JP3707435B2 - Cr-containing steel with excellent high-temperature strength and soft at room temperature - Google Patents

Cr-containing steel with excellent high-temperature strength and soft at room temperature Download PDF

Info

Publication number
JP3707435B2
JP3707435B2 JP2002008748A JP2002008748A JP3707435B2 JP 3707435 B2 JP3707435 B2 JP 3707435B2 JP 2002008748 A JP2002008748 A JP 2002008748A JP 2002008748 A JP2002008748 A JP 2002008748A JP 3707435 B2 JP3707435 B2 JP 3707435B2
Authority
JP
Japan
Prior art keywords
less
room temperature
temperature strength
containing steel
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002008748A
Other languages
Japanese (ja)
Other versions
JP2003213377A (en
Inventor
宮崎  淳
研治 高尾
古君  修
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2002008748A priority Critical patent/JP3707435B2/en
Publication of JP2003213377A publication Critical patent/JP2003213377A/en
Application granted granted Critical
Publication of JP3707435B2 publication Critical patent/JP3707435B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、自動車排気管や触媒外筒材等の高温部材として用いられ、比較的安価なCr含有鋼に関するものである。さらに詳しくは、該Cr含有鋼の使用環境である高温においては十分な強度を有し、且つ、該Cr含有鋼が加工される常温付近では軟質で加工性に優れるCr含有鋼に関するものである。
【0002】
【従来の技術】
近年、自動車の燃費向上、高出力化の観点から、排気ガス温度は、近い将来、900 ℃付近まで上昇することが考えられ、自動車排気管や触媒外筒材等の高温部材に用いることが出来、かつ、比較的安価なCr含有鋼の開発が待たれている。なお、一般にフェライト系ステンレス鋼と称される鋼はCr含有鋼の一種である。
【0003】
従来知られている、自動車排気管や触媒外筒材等の高温部材に用いるCr含有鋼としては、高温強度を向上させるためにNbを積極的に添加したSUS430LXがある。しかしながら、Nbは炭窒化物を形成して室温における降伏強度(YS)を高めるので、加工性を確保しながら高温強度を付与するためには、製造工程条件を厳しく管理する必要がある。さらに、Cr量も比較的多く16質量%以上と高めであり、経済的に不利である。
【0004】
このような問題に対して、特開平6−136488号公報は、SUS444の成分を基に、Nbを添加せずにMoおよびWの複合添加により高温強度を補ったCr含有鋼を開示している。しかしながら、特開平6−136488号公報に開示されたCr含有鋼は、室温で硬質であり、室温での伸びが劣るうえに、自動車の排気管、マフラー、燃料電池関連部材等に加工することが困難で、成形性に問題があった。さらに加工作業を行うと金型の消耗が激しいという成形加工性にも問題があった。
【0005】
【本発明が解決しようとする課題】
本発明は、前記した問題に鑑み、高温強度に優れ、かつ室温で加工性の高い、すなわち軟質なCr含有鋼を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明のCr含有鋼は、質量%で、C:0.02%以下、Si:2%以下、Mn:2%以下、P:0.06%以下、S:0.02%以下、Al:0.1 %以下、Ni:1%以下、Cr:6%を超え40%以下、N:0.02%以下、Mo:1.0 %超え3%以下、W:1.0 %超え5%以下、〔Mo〕+〔W〕:%超え8%以下、B:0.0001%以上0.01%以下を含有し、かつ、(Ti、V、Zr)のうちから選ばれる1種または2種以上を、Ti:1%以下、V:1%以下、Zr:0.5 %以下含有し、そのうえ、5×(〔C〕+〔N〕)≦〔Ti〕+〔V〕+〔Zr〕≦1を満足し、残部がFeおよび不可避的不純物からなるCr含有鋼である。このCr含有鋼は、さらに、質量%でCu:1%以下を含有し、あるいはさらに質量%でCa:0.01%以下を含有してなるようにしてもよい。
【0007】
ここで〔Mo〕、〔W〕、〔C〕、〔N〕、〔Ti〕、〔Vr〕、および〔Zr〕は各元素の含有量(質量%)を指す。
【0008】
【発明の実施の形態】
以下、この発明の作用について述べる。最初にこの発明に至った経緯を実験結果に基づいて説明する。
本発明者らは室温での軟質化を考え、Nb添加しないCr含有鋼板について室温でのYSおよび高温強度と検討した。特に、Mo、Wの単独添加、あるいは複合添加した場合について詳細に検討し、その結果、以下の重要な知見1〜4を新規に発見して本発明を完成させた。
【0009】
(知見1):Mo、Wを単独で多量に添加すると成分によっては、再結晶焼鈍後も、MoまたはWのラーベス相が多量に析出している(:Fe2Mタイプの金属間化合物、以下単にラーベス相と称する。)。図1に、Mo、Wをそれぞれ単独添加した場合の室温のYSの変化を示す。Mo、Wラーベス相が析出しない場合、Mo、Wは固溶しており固溶強化(グラフの傾き)は、Moの単独添加では40MPa /1%、Wの単独添加では20MPa /1%である。一方、Siが高いと(図中○印および△印)、Moの単独添加、Wの単独添加のどちらの場合でも、MoまたはWラーベス相が多量に析出して、Fe2Mタイプの析出物により、室温では著しく硬質となってしまうことがわかった。なお、Si量の違いによる各々のYSの違いを補正するため、供試鋼と15Cr-0.8Si-Mo 系、18Cr-0.1-Si-Mo系、15Cr-0.8Si-W系、17Cr-0.4Si-W系に分類し、各系のMoまたはW添加を行わない鋼種のYSを図1中では一致させ、図1中の各室温での降伏点は、MoまたはWの添加による増分を示した。以下の図2〜図4も同様である。
【0010】
(知見2):Moラーベス相が析出すると、(Fe、Cr)2Mo としてFeの一部がCrに置換されているため、耐食性と高温強度に有効な母相の固溶Moおよび固溶Crが低下し、室温、高温での耐食性および高温強度が劣化する。図2にMo、Wを単独添加した場合の高温強度(900 ℃の 0.2%耐力)を示す。Siが 0.8質量%と高いと、Moの単独添加、Wの単独添加のどちらの場合でも、ラーベス相が析出するようになり、Mo又はWの添加量を増大しても固溶Mo、Wが飽和するため、高温強度があまり向上しなくなることがわかった。
【0011】
(知見3):固溶Wに対するSiの影響を調べるため、700 ℃−10時間の時効処理により、Wラーベス相の析出を促進させ、評価した。図3に示すように、低Si化(0.5 質量%)した場合には、Wの添加を増大してもラーベス相が析出せず、固溶Wが増えることがわかった。
(知見4):高温強度(900 ℃の 0.2%耐力)は、Moの単独添加では2%以上で高温強度が飽和するが、Moを2%で一定としてWを複合添加していくと、Moの単独添加より高温強度が高くなることがわかった(図4)。すなわち、高温強度の向上には、MoとWの複合添加が極めて効果的であることを発見した。
【0012】
なお、図1、2、4での室温のYSおよび高温強度(900 ℃の 0.2%耐力)の試験方法詳細は、後述する実施例の条件と同じである。
従来、ラーベス相析出物の制御方法を考慮していなかったので、添加したMo、W、Crの一部がラーベス相として析出状態となり、添加元素(Cr、Mo、W)の固溶効果が飽和しているのを知らず、さらに多くのCr、Mo、Wを添加していたのが実情であった。
【0013】
この結果、Mo、Wラーベス相の析出による効果が加わり、室温で著しく硬質化してしまい、加工性が悪くなっていたことを突き止めた。
本発明は、これらの知見を基にして、MoとWの複合添加量により、再結晶焼鈍後のラーベス相の析出を可能な限り抑制し、Mo、Wの添加量を制限して、本来のCr、Mo、Wの効果を十分に引き出すことができる成分系としたことが本願の特徴である。
【0014】
以下に、本特許請求項に記載の各成分元素の含有量について、その範囲を限定した理由を説明する。単位は重量%である。
C:0.02%以下
Cは、室温での成形性を劣化させる元素であり、0.02%超えになると靱性も成形性の劣化も顕著となるため、0.02%以下に限定する。成形性のためには、Cの含有量は低いほど良く、0.008 %以下が望ましい。
【0015】
Si:2%以下
Siは、この発明にとって最も重要な元素の一つである。添加したMo、W、Crの一部がラーベス相として析出してしまうのを抑制し、本来のCr、Mo、Wの効果を十分に引き出すことができるようにするため、2%以下に限定する。Si含有量は、低い程好ましく、好ましくは1%以下、さらに好ましくは、0.5 %以下、特に好ましくは、0.1 %以下である。
【0016】
Mn:2%以下
Mnは、鋼の脱酸剤として知られているが、過剰な添加は、MnS を形成し、成形性、耐食性を低下させるとともに、Moラーベス相の析出も促進させるため、Mn含有量は2%以下とした。Mn含有量は低い程好ましく、好ましくは、1%以下、さらに好ましくは、0.2 %以下である。一方、耐酸化性には、Mnが高い方が好ましい。耐酸化性を重視する時は、Mn1%超えが好ましい。
【0017】
P:0.06%以下
Pは、靱性を劣化させる元素であり、0.06%以下とした。P含有量は少ないほど良く、0.04重量%以下であることが望ましい。過剰の低下はコスト高になるため、0.025 %超え、0.06%以下が好ましい。
S:0.02%以下
Sは、伸びおよびr値を低下させ、成形性を劣化させるとともに、Cr含有鋼の基本特性である耐食性を劣化させる元素であり、その含有量の上限を0.02%とした。しかしながら、過剰の低下はコスト高になるため、0.002 %を超えが好ましい。よって、好ましくは 0.002%を超え、0.02%以下とする。
【0018】
Al:0.1 %以下
Alは、一般に、鋼の脱酸剤として使用するが、0.1 %超えになると、加工性の劣化が著しいため、0.1 %以下に限定する。脱酸剤として使用しない場合、Alは0.005 %未満となるが、悪影響はない。また、Alは溶接時に表面保護スケールを生成し、大気中からC、N、Oの侵入を防ぎ、溶接部の靱性を向上する効果があり、0.02%以上の添加が好ましい。
【0019】
Ni:1%以下
Niは靱性の向上に有効である。ただし高価な元素であり、効果も飽和するので1%以下に限定する。
Cr:6%を超え40%以下
Crは、本発明で重要な元素である。6%超えの添加で、耐酸化性、耐食性に顕著な効果がある。一方、添加量が多すぎると、Mo、Wが添加されているCr含有鋼の場合、Moの析出を促進させて、Moの耐食性への効果を滅じてしまう。よって、40%以下に限定する。耐酸化性、耐食性の必要程度に応じて増減できる。
【0020】
N:0.02%以下
Nは、鋼の靱性および成形性を劣化させる元素である。0.02%超えになると靱性および成形性の劣化が顕著となるので、0.02%以下に限定する。Nの含有量は少ないほど良く、0.01%以下であることが望ましい。
(Ti、V、Zr)のうちから選ばれる1種または2種以上を、Ti:1%以下、V:1%以下、Zr:0.5 %以下含有し、そのうえ、5×(〔C〕+〔N〕)≦〔Ti〕+〔V〕+〔Zr〕≦1とする理由は以下のとおりである。
【0021】
〔Ti〕+〔V〕+〔Zr〕は、成形性の向上、溶接部の粒界腐食性向上のため、5×(〔C〕+〔N〕)以上添加し、かつ粗大なM(C、N)型析出物(MはTi、V及び/又はZr)の析出による表面性状の劣化を防止するため1%以下とする。〔Ti〕+〔V〕+〔Zr〕は、好ましくは、10×(〔C〕+〔N〕)超えで 0.4%以下である。
【0022】
しかしながら、Tiが1%超えの過剰の添加は、粗大なTi(C、N)を析出し、表面性状を劣化させるため、1%以下に制限する必要がある。またVは、1%超えの過剰の添加は、粗大なV(C、N)を析出し、表面性状を劣化させるため、1%以下に制限する。Zrも0.5 %超えの過剰な添加は、粗大なZr(C、N)を析出し、表面性状を劣化させるため、0.5 %以下に制限する。以上の(Ti、V、Zr)のうちから選ばれる1種または2種以上を添加する。
MoおよびW
Mo:1.0 %超え3%以下
Moは、本発明のCr含有鋼にとって最も重要な元素である。本元素は、固溶により耐食性、高温強度の向上に寄与するため、1.0 %以上添加する。一方、3%超えの添加は、伸びを著しく低下させるため、3%以下に限定する。
【0023】
W:1.0 %超え5%以下
Wは、本発明のCr含有鋼にとって最も重要な元素である。本元素は、固溶により耐食性、高温強度の向上に寄与するため、1.0 %以上添加する。一方、5%超えの添加は、伸びを著しく低下させるため、5%以下に限定する。
〔Mo〕+〔W〕:%超え8%以下
WとMoの複合添加によって、特に%を超えたWとMoの複合添加は、各々の単独添加よりも著しく高温強度を向上させる。よって、%以上添加する。一方、8%超えの複合添加は、伸びを著しく低下させるため、8%以下に限定する。WとMoの複合添加量は、好ましくは4%超え6%以下。さらに好ましくは、4%超え5%以下である。
【0024】
B:0.0001%以上0.01%以下
Bは、重要な元素である。本発明のCr含有鋼は、〔Mo〕+〔W〕>3.0 %であるため、靱性が低い。それを改善するために、必要な元素である。靱性改善効果には、0.0001%以上含有させる。0.01%を超えると多量のBNの生成により成形性が劣化するので、0.01%以下に限定する。B含有量は好ましくは、0.0005%以上 0.005%以下とする。
【0025】
以下の元素は任意である。
Cu、耐食性向上に有効であるため、添加してもよい。しかしながら、Cuは、1%を超えるとε−Cuの析出により脆化するため、1.0 %以下に限定する。
Ca:0.01%以下
Caでは、鋳造時の介在物によるノズル詰まりを防止する効果があり、必要に応じて添加する。0.01%を超えて添加しても効果が飽和するばかりでなく、Caを含む介在物が孔食の起点となり、耐食性を劣化させるため、0.01%を上限とする。好ましくは、0.0001%以上 0.003%以下である。
【0026】
Co:靱性改善に有効であり、添加してもよい。この効果は0.01%から顕著で 0.5%で飽和する。よって0.01%以上 0.5%以下とする。
【0027】
【実施例】
表1に示す成分組成からなる鋼を溶製し、スラブとしたのち、このスラブを1150℃に加熱後、熱間圧延により4mm厚の熱延板とした。さらに、焼鈍、酸洗、冷間圧延、仕上げ焼鈍、酸洗を順次行い、1.5mm 厚の冷延焼鈍板とした。かくして得られた冷延焼鈍板について、以下に示す方法により室温での軟質性および高温強度を評価した。
1.室温での軟質性
上記の冷延焼鈍板から引張り試験片長さ方向が、圧延方向(L方向)と平行であるL方向引張り試験片素材、圧延方向に対し45度をなすD方向引張り試験片素材および圧延方向に対し90度をなすC方向引張り試験片素材をそれぞれ採取し、機械加工により13号B引張り試験片(JIS Z 2201)とした。なお、引張り試験片厚み方向は冷延焼鈍板の板厚h方向と一致させ、かつ引張り試験片厚さは冷延焼鈍板の板厚h(1.5mm 厚)寸法のままとした。
【0028】
このL、CおよびD方向引張り試験片について、JIS Z 2241に準拠して室温で引張り速度10mm/min での引張り試験を行い、YS(降伏強度)を測定し、下式で示す平均YS≦380MPaを満たす場合、室温で軟質(表1中○印)とし、その条件を満たさない場合、室温で硬質(表1中×印)と評価した。
平均YS=(YS(L) +2YS(D) +YS(C) )/4
2.高温強度
上述したL方向引張り試験片についてのみ、JIS G 0567に準拠して900 ℃で 0.3%/min の歪み速度で 0.2%耐力を測定し、高温強度を評価した。25MPa 以上を高温強度に優れる(表1中○印)とし、23MPa 未満を高温強度が劣る(表1中×印)とした。
3.その他
靭性は、板厚hが1.5 mm厚の冷延鋼板から、シャルピー衝撃試験片長さ方向が圧延方向に対し90度をなすC方向シャルピー衝撃試験片素材を採取し、JIS Z 2202に準拠し、シャルピー衝撃試験片の長さが55mm、高さが10mmでかつ幅Wが1.5mm である2mmVノッチシャルピー衝撃試験片とした。なお、シャルピー衝撃試験片の幅W寸法は冷延焼鈍板の板厚h(1.5mm 厚)のままとした。
【0029】
このようなシャルピー衝撃試験片を用い、JIS Z 2242に準拠し、−30℃でシャルピー衝撃試験を行い、吸収エネルギーが50J/cm2 以上の場合を○、それ未満の場合を×とした。
室温での軟質性、高温強度および靱性を表1に示した。
【0030】
【表1】

Figure 0003707435
【0031】
発明鋼(No.1−)は、いずれも高温強度に優れ、かつ室温で軟質である。そのうえ、靱性も良好である。
比較鋼A、Bは、Mo、Wの単独添加であり、Mo、Wの各含有量が本発明の範囲を外れ、また比較鋼Cは、Wの含有量とBの含有量が本発明の範囲を外れ、ラーベス相が多量に析出するため、高温強度もあまり向上せず、室温で硬質である。なお、比較鋼A、BおよびCは、靱性も悪い。比較鋼Dは、Wの含有量と〔Mo〕+〔W〕が本発明の範囲を外れ、高温強度が不十分である。
【0032】
【発明の効果】
以上のごとく本発明によれば、固溶Mo、Wの効果を最大限に引き出すことが可能となり、最低限のMo、W添加量で高耐食性を有し、高温強度に優れ、室温で軟質な鋼とすることができる。その結果、高い高温強度が要求される用途部材に適用することができ、そのような部材に室温で成形する際、軟質であるため、金型の消耗が抑制できる。
【0033】
特に、自動車排気部材、例えば、マフラー、コンバーターケース、エキゾーストマニフォールド、排気管等に好適に使用できる。また、燃料電池のセパレーター、あるいは燃料電池周辺の改質機も高い耐食性、高い高温強度、室温での軟質さが重要であり本用途に最適である。また、火力発電システムの排気経路部材にも自動車エンジン排気部材同様な特性が要求されるため、適用可能である。さらに、モール材、および厨房品あるいは燃料系(即ちガソリンタンクやフィラーパイプ)部材等にも好適に使用できる。
【0034】
また、これらに限らず、高耐食性、高い高温強度、室温での軟質さの要求される用途に幅広く活用でき、その工業的価値は極めて高い。
【図面の簡単な説明】
【図1】室温での降伏点とMoまたはW含有量の関係を示すグラフである。
【図2】900℃での0.2%耐力とMoまたはW含有量の関係を示すグラフである。
【図3】時効処理後の固溶W量とMoまたはW含有量の関係を示すグラフである。
【図4】900℃での0.2%耐力に対するMoとWの複合添加効果を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a relatively inexpensive Cr-containing steel that is used as a high-temperature member such as an automobile exhaust pipe and a catalyst outer cylinder material. More specifically, the present invention relates to a Cr-containing steel that has sufficient strength at a high temperature, which is the environment in which the Cr-containing steel is used, and is soft and excellent in workability near the normal temperature at which the Cr-containing steel is processed.
[0002]
[Prior art]
In recent years, it has been considered that the exhaust gas temperature will rise to around 900 ° C in the near future from the viewpoint of improving the fuel efficiency and increasing the output of automobiles, and can be used for high-temperature members such as automobile exhaust pipes and catalyst outer cylinders. The development of relatively inexpensive Cr-containing steel is awaited. Note that steel generally called ferritic stainless steel is a kind of Cr-containing steel.
[0003]
As a conventionally known Cr-containing steel used for high temperature members such as automobile exhaust pipes and catalyst outer cylinders, there is SUS430LX in which Nb is positively added in order to improve high temperature strength. However, since Nb forms carbonitride to increase the yield strength (YS) at room temperature, it is necessary to strictly control the manufacturing process conditions in order to provide high temperature strength while ensuring workability. Furthermore, the amount of Cr is relatively large and as high as 16% by mass or more, which is economically disadvantageous.
[0004]
For such problems, Japanese Patent Laid-Open No. 6-136488 discloses a Cr-containing steel based on the component of SUS444 and supplementing high temperature strength by adding Mo and W without adding Nb. . However, the Cr-containing steel disclosed in JP-A-6-136488 is hard at room temperature, has poor elongation at room temperature, and can be processed into automobile exhaust pipes, mufflers, fuel cell-related members, and the like. It was difficult and there was a problem in moldability. In addition, there was a problem in the moldability that the mold was consumed heavily when the work was performed.
[0005]
[Problems to be solved by the present invention]
In view of the above problems, an object of the present invention is to provide a Cr-containing steel that is excellent in high-temperature strength and has high workability at room temperature, that is, soft.
[0006]
[Means for Solving the Problems]
The Cr-containing steel of the present invention is in mass%, C: 0.02% or less, Si: 2% or less, Mn: 2% or less, P: 0.06% or less, S: 0.02% or less, Al: 0.1% or less, Ni: 1% or less, Cr: 6% to 40%, N: 0.02% or less, Mo: 1.0% to 3% or less, W: 1.0% to 5% or less, [Mo] + [W]: 4 % to 8% % Or less, B: 0.0001% or more and 0.01% or less, and one or more selected from (Ti, V, Zr) are Ti: 1% or less, V: 1% or less, Zr : Cr-containing steel containing 0.5% or less and satisfying 5 × ([C] + [N]) ≦ [Ti] + [V] + [Zr] ≦ 1 with the balance being Fe and inevitable impurities It is. This Cr-containing steel may further contain Cu: 1% or less by mass%, or may contain Ca: 0.01% or less by mass%.
[0007]
Here, [Mo], [W], [C], [N], [Ti], [Vr], and [Zr] indicate the content (mass%) of each element.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The operation of the present invention will be described below. First, the background to the present invention will be described based on experimental results.
The present inventors considered softening at room temperature, and examined Cr-containing steel sheets not containing Nb as YS and high temperature strength at room temperature. In particular, the case where Mo and W were added alone or in combination was studied in detail, and as a result, the following important findings 1 to 4 were newly discovered to complete the present invention.
[0009]
(Knowledge 1): When a large amount of Mo or W is added alone, depending on the component, a large amount of Mo or W Laves phase is precipitated even after recrystallization annealing (: Fe 2 M type intermetallic compound, hereinafter Simply called the Laves phase). FIG. 1 shows the change in YS at room temperature when Mo and W are added alone. When Mo and W Laves phases do not precipitate, Mo and W are dissolved, and the solid solution strengthening (gradient of the graph) is 40 MPa / 1% when Mo is added alone, and 20 MPa / 1% when W is added alone. . On the other hand, Si is higher (in the figure ○ mark and △ mark), single addition of Mo, in either case of a single addition of W, Mo or W Laves phases with a large amount of precipitation, Fe 2 M type precipitates Thus, it was found that it becomes extremely hard at room temperature. In addition, in order to correct each YS difference due to the difference in Si content, the test steel and 15Cr-0.8Si-Mo, 18Cr-0.1-Si-Mo, 15Cr-0.8Si-W, 17Cr-0.4Si The YS of the steel types classified into the -W system and without addition of Mo or W in each system are matched in FIG. 1, and the yield point at each room temperature in FIG. 1 indicates an increment due to the addition of Mo or W. . The same applies to FIGS. 2 to 4 below.
[0010]
(Knowledge 2): When Mo Laves phase is precipitated, part of Fe is replaced by Cr as (Fe, Cr) 2 Mo, so solid solution Mo and solid solution Cr are effective for corrosion resistance and high temperature strength. Decreases, and corrosion resistance and high temperature strength at room temperature and high temperature deteriorate. Fig. 2 shows the high-temperature strength (0.2% yield strength at 900 ° C) when Mo and W are added alone. If Si is as high as 0.8% by mass, the Laves phase will precipitate in both cases where Mo is added alone or W is added alone, and even if the amount of Mo or W added is increased, It was found that the high temperature strength was not improved so much because of saturation.
[0011]
(Knowledge 3): In order to investigate the influence of Si on solid solution W, precipitation of W Laves phase was promoted and evaluated by aging treatment at 700 ° C. for 10 hours. As shown in FIG. 3, it was found that when the Si content was reduced (0.5% by mass), the Laves phase did not precipitate even when W addition was increased, and the solid solution W increased.
(Knowledge 4): The high temperature strength (0.2% proof stress at 900 ° C) is 2% or higher when Mo is added alone, but the high temperature strength saturates. It was found that the high-temperature strength was higher than that of the single addition of (Fig. 4). That is, it has been found that the combined addition of Mo and W is extremely effective for improving the high temperature strength.
[0012]
The details of the test methods for YS at room temperature and high-temperature strength (0.2% yield strength at 900 ° C.) in FIGS. 1, 2, and 4 are the same as the conditions of the examples described later.
Conventionally, the control method of Laves phase precipitates has not been taken into account, so some of the added Mo, W, and Cr are deposited as Laves phases and the solid solution effect of the added elements (Cr, Mo, W) is saturated. The actual situation was that they added Cr, Mo, and W even more without knowing that they were working.
[0013]
As a result, the effect of precipitation of the Mo and W Laves phases was added, and it was hardened significantly at room temperature, and it was found that the workability was deteriorated.
Based on these findings, the present invention suppresses the precipitation of the Laves phase after recrystallization annealing as much as possible by the combined addition amount of Mo and W, limits the addition amount of Mo and W, the original It is a feature of the present application that a component system that can sufficiently bring out the effects of Cr, Mo, and W is used.
[0014]
Below, the reason for limiting the range of the content of each component element described in the claims will be described. The unit is% by weight.
C: 0.02% or less C is an element that deteriorates the formability at room temperature. If it exceeds 0.02%, the toughness and the formability deteriorate significantly, so the content is limited to 0.02% or less. For formability, the lower the C content, the better, and 0.008% or less is desirable.
[0015]
Si: 2% or less
Si is one of the most important elements for this invention. In order to suppress the precipitation of a part of the added Mo, W, and Cr as a Laves phase and to fully extract the original effects of Cr, Mo, and W, the content is limited to 2% or less. . The Si content is preferably as low as possible, preferably 1% or less, more preferably 0.5% or less, and particularly preferably 0.1% or less.
[0016]
Mn: 2% or less
Mn is known as a deoxidizer for steel, but excessive addition forms MnS, lowers formability and corrosion resistance, and promotes the precipitation of Mo Laves phase, so the Mn content is 2%. It was as follows. The Mn content is preferably as low as possible, preferably 1% or less, and more preferably 0.2% or less. On the other hand, higher oxidation resistance is preferable for oxidation resistance. When importance is attached to oxidation resistance, it is preferable that Mn exceeds 1%.
[0017]
P: 0.06% or less P is an element that deteriorates toughness, and is 0.06% or less. The smaller the P content, the better, and it is desirable that it be 0.04% by weight or less. Since excessive reduction increases the cost, it is preferably over 0.025% and not more than 0.06%.
S: 0.02% or less S is an element that lowers elongation and r value, degrades formability, and degrades corrosion resistance, which is a basic characteristic of Cr-containing steel, and the upper limit of its content is 0.02%. However, since excessive reduction increases the cost, it is preferable to exceed 0.002%. Therefore, it is preferably over 0.002% and 0.02% or less.
[0018]
Al: 0.1% or less
Al is generally used as a deoxidizer for steel, but if it exceeds 0.1%, the workability deteriorates significantly, so it is limited to 0.1% or less. When not used as a deoxidizer, Al is less than 0.005%, but there is no adverse effect. Moreover, Al produces a surface protective scale during welding, has the effect of preventing the intrusion of C, N, and O from the atmosphere and improves the toughness of the welded portion, and is preferably added in an amount of 0.02% or more.
[0019]
Ni: 1% or less
Ni is effective in improving toughness. However, since it is an expensive element and the effect is saturated, it is limited to 1% or less.
Cr: Over 6% and 40% or less
Cr is an important element in the present invention. Addition exceeding 6% has a remarkable effect on oxidation resistance and corrosion resistance. On the other hand, if the addition amount is too large, in the case of Cr-containing steel to which Mo and W are added, precipitation of Mo is promoted and the effect on the corrosion resistance of Mo is lost. Therefore, it is limited to 40% or less. It can be increased or decreased depending on the required degree of oxidation resistance and corrosion resistance.
[0020]
N: 0.02% or less N is an element that deteriorates the toughness and formability of steel. If it exceeds 0.02%, the deterioration of toughness and formability becomes remarkable, so it is limited to 0.02% or less. The smaller the N content, the better, and it is desirable that it be 0.01% or less.
1 type or 2 types or more selected from (Ti, V, Zr) are contained: Ti: 1% or less, V: 1% or less, Zr: 0.5% or less, and 5 × ([C] + [C N]) ≦ [Ti] + [V] + [Zr] ≦ 1 is as follows.
[0021]
[Ti] + [V] + [Zr] is added in an amount of 5 × ([C] + [N]) or more, and coarse M (C N) type precipitates (M is Ti, V and / or Zr). [Ti] + [V] + [Zr] is preferably more than 10 × ([C] + [N]) and 0.4% or less.
[0022]
However, excessive addition of Ti exceeding 1% precipitates coarse Ti (C, N) and degrades the surface properties, so it is necessary to limit it to 1% or less. Further, V is limited to 1% or less because excessive addition exceeding 1% precipitates coarse V (C, N) and deteriorates surface properties. When Zr is excessively added in excess of 0.5%, coarse Zr (C, N) is precipitated and the surface properties are deteriorated, so that it is limited to 0.5% or less. One or more selected from the above (Ti, V, Zr) are added.
Mo and W
Mo: more than 1.0% and less than 3%
Mo is the most important element for the Cr-containing steel of the present invention. This element contributes to improvement of corrosion resistance and high temperature strength by solid solution, so add 1.0% or more. On the other hand, addition exceeding 3% significantly reduces elongation, so it is limited to 3% or less.
[0023]
W: 1.0% to 5% or less W is the most important element for the Cr-containing steel of the present invention. This element contributes to improvement of corrosion resistance and high temperature strength by solid solution, so add 1.0% or more. On the other hand, addition over 5% significantly reduces elongation, so it is limited to 5% or less.
[Mo] + [W]: More than 4 % and not more than 8% By the combined addition of W and Mo, particularly the combined addition of W and Mo exceeding 4 % improves the high-temperature strength remarkably than the individual addition. Therefore, 4 % or more is added. On the other hand, if the composite addition exceeds 8%, the elongation is remarkably reduced, so the content is limited to 8% or less. The combined amount of W and Mo is preferably more than 4% and not more than 6%. More preferably, it is more than 4% and not more than 5%.
[0024]
B: 0.0001% to 0.01% B is an important element. Since the Cr-containing steel of the present invention has [Mo] + [W]> 3.0%, the toughness is low. It is a necessary element to improve it. In order to improve toughness, 0.0001% or more is contained. If it exceeds 0.01%, the moldability deteriorates due to the production of a large amount of BN, so it is limited to 0.01% or less. The B content is preferably 0.0005% or more and 0.005% or less.
[0025]
The following elements are optional.
Cu may be added because it is effective for improving corrosion resistance. However, if Cu exceeds 1%, it becomes brittle due to precipitation of ε-Cu, so it is limited to 1.0% or less.
Ca: 0.01% or less
Ca has the effect of preventing nozzle clogging due to inclusions during casting, and is added as necessary. Even if added over 0.01%, the effect is not only saturated, but inclusions containing Ca become the starting point of pitting corrosion and deteriorate corrosion resistance, so 0.01% is made the upper limit. Preferably, it is 0.0001% or more and 0.003% or less.
[0026]
Co: Effective for improving toughness, and may be added. This effect is noticeable from 0.01% and saturates at 0.5%. Therefore, it should be 0.01% or more and 0.5% or less.
[0027]
【Example】
Steel having the composition shown in Table 1 was melted to form a slab, and the slab was heated to 1150 ° C. and then hot-rolled into a 4 mm thick hot-rolled sheet. Furthermore, annealing, pickling, cold rolling, finish annealing, and pickling were sequentially performed to obtain a cold-rolled annealed sheet having a thickness of 1.5 mm. The cold-rolled annealed sheet thus obtained was evaluated for softness at room temperature and high-temperature strength by the following method.
1. Softness at room temperature From the above cold-rolled annealed sheet, the tensile test piece length direction is parallel to the rolling direction (L direction), the L direction tensile test piece material, and the D direction tensile test piece material that forms 45 degrees with respect to the rolling direction. C direction tensile test piece material forming 90 degrees with respect to the rolling direction was collected and machined to obtain No. 13 B tensile test piece (JIS Z 2201). The thickness direction of the tensile test piece was matched with the thickness h direction of the cold-rolled annealed plate, and the thickness of the tensile test piece was kept as the thickness h (1.5 mm thickness) of the cold-rolled annealed plate.
[0028]
The L, C, and D direction tensile test specimens were subjected to a tensile test at room temperature and a tensile speed of 10 mm / min in accordance with JIS Z 2241. YS (yield strength) was measured, and the average YS ≦ 380 MPa shown by the following formula: When satisfy | filling, it was set as soft (circle mark in Table 1) at room temperature, and when the conditions were not satisfied, it evaluated hard at room temperature (x mark in Table 1).
Average YS = (YS (L) + 2YS (D) + YS (C) ) / 4
2. High-temperature strength Only the L-direction tensile test piece described above was measured for 0.2% proof stress at a strain rate of 0.3% / min at 900 ° C. in accordance with JIS G 0567 to evaluate the high-temperature strength. 25 MPa or more was considered excellent in high temperature strength (marked in Table 1), and less than 23 MPa was regarded as inferior in high temperature strength (marked in Table 1).
3. Others Toughness is obtained from cold rolled steel sheets with a thickness h of 1.5 mm, C direction Charpy impact test specimens whose length direction is 90 degrees with respect to the rolling direction, and in accordance with JIS Z 2202. A Charpy impact test piece having a length of 55 mm, a height of 10 mm, and a width W of 1.5 mm was used as a 2 mm V notch Charpy impact test piece. Note that the width W dimension of the Charpy impact test piece was kept as the thickness h (1.5 mm thickness) of the cold-rolled annealed plate.
[0029]
Using such a Charpy impact test piece, in accordance with JIS Z 2242, a Charpy impact test was performed at −30 ° C., and the case where the absorbed energy was 50 J / cm 2 or more was evaluated as “◯”, and the case where the absorbed energy was less than “X”.
Table 1 shows the softness, the high temperature strength and the toughness at room temperature.
[0030]
[Table 1]
Figure 0003707435
[0031]
Inventive steels (No. 1-4 ) are all excellent in high-temperature strength and soft at room temperature. Moreover, toughness properties are also good.
Comparative steels A and B are single additions of Mo and W, and the respective contents of Mo and W are outside the scope of the present invention. In comparative steel C, the contents of W and B are those of the present invention. Since the Laves phase is out of the range and a large amount of Laves phase is precipitated, the high temperature strength is not improved so much and it is hard at room temperature. Comparative steels A, B and C also have poor toughness. In Comparative Steel D, the W content and [Mo] + [W] are out of the range of the present invention, and the high-temperature strength is insufficient.
[0032]
【The invention's effect】
As described above, according to the present invention, it is possible to maximize the effects of solute Mo and W, have high corrosion resistance with the minimum amount of added Mo and W, excellent high temperature strength, and soft at room temperature. Can be steel. As a result, it can be applied to application members that require high high-temperature strength, and since it is soft when molded into such a member at room temperature, it is possible to suppress consumption of the mold.
[0033]
In particular, it can be suitably used for automobile exhaust members such as mufflers, converter cases, exhaust manifolds, exhaust pipes and the like. In addition, a separator for a fuel cell or a reformer around the fuel cell is important for high corrosion resistance, high high temperature strength, and softness at room temperature, and is optimal for this application. Further, the exhaust path member of the thermal power generation system is applicable because the same characteristics as the automobile engine exhaust member are required. Further, it can be suitably used for molding materials, kitchen products, fuel system (ie, gasoline tanks and filler pipes) members, and the like.
[0034]
In addition to these, it can be widely used for applications requiring high corrosion resistance, high high-temperature strength, and softness at room temperature, and its industrial value is extremely high.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the yield point at room temperature and the Mo or W content.
FIG. 2 is a graph showing the relationship between 0.2% yield strength at 900 ° C. and the Mo or W content.
FIG. 3 is a graph showing the relationship between the solid solution W amount after aging treatment and the Mo or W content.
FIG. 4 is a graph showing the combined effect of Mo and W on 0.2% yield strength at 900 ° C.

Claims (3)

質量%で、
C:0.02%以下、 Si:2%以下、
Mn:2%以下、 P:0.06%以下、
S:0.02%以下、 Al:0.1 %以下、
Ni:1%以下、 Cr:6%を超え40%以下、
N:0.02%以下、 Mo:1.0 %超え3%以下、
W:1.0 %超え5%以下、 〔Mo〕+〔W〕:%超え8%以下、
B:0.0001%以上0.01%以下
を含有し、かつ、(Ti、V、Zr)のうちから選ばれる1種または2種以上を、
Ti:1%以下、V:1%以下、Zr:0.5 %以下
含有し、そのうえ
5×(〔C〕+〔N〕)≦〔Ti〕+〔V〕+〔Zr〕≦1を満足し、残部がFeおよび不可避的不純物からなるCr含有鋼。
% By mass
C: 0.02% or less, Si: 2% or less,
Mn: 2% or less, P: 0.06% or less,
S: 0.02% or less, Al: 0.1% or less,
Ni: 1% or less, Cr: more than 6% and 40% or less,
N: 0.02% or less, Mo: 1.0% over 3%,
W: 1.0% to 5% or less, [Mo] + [W]: 4 % to 8% or less,
B: 0.0001% or more and 0.01% or less, and one or more selected from (Ti, V, Zr)
Ti: 1% or less, V: 1% or less, Zr: 0.5% or less, and 5 × ([C] + [N]) ≦ [Ti] + [V] + [Zr] ≦ 1 Cr-containing steel with the balance being Fe and inevitable impurities.
請求項1において、さらに、質量%で
Cu:1%以下を含有してなるCr含有鋼。
In claim 1, further, in mass%
Cu: Cr-containing steel containing 1% or less.
請求項1、2において、さらに質量%で、
Ca:0.01%以下を含有してなるCr含有鋼。
In claim 1, 2, further in mass%,
Ca: Cr-containing steel containing 0.01% or less.
JP2002008748A 2002-01-17 2002-01-17 Cr-containing steel with excellent high-temperature strength and soft at room temperature Expired - Fee Related JP3707435B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002008748A JP3707435B2 (en) 2002-01-17 2002-01-17 Cr-containing steel with excellent high-temperature strength and soft at room temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002008748A JP3707435B2 (en) 2002-01-17 2002-01-17 Cr-containing steel with excellent high-temperature strength and soft at room temperature

Publications (2)

Publication Number Publication Date
JP2003213377A JP2003213377A (en) 2003-07-30
JP3707435B2 true JP3707435B2 (en) 2005-10-19

Family

ID=27646930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002008748A Expired - Fee Related JP3707435B2 (en) 2002-01-17 2002-01-17 Cr-containing steel with excellent high-temperature strength and soft at room temperature

Country Status (1)

Country Link
JP (1) JP3707435B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8790573B2 (en) 2003-12-26 2014-07-29 Jfe Steel Corporation Ferritic Cr-contained steel

Also Published As

Publication number Publication date
JP2003213377A (en) 2003-07-30

Similar Documents

Publication Publication Date Title
US9279172B2 (en) Heat-resistance ferritic stainless steel
JP5546911B2 (en) Ferritic stainless steel sheet with excellent heat resistance and workability
TWI465587B (en) Ferritic stainless steel having excellent oxidation resistance
TWI377257B (en) Excellent heat-resistance ferrite stainless steel
JP5141296B2 (en) Ferritic stainless steel with excellent high temperature strength and toughness
USRE44709E1 (en) Soft Cr-containing steel
WO2003004714A1 (en) Ferritic stainless steel for member of exhaust gas flow passage
JP5152387B2 (en) Ferritic stainless steel with excellent heat resistance and workability
JP3903855B2 (en) Ferritic stainless steel that is soft at room temperature and excellent in high-temperature oxidation resistance
JP5012243B2 (en) Ferritic stainless steel with excellent high-temperature strength, heat resistance and workability
WO2003106722A1 (en) Heat-resistant ferritic stainless steel and method for production thereof
JP5125600B2 (en) Ferritic stainless steel with excellent high-temperature strength, steam oxidation resistance and workability
JP4185425B2 (en) Ferritic steel sheet with improved formability and high temperature strength, high temperature oxidation resistance and low temperature toughness at the same time
JP4206836B2 (en) Ferritic stainless steel with excellent corrosion resistance, high temperature strength and high temperature oxidation resistance
JP5677819B2 (en) Ferritic stainless steel plate with excellent oxidation resistance
JP7278079B2 (en) Cold-rolled stainless steel sheet, hot-rolled stainless steel sheet, and method for manufacturing hot-rolled stainless steel sheet
JP3744403B2 (en) Soft Cr-containing steel
JP3546714B2 (en) Cr-containing steel with excellent high-temperature strength, workability and surface properties
JP4154932B2 (en) Ferritic stainless steel with excellent high-temperature strength, high-temperature oxidation resistance, and high-temperature salt damage resistance
JP3707435B2 (en) Cr-containing steel with excellent high-temperature strength and soft at room temperature
JP6678217B2 (en) Stainless steel
JP6665936B2 (en) Ferritic stainless steel
JP3591486B2 (en) High Cr ferritic heat resistant steel
US20210032731A1 (en) Ferritic stainless steel
JP2002348640A (en) Cr-CONTAINING STEEL SUPERIOR IN CORROSION RESISTANCE, HAVING LOW YIELD STRESS AT ROOM TEMPERATURE

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040430

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050725

R150 Certificate of patent or registration of utility model

Ref document number: 3707435

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080812

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090812

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090812

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100812

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110812

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120812

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120812

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130812

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees