JP4206836B2 - Ferritic stainless steel with excellent corrosion resistance, high temperature strength and high temperature oxidation resistance - Google Patents

Ferritic stainless steel with excellent corrosion resistance, high temperature strength and high temperature oxidation resistance Download PDF

Info

Publication number
JP4206836B2
JP4206836B2 JP2003172437A JP2003172437A JP4206836B2 JP 4206836 B2 JP4206836 B2 JP 4206836B2 JP 2003172437 A JP2003172437 A JP 2003172437A JP 2003172437 A JP2003172437 A JP 2003172437A JP 4206836 B2 JP4206836 B2 JP 4206836B2
Authority
JP
Japan
Prior art keywords
less
high temperature
oxidation resistance
stainless steel
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003172437A
Other languages
Japanese (ja)
Other versions
JP2004076154A (en
Inventor
淳 宮崎
研治 高尾
修 古君
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2003172437A priority Critical patent/JP4206836B2/en
Publication of JP2004076154A publication Critical patent/JP2004076154A/en
Application granted granted Critical
Publication of JP4206836B2 publication Critical patent/JP4206836B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、自動車やオートバイの排気管、触媒外筒材および火力発電プラントの排気ダクトあるいは燃料電池関連部材(例えばセパレーター、インターコネクター、改質器など)等の高温環境下で使用される部材に供して好適な、耐食性、高温強度および耐高温酸化性に優れたフェライト系ステンレス鋼に関するものである。
【0002】
【従来の技術】
自動車の排気系環境で使用される、例えばエキゾーストマニホールド、排気パイプ、コンバーターケースおよびマフラー材には、成形性と耐熱性に優れることが要求されている。現在、このような用途には、室温で軟質で成形性に優れ、高温耐力も比較的高い、NbとSiを添加したCr含有鋼、例えば Type429(14Cr−0.9Si−0.4Nb 系)鋼が多用されている。
しかしながら、この Type429鋼は、エンジン性能の向上により排ガス温度が現行温度より高い 900℃程度まで上昇すると、高温耐力あるいは耐酸化性が不足するいう問題があった。
【0003】
このため、900 ℃における耐力がType429 鋼より高い優れた高温強度を有し、かつ耐酸化性にも優れた材料に対する要求が強まっている。また、排気部材材料の高温強度を高めることは、部材の薄肉化を可能とし、自動車車体の軽量化に大きく寄与できるという利点もある。
【0004】
上記の要請に応えるものとして、特許文献1には、排気系部材の高温部から低温部までの広い範囲にわたって適用可能な、高温強度、加工性および表面性状に優れたCr含有鋼が開示されている。この素材は、C:0.02mass%以下、 Si:0.10mass%以下、 Cr:3.0 〜20mass%、Nb:0.2 〜1.0 mass%を含有するCr含有鋼であり、 Siを0.10mass%以下に低減し、 Fe2Nb ラーベス相の析出を抑制して、室温降伏強さの上昇を抑制すると共に、優れた高温強度と加工性、さらには良好な表面性状を付与しようとするものである。
【0005】
また、特許文献2には、質量%で、C:0.020 %未満、 Si:0.10%超0.50%未満、Mn:2.00%未満、P:0.060 %未満、S:0.008 %未満、Cr:12.0%以上16.0%未満、Ni:1.00%未満、N:0.020 %未満、Nb:10×(C+N)以上1.00%未満、Mo:0.80%超3.00%未満を、Si:≦1.2 −0.4 Moを満足する範囲で含有し、また必要に応じてW:5.00%以下を含有し、ラーベス相の析出を抑制して、固溶Moによる高温強度増加効果を安定して確保したCr含有鋼が開示されている。
【0006】
【特許文献1】
特開2000−73147 号公報
【特許文献2】
特開2002−212685号公報
【0007】
【発明が解決しようとする課題】
しかしながら、上記したような排気系部材は、 900℃から1000℃を超えるような高温における耐酸化性すなわち耐高温酸化性の面に問題を残していた。
すなわち、エンジン性能をより向上させるためには、排ガス温度の一層の上昇が避けられないが、排ガス温度が 900℃を超えて上昇した場合には、現行の材料では異常酸化の発生あるいは高温強度が不足するという問題が新たに生じた。
ここに、異常酸化とは、材料が高温の排ガスに曝された場合に、Fe酸化物が生成し、このFe酸化物は酸化速度が異常に速いことから、酸化が急激に進行し、素材がぼろぼろになる現象をいう。
【0008】
この発明は、上記の問題を有利に解決するもので、耐食性に優れるのはいうまでもなく、高温強度に優れ、さらには従来に比べて耐高温酸化性を格段に向上させたフェライト系ステンレス鋼を提案することを目的とする。
さらに、この発明では、高温での塩害に対する抵抗性すなわち耐高温塩害性の改善も併せて図ることができる。
ここに、高温塩害とは、特に寒冷地において路面に散布された路面凍結阻止剤中の塩分や海岸地方における海水の塩分が排気パイプ等に付着したのち、高温に加熱された場合の腐食のことであり、このような腐食で板厚が減少していくことをいう。
【0009】
【課題を解決するための手投】
さて、発明者らは、上記の目的を達成すべく鋭意研究を重ねた結果、耐高温酸化性および高温強度の向上には、Wの添加特にMoとWとを複合添加することが、また耐高温塩害性の向上には、SiやAlの添加が有効であるとの知見を得た。
この発明は、上記の知見に立脚するものである。
【0010】
すなわち、この発明の要旨構成は次のとおりである。
1.質量%で、
C:0.02%以下、
Si:2.0 %以下、
Mn:2.0 %以下、
Cr:16.0%超、40.0%以下、
Mo:1.0 〜5.0 %、
W:2.0 %超、5.0 %以下、
(Mo+W):4.3 %以上、
Nb:5(C+N)〜1.0 %および
N:0.02%以下
を含有し、残部はFeおよび不可避的不純物の組成からなることを特徴とする、耐食性、高温強度および耐高温酸化性に優れたフェライト系ステンレス鋼。
【0011】
2.上記1において、MoおよびWの合計量が、質量%で
(Mo+W)≧4.5 %
を満足することを特徴とする、耐食性、高温強度および耐高温酸化性に優れたフェライト系ステンレス鋼。
【0012】
3.上記1または2において、鋼がさらに、質量%で
Ti:0.5 %以下、
Zr:0.5 %以下および
V:0.5 %以下
のうちから選んだ少なくとも一種を含有する組成からなることを特徴とする、耐食性、高温強度および耐高温酸化性に優れたフェライト系ステンレス鋼。
【0013】
4.上記1,2または3において、鋼がさらに、質量%で
Ni:2.0 %以下、
Cu:1.0 %以下、
Co:1.0 %以下および
Ca:0.01%以下
のうちから選んだ少なくとも一種を含有する組成からなることを特徴とする、耐食性、高温強度および耐高温酸化性に優れたフェライト系ステンレス鋼。
【0014】
5.上記1〜4のいずれかにおいて、鋼がさらに、質量%で
Al:0.01〜7.0 %
を含有する組成からなることを特徴とする、耐食性、高温強度および耐高温酸化性に優れたフェライト系ステンレス鋼。
【0015】
6.上記1〜5のいずれかにおいて、鋼がさらに、質量%で
B:0.01%以下および
Mg:0.01%以下
のうちから選んだ少なくとも一種を含有する組成からなることを特徴とする、耐食性、高温強度および耐高温酸化性に優れたフェライト系ステンレス鋼。
【0016】
7.上記1〜6のいずれかにおいて、鋼がさらに、質量%で
REM:0.1 %以下
を含有する組成からなることを特徴とする、耐食性、高温強度および耐高温酸化性に優れたフェライト系ステンレス鋼。
【0017】
【発明の実施の形態】
以下、この発明において、成分組成を上記の範囲に限定した理由について説明する。なお、成分に関する「%」表示は特に断らない限り質量%を意味するものとする。
C:0.02%以下
Cは、靱性や加工性を劣化させるので、その混入は極力低減することが好ましい。この観点から、この発明ではC量を0.02%以下に限定した。より好ましくは 0.008%以下である。
【0018】
Si:2.0 %以下
Siは、含有量が 2.0%を超えると室温での強度が増大し、加工性を低下させるので、上限を 2.0%とした。なお、後述するAlの添加によって耐高温塩害性の向上を図った場合には、加工性の面ではSi量はむしろ低減させた方が好ましいので、この場合にはSi量は 0.5%以下とすることが好ましい。
【0019】
Mn:2.0 %以下
Mnは、脱酸剤として有効に寄与するが、過剰の添加はMnSを形成して耐食性を低下させるので、2.0 %以下に限定した。より好ましくは 1.0%以下である。なお、耐スケール剥離性の観点からは、Mn量は高いほど好ましくいので、この観点からは 0.3%以上含有させることが好ましい。
【0020】
Cr:16.0%超、40.0%以下
Crは、耐食性および耐酸化性を向上させる基本元素であるので、この発明では16.0%超の範囲で含有させるものとした。しかしながら、含有量が40.0%を超えると材料の脆化が著しくなるので、上限は40.0%とした。好ましくは16.0%超、30.0%以下、より好ましくは16.0%超、25.0%以下、さらに好ましくは16.0%超、20.0%以下である。
【0021】
Mo:1.0 〜5.0 %
Moは、高温強度のみならず、耐酸化性および耐食性の向上に有効に寄与するので、この発明では 1.0%以上含有させるものとした。しかしながら、含有量があまりに多くなると室温での強度が増大して加工性が低下するので、5.0 %を上限とした。より好ましくは 1.8〜2.5 %の範囲である。
【0022】
W:2.0 %超、5.0 %以下
Wは、この発明において特に重要な元素である。すなわち、上記したMoを添加したフェライト系ステンレス鋼に、Wを複合含有させることによって、耐高温酸化性の著しい向上を図ることができる。また、高温強度の向上にも有効に寄与する。しかしながら、W量が 2.0%以下ではその添加効果に乏しく、一方 5.0%を超えて多量に含有させるとコストの上昇を招くので、Wは 2.0%超、5.0 %以下の範囲で含有させるものとした。特にWは、2.6 %を超えて含有させると高温強度が著しく向上するので、より好ましくは 2.6%超、4.0 %以下であり、さらに好ましくは 3.0%以上、3.5 %以下である。
【0023】
(Mo+W)≧4.3 %
上述したとおり、MoとWとを複合含有させることによって、耐高温酸化性の著しい向上を図ることができる。そのためには、これら元素の合計量は 4.3%以上とすることが好ましい。好ましくは 4.5%以上、より好ましくは、4.7 %以上、さらに好ましくは、4.9 %以上である。
【0024】
図1に、 18%Cr−0.1%Si−0.5%Nb鋼をベースに、MoとWを種々の割合で添加した時の耐高温酸化性について調べた結果を示す。
耐高温酸化性試験は、1050℃の大気雰囲気中に 100時間保持し、この試験後の試験片の重量変化で評価した。試験後の重量変化が 10 mg/cm2以下であれば耐高温酸化性に優れているといえる。
同図に示したとおり、(Mo+W)を4.3 %以上含有させることによって、耐高温酸化性は格段に向上する。
【0025】
Nb:5(C+N)〜1.0 %
Nbは、高温強度の改善に有効な元素であり、この効果を発揮させるためには、CおよびN量との兼ね合いで5(C+N)以上含有させる必要がある。しかしながら、あまりに多量の添加は、室温での強度が増大して加工性が低下するので、1.0 %を上限とした。より好ましくは 0.4〜0.7 %の範囲である。
なお、かっこ内のC、Nはそれぞれ、CとNの含有量(質量%)を表わす。
【0026】
N:0.02%以下
Nも、Cと同様、靱性や加工性を劣化させるので、その混入は極力低減することが好ましい。この観点から、この発明ではN量を0.02%以下に限定した。より好ましくは 0.008%以下である。
【0027】
以上、基本成分について説明したが、この発明ではその他にも、以下に述べる元素を適宜含有させることができる。
Ti:0.5 %以下、Zr:0.5 %以下およびV:0.5 %以下のうちから選んだ少なくとも一種
Ti,ZrおよびVはいずれも、CやNを固定して耐粒界腐食性を向上させる作用があり、この観点からはそれぞれ0.02%以上含有させることが好ましい。しかしながら、含有量が 0.5%を超えると、鋼材の脆化を招くので、それぞれ 0.5%以下で含有させるものとした。
なお、これらの元素は、高温強度の向上にも有効であるので、前記したWおよび後述するCuを合わせた(W+Ti+Zr+V+Cu)量は、3%超で含有させることが好適である。
【0028】
Ni:2.0 %以下、Cu:1.0 %以下、Co:1.0 %以下およびCa:0.01%以下のうちから選んだ少なくとも一種
Ni,Cu,CoおよびCaはいずれも、靱性の改善に有用な元素であり、それぞれNi:2.0 %以下、Cu:1.0 %以下、Co:1.0 %以下、Ca:0.01%以下で含有させるものとした。特にCaは、Tiが含有された場合、連続鋳造時のノズル詰まりの防止にも有効に寄与する。なお、これらの元素の効果を十分に発揮させるためには、それぞれNi:0.5 %以上、Cu:0.3 %以上、Co:0.03%以上、Ca:0.0005%以上の範囲で含有させることが好ましい。
【0029】
Al:0.01〜7.0 %
Alは、脱酸剤として有用なだけでなく、溶接部の表面に緻密なスケールを形成して、溶接中に酸素や窒素の吸収を防止し、溶接部の靱性向上にも有効に寄与する。また、耐高温塩害性の改善にも有用な元素である。しかしながら、含有量が0.01%に満たないとその添加効果に乏しく、一方 7.0%を超えると鋼材の脆化が著しくなるので、Alは0.01〜7.0 %の範囲に限定した。より好ましくは 0.5〜7.0 %の範囲である。
【0030】
B:0.01%以下およびMg:0.01%以下のうちから選んだ少なくとも一種
BおよびMgはいずれも、2次加工脆性の改善に有効に寄与するが、含有量が0.01%を超えると室温での強度が増して延性の低下を招くので、それぞれ0.01%以下で含有させるものとした。より好ましくはB:0.0003%以上、Mg:0.0003%以上である。
【0031】
REM:0.1 %以下
REM は、耐酸化性の向上に有効に寄与するので 0.1%以下で含有させるものとした。より好ましくは 0.002%以上である。なお、この発明において REMとは、ランタノイド系元素およびYを意味する。
【0032】
次に、この発明鋼の好適製造方法について説明する。この発明鋼の製造条件はとくに限定されるものではなく、Cr含有鋼の一般的な製造方法を好適に利用できる。
例えば、上記した適正組成範囲に調整した溶鋼を、転炉、 電気炉等の溶製炉、さらには取鍋精錬、 真空精錬等の精錬を利用して溶製したのち、連続鋳造法または造塊−分塊法でスラブとし、ついで熱間圧延、熱延板焼鈍、酸洗、冷間圧延、仕上げ焼鈍、酸洗の各工程を順次に経て、冷延焼鈍板板とするのが好ましい。 また、冷間圧延は、1回または中間焼鈍を含む2回以上の冷間圧延としてもよい。冷間圧延、仕上げ焼鈍、酸洗の工程は繰り返し打ってもよい。なお、場合によっては熱延板焼鈍は省略してもよい。さらに、光沢性が要求される場合には、スキンパス等を施すことが有利である。
【0033】
【実施例】
表1に示す成分組成になる50kg鋼塊を作製し、 これらの鋼塊を1100℃に加熱後、 熱間圧延により5mm厚の熱延板とした。 ついで、これらの熱延板に対し、熱延板焼鈍(焼鈍温度:1000℃)−酸洗−冷間圧延(冷延圧下率:60%)−仕上げ焼鈍(焼鈍温度:1000℃)−酸洗を順次施して、2mm厚の冷延焼鈍板とした。
かくして得られた冷延焼鈍板の高温強度、耐高温酸化性および耐高温塩害性について調べた結果を、表2に示す。
【0034】
なお、各特性は次のようにして評価した。
(1) 高温強度
各冷延焼鈍板から、圧延方向を引張り方向とするJIS 13号B引張試験片を各2本ずつ採取し、JIS G 0567の規定に準拠して、引張り温度:900 ℃、歪速度:0.3 %/minの条件で引張り試験を行い、2本の試験片の 900℃における 0.2%耐力を求めた。なお、この 900℃における 0.2耐力の値は高ければ高いほど好ましいが、特に20 MPa以上であれば高温強度に優れているといえる。好ましくは26 MPa以上である。
(2) 耐高温酸化性
各冷延焼鈍板から、試験片(2mm厚×20mm幅×30mm長さ)を2本ずつ採取し、これらの試験片を、1050℃の大気雰囲気中に 100時間保持した。試験前後における各試験片の重量を測定し、試験前後の重量変化を算出して、2本の平均値を求めた。この重量変化が小さいほど耐高温酸化性に優れていることを表す。そして、この重量変化が 10 mg/cm2以下であれば耐高温酸化性に優れているといえる。なお、排ガス中では、大気中よりも異常酸化を生じ易いので、排ガス温度:1000℃を想定した場合、大気中では+50℃すなわち1050℃の評価を必要とするので、本発明では試験温度:1050℃で評価するものとした。
(3) 耐高温塩害性
各冷延焼鈍板から、試験片(2mm厚×20mm幅×30mm長さ)を各2本ずつ採取し、5%食塩水に1時間浸漬したのち、700 ℃の大気雰囲気中で23時間加熱し、5分冷却する工程を1サイクルとして、10サイクル後の重量変化を測定し、その平均値を求めた。この重量変化が小さいほど耐高温塩害性に優れており、この発明では、重量変化量Δwが40≦Δw<50(mg/cm2)の場合を○、30≦Δw<40(mg/cm2)の場合を◎、Δw<30(mg/cm2)の場合を☆と評価した。
【0035】
【表1】

Figure 0004206836
【0036】
【表2】
Figure 0004206836
【0037】
表2から明らかなように、この発明に従う鋼板はいずれも、高い高温強度が得られただけでなく、優れた耐高温酸化性を得ることができた。また、AlやSiを積極的に添加した場合には、優れた耐高温塩害性も併せて得られている。
【0038】
【発明の効果】
かくして、この発明によれば、耐食性、高温強度および耐高温酸化性に優れたフェライト系ステンレス鋼を安定して得ることができる。
従って、この発明によれば、エンジン性能の向上により、排ガス温度が 900℃を超えるような自動車関連用途においては言うまでもなく、発電プラントの排気ダクト材や燃料電池関連部材(例えばセパレーター、インターコネクター、改質器など)用途においても、それに耐え得る素材を安定して供給することができる。
【図面の簡単な説明】
【図1】 18%Cr−0.1%Si−0.5%Nb鋼をベースに、MoとWを種々の割合で添加した時の耐高温酸化性について調べた結果を示したグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention is a member used in a high-temperature environment such as an exhaust pipe of an automobile or a motorcycle, an outer casing material of a catalyst, an exhaust duct of a thermal power plant, or a fuel cell-related member (for example, a separator, an interconnector, a reformer). The present invention relates to a ferritic stainless steel excellent in corrosion resistance, high temperature strength and high temperature oxidation resistance.
[0002]
[Prior art]
For example, exhaust manifolds, exhaust pipes, converter cases, and muffler materials used in the exhaust system environment of automobiles are required to have excellent moldability and heat resistance. Currently, Cr-containing steels containing Nb and Si, such as Type 429 (14Cr-0.9Si-0.4Nb) steel, which are soft at room temperature, have excellent formability, and have a relatively high high-temperature proof stress, are widely used for such applications. Has been.
However, this Type 429 steel has a problem that high-temperature proof stress or oxidation resistance is insufficient when the exhaust gas temperature rises to about 900 ° C, which is higher than the current temperature, by improving the engine performance.
[0003]
For this reason, there is an increasing demand for a material having an excellent high-temperature strength higher than that of Type 429 steel at 900 ° C. and excellent in oxidation resistance. Further, increasing the high-temperature strength of the exhaust member material has the advantage that the member can be thinned and can greatly contribute to the weight reduction of the automobile body.
[0004]
In response to the above request, Patent Document 1 discloses a Cr-containing steel excellent in high-temperature strength, workability, and surface properties that can be applied over a wide range from a high-temperature part to a low-temperature part of an exhaust system member. Yes. This material is Cr-containing steel containing C: 0.02 mass% or less, Si: 0.10 mass% or less, Cr: 3.0-20 mass%, Nb: 0.2-1.0 mass%, and Si is reduced to 0.10 mass% or less. In addition to suppressing the precipitation of the Fe 2 Nb Laves phase to suppress the increase in yield strength at room temperature, it is intended to impart excellent high-temperature strength and workability, as well as good surface properties.
[0005]
Patent Document 2 includes mass%, C: less than 0.020%, Si: more than 0.10%, less than 0.50%, Mn: less than 2.00%, P: less than 0.060%, S: less than 0.008%, Cr: 12.0% or more Less than 16.0%, Ni: less than 1.00%, N: less than 0.020%, Nb: 10 x (C + N) or more and less than 1.00%, Mo: more than 0.80% and less than 3.00%, within the range satisfying Si: ≤1.2 -0.4 Mo A Cr-containing steel is disclosed that contains, if necessary, W: 5.00% or less, suppresses Laves phase precipitation, and stably secures the effect of increasing the high-temperature strength by solute Mo.
[0006]
[Patent Document 1]
JP 2000-73147 A [Patent Document 2]
Japanese Patent Laid-Open No. 2002-212685
[Problems to be solved by the invention]
However, the exhaust system member as described above has a problem in terms of oxidation resistance at a high temperature exceeding 900 ° C. to 1000 ° C., that is, high temperature oxidation resistance.
In other words, in order to further improve engine performance, a further increase in exhaust gas temperature is inevitable. However, if the exhaust gas temperature rises above 900 ° C, abnormal oxidation or high-temperature strength may occur in current materials. There was a new problem of shortage.
Here, abnormal oxidation means that when a material is exposed to high-temperature exhaust gas, Fe oxide is generated, and since the oxidation rate of this Fe oxide is abnormally fast, the oxidation proceeds rapidly, and the material It is a phenomenon that becomes shabby.
[0008]
The present invention advantageously solves the above-mentioned problems, and of course has excellent corrosion resistance, as well as excellent high-temperature strength, and further improved ferritic stainless steel with significantly improved high-temperature oxidation resistance compared to the prior art. The purpose is to propose.
Furthermore, in the present invention, the resistance to salt damage at high temperature, that is, the resistance to high temperature salt damage can be improved.
Here, high-temperature salt damage refers to corrosion when heated to high temperatures after the salt content of road surface freeze inhibitor sprayed on the road surface in cold regions or the salt content of seawater in the coastal area adheres to exhaust pipes, etc. It means that the plate thickness decreases due to such corrosion.
[0009]
[Hand throws to solve problems]
As a result of intensive studies to achieve the above-mentioned object, the inventors have found that, in order to improve high-temperature oxidation resistance and high-temperature strength, it is preferable to add W, particularly Mo and W in combination. It was found that the addition of Si and Al is effective in improving high temperature salt damage.
The present invention is based on the above findings.
[0010]
That is, the gist configuration of the present invention is as follows.
1. % By mass
C: 0.02% or less,
Si: 2.0% or less,
Mn: 2.0% or less,
Cr: Over 16.0%, 40.0% or less,
Mo: 1.0-5.0%,
W: Over 2.0%, up to 5.0%,
(Mo + W): 4.3% or more,
Nb: 5 (C + N) ~1.0% and N: not 0.02% or less, the balance is characterized by having a composition of Fe and unavoidable impurities, corrosion, excellent ferritic high-temperature strength and high temperature oxidation resistance Stainless steel.
[0011]
2. In the above 1, the total amount of Mo and W is (Mo + W) ≧ 4.5% by mass%.
Ferritic stainless steel excellent in corrosion resistance, high temperature strength and high temperature oxidation resistance, characterized by satisfying
[0012]
3. In the above 1 or 2, the steel is further in mass%.
Ti: 0.5% or less,
Zr: 0.5% or less and V: characterized by comprising the composition containing at least one selected from the group consisting of 0.5% or less, corrosion resistance, high temperature strength and high temperature oxidation resistance superior ferritic stainless steel.
[0013]
4). In the above 1, 2 or 3, the steel is further in mass%.
Ni: 2.0% or less,
Cu: 1.0% or less,
Co: 1.0% or less and
Ca: characterized by comprising the composition containing at least one selected from among 0.01% or less, corrosion resistance, high temperature strength and high temperature oxidation resistance superior ferritic stainless steel.
[0014]
5. In any one of the above 1 to 4, the steel is further in mass%.
Al: 0.01-7.0%
Characterized in that a composition containing, corrosion resistance, high temperature strength and high temperature oxidation resistance superior ferritic stainless steel.
[0015]
6). In any one of the above 1 to 5, the steel is further in mass% B: 0.01% or less and
Mg: characterized by comprising the composition containing at least one selected from among 0.01% or less, corrosion resistance, high temperature strength and high temperature oxidation resistance superior ferritic stainless steel.
[0016]
7). In any one of the above 1 to 6, the steel is further in mass%.
REM: characterized by comprising the composition containing 0.1% or less, corrosion resistance, high temperature strength and high temperature oxidation resistance superior ferritic stainless steel.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the reason why the component composition is limited to the above range in the present invention will be described. Unless otherwise specified, “%” in relation to ingredients means mass%.
C: 0.02% or less Since C deteriorates toughness and workability, its mixing is preferably reduced as much as possible. From this viewpoint, in the present invention, the C content is limited to 0.02% or less. More preferably, it is 0.008% or less.
[0018]
Si: 2.0% or less
If the Si content exceeds 2.0%, the strength at room temperature increases and the workability decreases, so the upper limit was made 2.0%. In addition, when the high temperature salt damage resistance is improved by the addition of Al, which will be described later, it is preferable to reduce the amount of Si in terms of workability. In this case, the amount of Si should be 0.5% or less. It is preferable.
[0019]
Mn: 2.0% or less
Mn contributes effectively as a deoxidizer, but excessive addition reduces the corrosion resistance by forming MnS, so it was limited to 2.0% or less. More preferably, it is 1.0% or less. In addition, from the viewpoint of scale peel resistance, the higher the amount of Mn, the better. From this viewpoint, it is preferable to contain 0.3% or more.
[0020]
Cr: Over 16.0%, 40.0% or less
Since Cr is a basic element that improves corrosion resistance and oxidation resistance, in the present invention, Cr is included in an amount exceeding 16.0%. However, since the embrittlement of the material becomes significant when the content exceeds 40.0%, the upper limit was made 40.0%. It is preferably more than 16.0% and not more than 30.0%, more preferably more than 16.0% and not more than 25.0%, still more preferably more than 16.0% and not more than 20.0%.
[0021]
Mo: 1.0-5.0%
Mo effectively contributes not only to high-temperature strength but also to improvement of oxidation resistance and corrosion resistance. Therefore, in the present invention, Mo is included in an amount of 1.0% or more. However, if the content is too high, the strength at room temperature increases and the workability decreases, so 5.0% was made the upper limit. More preferably, it is 1.8 to 2.5% of range.
[0022]
W: more than 2.0% and 5.0% or less W is an especially important element in the present invention. That is, by adding W to the ferritic stainless steel to which Mo is added, the high temperature oxidation resistance can be remarkably improved. It also contributes effectively to the improvement of high temperature strength. However, if the amount of W is 2.0% or less, the effect of addition is poor. On the other hand, if it contains more than 5.0%, the cost increases. Therefore, W should be contained in the range of more than 2.0% and 5.0% or less. . In particular, when W is contained in excess of 2.6%, the high-temperature strength is remarkably improved. Therefore, W is more preferably more than 2.6% and not more than 4.0%, still more preferably not less than 3.0% and not more than 3.5%.
[0023]
(Mo + W) ≧ 4.3%
As described above, the high temperature oxidation resistance can be remarkably improved by combining Mo and W. For that purpose, the total amount of these elements is preferably 4.3% or more. Preferably it is 4.5% or more, More preferably, it is 4.7% or more, More preferably, it is 4.9% or more.
[0024]
FIG. 1 shows the results of examining the high-temperature oxidation resistance when Mo and W are added at various ratios based on 18% Cr-0.1% Si-0.5% Nb steel.
The high temperature oxidation resistance test was held in an air atmosphere at 1050 ° C. for 100 hours, and the change in the weight of the test piece after this test was evaluated. If the weight change after the test is 10 mg / cm 2 or less, it can be said that the high-temperature oxidation resistance is excellent.
As shown in the figure, the high temperature oxidation resistance is remarkably improved by containing (Mo + W) at 4.3% or more.
[0025]
Nb: 5 (C + N) to 1.0%
Nb is an element effective for improving the high-temperature strength, and in order to exert this effect, it is necessary to contain 5 (C + N) or more in consideration of the amount of C and N. However, too much addition increases the strength at room temperature and decreases the workability, so 1.0% was made the upper limit. More preferably, it is 0.4 to 0.7% of range.
Note that C and N in parentheses represent the contents (mass%) of C and N, respectively.
[0026]
N: 0.02% or less N, as well as C, deteriorates toughness and workability, so it is preferable to reduce the mixing thereof as much as possible. From this point of view, in the present invention, the N content is limited to 0.02% or less. More preferably, it is 0.008% or less.
[0027]
Although the basic components have been described above, in the present invention, other elements described below can be appropriately contained.
At least one selected from Ti: 0.5% or less, Zr: 0.5% or less, and V: 0.5% or less
All of Ti, Zr and V have the effect of fixing C and N and improving the intergranular corrosion resistance. From this viewpoint, it is preferable to contain 0.02% or more. However, if the content exceeds 0.5%, the steel material becomes brittle, so each content was 0.5% or less.
Since these elements are also effective for improving the high-temperature strength, it is preferable that the amount of (W + Ti + Zr + V + Cu) combined with the above-described W and Cu described later is more than 3%.
[0028]
At least one selected from Ni: 2.0% or less, Cu: 1.0% or less, Co: 1.0% or less, and Ca: 0.01% or less
Ni, Cu, Co, and Ca are all elements that are useful for improving toughness. Ni: 2.0% or less, Cu: 1.0% or less, Co: 1.0% or less, Ca: 0.01% or less did. In particular, Ca, when Ti is contained, effectively contributes to prevention of nozzle clogging during continuous casting. In order to sufficiently exhibit the effects of these elements, it is preferable to contain Ni in a range of 0.5% or more, Cu: 0.3% or more, Co: 0.03% or more, and Ca: 0.0005% or more.
[0029]
Al: 0.01-7.0%
Al is not only useful as a deoxidizing agent, but also forms a dense scale on the surface of the weld, prevents oxygen and nitrogen from being absorbed during welding, and contributes effectively to improving the toughness of the weld. It is also an element useful for improving high temperature salt damage resistance. However, if the content is less than 0.01%, the effect of addition is poor. On the other hand, if it exceeds 7.0%, the steel material becomes significantly brittle, so Al is limited to the range of 0.01 to 7.0%. More preferably, it is 0.5 to 7.0% of range.
[0030]
At least one of B and Mg selected from B: 0.01% or less and Mg: 0.01% or less contributes to the improvement of secondary work brittleness, but if the content exceeds 0.01%, the strength at room temperature Since this increases the ductility, each content was made 0.01% or less. More preferably, B is 0.0003% or more, and Mg is 0.0003% or more.
[0031]
REM: 0.1% or less
Since REM contributes effectively to the improvement of oxidation resistance, it was added at 0.1% or less. More preferably, it is 0.002% or more. In the present invention, REM means a lanthanoid element and Y.
[0032]
Next, the suitable manufacturing method of this invention steel is demonstrated. The production conditions of the steel of the present invention are not particularly limited, and general production methods for Cr-containing steel can be suitably used.
For example, molten steel adjusted to the above-mentioned proper composition range is melted using a refining furnace such as a converter, electric furnace, etc., and ladle refining, vacuum refining, etc. -It is preferable to form a slab by a block method, and then to form a cold-rolled annealed sheet plate through the respective steps of hot rolling, hot-rolled sheet annealing, pickling, cold rolling, finish annealing, and pickling. Further, the cold rolling may be one or two or more cold rolling including intermediate annealing. The steps of cold rolling, finish annealing, and pickling may be repeated. In some cases, hot-rolled sheet annealing may be omitted. Further, when gloss is required, it is advantageous to apply a skin pass or the like.
[0033]
【Example】
50 kg steel ingots having the composition shown in Table 1 were prepared. These steel ingots were heated to 1100 ° C. and then hot rolled into hot rolled sheets having a thickness of 5 mm. Then, for these hot-rolled sheets, hot-rolled sheet annealing (annealing temperature: 1000 ° C)-pickling-cold rolling (cold rolling reduction ratio: 60%)-finish annealing (annealing temperature: 1000 ° C)-pickling Were applied in order to obtain a cold-rolled annealed plate having a thickness of 2 mm.
Table 2 shows the results of examining the high temperature strength, high temperature oxidation resistance and high temperature salt damage resistance of the cold-rolled annealed sheet thus obtained.
[0034]
Each characteristic was evaluated as follows.
(1) High temperature strength Two JIS 13B tensile test pieces each having the rolling direction as the tensile direction were sampled from each cold-rolled annealed sheet, and in accordance with the provisions of JIS G 0567, the tensile temperature: 900 ° C, A tensile test was performed at a strain rate of 0.3% / min, and the 0.2% proof stress at 900 ° C. of the two test pieces was determined. The higher the 0.2 proof stress value at 900 ° C., the better, but it can be said that the high temperature strength is excellent particularly at 20 MPa or more. Preferably it is 26 MPa or more.
(2) High-temperature oxidation resistance Two specimens (2 mm thickness x 20 mm width x 30 mm length) were sampled from each cold-rolled annealed plate, and these specimens were kept in an air atmosphere at 1050 ° C for 100 hours. did. The weight of each test piece before and after the test was measured, the change in weight before and after the test was calculated, and the average value of the two pieces was obtained. The smaller the change in weight, the better the high-temperature oxidation resistance. And if this weight change is 10 mg / cm < 2 > or less, it can be said that it is excellent in high temperature oxidation resistance. Note that abnormal oxidation is more likely to occur in exhaust gas than in the atmosphere. Therefore, assuming an exhaust gas temperature of 1000 ° C., an evaluation of + 50 ° C., that is, 1050 ° C. is required in the atmosphere. Evaluation was made at ° C.
(3) High temperature salt resistance Two specimens (2mm thickness x 20mm width x 30mm length) were taken from each cold-rolled annealed plate, immersed in 5% saline solution for 1 hour, and then air at 700 ° C. The process of heating in an atmosphere for 23 hours and cooling for 5 minutes was taken as one cycle, the weight change after 10 cycles was measured, and the average value was determined. The smaller the weight change, the better the high temperature salt damage resistance. In the present invention, the weight change amount Δw is 40 ≦ Δw <50 (mg / cm 2 ), and 30 ≦ Δw <40 (mg / cm 2). ), And Δw <30 (mg / cm 2 ).
[0035]
[Table 1]
Figure 0004206836
[0036]
[Table 2]
Figure 0004206836
[0037]
As apparent from Table 2, all the steel sheets according to the present invention not only obtained high high-temperature strength, but also obtained excellent high-temperature oxidation resistance. In addition, when Al or Si is positively added, excellent high-temperature salt damage resistance is also obtained.
[0038]
【The invention's effect】
Thus, according to the present invention, a ferritic stainless steel having excellent corrosion resistance, high temperature strength and high temperature oxidation resistance can be stably obtained.
Therefore, according to the present invention, the engine performance is improved and the exhaust gas temperature exceeds 900 ° C., not to mention the automobile-related application, but the exhaust duct material of the power plant and the fuel cell related member (for example, separator, interconnector, modified) The material which can endure it can be stably supplied also in applications.
[Brief description of the drawings]
FIG. 1 is a graph showing the results of examining high-temperature oxidation resistance when Mo and W are added in various proportions based on 18% Cr-0.1% Si-0.5% Nb steel.

Claims (7)

質量%で、
C:0.02%以下、
Si:2.0 %以下、
Mn:2.0 %以下、
Cr:16.0%超、40.0%以下、
Mo:1.0 〜5.0 %、
W:2.0 %超、5.0 %以下、
(Mo+W):4.3 %以上、
Nb:5(C+N)〜1.0 %および
N:0.02%以下
を含有し、残部はFeおよび不可避的不純物の組成からなることを特徴とする、耐食性、高温強度および耐高温酸化性に優れたフェライト系ステンレス鋼。
% By mass
C: 0.02% or less,
Si: 2.0% or less,
Mn: 2.0% or less,
Cr: Over 16.0%, 40.0% or less,
Mo: 1.0-5.0%,
W: Over 2.0%, up to 5.0%,
(Mo + W): 4.3% or more,
Nb: 5 (C + N) ~1.0% and N: not 0.02% or less, the balance is characterized by having a composition of Fe and unavoidable impurities, corrosion, excellent ferritic high-temperature strength and high temperature oxidation resistance Stainless steel.
請求項1において、MoおよびWの合計量が、質量%で
(Mo+W)≧4.5 %
を満足することを特徴とする、耐食性、高温強度および耐高温酸化性に優れたフェライト系ステンレス鋼。
In Claim 1, the total amount of Mo and W is (Mo + W) ≧ 4.5% in mass%.
Ferritic stainless steel excellent in corrosion resistance, high temperature strength and high temperature oxidation resistance, characterized by satisfying
請求項1または2において、鋼がさらに、質量%で
Ti:0.5 %以下、
Zr:0.5 %以下および
V:0.5 %以下
のうちから選んだ少なくとも一種を含有する組成からなることを特徴とする、耐食性、高温強度および耐高温酸化性に優れたフェライト系ステンレス鋼。
3. The steel according to claim 1 or 2, further comprising mass%.
Ti: 0.5% or less,
Zr: 0.5% or less and V: characterized by comprising the composition containing at least one selected from the group consisting of 0.5% or less, corrosion resistance, high temperature strength and high temperature oxidation resistance superior ferritic stainless steel.
請求項1,2または3において、鋼がさらに、質量%で
Ni:2.0 %以下、
Cu:1.0 %以下、
Co:1.0 %以下および
Ca:0.01%以下
のうちから選んだ少なくとも一種を含有する組成からなることを特徴とする、耐食性、高温強度および耐高温酸化性に優れたフェライト系ステンレス鋼。
The steel according to claim 1, 2, or 3, further in mass%.
Ni: 2.0% or less,
Cu: 1.0% or less,
Co: 1.0% or less and
Ca: characterized by comprising the composition containing at least one selected from among 0.01% or less, corrosion resistance, high temperature strength and high temperature oxidation resistance superior ferritic stainless steel.
請求項1〜4のいずれかにおいて、鋼がさらに、質量%で
Al:0.01〜7.0 %
を含有する組成からなることを特徴とする、耐食性、高温強度および耐高温酸化性に優れたフェライト系ステンレス鋼。
In any one of Claims 1-4, steel is further in the mass%.
Al: 0.01-7.0%
Characterized in that a composition containing, corrosion resistance, high temperature strength and high temperature oxidation resistance superior ferritic stainless steel.
請求項1〜5のいずれかにおいて、鋼がさらに、質量%で
B:0.01%以下および
Mg:0.01%以下
のうちから選んだ少なくとも一種を含有する組成からなることを特徴とする、耐食性、高温強度および耐高温酸化性に優れたフェライト系ステンレス鋼。
The steel according to any one of claims 1 to 5, further comprising, in mass%, B: 0.01% or less and
Mg: characterized by comprising the composition containing at least one selected from among 0.01% or less, corrosion resistance, high temperature strength and high temperature oxidation resistance superior ferritic stainless steel.
請求項1〜6のいずれかにおいて、鋼がさらに、質量%で
REM:0.1 %以下
を含有する組成からなることを特徴とする、耐食性、高温強度および耐高温酸化性に優れたフェライト系ステンレス鋼。
In any one of Claims 1-6, steel is further in the mass%.
REM: characterized by comprising the composition containing 0.1% or less, corrosion resistance, high temperature strength and high temperature oxidation resistance superior ferritic stainless steel.
JP2003172437A 2002-06-17 2003-06-17 Ferritic stainless steel with excellent corrosion resistance, high temperature strength and high temperature oxidation resistance Expired - Lifetime JP4206836B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003172437A JP4206836B2 (en) 2002-06-17 2003-06-17 Ferritic stainless steel with excellent corrosion resistance, high temperature strength and high temperature oxidation resistance

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002176209 2002-06-17
JP2003172437A JP4206836B2 (en) 2002-06-17 2003-06-17 Ferritic stainless steel with excellent corrosion resistance, high temperature strength and high temperature oxidation resistance

Publications (2)

Publication Number Publication Date
JP2004076154A JP2004076154A (en) 2004-03-11
JP4206836B2 true JP4206836B2 (en) 2009-01-14

Family

ID=32032438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003172437A Expired - Lifetime JP4206836B2 (en) 2002-06-17 2003-06-17 Ferritic stainless steel with excellent corrosion resistance, high temperature strength and high temperature oxidation resistance

Country Status (1)

Country Link
JP (1) JP4206836B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4675066B2 (en) * 2004-06-23 2011-04-20 日新製鋼株式会社 Ferritic stainless steel for solid oxide fuel cell separator
US20070087250A1 (en) * 2005-10-13 2007-04-19 Lewis Daniel J Alloy for fuel cell interconnect
JP2007191740A (en) * 2006-01-18 2007-08-02 Jfe Steel Kk Heat resistant material having excellent oxidation resistance and creep property
JP5012243B2 (en) * 2007-06-19 2012-08-29 Jfeスチール株式会社 Ferritic stainless steel with excellent high-temperature strength, heat resistance and workability
CN102099500B (en) * 2008-07-23 2013-01-23 新日铁住金不锈钢株式会社 Ferrite stainless steel for urea water tank
JP5343445B2 (en) * 2008-08-13 2013-11-13 Jfeスチール株式会社 Ferritic stainless steel with excellent thermal fatigue properties, oxidation resistance and toughness
JP5239645B2 (en) * 2008-08-29 2013-07-17 Jfeスチール株式会社 Ferritic stainless steel with excellent thermal fatigue properties, high temperature fatigue properties, oxidation resistance and high temperature salt corrosion resistance
JP5713250B2 (en) * 2009-06-17 2015-05-07 独立行政法人物質・材料研究機構 Heat-resistant precision parts
JP2011006727A (en) * 2009-06-24 2011-01-13 National Institute For Materials Science Heat resistant component for chemical treatment apparatus
JP2012036867A (en) * 2010-08-10 2012-02-23 Nisshin Steel Co Ltd Heat transfer element for manifold
US9777344B2 (en) 2011-12-26 2017-10-03 Posco Stainless steel having superior surface quality and moldability for fuel cell divider sheet, and method for manufacturing same
CN104141094A (en) * 2014-07-26 2014-11-12 宁国市大泉机械有限公司 Stainless steel casting

Also Published As

Publication number Publication date
JP2004076154A (en) 2004-03-11

Similar Documents

Publication Publication Date Title
JP5700175B2 (en) Ferritic stainless steel
JP3903855B2 (en) Ferritic stainless steel that is soft at room temperature and excellent in high-temperature oxidation resistance
JP4702493B1 (en) Ferritic stainless steel with excellent heat resistance
KR100676659B1 (en) Heat-resistant ferritic stainless steel and method for production thereof
TWI531665B (en) Ferritic stainless steel having excellent oxidation resistance
JP5141296B2 (en) Ferritic stainless steel with excellent high temperature strength and toughness
JP5012243B2 (en) Ferritic stainless steel with excellent high-temperature strength, heat resistance and workability
JP5125600B2 (en) Ferritic stainless steel with excellent high-temperature strength, steam oxidation resistance and workability
JP4206836B2 (en) Ferritic stainless steel with excellent corrosion resistance, high temperature strength and high temperature oxidation resistance
JP7009278B2 (en) Ferritic stainless steel sheets with excellent heat resistance and exhaust parts and their manufacturing methods
JP2004149916A (en) Ferritic steel sheet concurrently improved in formability, high-temperature strength, high-temperature oxidation resistance, and low-temperature toughness
JP3269799B2 (en) Ferritic stainless steel for engine exhaust parts with excellent workability, intergranular corrosion resistance and high-temperature strength
JP4154932B2 (en) Ferritic stainless steel with excellent high-temperature strength, high-temperature oxidation resistance, and high-temperature salt damage resistance
JP7278079B2 (en) Cold-rolled stainless steel sheet, hot-rolled stainless steel sheet, and method for manufacturing hot-rolled stainless steel sheet
JP3915717B2 (en) Thin stainless steel sheet
JP3546714B2 (en) Cr-containing steel with excellent high-temperature strength, workability and surface properties
JP3903853B2 (en) Ferritic stainless steel with excellent high temperature oxidation resistance and high temperature salt damage resistance
JP3744403B2 (en) Soft Cr-containing steel
JP3937940B2 (en) Cr-containing steel with excellent high temperature oxidation resistance and high temperature salt resistance
JP6678217B2 (en) Stainless steel
JP3903854B2 (en) Cr-containing steel with excellent high-temperature oxidation resistance
WO2018116792A1 (en) Ferritic stainless steel
JP3707435B2 (en) Cr-containing steel with excellent high-temperature strength and soft at room temperature
WO2024157580A1 (en) Ferrite stainless steel and method for producing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080623

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080924

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081007

R150 Certificate of patent or registration of utility model

Ref document number: 4206836

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131031

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term