JP3546714B2 - Cr-containing steel with excellent high-temperature strength, workability and surface properties - Google Patents
Cr-containing steel with excellent high-temperature strength, workability and surface properties Download PDFInfo
- Publication number
- JP3546714B2 JP3546714B2 JP24164798A JP24164798A JP3546714B2 JP 3546714 B2 JP3546714 B2 JP 3546714B2 JP 24164798 A JP24164798 A JP 24164798A JP 24164798 A JP24164798 A JP 24164798A JP 3546714 B2 JP3546714 B2 JP 3546714B2
- Authority
- JP
- Japan
- Prior art keywords
- less
- steel
- workability
- surface properties
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Heat Treatment Of Steel (AREA)
Description
【0001】
【発明の属する技術分野】
この発明は、自動車やオートバイのエンジンや火力発電プラントの排気系部材などの使途に好適な、高温強度、加工性および表面性状に優れたCr含有鋼に関する。
【0002】
【従来の技術】
自動車の排気系環境で用いられる部材のうち、排気マニホールドには、優れた高温強度が必要であり、従来から、Nbを添加したSUS 430J1L(17Cr−0.4Si−0.4Nb−0.5Cu)鋼が使用されてきた。しかし、一般に、Nb添加鋼は常温の強度が高いために、加工し難く、その改善が求められていた。
一方、マフラーのように、比較的低温度域で用いられる排気系部材には、加工性の上から低い降伏強度(YS)が必要であるため、従来型のNb添加鋼は適当ではなく、CrあるいはMoを添加することによって耐食性を向上させたTi添加鋼が主として使用されてきた。このTi添加鋼としては、例えば、Type432(17Cr−Ti−0.5Mo)鋼やType436(17Cr−Ti−1.3Mo)鋼などが挙げられ、これらは必要な耐食性に応じて選択して適用されてきた。しかしながら、これらTi添加鋼は、高温強度が低く、高温部材には適用できない上、粗大なTiNの生成に起因して表面性状が悪く、表面手入れ行う必要があり、製造性に劣るという問題を抱えていた。
【0003】
【発明が解決しようとする課題】
このように、従来から、排気系部材を製造する際には、高温部と低温部という使用温度域によって、Nb添加鋼とTi添加鋼とを区別し使い分けていたために、素材メーカー、製品メーカーの両者にとって生産効率上また管理上のネックになっていた。このため、高温部から低温部までの広い温度範囲で統一的に使用できる鋼種の開発が強く望まれていた。
かかる要請に応えるための提案がこれまでにも幾つか報告されている。例えば、特開平8−60306 号公報には、0.6 〜1.5 %Si、16〜22%Crの自動車排気系部材用フェライト系ステンレス鋼が開示されている。しかし、この鋼は、その明細書中で、排気マニフォールドからセンターパイプと明記されているように、排気系高温部についての材料統一を想定したものであり、マフラーまでの低温域までには適用できない。しかも、この鋼種は比較的高いSi量を含有しているので、室温強度が高く加工性に劣るものであった。
また、特開昭57−60056 号公報には、ロウ付け性を向上させたフェライト系ステンレス鋼が開示されている。しかし、この鋼も、Si含有量が0.38%以上添加されており、室温の強度が高く、加工が困難であるという問題があった。
【0004】
そこで、本発明は、自動車エンジン、オートバイエンジン、発電プラントなどの排気系部材において、高温部から低温部までの広い温度範囲で適用可能な、高温強度および加工性に優れるとともに、良好な表面性状を有する素材を提供することを目的とする。
【0005】
【課題を解決するための手段】
発明者らは、Nbを0.2 %(wt%、以下単に%)以上添加することによって、高温強度を高めた成分系をベースにして、いかに室温の強度上昇を抑えるかという点に着目して実験を重ねた。図1は、成分組成が、(0.005 〜0.010 %) C−(0.05〜0.20%) Mn−(0.01〜0.03%)P−(0.003 〜0.005 %)S−(14.0〜15.0%)Cr−(0.05 〜0.20%)Ni−(0.004 〜0.012 %) N−(0.45〜0.50%) Nbで、板厚が2mmの冷延焼鈍板を用いて、降伏強さYSに及ぼすSiの影響について整理したものである。また、カッコ内に後述するX線回折によるFe2Nb ラーベス相とNb (C, N) のX線強度比も示す。
図1から、Si量が0.10%よりも低い含有量になると、室温のYSが急激に低下するという新規な知見を得たのである。従来、Siは固溶強化元素であることから、その減少とともに室温のYSが低下するのは知られていた。しかし、Siをある臨界量以下まで低下させた場合に、図1のごとく、室温のYSが急激に低下するといった現象は予想できなかったことである。
【0006】
このような現象があらわれた理由については、必ずしも明らかではないが、図1におけるFe2Nb ラーベス相の観察結果を勘案して、以下のような機構が考えられる。すなわち、Nb添加による室温での強度上昇は、微細なNb(C、N)以外に、Fe2Nb ラーベス相によってももたらされる。そして、高温強度を確保のために、0.3 %以上のNbを添加したとき、通常のSi量の範囲では、Fe2Nb ラーベス相が析出しやすくなり、室温の強度が著しく高くなってしまう。
一方、Si含有量が0.1 %以下になると、Fe2Nb ラーベス相が著しく少なくなり、これによる強度上昇が減じて室温のYSが急激に低下する。それと同時に、低Siでは、表面性状も良好になることもわかった。また、高温になると、低Si材であってもFe2Nb は容易に析出し、高い高温強度を示すこともわかった。なお、Fe2Nb ラーベス相の析出程度の判定は、抽出残査をX線回折し、Fe2Nb ラーベス相の(112) とNb(C、N)の(200) との強度比で比較した。
上述したように、Nbを添加しても、Si含有量を規制することによって、室温におけるYSの上昇を抑制することができて、優れた高温強度と加工性、さらに良好な表面性状を共に付与できるとの結論に達し、本発明を完成するに到った。その要旨構成は以下のとおりである。
【0007】
(1) 重量%で、C:0.02%以下、Si:0.10%以下、Mn:0.4以上2.0%以下、P:0.04%以下、S:0.02%以下、Cr:3.0〜16.9%、Ni:1.0%以下、N:0.02%以下、Nb:0.36〜1.0%を含有し、残部はFeよび不可避的不純物からなることを特徴とする、高温強度、加工性および表面性状に優れたCr含有鋼。
【0008】
(2)上記 (1)に記載の鋼において、上記成分の他にさらに、重量%で、Ti:0.5 %以下、Zr:0.5 %以下、V:0.5 %以下およびAl:0.5 %以下のうちから選ばれるいずれか1種または2種以上を含有することを特徴とする、高温強度、加工性および表面性状に優れたCr含有鋼。
【0009】
(3)上記 (1)または (2)に記載の鋼において、上記成分の他にさらに、重量%で、Mo:3.0 %以下、Cu:1.0 %以下およびREM :0.3 %以下のうちから選ばれるいずれか1種または2種以上を含有することを特徴とする、高温強度、加工性および表面性状に優れたCr含有鋼。
【0010】
(4)上記 (1)〜 (3)のうちのいずれか1つに記載の鋼において、上記成分の他にさらに、重量%で、Ca:0.03%以下およびB:0.005 %以下のうちの1種または2種を含有することを特徴とする、高温強度、加工性および表面性状に優れたCr含有鋼。
【0011】
(5)上記 (1)〜 (4)のうちのいずれか1つに記載の鋼において、鋼中のNbの形態は、析出物 (抽出残渣) のX線回折によるFe2Nb の(112) 強度とNb (C, N) の(200) 強度との比が0.2 以下であることを特徴とする、高温強度、加工性および表面性状に優れたCr含有鋼。
【0012】
【発明の実施の形態】
C:0.02%以下
Cは、靱性および加工性を劣化させる元素であり、0.02%を超えるとこれら靱性、加工性への悪影響が顕著になるので、0.02%以下に限定する。靱性および加工性のうえから、Cの含有量は低いほどよく、上記範囲でも特に0.008 %以下に制限するのが望ましい。
【0013】
Si:0.10%以下
Siは、特に重要な元素の一つである。図1に示したように、Nb添加鋼でSi量が0.10%を超えると、Fe2Nb ラーベス相が著しく析出しやすく、高YSとなり、また表面性状も劣化する。よって、Si含有量は0.10%以下に制限する。
【0014】
Mn:0.4 %以上 2.0%以下
Mnは、鋼の脱酸剤としての役割を有しているため、0.4 %以上添加する。過剰に添加すると、MnSを形成し、加工性を低下させ、マフラー溶接部の耐食性を低下させる。よって、Mn含有量は2.0 %以下、好ましくは0.75%以下、さらに好ましくは0.6 %以下とする。
【0015】
P:0.04%以下
Pは、靱性およびマフラー溶接部の耐食性を劣化させる元素であるので少ないほどよい。よって、P含有量は0.04%以下、好ましくは0.03%以下、さらに好ましくは0.015 %以下とする。
【0016】
S:0.02%以下
Sは、伸びおよびr値を低下させ加工性を劣化させるほか、ステンレス鋼の基本特性である耐食性をも劣化させる元素である。よって、その含有量は0.02%以下、好ましくは0.01%以下とする。ただし、過剰に低下させるとコスト高を招いて実用的ではなくなるので、下限は0.002 %程度に止めるのが望ましい。
【0017】
Cr:3.0〜16.9%
Crは、耐酸化性および耐食性を改善するのに有用な元素である。これらの改善効果は3.0%以上の添加で現れるが、16.9%を超えて添加すると著しく加工性の劣化を招くので、3.0〜16.9%の範囲とする。Cr量は、この含有範囲内で、排気系部材として要求される耐酸化性や耐食性のレベルに応じて選択すればよい。そして、特に加工性を考慮するときのCr含有量として、好ましくは9.0〜16.9%、より好ましくは10.0〜16.9%が挙げられる。
【0018】
Ni:1.0 %以下
Niは、靱性を向上させる効果を有しているが、フェライト組織を不安定にするので、1.0 %以下、好ましくは0.05〜0.8 %、より好ましくは0.5 〜0.8 %の範囲で添加する。
【0019】
N:0.02%以下
Nは、鋼の靱性および加工性を劣化させる元素である。これらの悪影響を考慮して、N含有量は0.02%以下、好ましくは0.01%以下とする。
【0020】
Nb:0.36〜1.0%
Nbは、高温強度、加工性および溶接部の耐粒界腐食性を高める効果をもつ元素である。このような効果を発揮させるためには、0.36%以上の添加が必要であるが、1.0%を超えて添加すると、0.1%以下のSi量であっても、Fe2Nbラーベス相が多量に析出し、鋼の靱性、表面性状を劣化させるので、0.36〜1.0%の範囲で添加する。なお、Nbの好ましい添加範囲は、0.4超〜0.6%、さらに好ましくは0.45〜0.55%とするのがよい。
【0021】
上記基本元素に加えて、求められる特性に応じて以下の元素を添加することができる。
Ti:0.5 %以下
Tiは、r値を向上させる効果を有しているが、0.5 %を超えて過剰に添加すると、粗大なTi(C,N)を析出し、表面性状を劣化させるので、0.5 %以下の範囲で添加する。なお、好ましくは、8(%C+%N)以下とするのがよい。
【0022】
Zr:0.5 %以下
Zrは、r値および耐酸化性を向上させる効果を有しているが、0.5 %を超えて添加すると、粗大なZr(C,N)を析出し、表面性状を劣化させるので、0.5 %以下の範囲で添加する。なお、好ましくは、15(%C+%N)以下とするのがよい。
【0023】
V:0.5 %以下
Vは、r値を向上させる効果を有しているが、過剰に添加すると粗大なV(C、N)を析出し、表面性状を劣化させるので、0.5 %以下の範囲で添加する。なお、好ましいVの添加量は、0.03%以上で、15(%C+%N)以下の範囲である。
【0024】
Al:0.5 %以下
Alは、Al脱酸を行った場合に、一般に、不可避的に含有されてしまうが、特に悪影響を及ぼすことはない。このAlは、溶接時に表面保護スケールを生成し、大気中からのC、N、Oの侵入による靱性の低下を抑えるので、0.005 %以上の添加が好ましい。しかし、0.5 %超えて添加すると加工性が著しく低下するので、0.5 %以下に制限する。なお、Alの好ましい添加範囲は0.05超〜0.2 %である。また、15(%C+%N)以下を満たすことが望ましい。しかしながら、Al脱酸はコスト高となるため、コストを重要視する場合には、行わない方が好ましい。
【0025】
Mo:3.0 %以下
Moは、固溶強化作用を有し、高温強度の向上に有効であるほか、耐食性の向上にも効果のある元素である。ただし、Moは高価な元素でもあるので、過度のコスト上昇を避けるために、3.0 %以下の範囲に止めるのがよい。
【0026】
Cu:1.0 %以下
Cuは、耐食性および加工性を向上させるのに有効な元素であり、特に 0.1%以上の添加が有効である。過剰に添加するとε−Cuの析出による脆化をまねくので、添加量は1.0 %以下、好ましくは0.15超〜0.3 %未満とする。
【0027】
REM :0.3 %以下
REM は、La、Ceなどのランタノイド元素とY、Scの総称であり、工業的にはミッシュメタルなどとして添加される。このREM は耐酸化性向上に有効な元素であり、添加量の増大とともにその効果も大きくなるが、0.3 %を超えて添加すると靱性が低下するので、0.3 %以下に限定する。
【0028】
Ca:0.03%以下
Caは、スラブの鋳造時のノズル詰まりを抑制する効果を有する元素である。しかしながら、0.03%を超えて添加しても、その効果が飽和するばかりでなく、Ca含有介在物を起点とした孔食が発生して、耐食性が劣化するので、0.03%以下とする。
【0029】
B:0.005 %以下
Bは、2次加工性の向上に有効な元素である。0.005 %を超えて添加すると多量のBNを生成して加工性が劣化するので、0.005 %以下に限定する。なお、好ましい含有範囲は、その効果が顕著となる0.0004%以上で、かつ加工性の劣化がほとんどない0.0015%以下である。
【0030】
加工前の鋼中Nbの存在形態
Fe2Nb ラーベス相は、図1で示したように、YSの上昇と表面性状の劣化を招くので、加工前の鋼中のNbはFe2Nb ラーベス相としては存在しないことが望ましい。鋼中におけるFe2Nb ラーベス相の存在は、抽出残査のX線回折によって知ることができる。Nb (C, N) が優先的に析出するため、Nb (C, N) の回折ピークとFe2Nb のそれの比で検討した。
このようにして抽出残差のX線回折で検出されるFe2Nb ラーベス相の回折強度比が小さいほど、すなわちFe2Nb ラーベス相としてのNb量が少ないほど、低YS化と良好な表面性状を達成することができる。そして、抽出残査中のX線回折で、Fe2Nb ラーベス相が検出されないことがもっとも望ましい。なお、Fe2Nb ラーベス相は、加工前に検出されなくても、加工後に高温加熱された場合に析出し、検出される。このような場合、加工前に鋼中にFe2Nb が存在しないか、少量であることが重要である。
【0031】
以上述べた発明鋼の製造に当たっては、ステンレス鋼などのCr含有鋼に一般的に採用されている方法をほぼそのまま適用することができる。その好適な製造工程とその具体的条件を例示すれば、熱延後 950℃以上の温度で焼鈍し、冷間圧延率は60%以上とし、最終仕上げ焼鈍温度も 950℃以上として、途中工程で析出したFe2Nb ラーベス相を固溶させることが望ましい。
【0032】
【実施例】
次に本発明を実施例にもとづいて具体的に説明する。
表1に示す成分組成からなる鋼を溶製したのち、1250℃に加熱後、熱間圧延により5mm厚の熱延板とした。この熱延板に、焼鈍、酸洗、冷間圧延、仕上げ焼鈍および酸洗を順次施し、2mm厚の冷延焼鈍板とした。
かくして得られた冷延焼鈍板について、以下に示す方法により各種評価を行った。
(1)高温強度
板厚2mmの板状試験片を用いて、0.3 %/分の引張速度で700 ℃における0.2 %耐力を測定した。その値を次の基準で評価した。
100 MPa 以上:AA
80 MPa 以上、100 MPa 未満:A
50 MPa 以上、 80 MPa 未満:B
50 MPa 未満:C
(2)室温での加工性
圧延方向から、JIS13号Bの引張試験片(板厚2mm)を採取し、降伏強さYSを測定するとともに、伸びを測定した。このYSが小さいほど、また伸びが大きいほど加工性が優れていると言える。
(3)表面性状
熱延板の状態で、表面手入れが必要か否かを、目視で判定した。
【0033】
【表1】
【0034】
これらの試験結果を表2にまとめて示す。比較例のうち、鋼Aは従来鋼SUS430J1Lであり、Siが多すぎるため、Fe2Nb ラーベス相が多量に検出され、加工性低下の程度を表す室温のYSが高く、また表面性状も伸びも劣る。鋼Bも、Siが高いため、(14〜16%)Cr−Moレス材である発明例である鋼1〜鋼4、鋼9より、YSが高く、表面性状も伸びも劣る。鋼Cは、Nbが適正量添加されているものの、Tiが過剰に添加されているために、表面性状が劣る。鋼D,鋼Eは、Nbが添加されていないので、高温強度が低く、加工性と表面性状とが共に劣っている。
これに対して、発明例である鋼1〜鋼11は、高温強度は従来鋼(SUS430J1L)以上の値を示すうえ、低YSで加工しやすく、しかも表面性状も優れている。
【0035】
【表2】
【0036】
【発明の効果】
以上説明したように、本発明によれば、高温強度、加工性および表面性状の全てに優れたCr含有鋼を提供することが可能となる。従って、自動車、オートバイのエンジンをはじめとする排気系部品において、排気マニフォールド、フロントパイプ、コンバーターシェル等の高温部にも好適に使用できるだけでなく、室温では軟質であるので、従来は加工が困難であった、マフラーやミドルパイプ等の低温部にも適用可能である。なお、本発明鋼を、耐食性が求められる低温部材として使用する場合には、必要な耐食性レベルに応じて、Cr,Mo等の添加量を調整すればよい。
また、火力発電プラントの排気経路部材も上記自動車エンジン排気部材と同様な特性が要求されるので、本発明鋼はかかる用途にも適用可能である。さらに、本発明鋼は表面性状が優れているので、表面性状が求められる他の多くの分野においても十分に使用可能である。
【図面の簡単な説明】
【図1】Si含有量が室温の降伏強さYSに及ぼす影響を示すグラフである。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a Cr-containing steel excellent in high-temperature strength, workability and surface properties, which is suitable for use in engines of automobiles and motorcycles and exhaust system members of thermal power plants.
[0002]
[Prior art]
Among members used in an exhaust system environment of an automobile, an exhaust manifold needs to have excellent high-temperature strength. Conventionally, SUS430J1L (17Cr-0.4Si-0.4Nb-0.5Cu) to which Nb is added has been used. Steel has been used. However, in general, Nb-added steel has high strength at room temperature and is therefore difficult to process, and its improvement has been demanded.
On the other hand, since exhaust members used in relatively low temperature regions, such as mufflers, require a low yield strength (YS) from the viewpoint of workability, conventional Nb-added steel is not appropriate, and Alternatively, Ti-added steel whose corrosion resistance has been improved by adding Mo has been mainly used. Examples of the Ti-added steel include Type 432 (17Cr-Ti-0.5Mo) steel and Type 436 (17Cr-Ti-1.3Mo) steel, which are selected and applied according to the required corrosion resistance. Have been. However, these Ti-added steels have low high-temperature strength, cannot be applied to high-temperature members, have poor surface properties due to the formation of coarse TiN, require surface care, and have poor productivity. I was
[0003]
[Problems to be solved by the invention]
As described above, conventionally, when manufacturing exhaust system members, Nb-added steel and Ti-added steel have been distinguished and used depending on the operating temperature range of a high-temperature portion and a low-temperature portion. Both were a bottleneck in production efficiency and management. For this reason, there has been a strong demand for the development of a steel type that can be used uniformly over a wide temperature range from a high temperature part to a low temperature part.
Several proposals have been reported to respond to such a request. For example, Japanese Patent Application Laid-Open No. H8-60306 discloses a ferritic stainless steel for automobile exhaust system members of 0.6 to 1.5% Si and 16 to 22% Cr. However, this steel assumes the unification of the material in the high temperature part of the exhaust system as clearly indicated from the exhaust manifold to the center pipe in the specification, and cannot be applied to the low temperature region up to the muffler. In addition, since this steel type contains a relatively high amount of Si, the strength at room temperature was high and the workability was poor.
Japanese Patent Application Laid-Open No. 57-60056 discloses a ferritic stainless steel with improved brazing properties. However, this steel also has a problem that the Si content is 0.38% or more, the strength at room temperature is high, and the working is difficult.
[0004]
Accordingly, the present invention provides an exhaust system member such as an automobile engine, a motorcycle engine, and a power plant, which is applicable in a wide temperature range from a high temperature part to a low temperature part, has excellent high temperature strength and workability, and has good surface properties. The purpose is to provide a material having.
[0005]
[Means for Solving the Problems]
The present inventors have paid attention to how to suppress the increase in strength at room temperature based on a component system having an increased high-temperature strength by adding 0.2% (wt%, hereinafter simply referred to as “%”) or more of Nb. And repeated the experiment. FIG. 1 shows that the component composition is (0.005 to 0.010%) C- (0.05 to 0.20%) Mn- (0.01 to 0.03%) P- (0.003 to 0%). 0.005%) S- (14.0 to 15.0%) Cr- (0.05 to 0.20%) Ni- (0.004 to 0.012%) N- (0.45 to 0.50%) %) The effects of Si on the yield strength YS were arranged using a cold-rolled annealed plate having a thickness of 2 mm in Nb. In addition, the parentheses also show the X-ray intensity ratio between the Fe 2 Nb Laves phase and Nb (C, N) by X-ray diffraction described later.
From FIG. 1, a new finding was obtained that when the amount of Si becomes lower than 0.10%, YS at room temperature sharply decreases. Conventionally, since Si is a solid solution strengthening element, it has been known that YS at room temperature decreases with the decrease. However, when Si was reduced to a certain critical amount or less, a phenomenon that YS at room temperature rapidly decreased as shown in FIG. 1 could not be expected.
[0006]
Although the reason why such a phenomenon has appeared is not necessarily clear, the following mechanism can be considered in consideration of the observation result of the Fe 2 Nb Laves phase in FIG. That is, the increase in strength at room temperature due to the addition of Nb is caused not only by fine Nb (C, N) but also by the Fe 2 Nb Laves phase. When 0.3% or more of Nb is added to ensure high-temperature strength, the Fe 2 Nb Laves phase easily precipitates in a normal Si content range, and the room temperature strength is significantly increased. .
On the other hand, when the Si content is 0.1% or less, the Fe 2 Nb Laves phase is remarkably reduced, whereby the strength increase is reduced and the YS at room temperature is rapidly lowered. At the same time, it was also found that the surface properties were improved with low Si. It was also found that Fe 2 Nb easily precipitated at a high temperature even with a low Si material, and exhibited high high-temperature strength. The degree of precipitation of the Fe 2 Nb Laves phase was determined by X-ray diffraction of the extraction residue and comparing the intensity ratio between (112) of the Fe 2 Nb Laves phase and (200) of Nb (C, N). .
As described above, even if Nb is added, the rise of YS at room temperature can be suppressed by regulating the Si content, and excellent high-temperature strength and workability, and further excellent surface properties are imparted. We have reached the conclusion that we can do it and have completed the present invention. The summary configuration is as follows.
[0007]
(1) By weight%, C: 0.02% or less, Si: 0.10% or less, Mn: 0.4 or more and 2.0% or less, P: 0.04% or less, S: 0.02% or less , Cr: 3.0 to 16.9 %, Ni: 1.0% or less, N: 0.02% or less, Nb: 0.36 to 1.0%, the balance being Fe and unavoidable impurities. A Cr-containing steel having excellent high-temperature strength, workability and surface properties.
[0008]
(2) In the steel according to the above (1), in addition to the above components, Ti: 0.5% or less, Zr: 0.5% or less, V: 0.5% or less, and Al: A Cr-containing steel excellent in high-temperature strength, workability and surface properties, characterized by containing one or more selected from 0.5% or less.
[0009]
(3) In the steel according to the above (1) or (2), in addition to the above components, Mo: 3.0% or less, Cu: 1.0% or less, and REM: 0.3% by weight%. A Cr-containing steel excellent in high-temperature strength, workability and surface properties, characterized by containing one or more selected from the following.
[0010]
(4) In the steel according to any one of the above (1) to (3), in addition to the above components, Ca: 0.03% or less and B: 0.005% or less by weight%. A Cr-containing steel excellent in high-temperature strength, workability and surface properties, characterized by containing one or two of the above.
[0011]
(5) In the steel according to any one of the above (1) to (4), the form of Nb in the steel is as follows: (112) of Fe 2 Nb by X-ray diffraction of precipitate (extraction residue) A Cr-containing steel excellent in high-temperature strength, workability and surface properties, wherein a ratio of strength to (200) strength of Nb (C, N) is 0.2 or less.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
C: 0.02% or less C is an element that deteriorates toughness and workability. If C exceeds 0.02%, these adverse effects on toughness and workability become remarkable, so C is limited to 0.02% or less. . From the viewpoint of toughness and workability, the C content is preferably as low as possible, and in the above range, it is particularly preferable to limit the content to 0.008% or less.
[0013]
Si: 0.10% or less Si is one of particularly important elements. As shown in FIG. 1, when the amount of Si exceeds 0.10% in the Nb-added steel, the Fe 2 Nb Laves phase is remarkably easily precipitated, becomes high YS, and the surface properties deteriorate. Therefore, the Si content is limited to 0.10% or less.
[0014]
Mn: 0.4% or more and 2.0% or less Mn has a role as a steel deoxidizing agent, and is added in an amount of 0.4% or more. If added in excess, it forms MnS, reduces workability and reduces the corrosion resistance of the muffler weld. Therefore, the Mn content is 2.0% or less, preferably 0.75% or less, and more preferably 0.6% or less.
[0015]
P: 0.04% or less P is an element that deteriorates the toughness and the corrosion resistance of the muffler welded portion. Therefore, the P content is set to 0.04% or less, preferably 0.03% or less, and more preferably 0.015% or less.
[0016]
S: not more than 0.02% S is an element that lowers elongation and r-value to deteriorate workability and also deteriorates corrosion resistance, which is a basic characteristic of stainless steel. Therefore, the content is set to 0.02% or less, preferably 0.01% or less. However, excessively lowering the cost will increase the cost and make it impractical, so the lower limit is desirably set to about 0.002%.
[0017]
Cr: 3.0 to 16.9 %
Cr is an element useful for improving oxidation resistance and corrosion resistance. These improvement effects appear when the addition is 3.0% or more. However, when the addition exceeds 16.9 %, the workability is remarkably deteriorated, so that the content is set in the range of 3.0 to 16.9 %. The amount of Cr may be selected within this range according to the level of oxidation resistance and corrosion resistance required for the exhaust system member. The Cr content in consideration of workability is preferably 9.0 to 16.9 %, more preferably 10.0 to 16.9 %.
[0018]
Ni: 1.0% or less Ni has the effect of improving toughness, but since it makes the ferrite structure unstable, it is 1.0% or less, preferably 0.05 to 0.8%, more preferably. Is added in the range of 0.5 to 0.8%.
[0019]
N: 0.02% or less N is an element that deteriorates the toughness and workability of steel. In consideration of these adverse effects, the N content is set to 0.02% or less, preferably 0.01% or less.
[0020]
Nb: 0.36 to 1.0%
Nb is an element having an effect of improving high-temperature strength, workability, and intergranular corrosion resistance of a welded portion. In order to exert such an effect, it is necessary to add 0.36 % or more. However, if it exceeds 1.0%, even if the amount of Si is 0.1% or less, Fe 2 Nb Since the Laves phase precipitates in large amounts and deteriorates the toughness and surface properties of steel, it is added in the range of 0.36 to 1.0%. The preferable range of Nb is more than 0.4 to 0.6%, more preferably 0.45 to 0.55%.
[0021]
In addition to the above basic elements, the following elements can be added according to required characteristics.
Ti: 0.5% or less Ti has the effect of improving the r value. However, if it is added in excess of 0.5%, coarse Ti (C, N) precipitates and the surface properties are reduced. Since it deteriorates, it is added in a range of 0.5% or less. Preferably, it is set to 8 (% C +% N) or less.
[0022]
Zr: 0.5% or less Zr has the effect of improving the r value and oxidation resistance. However, if added in excess of 0.5%, coarse Zr (C, N) precipitates and the surface Since it deteriorates properties, it is added in a range of 0.5% or less. In addition, it is preferable that it is 15 (% C +% N) or less.
[0023]
V: 0.5% or less V has the effect of improving the r value, but if added excessively, coarse V (C, N) precipitates and deteriorates the surface properties. Add in the following range. Note that the preferable amount of V added is 0.03% or more and 15 (% C +% N) or less.
[0024]
Al: 0.5% or less Al is generally inevitably contained when Al deoxidation is performed, but does not have any adverse effect. Since Al forms a surface protection scale at the time of welding and suppresses a decrease in toughness due to penetration of C, N, and O from the atmosphere, the addition of 0.005% or more is preferable. However, if it is added in excess of 0.5%, the workability is significantly reduced, so the content is limited to 0.5% or less. The preferred range of Al addition is more than 0.05 to 0.2%. Further, it is desirable to satisfy 15 (% C +% N) or less. However, since Al deoxidation is costly, it is preferable not to perform it when importance is attached to cost.
[0025]
Mo: 3.0% or less Mo is an element that has a solid solution strengthening action, is effective in improving high-temperature strength, and is also effective in improving corrosion resistance. However, Mo is also an expensive element, so it is better to keep it within the range of 3.0% or less in order to avoid excessive cost increase.
[0026]
Cu: 1.0% or less Cu is an effective element for improving corrosion resistance and workability, and particularly, 0.1% or more is effective. Excessive addition may cause embrittlement due to precipitation of ε-Cu, so the added amount is 1.0% or less, preferably more than 0.15 to less than 0.3%.
[0027]
REM: 0.3% or less REM is a general term for lanthanide elements such as La and Ce, and Y and Sc, and is industrially added as a misch metal or the like. This REM is an element effective for improving the oxidation resistance, and its effect increases as the amount of addition increases, but if added in excess of 0.3%, the toughness decreases, so it is limited to 0.3% or less.
[0028]
Ca: 0.03% or less Ca is an element having an effect of suppressing nozzle clogging during casting of a slab. However, even if it is added in excess of 0.03%, not only the effect is saturated, but also pitting corrosion originating from Ca-containing inclusions is generated and the corrosion resistance is deteriorated. I do.
[0029]
B: 0.005% or less B is an element effective for improving the secondary workability. If it is added in excess of 0.005%, a large amount of BN is generated and the workability deteriorates, so the content is limited to 0.005% or less. A preferable content range is 0.0004% or more at which the effect is remarkable, and 0.0015% or less at which there is almost no deterioration in workability.
[0030]
As shown in FIG. 1, the existence form of Nb in the steel before processing The Fe 2 Nb Laves phase causes an increase in YS and deterioration of the surface properties, so that the Nb in the steel before processing is converted to the Fe 2 Nb Laves phase. Desirably does not exist. The presence of the Fe 2 Nb Laves phase in the steel can be known by X-ray diffraction of the extraction residue. Since Nb (C, N) is preferentially precipitated, the diffraction peak of Nb (C, N) and the ratio of that of Fe 2 Nb were examined.
The lower the diffraction intensity ratio of the Fe 2 Nb Laves phase detected by X-ray diffraction of the extracted residue in this way, ie, the smaller the amount of Nb as the Fe 2 Nb Laves phase, the lower the YS and the better the surface properties. Can be achieved. It is most desirable that the X-ray diffraction during the extraction residue does not detect the Fe 2 Nb Laves phase. Note that the Fe 2 Nb Laves phase is precipitated and detected when heated at a high temperature after processing, even if it is not detected before processing. In such a case, it is important that Fe 2 Nb does not exist in the steel before the working or that Fe 2 Nb is present in a small amount.
[0031]
In the production of the invention steel described above, a method generally used for Cr-containing steel such as stainless steel can be applied almost as it is. As an example of the preferable manufacturing process and the specific conditions, annealing at a temperature of 950 ° C. or more after hot rolling, a cold rolling reduction of 60% or more, a final finish annealing temperature of 950 ° C. or more, and an intermediate process Desirably, the precipitated Fe 2 Nb Laves phase is dissolved.
[0032]
【Example】
Next, the present invention will be specifically described based on examples.
After smelting a steel having the composition shown in Table 1, the steel was heated to 1250 ° C., and then hot-rolled into a hot-rolled sheet having a thickness of 5 mm. This hot-rolled sheet was sequentially subjected to annealing, pickling, cold rolling, finish annealing, and pickling to obtain a cold-rolled annealed sheet having a thickness of 2 mm.
Various evaluations were performed on the thus obtained cold rolled annealed sheets by the following methods.
(1) High-Temperature Strength A 0.2% proof stress at 700 ° C. was measured at a tensile rate of 0.3% / min using a plate-like test piece having a thickness of 2 mm. The value was evaluated according to the following criteria.
100 MPa or more: AA
80 MPa or more and less than 100 MPa: A
50 MPa or more and less than 80 MPa: B
Less than 50 MPa: C
(2) Workability at Room Temperature Tensile test pieces (thickness: 2 mm) according to JIS No. 13B were sampled from the rolling direction, the yield strength YS was measured, and the elongation was measured. It can be said that the smaller the YS and the larger the elongation, the better the workability.
(3) Surface Properties In the state of the hot-rolled sheet, it was visually determined whether or not surface care was necessary.
[0033]
[Table 1]
[0034]
Table 2 summarizes the test results. Among the comparative examples, steel A is conventional steel SUS430J1L, which has too much Si, so that a large amount of Fe 2 Nb Laves phase is detected, YS at room temperature, which indicates the degree of deterioration in workability, is high, and both surface properties and elongation are low. Inferior. Steel B also has a high Si, and therefore has a higher YS and is inferior in surface properties and elongation than
On the other hand, steels 1 to 11 which are the examples of the invention have high-temperature strength higher than that of conventional steel (SUS430J1L), are easy to work with low YS, and have excellent surface properties.
[0035]
[Table 2]
[0036]
【The invention's effect】
As described above, according to the present invention, it is possible to provide a Cr-containing steel having excellent high-temperature strength, workability, and surface properties. Therefore, in exhaust system parts such as automobile and motorcycle engines, not only can it be suitably used in high-temperature parts such as exhaust manifolds, front pipes, and converter shells, but also because they are soft at room temperature, processing is conventionally difficult. Also, the present invention can be applied to low-temperature parts such as mufflers and middle pipes. When the steel of the present invention is used as a low-temperature member requiring corrosion resistance, the amounts of Cr, Mo, and the like may be adjusted according to the required corrosion resistance level.
Further, since the exhaust path member of the thermal power plant is required to have the same characteristics as the exhaust member of the automobile engine, the steel of the present invention is applicable to such an application. Furthermore, since the steel of the present invention has excellent surface properties, it can be sufficiently used in many other fields where surface properties are required.
[Brief description of the drawings]
FIG. 1 is a graph showing the effect of the Si content on the yield strength YS at room temperature.
Claims (5)
Ti:0.5 %以下、
Zr:0.5 %以下、
V:0.5 %以下および
Al:0.5 %以下
のうちから選ばれるいずれか1種または2種以上を含有することを特徴とする、高温強度、加工性および表面性状に優れたCr含有鋼。The steel according to claim 1, further comprising:
Ti: 0.5% or less,
Zr: 0.5% or less,
V: 0.5% or less and Al: 0.5% or less selected from the group consisting of one or more selected from the group consisting of Cr, which is excellent in high-temperature strength, workability and surface properties. steel.
Mo:3.0 %以下、
Cu:1.0 %以下および
REM :0.3 %以下
のうちから選ばれるいずれか1種または2種以上を含有することを特徴とする、高温強度、加工性および表面性状に優れたCr含有鋼。The steel according to claim 1 or 2, further comprising, in addition to the above components,
Mo: 3.0% or less,
Characterized by containing one or two or more selected from Cu: 1.0% or less and REM: 0.3% or less, containing Cr excellent in high-temperature strength, workability and surface properties. steel.
Ca:0.03%以下および
B:0.005 %以下
のうちの1種または2種を含有することを特徴とする、高温強度、加工性および表面性状に優れたCr含有鋼。The steel according to any one of claims 1 to 3, further comprising, in addition to the above components,
A Cr-containing steel excellent in high-temperature strength, workability and surface properties, characterized by containing one or two of Ca: 0.03% or less and B: 0.005% or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24164798A JP3546714B2 (en) | 1998-08-27 | 1998-08-27 | Cr-containing steel with excellent high-temperature strength, workability and surface properties |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24164798A JP3546714B2 (en) | 1998-08-27 | 1998-08-27 | Cr-containing steel with excellent high-temperature strength, workability and surface properties |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000073147A JP2000073147A (en) | 2000-03-07 |
JP3546714B2 true JP3546714B2 (en) | 2004-07-28 |
Family
ID=17077436
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24164798A Expired - Fee Related JP3546714B2 (en) | 1998-08-27 | 1998-08-27 | Cr-containing steel with excellent high-temperature strength, workability and surface properties |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3546714B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1207214B1 (en) * | 2000-11-15 | 2012-07-04 | JFE Steel Corporation | Soft Cr-containing steel |
US8470237B2 (en) | 2006-05-09 | 2013-06-25 | Nippon Steel & Sumikin Stainless Steel Corporation | Stainless steel excellent in corrosion resistance, ferritic stainless steel excellent in resistance to crevice corrosion and formability, and ferritic stainless steel excellent in resistance to crevice corrosion |
JP5194512B2 (en) * | 2007-03-28 | 2013-05-08 | Jfeスチール株式会社 | Ferritic stainless steel cold-rolled sheet for exhaust system expanded members with excellent spinning processability |
JP5788946B2 (en) * | 2007-12-28 | 2015-10-07 | 新日鐵住金ステンレス株式会社 | Ferritic stainless steel for parts assembled by brazing with excellent brazing |
JP5390175B2 (en) * | 2007-12-28 | 2014-01-15 | 新日鐵住金ステンレス株式会社 | Ferritic stainless steel with excellent brazeability |
JP5462583B2 (en) | 2008-10-24 | 2014-04-02 | 新日鐵住金ステンレス株式会社 | Ferritic stainless steel sheet for EGR cooler |
CN103234989B (en) * | 2013-04-18 | 2015-03-25 | 武汉大学 | Method for determining Laves phase content in steel |
-
1998
- 1998-08-27 JP JP24164798A patent/JP3546714B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2000073147A (en) | 2000-03-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9279172B2 (en) | Heat-resistance ferritic stainless steel | |
JP4197492B2 (en) | Ferritic stainless steel for exhaust gas flow path members | |
JP4702493B1 (en) | Ferritic stainless steel with excellent heat resistance | |
TWI531665B (en) | Ferritic stainless steel having excellent oxidation resistance | |
JP5141296B2 (en) | Ferritic stainless steel with excellent high temperature strength and toughness | |
JP3903855B2 (en) | Ferritic stainless steel that is soft at room temperature and excellent in high-temperature oxidation resistance | |
JP5152387B2 (en) | Ferritic stainless steel with excellent heat resistance and workability | |
JP7009278B2 (en) | Ferritic stainless steel sheets with excellent heat resistance and exhaust parts and their manufacturing methods | |
JP4185425B2 (en) | Ferritic steel sheet with improved formability and high temperature strength, high temperature oxidation resistance and low temperature toughness at the same time | |
KR100496830B1 (en) | SOFT Cr-CONTAINING STEEL | |
JP3546714B2 (en) | Cr-containing steel with excellent high-temperature strength, workability and surface properties | |
JP3269799B2 (en) | Ferritic stainless steel for engine exhaust parts with excellent workability, intergranular corrosion resistance and high-temperature strength | |
US20200347475A1 (en) | Ferritic stainless steel sheet and method for manufacturing the same | |
JP3067577B2 (en) | Ferritic stainless steel with excellent oxidation resistance and high-temperature strength | |
JPWO2019151124A1 (en) | Ferritic stainless steel | |
JP3744403B2 (en) | Soft Cr-containing steel | |
JP4154932B2 (en) | Ferritic stainless steel with excellent high-temperature strength, high-temperature oxidation resistance, and high-temperature salt damage resistance | |
JP6624347B1 (en) | Ferritic stainless steel | |
JP3591486B2 (en) | High Cr ferritic heat resistant steel | |
JP2020050936A (en) | Stainless steel | |
JP3290751B2 (en) | High workability, high temperature, high strength ferritic stainless steel | |
JPH0578791A (en) | High toughness ferritic stainless steel for use at high temperature | |
JP5958412B2 (en) | Ferritic stainless steel with excellent thermal fatigue properties | |
JP2005200746A (en) | Ferritic stainless steel for automobile exhaust system member | |
JP3707435B2 (en) | Cr-containing steel with excellent high-temperature strength and soft at room temperature |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040323 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040405 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080423 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090423 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100423 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100423 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110423 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110423 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120423 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130423 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130423 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140423 Year of fee payment: 10 |
|
LAPS | Cancellation because of no payment of annual fees |