JP2007191740A - Heat resistant material having excellent oxidation resistance and creep property - Google Patents

Heat resistant material having excellent oxidation resistance and creep property Download PDF

Info

Publication number
JP2007191740A
JP2007191740A JP2006009360A JP2006009360A JP2007191740A JP 2007191740 A JP2007191740 A JP 2007191740A JP 2006009360 A JP2006009360 A JP 2006009360A JP 2006009360 A JP2006009360 A JP 2006009360A JP 2007191740 A JP2007191740 A JP 2007191740A
Authority
JP
Japan
Prior art keywords
less
oxidation resistance
resistant material
heat
creep
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006009360A
Other languages
Japanese (ja)
Inventor
Shin Ishikawa
伸 石川
Shinsuke Ide
信介 井手
Yasushi Kato
康 加藤
Osamu Furukimi
古君  修
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2006009360A priority Critical patent/JP2007191740A/en
Publication of JP2007191740A publication Critical patent/JP2007191740A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat resistant material having excellent oxidation resistance and creep properties without using expensive Ni. <P>SOLUTION: The heat resistant material having excellent oxidation resistance and creep properties has a composition comprising, by mass, ≤0.20% C, 0.02 to 1.0% Si, ≤2.0% Mn, 10 to 40% Cr, 0.1 to 3.0% Nb, 0.03 to <5.0% Mo, 0.06 to <10% W and at least one kind selected from Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Zr and Hf by ≤1.0% in total, and the balance Fe with inevitable impurities, and in which the contents of Nb, Mo and W satisfy inequalities (1), (2) and (3): (1) 0.1≤([Mo]+[W]/2)/[Nb]≤30; (2) 2≤[Mo]+[W]/2≤10; (3) and 0.1≤[W]/[Mo]≤30; wherein, [M] denotes the content (mass%) of the element M. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、加熱炉、ボイラー、熱交換器、化学工業装置、燃料電池などで用いられる各種耐熱部品に好適な耐酸化性とクリープ特性に優れる耐熱材料に関する。   The present invention relates to a heat-resistant material excellent in oxidation resistance and creep characteristics suitable for various heat-resistant parts used in heating furnaces, boilers, heat exchangers, chemical industrial equipment, fuel cells, and the like.

従来より、加熱炉用部材、熱交換器用部材、燃料電池改質器などの耐熱部品には、SUS310S、SUS321H、SUS347Hなどのオーステナイト系ステンレス鋼や、SUH409、SUS444などの高Crフェライト鋼やフェライト系ステンレス鋼が用いられてきた。しかし、これらの鋼はいずれも、耐酸化性が不十分である。   Conventionally, for heat-resistant parts such as heating furnace members, heat exchanger members, fuel cell reformers, austenitic stainless steels such as SUS310S, SUS321H and SUS347H, high Cr ferritic steels such as SUH409 and SUS444, and ferrites Stainless steel has been used. However, all these steels have insufficient oxidation resistance.

特許文献1には、加熱と冷却を繰り返す耐熱部品に適した耐酸化性に優れた耐熱材料として、Cu、Tiなどを含むFe-Cr-Ni合金が提案されているが、Niを20〜35質量%と多量に含むために、コストが高いという問題がある。   Patent Document 1 proposes an Fe-Cr-Ni alloy containing Cu, Ti, etc. as a heat-resistant material excellent in oxidation resistance suitable for heat-resistant parts that repeat heating and cooling. There is a problem that the cost is high due to the inclusion of a large amount of mass%.

そこで、Niを含まない安価な耐熱材料として、特許文献2には、大幅なコスト増を招かない程度にNb、Moおよび希土類元素、Sc、Zrなどを添加して、また、特許文献3には、Nb、MoおよびAlを添加して、母材の結晶粒界にNbおよびMoを含む金属間化合物を析出させて、耐酸化性を飛躍的に向上させたFe-Cr合金が開示されている。
特開2000-192205号公報 特開2004-91923号公報 特開2004-285393号公報
Therefore, as an inexpensive heat-resistant material that does not contain Ni, Patent Document 2 adds Nb, Mo, rare earth elements, Sc, Zr, etc. to a degree that does not cause a significant increase in cost. , Nb, Mo and Al are added to precipitate an intermetallic compound containing Nb and Mo at the crystal grain boundary of the base material, and an Fe-Cr alloy is disclosed in which the oxidation resistance is remarkably improved. .
JP 2000-192205 A JP 2004-91923 A JP 2004-285393 A

しかしながら、特許文献2や3に記載の耐熱材料では、例えば、運転温度が700〜900℃付近である燃料電池改質器などの用途では、クリープ特性が十分でない、すなわちクリープ強度が低く、破断が起こるといった問題がある。したがって、高温で熱応力が発生する環境下に長時間曝される耐熱材料は、高温において優れた耐酸化性とクリープ特性を具備している必要がある。なお、オーステナイト系ステンレス鋼は、フェライト系ステンレス鋼に比べ高いクリープ強度を有するが、上述したようにNiを多量に含むために、コスト高の問題がある。   However, in the heat-resistant material described in Patent Documents 2 and 3, for example, in applications such as a fuel cell reformer where the operating temperature is around 700 to 900 ° C., the creep characteristics are not sufficient, that is, the creep strength is low, and the fracture occurs. There is a problem that happens. Therefore, a heat-resistant material that is exposed to an environment where thermal stress is generated at a high temperature for a long time needs to have excellent oxidation resistance and creep characteristics at a high temperature. Austenitic stainless steel has higher creep strength than ferritic stainless steel, but has a problem of high cost because it contains a large amount of Ni as described above.

本発明は、高価なNiを用いず、耐酸化性とクリープ特性に優れる耐熱材料を提供することを目的とする。   An object of the present invention is to provide a heat-resistant material excellent in oxidation resistance and creep characteristics without using expensive Ni.

本発明者らは、Niの含有されないFe-Cr合金からなる耐熱材料の耐酸化性とクリープ特性について鋭意研究を重ねた結果、NbとMoとWを所定の組成比範囲内に納まるように複合添加し、母材の結晶粒界にLaves相タイプの金属間化合物を効果的に析出させることによって優れた耐酸化性と高いクリープ強度の得られることを見出した。   As a result of intensive studies on the oxidation resistance and creep properties of heat-resistant materials made of Fe-Cr alloys that do not contain Ni, the present inventors have determined that Nb, Mo, and W are combined so that they fall within a predetermined composition ratio range. It was found that excellent oxidation resistance and high creep strength can be obtained by adding and effectively depositing a Laves phase type intermetallic compound at the grain boundary of the base material.

本発明は、このような知見に基づきなされたもので、質量%で、C:0.20%以下、Si:0.02〜1.0%、Mn:2.0%以下、Cr:10〜40%、Nb:0.1〜3.0%、Mo:0.03%以上5.0%未満、W:0.06%以上10%未満、さらにSc、Y、La、Ce、Pr、Nd、Pm、Sm、ZrおよびHfの中から選ばれる少なくとも1種を合計で1.0%以下含有し、残部がFeおよび不可避的不純物からなり、かつNbとMoとWの含有量が下記の式(1)、(2)、(3)を満たすことを特徴とする耐酸化性とクリープ特性に優れる耐熱材料を提供する。
0.1≦([Mo]+[W]/2)/[Nb]≦30 ・・・(1)
2≦[Mo]+[W]/2≦10 ・・・(2)
0.1≦[W]/[Mo]≦30 ・・・(3)
ただし、[M]は元素Mの含有量(質量%)を表す。
The present invention has been made on the basis of such findings, and in mass%, C: 0.20% or less, Si: 0.02 to 1.0%, Mn: 2.0% or less, Cr: 10 to 40%, Nb: 0.1 to 3.0 %, Mo: 0.03% or more and less than 5.0%, W: 0.06% or more and less than 10%, and at least one selected from Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Zr and Hf In which the balance is Fe and inevitable impurities, and the contents of Nb, Mo and W satisfy the following formulas (1), (2) and (3): Provide heat resistant materials with excellent properties and creep properties.
0.1 ≦ ([Mo] + [W] / 2) / [Nb] ≦ 30 (1)
2 ≦ [Mo] + [W] / 2 ≦ 10 (2)
0.1 ≦ [W] / [Mo] ≦ 30 (3)
However, [M] represents the content (mass%) of the element M.

本発明は、また、質量%で、C:0.20%以下、Si:0.02〜1.0%、Mn:2.0%以下、Al:3.0%以下、Cr:10〜40%、Nb:0.1〜3.0%、Mo:0.03%以上5.0%未満、W:0.06%以上10%未満含有し、残部がFeおよび不可避的不純物からなり、かつNbとMoとWの含有量が上記の式(1)、(2)、(3)を満たし、AlとCrの含有量が下記の式(4)を満たすことを特徴とする耐酸化性とクリープ特性に優れる耐熱材料を提供する。
15≦[Cr]+10×[Al]≦50 ・・・(4)
ただし、[M]は元素Mの含有量(質量%)を表す。
The present invention is also mass%, C: 0.20% or less, Si: 0.02 to 1.0%, Mn: 2.0% or less, Al: 3.0% or less, Cr: 10 to 40%, Nb: 0.1 to 3.0%, Mo : 0.03% or more and less than 5.0%, W: 0.06% or more and less than 10%, the balance consists of Fe and inevitable impurities, and the contents of Nb, Mo and W are the above formulas (1), (2), Provided is a heat-resistant material excellent in oxidation resistance and creep characteristics, characterized by satisfying (3) and having Al and Cr contents satisfying the following formula (4).
15 ≦ [Cr] + 10 × [Al] ≦ 50 (4)
However, [M] represents the content (mass%) of the element M.

上記Alの含有された耐酸化性とクリープ特性に優れる耐熱材料では、さらに、Sc、Y、La、Ce、Pr、Nd、Pm、Sm、ZrおよびHfの中から選ばれる少なくとも1種を合計で1.0質量%以下含有させることができる。   In the above heat-resistant material excellent in oxidation resistance and creep properties containing Al, at least one selected from Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Zr and Hf in total 1.0 mass% or less can be contained.

本発明により、高価なNiを用いず、従来技術では実現できなかった高温における優れた耐酸化性とクリープ特性を具備する耐熱材料を提供できるようになった。また、本発明の耐熱材料を用いることにより、高温に長時間曝される耐熱部品の高寿命化、高信頼化を計れるとともに、大幅なコスト低減が可能になった。   According to the present invention, it has become possible to provide a heat-resistant material having excellent oxidation resistance and creep characteristics at a high temperature that could not be realized by the prior art without using expensive Ni. In addition, by using the heat-resistant material of the present invention, it is possible to increase the life and reliability of heat-resistant components that are exposed to high temperatures for a long time, and to greatly reduce the cost.

本発明である耐熱材料の特徴は、NbとMoとWを複合添加し、Nb、Mo、WとSi、Cr、Feなどとを結合させて、多量の金属間化合物を母材の結晶粒界に析出させることによりSi、Cr、Feなどの元素の拡散を抑制して、表面にCr2O3系の酸化物層を形成させて、耐酸化性を飛躍的に向上させるとともに、MoとWの含有量を制御することによりクリープ強度を高めたことにある。 A feature of the heat-resistant material according to the present invention is that Nb, Mo, and W are added in combination, and Nb, Mo, W and Si, Cr, Fe, etc. are bonded together, and a large amount of intermetallic compounds are formed at the grain boundaries of the base material. By suppressing the diffusion of elements such as Si, Cr, Fe and the like, a Cr 2 O 3 based oxide layer is formed on the surface, and the oxidation resistance is greatly improved. The creep strength is increased by controlling the content of.

また、この金属間化合物はAlの拡散には大きく影響しないので、Alが3.0質量%以下でも、高温酸化雰囲気中で表面にAlの拡散を促進でき、耐酸化性にとって好ましいAl2O3系の酸化物層を形成させることができる。 Further, since the intermetallic compound does not significantly affect the diffusion of Al, at Al is 3.0 mass% or less, can promote the diffusion of Al on the surface in a high temperature oxidizing atmosphere, the preferred Al 2 O 3 system for oxidation resistance An oxide layer can be formed.

なお、この金属間化合物がSi、Cr、Feなどの元素の拡散を抑制するには、それが結晶粒界に密に析出することが必要であり、大きさ200nm以上の金属間化合物が、相互に最近接距離が20μm以下となるように析出していることが好ましい。これより大きい間隔で析出すると、十分にSi、Cr、Feなどの元素の拡散を抑制できない場合がある。また、この金属間化合物は、本発明の耐熱材料中に予め析出させておいてもよいが、本発明の耐熱材料を高温酸化雰囲気中で使用する時に析出させてもよい。いずれの場合も、高温酸化雰囲気中で、耐酸化性にとって好ましいCr2O3系やAl2O3系の酸化物層を形成できる。 In addition, in order for this intermetallic compound to suppress the diffusion of elements such as Si, Cr, and Fe, it is necessary that the intermetallic compound precipitates densely at the crystal grain boundary. Further, it is preferable to deposit so that the closest distance is 20 μm or less. If it is deposited at an interval larger than this, the diffusion of elements such as Si, Cr and Fe may not be sufficiently suppressed. The intermetallic compound may be deposited in advance in the heat-resistant material of the present invention, but may be deposited when the heat-resistant material of the present invention is used in a high-temperature oxidizing atmosphere. In any case, a Cr 2 O 3 -based or Al 2 O 3 -based oxide layer preferable for oxidation resistance can be formed in a high-temperature oxidizing atmosphere.

次に、本発明の耐熱材料の成分組成について説明する。なお、以下の「%」は「質量%」を表す。   Next, the component composition of the heat-resistant material of the present invention will be described. The following “%” represents “% by mass”.

C:0.20%以下
Cは、炭化物を形成して高温強度を高める作用を有する。そのため、C量は0.001%以上とすることが好ましい。しかし、その量が0.20%を超えると加工性を劣化させたり、Crと結合することにより耐酸化性に有効なCr量を減少させるため、C量は0.20%以下、好ましくは0.10%以下とする。
C: 0.20% or less
C has the effect of increasing the high temperature strength by forming carbides. Therefore, the C content is preferably 0.001% or more. However, if the amount exceeds 0.20%, the workability deteriorates or the amount of Cr effective for oxidation resistance is reduced by combining with Cr, so the C amount is 0.20% or less, preferably 0.10% or less. .

Si:0.02〜1.0%
Siは、金属間化合物の析出を促進する作用を有する。そのため、Si量は0.02%以上、好ましくは0.05%以上とする。しかし、その量が1.0%を超えると加工性の劣化を招くので、Si量は1.0%以下とする。
Si: 0.02 to 1.0%
Si has an action of promoting precipitation of intermetallic compounds. Therefore, the Si content is 0.02% or more, preferably 0.05% or more. However, if the amount exceeds 1.0%, workability is deteriorated, so the Si amount is 1.0% or less.

Mn:2.0%以下
Mnは、酸化物層の密着性を向上させるのに効果的である。そのため、Mn量は0.001%以上とすることが好ましい。しかし、その量が2.0%を超えると過度の酸化物層の成長を招くため、Mn量は2.0%以下、好ましくは1.5%以下とする。
Mn: 2.0% or less
Mn is effective in improving the adhesion of the oxide layer. Therefore, the Mn content is preferably 0.001% or more. However, if the amount exceeds 2.0%, excessive growth of the oxide layer is caused. Therefore, the Mn amount is set to 2.0% or less, preferably 1.5% or less.

Cr:10〜40%
Crは、Cr2O3系の酸化物層を形成し、耐酸化性を向上させる。その量が10%未満では、その効果が得られないので、Cr量は10%以上とする。一方、その量が40%を超えると加工性の劣化を招くので、Cr量は40%以下、好ましくは30%以下とする。
Cr: 10-40%
Cr forms a Cr 2 O 3 -based oxide layer and improves oxidation resistance. If the amount is less than 10%, the effect cannot be obtained, so the Cr amount is 10% or more. On the other hand, if the amount exceeds 40%, workability is deteriorated, so the Cr amount is 40% or less, preferably 30% or less.

Nb:0.1〜3.0%、Mo:0.03%以上5.0%未満、W:0.06%以上10%未満
上述したように、本発明の耐熱材料では、Fe-Cr合金にNbとMoとWを複合添加することにより、高温長時間の使用環境下で多量の金属間化合物を母材の粒界に存在させて、Si、Cr、Feなどの元素の拡散を抑制して耐酸化性の向上を図るとともに、クリープ強度を高めている。しかし、これらの元素の過剰の添加は加工性の劣化を招く。このような観点から、Nb量は0.1〜3.0%、好ましくは0.1〜2.0%、Mo量は0.03%以上5.0%未満、好ましくは0.1〜3.0%、また、W量は0.06%以上10%未満、好ましくは0.2〜6%とする必要がある。
Nb: 0.1 to 3.0%, Mo: 0.03% or more and less than 5.0%, W: 0.06% or more and less than 10% As described above, in the heat-resistant material of the present invention, Nb, Mo and W are added to the Fe-Cr alloy in a composite manner In this way, a large amount of intermetallic compounds are present at the grain boundary of the base material in a high temperature and long time use environment, and diffusion of elements such as Si, Cr, Fe and the like is suppressed, and oxidation resistance is improved. Increases creep strength. However, excessive addition of these elements leads to deterioration of workability. From such a viewpoint, the Nb amount is 0.1 to 3.0%, preferably 0.1 to 2.0%, the Mo amount is 0.03% to less than 5.0%, preferably 0.1 to 3.0%, and the W amount is 0.06% to less than 10%, Preferably it needs to be 0.2 to 6%.

なお、NbとMoとWの含有量は、それぞれ単独では上記の範囲を満たした上で、かつ上記式(1)、すなわち0.1≦([Mo]+[W]/2)/[Nb]≦30、好ましくは0.5≦([Mo]+[W]/2)/[Nb]≦30を満足する必要がある。これは、([Mo]+[W]/2)/[Nb]が0.1未満あるいは30を超えると、金属間化合物の結晶粒界への析出量が十分でなく、耐酸化性の向上効果が得られないからである。   The contents of Nb, Mo, and W each independently satisfy the above range, and the above formula (1), that is, 0.1 ≦ ([Mo] + [W] / 2) / [Nb] ≦ 30, preferably 0.5 ≦ ([Mo] + [W] / 2) / [Nb] ≦ 30 must be satisfied. This is because when ([Mo] + [W] / 2) / [Nb] is less than 0.1 or exceeds 30, the amount of precipitation of intermetallic compounds at the crystal grain boundaries is not sufficient, and the effect of improving oxidation resistance is obtained. It is because it cannot be obtained.

また、NbとMoとWの含有量は、それぞれ単独では上記の範囲を満たした上で、かつ上記式(2)と(3)、すなわち2≦[Mo]+[W]/2≦10と0.1≦[W]/[Mo]≦30を満足する必要がある。これは、[Mo]+[W]/2が2未満の場合や、[W]/[Mo]が0.1未満あるいは30を超えて複合添加の効果がなくなると、十分なクリープ強度が得られず、[Mo]+[W]/2が10を超えると、製造性や加工性を著しく劣化させるためである。なお、[W]/[Mo]が30を超えると、金属間化合物の結晶粒界への析出が不十分となり、良好な耐酸化性が得られない。0.2≦[W]/[Mo]≦25とすることが好ましい。   Further, the contents of Nb, Mo, and W each independently satisfy the above range, and the above formulas (2) and (3), that is, 2 ≦ [Mo] + [W] / 2 ≦ 10 It is necessary to satisfy 0.1 ≦ [W] / [Mo] ≦ 30. This is because when [Mo] + [W] / 2 is less than 2 or when [W] / [Mo] is less than 0.1 or more than 30 and the effect of compound addition is lost, sufficient creep strength cannot be obtained. This is because, if [Mo] + [W] / 2 exceeds 10, the productivity and workability are remarkably deteriorated. When [W] / [Mo] exceeds 30, precipitation of intermetallic compounds at crystal grain boundaries becomes insufficient, and good oxidation resistance cannot be obtained. It is preferable that 0.2 ≦ [W] / [Mo] ≦ 25.

Sc、Y、La、Ce、Pr、Nd、Pm、Sm、ZrおよびHfの中から選ばれる少なくとも1種:合計で1.0%以下
さらに、Sc、Y、La、Ce、Pr、Nd、Pm、Sm、ZrおよびHfの中から選ばれる少なくとも1種が合計で1.0%以下、好ましくは0.005〜0.5%含有されると、高温で形成される酸化物層の密着性をより向上させることができる。
At least one selected from Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Zr and Hf: 1.0% or less in total, and Sc, Y, La, Ce, Pr, Nd, Pm, Sm When the total content of at least one selected from Zr and Hf is 1.0% or less, preferably 0.005 to 0.5%, the adhesion of the oxide layer formed at a high temperature can be further improved.

本発明の耐熱材料の残部は、Feおよび不可避的不純物であるが、上記のSc、Y、La、Ce、Pr、Nd、Pm、Sm、ZrおよびHfの中から選ばれる少なくとも1種の代わりに、Alを3.0%以下の範囲で添加し、かつ上記式(4)、すなわち15≦[Cr]+10×[Al]≦50を満たすようにすることもできる。これにより、製造性を劣化させることなくAl2O3系の酸化物層を形成させることができ、より耐酸化性を向上できる。なお、こうしたAl添加の効果を引き出すには、Al量を0.01%以上とすることが好ましい。 The balance of the heat-resistant material of the present invention is Fe and inevitable impurities, but instead of at least one selected from the above-mentioned Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Zr and Hf Al may be added in a range of 3.0% or less, and the above formula (4), that is, 15 ≦ [Cr] + 10 × [Al] ≦ 50 may be satisfied. Thereby, an Al 2 O 3 -based oxide layer can be formed without degrading manufacturability, and oxidation resistance can be further improved. In order to bring out the effect of the addition of Al, the Al content is preferably 0.01% or more.

Alを添加した場合も、さらに、Sc、Y、La、Ce、Pr、Nd、Pm、Sm、ZrおよびHfの中から選ばれる少なくとも1種が合計で1.0%以下含有されることが好ましく、より好ましくは0.005〜0.5%である。   Even when Al is added, it is preferable that at least one selected from Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Zr, and Hf is contained in a total of 1.0% or less, more Preferably it is 0.005-0.5%.

なお、本発明の耐熱材料には、上記の成分の他に、必要に応じて、P:0.05%以下、S:0.05%以下、N:0.5%以下、Cu:0.20%以下、Ni:1.0%以下、V:1.0%以下、Ta:2.0%以下、Ti:0.5%以下、Mg:0.05%以下、Ca:0.05%以下、Co:5.0%以下などの元素を含有できる。   In addition to the above components, the heat-resistant material of the present invention, if necessary, P: 0.05% or less, S: 0.05% or less, N: 0.5% or less, Cu: 0.20% or less, Ni: 1.0% Hereinafter, elements such as V: 1.0% or less, Ta: 2.0% or less, Ti: 0.5% or less, Mg: 0.05% or less, Ca: 0.05% or less, Co: 5.0% or less can be contained.

本発明である耐熱材料の溶製方法は、通常の方法がすべて適用できるので、特に限定する必要はないが、例えば、製鋼工程では、転炉、電気炉等で溶製し、強攪拌・真空酸素脱炭処理(SS-VOD)により2次精錬を行うのが好適である。鋳造方法は、生産性、品質の面から連続鋳造が好ましい。鋳造により得られたスラブは、必要により再加熱、熱間圧延、700〜1200℃の焼鈍が施され、酸洗されて熱延板の耐熱材料となる。熱延板を冷間圧延し、あるいはさらに700〜1200℃の焼鈍し、酸洗して冷延板の耐熱材料とすることもできる。   The method for melting the heat-resistant material according to the present invention is not particularly limited since all ordinary methods can be applied. For example, in the steelmaking process, the material is melted in a converter, an electric furnace, etc. It is preferable to perform secondary refining by oxygen decarburization treatment (SS-VOD). The casting method is preferably continuous casting in terms of productivity and quality. The slab obtained by casting is reheated, hot-rolled, and annealed at 700 to 1200 ° C. if necessary, and pickled to become a heat-resistant material for hot-rolled sheets. The hot-rolled sheet can be cold-rolled, or further annealed at 700 to 1200 ° C. and pickled to obtain a heat-resistant material for the cold-rolled sheet.

表1〜3に示す成分組成を有する鋼No.1〜58を転炉-2次精錬により溶製し、連続鋳造により200mm厚のスラブとした。これらのスラブを1100〜1300℃に加熱した後、熱間圧延して板厚5mmの熱延板とし、700〜1200℃の熱延板焼鈍して酸洗処理を施した。次いで、冷間圧延により板厚1mmの冷延板とし、700〜1200℃の焼鈍を行った。そして、下記の耐酸化性試験およびクリープ破断試験を行い、耐酸化性とクリープ特性を評価した。
耐酸化性試験:焼鈍後の冷延板から1mm×30mm×30mmの試験片を切り出し、850℃加熱された大気雰囲気炉中に1000時間保持する熱処理を行い表面に酸化層を形成し、熱処理前後の試験片の重量差を測定し、その重量差を試験片の全表面積で除して酸化増量(g/m2)を算出した。そして、酸化増量が2.0g/m2以下であれば、耐酸化性が良好であるとした。また、酸化層の表面をナイロン製ブラシで5回擦って、その前後の重量差を求め、酸化物層の剥離性を調査した。この重量差が0.1mg以下であれば、剥離性が良好(○)とし、0.1mgを超えた場合は、剥離性が悪い(×)とした。
クリープ破断試験:焼鈍後の冷延板から平行部の幅15mm、平行部の長さ30mmのクリープ試験片を切り出し、850℃加熱された大気雰囲気炉中で10MPaの荷重を印加してクリープ試験を行い、クリープ破断が起こる時間を求めた。そして、クリープ破断の起こる時間が400hr以上であれば、クリープ特性が良好であるとした。
Steel Nos. 1 to 58 having the composition shown in Tables 1 to 3 were melted by converter-secondary refining, and 200 mm thick slabs were formed by continuous casting. These slabs were heated to 1100 to 1300 ° C. and then hot-rolled to form hot-rolled sheets having a thickness of 5 mm, and annealed at 700 to 1200 ° C. and pickled. Subsequently, it cold-rolled into a cold-rolled sheet having a thickness of 1 mm and annealed at 700 to 1200 ° C. Then, the following oxidation resistance test and creep rupture test were performed to evaluate oxidation resistance and creep characteristics.
Oxidation resistance test: A 1mm x 30mm x 30mm test piece was cut out from the cold-rolled sheet after annealing, heat-treated for 1000 hours in an atmospheric furnace heated at 850 ° C to form an oxide layer on the surface, and before and after heat treatment The weight difference of the test pieces was measured, and the weight difference was divided by the total surface area of the test pieces to calculate the increase in oxidation (g / m 2 ). And if the oxidation increase was 2.0 g / m 2 or less, the oxidation resistance was considered good. Further, the surface of the oxide layer was rubbed with a nylon brush 5 times, the difference in weight before and after the surface was determined, and the peelability of the oxide layer was investigated. When this weight difference was 0.1 mg or less, the peelability was good (◯), and when it exceeded 0.1 mg, the peelability was bad (x).
Creep rupture test: A creep test piece with a parallel part width of 15 mm and a parallel part length of 30 mm was cut from the annealed cold-rolled sheet, and a creep test was performed by applying a 10 MPa load in an air atmosphere furnace heated at 850 ° C. The time for creep rupture was determined. And, when the time when creep rupture occurs is 400 hours or more, the creep characteristics are considered good.

結果を表4、5に示す。本発明例である鋼No.1〜37は、いずれも酸化増量が2.0g/m2以下で、酸化物層の剥離性も良好で、かつクリープ破断の起こる時間が400hr以上であり、優れた耐酸化性とクリープ特性を有していることがわかる。 The results are shown in Tables 4 and 5. Steel Nos. 1 to 37, which are examples of the present invention, each had an oxidation increase of 2.0 g / m 2 or less, an oxide layer having good peelability, and a creep rupture time of 400 hours or more, which was excellent. It can be seen that it has oxidation resistance and creep properties.

Figure 2007191740
Figure 2007191740

Figure 2007191740
Figure 2007191740

Figure 2007191740
Figure 2007191740

Figure 2007191740
Figure 2007191740

Figure 2007191740
Figure 2007191740

Claims (3)

質量%で、C:0.20%以下、Si:0.02〜1.0%、Mn:2.0%以下、Cr:10〜40%、Nb:0.1〜3.0%、Mo:0.03%以上5.0%未満、W:0.06%以上10%未満、さらにSc、Y、La、Ce、Pr、Nd、Pm、Sm、ZrおよびHfの中から選ばれる少なくとも1種を合計で1.0%以下含有し、残部がFeおよび不可避的不純物からなり、かつNbとMoとWの含有量が下記の式(1)、(2)、(3)を満たすことを特徴とする耐酸化性とクリープ特性に優れる耐熱材料;
0.1≦([Mo]+[W]/2)/[Nb]≦30 ・・・(1)
2≦[Mo]+[W]/2≦10 ・・・(2)
0.1≦[W]/[Mo]≦30 ・・・(3)
ただし、[M]は元素Mの含有量(質量%)を表す。
In mass%, C: 0.20% or less, Si: 0.02-1.0%, Mn: 2.0% or less, Cr: 10-40%, Nb: 0.1-3.0%, Mo: 0.03% or more and less than 5.0%, W: 0.06% More than 10%, further containing at least one selected from Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Zr and Hf in total 1.0% or less, the balance from Fe and inevitable impurities A heat-resistant material excellent in oxidation resistance and creep properties, characterized in that the contents of Nb, Mo and W satisfy the following formulas (1), (2) and (3):
0.1 ≦ ([Mo] + [W] / 2) / [Nb] ≦ 30 (1)
2 ≦ [Mo] + [W] / 2 ≦ 10 (2)
0.1 ≦ [W] / [Mo] ≦ 30 (3)
However, [M] represents the content (mass%) of the element M.
質量%で、C:0.20%以下、Si:0.02〜1.0%、Mn:2.0%以下、Al:3.0%以下、Cr:10〜40%、Nb:0.1〜3.0%、Mo:0.03%以上5.0%未満、W:0.06%以上10%未満含有し、残部がFeおよび不可避的不純物からなり、かつNbとMoとWの含有量が下記の式(1)、(2)、(3)を満たし、AlとCrの含有量が下記の式(4)を満たすことを特徴とする耐酸化性とクリープ特性に優れる耐熱材料;
0.1≦([Mo]+[W]/2)/[Nb]≦30 ・・・(1)
2≦[Mo]+[W]/2≦10 ・・・(2)
0.1≦[W]/[Mo]≦30 ・・・(3)
15≦[Cr]+10×[Al]≦50 ・・・(4)
ただし、[M]は元素Mの含有量(質量%)を表す。
In mass%, C: 0.20% or less, Si: 0.02 to 1.0%, Mn: 2.0% or less, Al: 3.0% or less, Cr: 10 to 40%, Nb: 0.1 to 3.0%, Mo: 0.03% to 5.0% Less than, W: 0.06% or more and less than 10%, the balance consists of Fe and inevitable impurities, and the contents of Nb, Mo and W satisfy the following formulas (1), (2), (3), A heat-resistant material excellent in oxidation resistance and creep characteristics, characterized in that the contents of Al and Cr satisfy the following formula (4):
0.1 ≦ ([Mo] + [W] / 2) / [Nb] ≦ 30 (1)
2 ≦ [Mo] + [W] / 2 ≦ 10 (2)
0.1 ≦ [W] / [Mo] ≦ 30 (3)
15 ≦ [Cr] + 10 × [Al] ≦ 50 (4)
However, [M] represents the content (mass%) of the element M.
さらに、Sc、Y、La、Ce、Pr、Nd、Pm、Sm、ZrおよびHfの中から選ばれる少なくとも1種を合計で1.0質量%以下含有することを特徴とする請求項2に記載の耐酸化性とクリープ特性に優れる耐熱材料。   The acid resistance according to claim 2, further comprising 1.0 mass% or less in total of at least one selected from Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Zr and Hf. Heat resistant material with excellent chemical properties and creep properties.
JP2006009360A 2006-01-18 2006-01-18 Heat resistant material having excellent oxidation resistance and creep property Pending JP2007191740A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006009360A JP2007191740A (en) 2006-01-18 2006-01-18 Heat resistant material having excellent oxidation resistance and creep property

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006009360A JP2007191740A (en) 2006-01-18 2006-01-18 Heat resistant material having excellent oxidation resistance and creep property

Publications (1)

Publication Number Publication Date
JP2007191740A true JP2007191740A (en) 2007-08-02

Family

ID=38447677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006009360A Pending JP2007191740A (en) 2006-01-18 2006-01-18 Heat resistant material having excellent oxidation resistance and creep property

Country Status (1)

Country Link
JP (1) JP2007191740A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011006727A (en) * 2009-06-24 2011-01-13 National Institute For Materials Science Heat resistant component for chemical treatment apparatus
US8271981B2 (en) 2006-12-12 2012-09-18 International Business Machines Corporation Detecting an extraordinary behavior
EP2557194A1 (en) * 2011-08-12 2013-02-13 Korea Institute of Science and Technology Oxidation-resistant ferritic stainless steel, method of manufacturing the same, and fuel cell interconnector using the ferritic stainless steel

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002212685A (en) * 2000-11-15 2002-07-31 Kawasaki Steel Corp SOFT Cr-CONTAINING STEEL
JP2004018919A (en) * 2002-06-14 2004-01-22 Jfe Steel Kk Cr-CONTAINING STEEL WITH EXCELLENT HIGH-TEMPERATURE OXIDATION RESISTANCE
JP2004018916A (en) * 2002-06-14 2004-01-22 Jfe Steel Kk Ferritic stainless steel with excellent high-temperature oxidation resistance and high-temperature salt damage resistance
JP2004018921A (en) * 2002-06-14 2004-01-22 Jfe Steel Kk Ferritic stainless steel soft at room temperature and excellent in high-temperature oxidation resistance
JP2004018914A (en) * 2002-06-14 2004-01-22 Jfe Steel Kk Ferritic stainless steel with excellent high-temperature strength, high-temperature oxidation resistance and high-temperature salt damage resistance
JP2004076154A (en) * 2002-06-17 2004-03-11 Jfe Steel Kk Ferritic stainless steel having excellent corrosion resistance, high temperature strength and high temperature oxidation resistance

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002212685A (en) * 2000-11-15 2002-07-31 Kawasaki Steel Corp SOFT Cr-CONTAINING STEEL
JP2004018919A (en) * 2002-06-14 2004-01-22 Jfe Steel Kk Cr-CONTAINING STEEL WITH EXCELLENT HIGH-TEMPERATURE OXIDATION RESISTANCE
JP2004018916A (en) * 2002-06-14 2004-01-22 Jfe Steel Kk Ferritic stainless steel with excellent high-temperature oxidation resistance and high-temperature salt damage resistance
JP2004018921A (en) * 2002-06-14 2004-01-22 Jfe Steel Kk Ferritic stainless steel soft at room temperature and excellent in high-temperature oxidation resistance
JP2004018914A (en) * 2002-06-14 2004-01-22 Jfe Steel Kk Ferritic stainless steel with excellent high-temperature strength, high-temperature oxidation resistance and high-temperature salt damage resistance
JP2004076154A (en) * 2002-06-17 2004-03-11 Jfe Steel Kk Ferritic stainless steel having excellent corrosion resistance, high temperature strength and high temperature oxidation resistance

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8271981B2 (en) 2006-12-12 2012-09-18 International Business Machines Corporation Detecting an extraordinary behavior
JP2011006727A (en) * 2009-06-24 2011-01-13 National Institute For Materials Science Heat resistant component for chemical treatment apparatus
EP2557194A1 (en) * 2011-08-12 2013-02-13 Korea Institute of Science and Technology Oxidation-resistant ferritic stainless steel, method of manufacturing the same, and fuel cell interconnector using the ferritic stainless steel

Similar Documents

Publication Publication Date Title
JP5959635B2 (en) Heat-resistant iron-chromium-aluminum alloy with low chromium evaporation rate and improved heat resistance
JP5186769B2 (en) Sulfuric acid dew-point corrosion steel
JP5600012B2 (en) Ferritic stainless steel with excellent oxidation resistance and secondary work brittleness resistance, as well as steel and secondary work products
WO2006109727A1 (en) Austenitic stainless steel
WO2011111871A1 (en) Highly oxidation-resistant ferrite stainless steel plate, highly heat-resistant ferrite stainless steel plate, and manufacturing method therefor
JP5780716B2 (en) Ferritic stainless steel with excellent oxidation resistance and secondary workability
JP2011190524A (en) Ferritic stainless steel having excellent oxidation resistance, secondary processing brittleness resistance and weld zone toughness
KR101699646B1 (en) Stainless steel sheet and stainless steel foil
JP2007239095A (en) Acid corrosion resistant steel
JP5125600B2 (en) Ferritic stainless steel with excellent high-temperature strength, steam oxidation resistance and workability
JP2009197306A (en) Ferritic stainless steel excellent in high-temperature strength and toughness
WO2011122503A1 (en) Stainless steel foil and catalyst carrier for exhaust gas purification device using the foil
JP6643906B2 (en) Ferritic stainless steel with excellent heat resistance for solid oxide fuel cells and method for producing the same
JP2013155435A (en) Stainless steel foil and catalyst carrier for exhaust emission control system using the foil
JP5677819B2 (en) Ferritic stainless steel plate with excellent oxidation resistance
JP2007191740A (en) Heat resistant material having excellent oxidation resistance and creep property
JP3915717B2 (en) Thin stainless steel sheet
JP5989162B2 (en) High purity ferritic stainless steel sheet excellent in oxidation resistance and high temperature strength and method for producing the same
JP4078881B2 (en) Austenitic stainless steel sheet for heat exchanger
JP4259151B2 (en) Heat resistant material
JP6083567B2 (en) Ferritic stainless steel with excellent oxidation resistance and high temperature creep strength
JP7251996B2 (en) Al-containing ferritic stainless steel sheet and method for producing the same
JP4742876B2 (en) Heat resistant material with excellent oxidation resistance and brazing
JP6655962B2 (en) Al-containing ferritic stainless steel welded joint with excellent 475 ° C brittle resistance
JPH04147945A (en) High al-containing ferritic stainless steel excellent in high temperature oxidation resistance and toughness

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080925

A977 Report on retrieval

Effective date: 20101021

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20110329

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110809