10-02 | 2021-04-08 | 日鉄ステンレス株式会社 | Ferritic stainless steel sheet, method for producing same and ferritic stainless steel member |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003004714A1 (en) | 2001-07-05 | 2003-01-16 | Nisshin Steel Co., Ltd. | Ferritic stainless steel for member of exhaust gas flow passage |
JP3397167B2 (en) | 1999-04-16 | 2003-04-14 | 住友金属工業株式会社 | Ferritic stainless steel for automotive exhaust system parts |
JP3446667B2 (en) | 1999-07-07 | 2003-09-16 | 住友金属工業株式会社 | Ferritic stainless steel, ferritic stainless steel ingot excellent in workability and toughness, and method for producing the same |
JP3468156B2 (en) | 1999-04-13 | 2003-11-17 | 住友金属工業株式会社 | Ferritic stainless steel for automotive exhaust system parts |
JP2006037176A (en) | 2004-07-28 | 2006-02-09 | Nisshin Steel Co Ltd | Ferritic stainless steel for exhaust manifold |
KR20080052501A (en) * | 2006-12-07 | 2008-06-11 | 닛신 세이코 가부시키가이샤 | Ferritic stainless steel for automobile exhaust gas passage components and welded steel pipe |
JP2008240143A (en) | 2007-02-26 | 2008-10-09 | Nippon Steel & Sumikin Stainless Steel Corp | Ferritic stainless steel sheet having excellent heat resistance |
JP2009235555A (en) * | 2008-03-28 | 2009-10-15 | Nippon Steel & Sumikin Stainless Steel Corp | Heat resistant ferritic stainless steel sheet having excellent oxidation resistance |
KR20130060290A (en) * | 2010-09-16 | 2013-06-07 | 닛폰 스틸 앤드 스미킨 스테인레스 스틸 코포레이션 | Heat-resistant ferrite-type stainless steel plate having excellent oxidation resistance |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1003720B (en) * | 1987-07-27 | 1989-03-29 | 冶金工业部钢铁研究总院 | Ferritic heat-resistant non-scaling steel |
JP3589036B2 (en) * | 1997-08-05 | 2004-11-17 | Jfeスチール株式会社 | Ferritic stainless steel sheet excellent in deep drawability and ridging resistance and method for producing the same |
JP4468137B2 (en) * | 2004-10-20 | 2010-05-26 | 日新製鋼株式会社 | Ferritic stainless steel material and automotive exhaust gas path member with excellent thermal fatigue characteristics |
KR101179408B1 (en) * | 2006-05-09 | 2012-09-04 | 닛폰 스틸 앤드 스미킨 스테인레스 스틸 코포레이션 | Ferritic stainless steel excellent in crevice corrosion resistance |
JP4651682B2 (en) * | 2008-01-28 | 2011-03-16 | 新日鐵住金ステンレス株式会社 | High purity ferritic stainless steel with excellent corrosion resistance and workability and method for producing the same |
JP2010055944A (en) | 2008-08-28 | 2010-03-11 | Jsr Corp | Conductive laminate film, and touch panel using the same |
JP4950970B2 (en) | 2008-09-18 | 2012-06-13 | 日本放送協会 | Image feature extraction device |
-
2011
- 2011-09-15 JP JP2012534083A patent/JP5709875B2/en active Active
- 2011-09-15 EP EP11825311.1A patent/EP2617854B1/en active Active
- 2011-09-15 WO PCT/JP2011/071765 patent/WO2012036313A1/en active Application Filing
- 2011-09-15 KR KR1020157028102A patent/KR20150119496A/en not_active Application Discontinuation
- 2011-09-15 KR KR1020187003512A patent/KR20180017220A/en active Search and Examination
- 2011-09-15 KR KR1020137005982A patent/KR20130060290A/en not_active Application Discontinuation
- 2011-09-15 US US13/817,997 patent/US20130149187A1/en not_active Abandoned
- 2011-09-15 CN CN201180044131.4A patent/CN103097564B/en active Active
- 2011-09-15 KR KR1020157034409A patent/KR102065814B1/en active IP Right Grant
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3468156B2 (en) | 1999-04-13 | 2003-11-17 | 住友金属工業株式会社 | Ferritic stainless steel for automotive exhaust system parts |
JP3397167B2 (en) | 1999-04-16 | 2003-04-14 | 住友金属工業株式会社 | Ferritic stainless steel for automotive exhaust system parts |
JP3446667B2 (en) | 1999-07-07 | 2003-09-16 | 住友金属工業株式会社 | Ferritic stainless steel, ferritic stainless steel ingot excellent in workability and toughness, and method for producing the same |
WO2003004714A1 (en) | 2001-07-05 | 2003-01-16 | Nisshin Steel Co., Ltd. | Ferritic stainless steel for member of exhaust gas flow passage |
JP2006037176A (en) | 2004-07-28 | 2006-02-09 | Nisshin Steel Co Ltd | Ferritic stainless steel for exhaust manifold |
KR20080052501A (en) * | 2006-12-07 | 2008-06-11 | 닛신 세이코 가부시키가이샤 | Ferritic stainless steel for automobile exhaust gas passage components and welded steel pipe |
JP2008240143A (en) | 2007-02-26 | 2008-10-09 | Nippon Steel & Sumikin Stainless Steel Corp | Ferritic stainless steel sheet having excellent heat resistance |
KR20090031858A (en) * | 2007-02-26 | 2009-03-30 | 닛폰 스틸 앤드 스미킨 스테인레스 스틸 코포레이션 | Ferritic stainless steel sheet having excellent heat resistance |
JP2009235555A (en) * | 2008-03-28 | 2009-10-15 | Nippon Steel & Sumikin Stainless Steel Corp | Heat resistant ferritic stainless steel sheet having excellent oxidation resistance |
KR20130060290A (en) * | 2010-09-16 | 2013-06-07 | 닛폰 스틸 앤드 스미킨 스테인레스 스틸 코포레이션 | Heat-resistant ferrite-type stainless steel plate having excellent oxidation resistance |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018117508A1 (en) | 2016-12-22 | 2018-06-28 | 주식회사 포스코 | Cold-rolled steel sheet having excellent corrosion resistance and formability, and method for manufacturing same |
KR20190077874A (en) | 2017-12-26 | 2019-07-04 | 주식회사 포스코 | Cold-rolled steel sheet for exhaust system having excellent corrosion resistance and formability ad manufacturing method thereof |
Also Published As
Publication number | Publication date |
---|---|
EP2617854A1 (en) | 2013-07-24 |
JP5709875B2 (en) | 2015-04-30 |
KR20180017220A (en) | 2018-02-20 |
KR20150119496A (en) | 2015-10-23 |
EP2617854A4 (en) | 2018-01-10 |
US20130149187A1 (en) | 2013-06-13 |
CN103097564A (en) | 2013-05-08 |
KR102065814B1 (en) | 2020-01-13 |
CN103097564B (en) | 2015-11-25 |
JPWO2012036313A1 (en) | 2014-02-03 |
KR20130060290A (en) | 2013-06-07 |
EP2617854B1 (en) | 2019-09-11 |
WO2012036313A1 (en) | 2012-03-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101619008B1 (en) | Heat-resistant austenitic stainless steel sheet | |
KR102065814B1 (en) | Heat-resistant ferrite-type stainless steel plate having excellent oxidation resistance | |
JP5546911B2 (en) | Ferritic stainless steel sheet with excellent heat resistance and workability | |
KR101744432B1 (en) | Heat-resistant austenitic stainless steel sheet | |
JP4702493B1 (en) | Ferritic stainless steel with excellent heat resistance | |
JP5546922B2 (en) | Ferritic stainless steel sheet with excellent heat resistance and workability and method for producing the same | |
JP5362582B2 (en) | Ferritic stainless steel with excellent corrosion resistance and stretch formability and method for producing the same | |
JP5141296B2 (en) | Ferritic stainless steel with excellent high temperature strength and toughness | |
JP5846950B2 (en) | Ferritic stainless steel hot-rolled steel sheet and method for producing the same, and method for producing ferritic stainless steel sheet | |
JP5012243B2 (en) | Ferritic stainless steel with excellent high-temperature strength, heat resistance and workability | |
JP5125600B2 (en) | Ferritic stainless steel with excellent high-temperature strength, steam oxidation resistance and workability | |
CN108026623B (en) | Ferritic stainless steel | |
JP5937861B2 (en) | Heat-resistant ferritic stainless steel sheet with excellent weldability | |
JP5677819B2 (en) | Ferritic stainless steel plate with excellent oxidation resistance | |
US20210032731A1 (en) | Ferritic stainless steel | |
US20190382874A1 (en) | Ferritic stainless steel and ferritic stainless steel for automobile exhaust gas passage member |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A107 | Divisional application of patent | ||
E902 | Notification of reason for refusal | ||
A107 | Divisional application of patent | ||
E601 | Decision to refuse application | ||
AMND | Amendment | ||
J201 | Request for trial against refusal decision | ||
J301 | Trial decision |
Free format text: TRIAL NUMBER: 2018101003650; TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20180831 Effective date: 20191129 |
|
S901 | Examination by remand of revocation | ||
GRNO | Decision to grant (after opposition) | ||
GRNT | Written decision to grant |