JP7251996B2 - Al-containing ferritic stainless steel sheet and method for producing the same - Google Patents

Al-containing ferritic stainless steel sheet and method for producing the same Download PDF

Info

Publication number
JP7251996B2
JP7251996B2 JP2019018319A JP2019018319A JP7251996B2 JP 7251996 B2 JP7251996 B2 JP 7251996B2 JP 2019018319 A JP2019018319 A JP 2019018319A JP 2019018319 A JP2019018319 A JP 2019018319A JP 7251996 B2 JP7251996 B2 JP 7251996B2
Authority
JP
Japan
Prior art keywords
mass
less
stainless steel
ferritic stainless
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019018319A
Other languages
Japanese (ja)
Other versions
JP2020125518A (en
Inventor
佳幸 藤村
尊仁 濱田
一成 今川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Stainless Steel Corp
Original Assignee
Nippon Steel Stainless Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Stainless Steel Corp filed Critical Nippon Steel Stainless Steel Corp
Priority to JP2019018319A priority Critical patent/JP7251996B2/en
Publication of JP2020125518A publication Critical patent/JP2020125518A/en
Application granted granted Critical
Publication of JP7251996B2 publication Critical patent/JP7251996B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、Al含有フェライト系ステンレス鋼板及びその製造方法に関する。詳細には、本発明は、高温に曝される部材に用いるのに好適なフェライト系ステンレス鋼板に関する。 TECHNICAL FIELD The present invention relates to an Al-containing ferritic stainless steel sheet and a method for producing the same. Specifically, the present invention relates to a ferritic stainless steel sheet suitable for use in members exposed to high temperatures.

Al含有フェライト系ステンレス鋼板は、高温に加熱されると、均一な層状のアルミナが表面に形成されるため、優れた耐高温酸化性を示す。そのため、Al含有フェライト系ステンレス鋼板は、自動車排ガス装置、暖房機器などの高温雰囲気に曝される部材に用いられている。
しかしながら、Al含有フェライト系ステンレス鋼板は、高温雰囲気に長時間曝されると、クリープ変形が起こることがある。
そこで、特許文献1には、質量%にて、Cr:11.0~25.0%、C:0.001~0.030%、Si:0.01~2.00%、Mn:0.01~2.00%、Al:0.50~4.90%、P:0.050%以下、S:0.0100%以下、N:0.030%以下を含み、Ti:0.010~1.000%、Nb:0.010~1.000%の1種又は2種を含み、且つB:0.0005~0.0025%、Sn:0.005~0.500%の1種又は2種を含み、残部がFe及び不可避的不純物からなり、板厚の中心から両表面方向に板厚の1/4の厚さの領域の金属組織がフェライト組織であって、前記フェライト組織は結晶粒度番号が8.0以下の再結晶粒又は展伸粒の少なくともいずれかであり、700℃、初期応力25MPaの試験条件にて、JIS Z2271に準拠する定荷重試験を行った時の最小クリープ速度が1.0×10-2(%/h)以下となるクリープ特性を有することを特徴とするクリープ特性に優れたAl含有フェライト系ステンレス鋼板が提案されている。
When the Al-containing ferritic stainless steel sheet is heated to a high temperature, a uniform layer of alumina is formed on the surface thereof, so that it exhibits excellent high-temperature oxidation resistance. Therefore, Al-containing ferritic stainless steel sheets are used for members that are exposed to high-temperature atmospheres, such as automotive exhaust systems and heaters.
However, when the Al-containing ferritic stainless steel sheet is exposed to a high-temperature atmosphere for a long time, creep deformation may occur.
Therefore, in Patent Document 1, in mass %, Cr: 11.0 to 25.0%, C: 0.001 to 0.030%, Si: 0.01 to 2.00%, Mn: 0.00%. 01 to 2.00%, Al: 0.50 to 4.90%, P: 0.050% or less, S: 0.0100% or less, N: 0.030% or less, Ti: 0.010 to 1.000%, Nb: 0.010 to 1.000% 1 or 2, and B: 0.0005 to 0.0025%, Sn: 0.005 to 0.500% 1 or 2 types, the balance being Fe and unavoidable impurities, and the metal structure of a region of a thickness of 1/4 of the plate thickness in both surface directions from the center of the plate thickness is a ferrite structure, and the ferrite structure is a crystal At least one of recrystallized grains with a grain size number of 8.0 or less or expanded grains, and the minimum creep rate when a constant load test in accordance with JIS Z2271 is performed under the test conditions of 700 ° C. and an initial stress of 25 MPa. There has been proposed an Al-containing ferritic stainless steel sheet having excellent creep properties, characterized by having a creep property of 1.0×10 −2 (%/h) or less.

特許第6113359号公報Japanese Patent No. 6113359

近年、Al含有フェライト系ステンレス鋼板の用途拡大に伴い、様々な板厚のAl含有フェライト系ステンレス鋼板が要求されるようになってきた。要求されるAl含有フェライト系ステンレス鋼板の板厚が小さい場合、Al含有フェライト系ステンレス鋼板のクリープ特性が十分でないと、製造ラインにおいて通板時のテンションによって幅縮みや破断などが生じることがある。また、高温環境下での使用時にはクリープ変形が起こり易くなる。特許文献1は、板厚が小さい場合のAl含有フェライト系ステンレス鋼板のクリープ特性については十分に検討されておらず、これらの問題を解決する手法の開発が望まれていた。 In recent years, as the use of Al-containing ferritic stainless steel sheets has expanded, demand has arisen for Al-containing ferritic stainless steel sheets of various thicknesses. When the required thickness of the Al-containing ferritic stainless steel sheet is small, if the creep property of the Al-containing ferritic stainless steel sheet is not sufficient, width shrinkage or breakage may occur due to tension during threading in the production line. In addition, creep deformation is likely to occur when used in a high-temperature environment. Patent Literature 1 does not sufficiently examine the creep properties of Al-containing ferritic stainless steel sheets when the sheet thickness is small, and development of a technique for solving these problems has been desired.

本発明は、上記の問題を解決するためになされたものであり、耐高温酸化性に優れると共に、板厚を小さくしてもクリープ特性が良好なAl含有フェライト系ステンレス鋼板及びその製造方法を提供することを目的とする。 The present invention was made to solve the above problems, and provides an Al-containing ferritic stainless steel sheet that has excellent high-temperature oxidation resistance and good creep properties even if the sheet thickness is reduced, and a method for producing the same. intended to

本発明者らは、上記の問題を解決すべく鋭意研究を行った結果、Al含有フェライト系ステンレス鋼板の鋼組成、板厚方向の平均結晶粒径、及び結晶粒界に存在する析出物の粒界被覆率が、Al含有フェライト系ステンレス鋼板のクリープ特性と密接に関係していることを見出し、Al含有フェライト系ステンレス鋼板の鋼組成、板厚方向の平均結晶粒径、及び結晶粒界に存在する析出物の粒界被覆率を調整することで、本発明を完成するに至った。 As a result of intensive research to solve the above problems, the present inventors have found that the steel composition of the Al-containing ferritic stainless steel sheet, the average crystal grain size in the plate thickness direction, and the grains of precipitates existing at the grain boundaries It was found that the boundary coverage rate is closely related to the creep properties of Al-containing ferritic stainless steel sheets. The inventors have completed the present invention by adjusting the grain boundary coverage of the precipitates.

すなわち、本発明は、C:0.025質量%以下、Si:0.1~1.0質量%、Mn:1.0質量%以下、P:0.05質量%以下、S:0.01質量%以下、Ni:0.6質量%以下、Cr:16~22質量%、Nb:0.05~0.50質量%、Al:1.0~2.4質量%、N:0.025質量%以下、B:0.0005~0.0060質量%を含有し、残部がFe及び不可避的不純物からなる組成を有し、板厚方向の平均結晶粒径が25~90μmであり、且つ結晶粒界に存在する析出物の粒界被覆率が5%以上である、Al含有フェライト系ステンレス鋼板である。 That is, in the present invention, C: 0.025% by mass or less, Si: 0.1 to 1.0% by mass, Mn: 1.0% by mass or less, P: 0.05% by mass or less, S: 0.01 % by mass or less, Ni: 0.6 mass % or less, Cr: 16 to 22 mass %, Nb: 0.05 to 0.50 mass %, Al: 1.0 to 2.4 mass %, N: 0.025 % by mass or less, B: 0.0005 to 0.0060% by mass, the balance being Fe and unavoidable impurities, the average crystal grain size in the plate thickness direction being 25 to 90 μm, and the crystal The Al-containing ferritic stainless steel sheet has a grain boundary coverage of 5% or more of precipitates present at the grain boundaries.

また、本発明は、前記Al含有フェライト系ステンレス鋼板の製造方法であって、C:0.025質量%以下、Si:0.1~1.0質量%、Mn:1.0質量%以下、P:0.05質量%以下、S:0.01質量%以下、Ni:0.6質量%以下、Cr:16~22質量%、Nb:0.05~0.50質量%、Al:1.0~2.4質量%、N:0.025質量%以下、B:0.0005~0.0060質量%を含有し、残部がFe及び不可避的不純物からなる組成を有する熱延板又は熱延焼鈍板を冷間圧延した後、加熱速度を5℃/秒以上、均熱時間を0~60秒として950~1050℃の焼鈍温度で焼鈍を行い、前記焼鈍温度から550℃までの温度範囲の冷却速度を20℃/秒以上として冷却する、Al含有フェライト系ステンレス鋼板の製造方法である。 The present invention also provides a method for producing the Al-containing ferritic stainless steel sheet, comprising C: 0.025% by mass or less, Si: 0.1 to 1.0% by mass, Mn: 1.0% by mass or less, P: 0.05% by mass or less, S: 0.01% by mass or less, Ni: 0.6% by mass or less, Cr: 16 to 22% by mass, Nb: 0.05 to 0.50% by mass, Al: 1 .0 to 2.4% by mass, N: 0.025% by mass or less, B: 0.0005 to 0.0060% by mass, and the balance being Fe and unavoidable impurities. After cold rolling the rolled annealed sheet, it is annealed at an annealing temperature of 950 to 1050°C with a heating rate of 5°C/second or more and a soaking time of 0 to 60 seconds , and the temperature from the annealing temperature to 550°C. A method for producing an Al-containing ferritic stainless steel sheet, wherein the cooling rate is set to 20° C./second or higher .

本発明によれば、高温酸化性に優れると共に、板厚を小さくしてもクリープ特性が良好なAl含有フェライト系ステンレス鋼板及びその製造方法を提供することができる。 ADVANTAGE OF THE INVENTION According to the present invention, it is possible to provide an Al-containing ferritic stainless steel sheet which is excellent in high-temperature oxidation resistance and has good creep properties even when the sheet thickness is reduced, and a method for producing the same.

結晶粒界に存在する析出物の粒界被覆率の算出方法を説明するための図である。It is a figure for demonstrating the calculation method of the grain-boundary coverage of the precipitate which exists in a grain boundary.

以下、本発明の実施形態について具体的に説明する。本発明は以下の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、当業者の通常の知識に基づいて、以下の実施形態に対し変更、改良などが適宜加えられたものも本発明の範囲に入ることが理解されるべきである。 Hereinafter, embodiments of the present invention will be specifically described. The present invention is not limited to the following embodiments, and modifications and improvements can be made to the following embodiments based on the ordinary knowledge of those skilled in the art without departing from the spirit of the present invention. are also within the scope of the present invention.

本発明の実施形態に係るAl含有フェライト系ステンレス鋼板は、C:0.025質量%以下、Si:0.1~1.0質量%、Mn:1.0質量%以下、P:0.05質量%以下、S:0.01質量%以下、Ni:0.6質量%以下、Cr:16~22質量%、Nb:0.05~0.50質量%、Al:1.0~2.4質量%、N:0.025質量%以下、B:0.0005~0.0060質量%を含有し、残部がFe及び不可避的不純物からなる組成を有する。
ここで、本明細書において「鋼板」とは、鋼帯を含む概念である。また、「不可避的不純物」とは、Oなどの除去することが難しい成分のことを意味する。不可避的不純物は、原料を溶製する段階で不可避的に混入する。
The Al-containing ferritic stainless steel sheet according to the embodiment of the present invention has C: 0.025% by mass or less, Si: 0.1 to 1.0% by mass, Mn: 1.0% by mass or less, P: 0.05 mass % or less, S: 0.01 mass % or less, Ni: 0.6 mass % or less, Cr: 16-22 mass %, Nb: 0.05-0.50 mass %, Al: 1.0-2. 4% by mass, N: 0.025% by mass or less, B: 0.0005 to 0.0060% by mass, and the balance being Fe and unavoidable impurities.
Here, the term "steel sheet" as used herein is a concept including a steel strip. In addition, "inevitable impurities" mean components such as O that are difficult to remove. Unavoidable impurities are inevitably mixed in at the stage of smelting raw materials.

Cは、Al含有フェライト系ステンレス鋼板のクリープ特性及び耐高温酸化性に影響を与える元素である。C含有量が多すぎると、異常酸化が発生し易くなると共に、クリープ特性も低下する傾向にある。そのため、C含有量の上限は、0.025質量%、好ましくは0.024質量%、より好ましくは0.023質量%とする。一方、C含有量の下限は、特に限定されないが、好ましくは0.001質量%、より好ましくは0.002質量%である。 C is an element that affects the creep properties and high-temperature oxidation resistance of the Al-containing ferritic stainless steel sheet. If the C content is too high, abnormal oxidation is likely to occur, and the creep properties tend to deteriorate. Therefore, the upper limit of the C content is 0.025% by mass, preferably 0.024% by mass, more preferably 0.023% by mass. On the other hand, the lower limit of the C content is not particularly limited, but is preferably 0.001% by mass, more preferably 0.002% by mass.

Siは、Al含有フェライト系ステンレス鋼板の耐高温酸化性を向上させるのに有効な元素である。この効果を得る観点から、Si含有量の下限は、0.1質量%、好ましくは0.12質量%とする。一方、Si含有量が多すぎると、硬質化し、靭性が低下する恐れがある。そのため、Si含有量の上限は、1.0質量%、好ましくは0.95質量%、より好ましくは0.93質量%とする。 Si is an effective element for improving the high-temperature oxidation resistance of the Al-containing ferritic stainless steel sheet. From the viewpoint of obtaining this effect, the lower limit of the Si content is 0.1% by mass, preferably 0.12% by mass. On the other hand, if the Si content is too high, the steel may be hardened and the toughness may be lowered. Therefore, the upper limit of the Si content is 1.0% by mass, preferably 0.95% by mass, and more preferably 0.93% by mass.

Mnは、Al含有フェライト系ステンレス鋼板の熱間加工性を向上させるのに有効な元素であるが、Mn含有量が多すぎると、耐高温酸化性が低下する。そのため、Mn含有量の上限は、1.0質量%、好ましくは0.9質量%、より好ましくは0.8質量%である。一方、Mn含有量の下限は、特に限定されないが、好ましくは0.01質量%、より好ましくは0.1質量%、さらに好ましくは0.2質量%である。 Mn is an effective element for improving the hot workability of the Al-containing ferritic stainless steel sheet, but if the Mn content is too high, the high-temperature oxidation resistance is lowered. Therefore, the upper limit of the Mn content is 1.0% by mass, preferably 0.9% by mass, more preferably 0.8% by mass. On the other hand, the lower limit of the Mn content is not particularly limited, but is preferably 0.01% by mass, more preferably 0.1% by mass, and still more preferably 0.2% by mass.

Pは、Al含有フェライト系ステンレス鋼板の耐高温酸化性及び靭性を低下させる恐れがある元素である。そのため、P含有量の上限は、0.05質量%、好ましくは0.04質量%、さらに好ましくは0.035質量%とする。一方、P含有量の下限は、特に限定されないが、好ましくは0.001質量%、より好ましくは0.010質量%、さらに好ましくは0.020質量%である。 P is an element that may reduce the high-temperature oxidation resistance and toughness of the Al-containing ferritic stainless steel sheet. Therefore, the upper limit of the P content is 0.05% by mass, preferably 0.04% by mass, and more preferably 0.035% by mass. On the other hand, the lower limit of the P content is not particularly limited, but is preferably 0.001% by mass, more preferably 0.010% by mass, and still more preferably 0.020% by mass.

Sは、硫化物系介在物を生成し、表面性状を低下させる恐れがある元素である。そのため、S含有量の上限は、0.01質量%、好ましくは0.008質量%、より好ましくは0.006質量%とする。一方、S含有量の下限は、特に限定されないが、好ましくは0.0001質量%、より好ましくは0.0005質量%である。 S is an element that may form sulfide-based inclusions and degrade the surface properties. Therefore, the upper limit of the S content is 0.01% by mass, preferably 0.008% by mass, and more preferably 0.006% by mass. On the other hand, the lower limit of the S content is not particularly limited, but is preferably 0.0001% by mass, more preferably 0.0005% by mass.

Niは、低温靭性の改善に有効な元素であるが、Ni含有量が多すぎると、オーステナイト相安定化元素であるため、マルテンサイト相を生成して加工性が低下する。また、Ni含有量が多すぎると、コスト上昇を招く。そのため、Ni含有量の上限は、0.6質量%、好ましくは0.5質量%、より好ましくは0.4質量%とする。一方、Ni含有量の下限は、特に限定されないが、好ましくは0.01質量%、より好ましくは0.05質量%、さらに好ましくは0.1質量%である。 Ni is an element effective in improving low-temperature toughness. However, if the Ni content is too high, it is an austenite phase stabilizing element, so it forms a martensite phase and deteriorates workability. Moreover, when there is too much Ni content, a cost rise will be caused. Therefore, the upper limit of the Ni content is 0.6% by mass, preferably 0.5% by mass, and more preferably 0.4% by mass. On the other hand, the lower limit of the Ni content is not particularly limited, but is preferably 0.01% by mass, more preferably 0.05% by mass, and still more preferably 0.1% by mass.

Crは、Al含有フェライト系ステンレス鋼板のクリープ特性及び耐高温酸化性を向上させるのに有効な元素である。この効果を得る観点から、Cr含有量の下限は、16質量%、好ましくは16.3質量%、より好ましくは16.5質量%とする。一方、Cr含有量が多すぎると、Al含有フェライト系ステンレス鋼板の靭性が低下する。そのため、Cr含有量の上限は、22質量%、好ましくは21.5質量%、さらに好ましくは21質量%とする。 Cr is an effective element for improving the creep property and high-temperature oxidation resistance of the Al-containing ferritic stainless steel sheet. From the viewpoint of obtaining this effect, the lower limit of the Cr content is 16% by mass, preferably 16.3% by mass, more preferably 16.5% by mass. On the other hand, if the Cr content is too high, the toughness of the Al-containing ferritic stainless steel sheet is lowered. Therefore, the upper limit of the Cr content is 22% by mass, preferably 21.5% by mass, more preferably 21% by mass.

Nbは、Al含有フェライト系ステンレス鋼板のクリープ特性及び耐高温酸化性を向上させるのに有効な元素である。この効果を得る観点から、Nb含有量の下限は、0.05質量%、好ましくは0.06質量%、より好ましくは0.08質量%とする。一方、Nb含有量が多すぎると、Al含有フェライト系ステンレス鋼板が硬質化し、靭性が低下する。そのため、Nb含有量の上限は、0.50質量%、好ましくは0.48質量%、より好ましくは0.46質量%とする。 Nb is an effective element for improving creep properties and high-temperature oxidation resistance of Al-containing ferritic stainless steel sheets. From the viewpoint of obtaining this effect, the lower limit of the Nb content is 0.05% by mass, preferably 0.06% by mass, more preferably 0.08% by mass. On the other hand, if the Nb content is too high, the Al-containing ferritic stainless steel sheet will be hardened and the toughness will be lowered. Therefore, the upper limit of the Nb content is 0.50% by mass, preferably 0.48% by mass, more preferably 0.46% by mass.

Alは、Al含有フェライト系ステンレス鋼板の耐高温酸化性を向上させるのに有効な元素である。この効果を得る観点から、Al含有量の下限は、1.0質量%、好ましくは1.1質量%、より好ましくは1.2質量%とする。一方、Al含有量が多すぎると、Al含有フェライト系ステンレス鋼板が硬質化し、靭性が低下する。そのため、Al含有量の上限は、2.4質量%、好ましくは2.2質量%、より好ましくは2.0質量%とする。 Al is an effective element for improving the high-temperature oxidation resistance of the Al-containing ferritic stainless steel sheet. From the viewpoint of obtaining this effect, the lower limit of the Al content is 1.0% by mass, preferably 1.1% by mass, more preferably 1.2% by mass. On the other hand, if the Al content is too high, the Al-containing ferritic stainless steel sheet will be hardened and the toughness will be lowered. Therefore, the upper limit of the Al content is 2.4% by mass, preferably 2.2% by mass, more preferably 2.0% by mass.

Nは、Alと結合し、異常酸化の起点となるAlNを生成すると共に、Al含有フェライト系ステンレス鋼板の靭性を低下させる恐れがある元素である。そのため、N含有量の上限は、0.025質量%、好ましくは0.020質量%、より好ましくは0.015質量%とする。一方、N含有量の下限は、特に限定されないが、好ましくは0.001質量%、より好ましくは0.003質量%、さらに好ましくは0.005質量%である。 N is an element that combines with Al to form AlN, which is the starting point of abnormal oxidation, and may reduce the toughness of the Al-containing ferritic stainless steel sheet. Therefore, the upper limit of the N content is 0.025% by mass, preferably 0.020% by mass, more preferably 0.015% by mass. On the other hand, the lower limit of the N content is not particularly limited, but is preferably 0.001% by mass, more preferably 0.003% by mass, and still more preferably 0.005% by mass.

Bは、クリープ特性を向上させるのに有効な元素である。この効果を得る観点から、B含有量の下限は、0.0005質量%、好ましくは0.0006質量%、より好ましくは0.0007質量%とする。一方、B含有量が多すぎると、二次加工性や耐酸化性が低下する。そのため、B含有量の上限は、0.0060質量%、好ましくは0.0055質量%、より好ましくは0.0053質量%とする。 B is an element effective in improving creep properties. From the viewpoint of obtaining this effect, the lower limit of the B content is 0.0005% by mass, preferably 0.0006% by mass, more preferably 0.0007% by mass. On the other hand, if the B content is too high, the secondary workability and oxidation resistance are lowered. Therefore, the upper limit of the B content is 0.0060% by mass, preferably 0.0055% by mass, more preferably 0.0053% by mass.

本発明の実施形態に係るAl含有フェライト系ステンレス鋼板は、上記元素に加えて、Ti:0.01~0.50質量%、V:0.01~0.50質量%、Mo:0.01~0.50質量%、Co:0.01~0.50質量%、Zr:0.01~0.50質量%、Cu:0.01~0.50質量%、Mg:0.0005~0.0030質量%、希土類元素(REM):0.001~0.050質量%以下の1種以上をさらに含んでもよい。 In addition to the above elements, the Al-containing ferritic stainless steel sheet according to the embodiment of the present invention has Ti: 0.01 to 0.50 mass%, V: 0.01 to 0.50 mass%, and Mo: 0.01. ~0.50% by mass, Co: 0.01-0.50% by mass, Zr: 0.01-0.50% by mass, Cu: 0.01-0.50% by mass, Mg: 0.0005-0 .0030% by mass, and rare earth element (REM): 0.001 to 0.050% by mass or less.

Ti及びVは、C及び/又はNと結合することで靭性を向上させる元素である。この効果を得る観点からは、Ti及びVの含有量の下限はいずれも、好ましくは0.01質量%、より好ましくは0.03質量%、さらに好ましくは0.05質量%とする。一方、Ti及びVの含有量が多すぎると、Al含有フェライト系ステンレス鋼板が硬質化し、靭性が低下する恐れがある。そのため、Ti及びVの含有量の上限は、0.50質量%、好ましくは0.45質量%、より好ましくは0.40質量%とする。 Ti and V are elements that combine with C and/or N to improve toughness. From the viewpoint of obtaining this effect, the lower limits of the Ti and V contents are preferably 0.01 mass %, more preferably 0.03 mass %, and still more preferably 0.05 mass %. On the other hand, if the contents of Ti and V are too high, the Al-containing ferritic stainless steel sheet may be hardened and the toughness may be lowered. Therefore, the upper limits of the contents of Ti and V are set to 0.50% by mass, preferably 0.45% by mass, and more preferably 0.40% by mass.

Moは、Al含有フェライト系ステンレス鋼板の耐高温酸化性及び高温強度の向上に有効な元素である。この効果を得る観点から、Mo含有量の下限は、好ましくは0.01質量%、より好ましくは0.02質量%、さらに好ましくは0.03質量%とする。一方、Mo含有量が多すぎると、Al含有フェライト系ステンレス鋼板が硬質化し、靭性が低下する恐れがある。そのため、Mo含有量の上限は、好ましくは0.50質量%、より好ましくは0.48質量%、さらに好ましくは0.45質量%とする。 Mo is an element effective in improving high-temperature oxidation resistance and high-temperature strength of an Al-containing ferritic stainless steel sheet. From the viewpoint of obtaining this effect, the lower limit of the Mo content is preferably 0.01% by mass, more preferably 0.02% by mass, and still more preferably 0.03% by mass. On the other hand, if the Mo content is too high, the Al-containing ferritic stainless steel sheet may be hardened and the toughness may be lowered. Therefore, the upper limit of the Mo content is preferably 0.50% by mass, more preferably 0.48% by mass, and still more preferably 0.45% by mass.

Zrは、鋼中のCやNと結合して靱性を改善する効果や耐酸化性の向上に有効な元素である。また、Co及びCuは鋼の高温強度を向上させるのに有効な元素である。これら元素の添加による効果を得るためには、含有量の下限をいずれも、0.01質量%、より好ましくは0.05質量%、さらに好ましくは0.1質量%とする。一方、これらの元素の含有量が多すぎると、鋼の靱性が劣化する。そのため、これらの含有量の上限は、0.50質量%、好ましくは0.45質量%、より好ましくは0.40質量%とする。 Zr is an element effective in improving toughness and oxidation resistance by combining with C and N in steel. Also, Co and Cu are effective elements for improving the high-temperature strength of steel. In order to obtain the effect of adding these elements, the lower limit of the content is set to 0.01% by mass, more preferably 0.05% by mass, and still more preferably 0.1% by mass. On the other hand, if the content of these elements is too high, the toughness of steel deteriorates. Therefore, the upper limit of their content is 0.50% by mass, preferably 0.45% by mass, and more preferably 0.40% by mass.

Mgは、Nbの炭窒化物の形成を促進し且つ微細に析出させることができる元素である。この効果を得る観点から、Mg含有量の下限は、好ましくは0.0005質量%、より好ましくは0.0008質量%、さらに好ましくは0.0010質量%とする。一方、Mg含有量が多すぎると、耐クリープ性が低下する恐れがある。そのため、Mg含有量の上限は、好ましくは0.0030質量%、より好ましくは0.0025質量%、さらに好ましくは0.0020質量%とする。 Mg is an element that promotes the formation of carbonitrides of Nb and can be finely precipitated. From the viewpoint of obtaining this effect, the lower limit of the Mg content is preferably 0.0005% by mass, more preferably 0.0008% by mass, and still more preferably 0.0010% by mass. On the other hand, if the Mg content is too high, the creep resistance may deteriorate. Therefore, the upper limit of the Mg content is preferably 0.0030% by mass, more preferably 0.0025% by mass, and still more preferably 0.0020% by mass.

希土類元素(REM)は、Al含有フェライト系ステンレス鋼板の耐高温酸化性を向上させるのに有効な元素である。この効果を得る観点から、希土類元素の下限は、好ましくは0.001質量%、より好ましくは0.005質量%、さらに好ましくは0.01質量%とする。一方、希土類元素の含有量が多すぎると、熱間加工性及び靭性が低下する恐れがある。そのため、希土類元素の含有量の上限は、好ましくは0.050質量%、より好ましくは0.045質量%、さらに好ましくは0.040質量%とする。 A rare earth element (REM) is an effective element for improving the high-temperature oxidation resistance of an Al-containing ferritic stainless steel sheet. From the viewpoint of obtaining this effect, the lower limit of the rare earth element is preferably 0.001% by mass, more preferably 0.005% by mass, and still more preferably 0.01% by mass. On the other hand, if the rare earth element content is too high, the hot workability and toughness may deteriorate. Therefore, the upper limit of the rare earth element content is preferably 0.050% by mass, more preferably 0.045% by mass, and still more preferably 0.040% by mass.

本発明の実施形態に係るAl含有フェライト系ステンレス鋼板は、板厚方向の平均結晶粒径が25~90μm、好ましくは26~85μm、より好ましくは27~80μm、さらに好ましくは28~75μm、最も好ましくは30~70μmである。平均結晶粒径が25μm未満であると、クリープ特性が低下する。一方、平均結晶粒径が90μmを超えると、表面が粗くなり、加工性が低下する。
ここで、本明細書において「板厚方向の平均結晶粒径」とは、Al含有フェライト系ステンレス鋼板の板厚方向の断面を研磨した観察面において、JIS G0551:2003の付属書Cに規定される直線試験線による切断法に準拠して求められる平均結晶粒径を意味する。直線試験線はランダムに8箇所引き、各箇所の平均値を平均結晶粒径とする。また、観察面の断面は、圧延方向に平行なL断面であることが好ましい。
The Al-containing ferritic stainless steel sheet according to the embodiment of the present invention has an average crystal grain size in the plate thickness direction of 25 to 90 μm, preferably 26 to 85 μm, more preferably 27 to 80 μm, still more preferably 28 to 75 μm, most preferably 28 to 75 μm. is 30-70 μm. If the average crystal grain size is less than 25 μm, the creep properties are degraded. On the other hand, if the average crystal grain size exceeds 90 μm, the surface becomes rough and workability is lowered.
Here, the term "average crystal grain size in the plate thickness direction" as used herein refers to the observation surface obtained by polishing the cross section of the Al-containing ferritic stainless steel sheet in the plate thickness direction, and is specified in Appendix C of JIS G0551:2003. Means the average grain size obtained according to the cutting method by a straight line test line. A linear test line is randomly drawn at eight locations, and the average value of each location is taken as the average crystal grain size. Moreover, the cross section of the viewing surface is preferably an L cross section parallel to the rolling direction.

本発明の実施形態に係るAl含有フェライト系ステンレス鋼板は、結晶粒界に存在する析出物の粒界被覆率が5%以上、好ましくは6%以上である。析出物の粒界被覆率が5%未満であると、クリープ特性が低下する。一方、析出物の粒界被覆率の上限は、特に限定されないが、好ましくは50%、より好ましくは40%、さらに好ましくは35%である。
ここで、本明細書において「結晶粒界に存在する析出物の粒界被覆率」とは、Al含有フェライト系ステンレス鋼板の板厚方向の断面を研磨した観察面において、2つの結晶粒の間の結晶粒界の長さLに対する、この結晶粒界に存在する析出物が被覆する部分の長さdの割合のことを意味する。図1に、結晶粒界の長さL、及び析出物が被覆する部分の長さdの模式図を示す。2つの結晶粒の間の結晶粒界は、ランダムに5箇所選択し、各箇所における平均値を析出物の粒界被覆率とする。
In the Al-containing ferritic stainless steel sheet according to the embodiment of the present invention, the grain boundary coverage of precipitates present at grain boundaries is 5% or more, preferably 6% or more. If the grain boundary coverage of the precipitates is less than 5%, the creep properties are degraded. On the other hand, the upper limit of the grain boundary coverage of precipitates is not particularly limited, but is preferably 50%, more preferably 40%, and still more preferably 35%.
Here, in this specification, the term “grain boundary coverage of precipitates existing at grain boundaries” means that the grain boundary coverage of the Al-containing ferritic stainless steel sheet is between two grains on the observation surface obtained by polishing the cross section in the plate thickness direction. It means the ratio of the length d of the portion covered by the precipitate existing at the grain boundary to the length L of the grain boundary. FIG. 1 shows a schematic diagram of the length L of the grain boundary and the length d of the portion covered by the precipitate. Five crystal grain boundaries between two crystal grains are randomly selected, and the average value at each location is taken as the grain boundary coverage of precipitates.

本発明の実施形態に係るAl含有フェライト系ステンレス鋼板の種類は、特に限定されないが、好ましくは冷延焼鈍板である。
また、本発明の実施形態に係るAl含有フェライト系ステンレス鋼板の厚さは、特に限定されないが、好ましくは0.1mm以上0.8mm未満、より好ましくは0.1~0.6mm、さらに好ましくは0.1~0.5mmである。
Although the type of the Al-containing ferritic stainless steel sheet according to the embodiment of the present invention is not particularly limited, it is preferably a cold-rolled annealed sheet.
In addition, the thickness of the Al-containing ferritic stainless steel sheet according to the embodiment of the present invention is not particularly limited, but is preferably 0.1 mm or more and less than 0.8 mm, more preferably 0.1 to 0.6 mm, further preferably 0.1 to 0.5 mm.

本発明の実施形態に係るAl含有フェライト系ステンレス鋼板は、20%の引張ひずみを付与した後の算術平均粗さRaが、好ましくは5.0μm以下、より好ましくは4.5μm以下である。この算術平均粗さRaが5.0μmを超えると、加工性が低下する。 The Al-containing ferritic stainless steel sheet according to the embodiment of the present invention preferably has an arithmetic mean roughness Ra of 5.0 μm or less, more preferably 4.5 μm or less after applying a tensile strain of 20%. If this arithmetic mean roughness Ra exceeds 5.0 μm, the workability is deteriorated.

上記のような特徴を有する本発明の実施形態に係るAl含有フェライト系ステンレス鋼板は、上記の組成を有するスラブを用い、公知の方法に準じて製造することができる。具体的には、上記の組成を有するスラブに対して、熱間圧延、焼鈍、冷間圧延及び焼鈍を順次行えばよい。好ましい実施形態において、上記の組成を有する熱延板又は熱延焼鈍板を冷間圧延した後、950~1050℃の温度で焼鈍を行う。冷間圧延後の焼鈍の温度が950℃未満であると、未再結晶となる恐れがある。一方、冷間圧延後の焼鈍の温度が1050℃を超えると、表面粗さが低下するため、加工性が低下してしまう。また、冷間圧延後の焼鈍は、加熱速度を5℃/秒以上、均熱時間を0~60秒とすることが好ましい。さらに、冷却速度は焼鈍温度から550℃までの温度範囲を20℃/秒以上とすることが好ましい。このような条件下で、熱間圧延後の焼鈍を行うことにより、板厚方向の平均結晶粒径及び結晶粒界に存在する析出物の粒界被覆率を所定の範囲に制御することができる。 The Al-containing ferritic stainless steel sheet according to the embodiment of the present invention having the characteristics as described above can be manufactured according to a known method using a slab having the composition described above. Specifically, hot rolling, annealing, cold rolling and annealing may be sequentially performed on the slab having the above composition. In a preferred embodiment, the hot rolled sheet or hot rolled annealed sheet having the above composition is cold rolled and then annealed at a temperature of 950 to 1050°C. If the annealing temperature after cold rolling is less than 950°C, there is a risk of non-recrystallization. On the other hand, if the annealing temperature after cold rolling exceeds 1050° C., the surface roughness decreases, resulting in poor workability. Further, annealing after cold rolling is preferably performed at a heating rate of 5° C./second or more and a soaking time of 0 to 60 seconds. Further, the cooling rate is preferably 20°C/second or more in the temperature range from the annealing temperature to 550°C. By performing annealing after hot rolling under such conditions, it is possible to control the average crystal grain size in the sheet thickness direction and the grain boundary coverage of precipitates present at the grain boundaries within a predetermined range. .

熱間圧延は、特に限定されないが、一般に1150~1250℃の温度範囲で行われる。また、熱間圧延後の焼鈍は、再結晶させることを目的として合金成分に応じた温度で施されるが、好ましくは950~1050℃の温度範囲で行われる。また、冷間圧延は複数回にわたって行うことができ、各冷間圧延後に焼鈍を行ってもよい。このときの焼鈍温度は、950~1050℃であることが好ましい。 Hot rolling is generally carried out in a temperature range of 1150 to 1250° C., although it is not particularly limited. Annealing after hot rolling is performed at a temperature corresponding to the alloy composition for the purpose of recrystallization, preferably in a temperature range of 950 to 1050°C. In addition, cold rolling can be performed multiple times, and annealing may be performed after each cold rolling. The annealing temperature at this time is preferably 950 to 1050°C.

上記のようにして製造される本発明の実施形態に係るAl含有フェライト系ステンレス鋼板は、クリープ特性に優れており、且つ耐高温酸化性も良好である。そのため、本発明の実施形態に係るAl含有フェライト系ステンレス鋼板は、燃料電池の改質器、高温条件に曝される各種配管、自動車排ガス部材、バーナー燃焼筒、チムニー、暖房機器、発熱体などの靭性(加工性)及び耐高温酸化性が要求される耐熱部材に用いるのに好適である。 The Al-containing ferritic stainless steel sheet according to the embodiment of the present invention manufactured as described above has excellent creep properties and high-temperature oxidation resistance. Therefore, the Al-containing ferritic stainless steel sheet according to the embodiment of the present invention can be used for fuel cell reformers, various pipes exposed to high temperature conditions, automobile exhaust gas components, burner combustion cylinders, chimneys, heating equipment, heating elements, etc. It is suitable for use in heat-resistant members that require toughness (workability) and high-temperature oxidation resistance.

以下に、実施例を挙げて本発明の内容を詳細に説明するが、本発明はこれらに限定して解釈されるものではない。 EXAMPLES The content of the present invention will be described in detail below with reference to Examples, but the present invention is not construed as being limited thereto.

表1に示すステンレス鋼を真空溶解し、鋳造してスラブを得た。このスラブを1200℃で熱間圧延して板厚3.0mmの熱延板を得た。次に、この熱延板を表2に示す温度で焼鈍して熱延焼鈍板を得た。次に、板厚1.0mmまで冷間圧延して表2に示す温度で焼鈍した後、板厚0.2mmまで冷間圧延して表2に示す温度で焼鈍することにより、冷延焼鈍板(Al含有フェライト系ステンレス鋼板)を得た。また、冷間圧延後の焼鈍は、加熱速度を10℃/秒以上、均熱時間を30秒、焼鈍温度から550℃までの温度範囲の冷却速度を20℃/秒とした。 The stainless steels shown in Table 1 were vacuum melted and cast to obtain slabs. This slab was hot-rolled at 1200° C. to obtain a hot-rolled sheet with a thickness of 3.0 mm. Next, this hot-rolled sheet was annealed at the temperature shown in Table 2 to obtain a hot-rolled annealed sheet. Next, after cold rolling to a plate thickness of 1.0 mm and annealing at the temperature shown in Table 2, cold rolling to a plate thickness of 0.2 mm and annealing at the temperature shown in Table 2, a cold rolled annealed plate (Al-containing ferritic stainless steel sheet) was obtained. Annealing after cold rolling was performed at a heating rate of 10°C/second or more, a soaking time of 30 seconds, and a cooling rate of 20°C/second in the temperature range from the annealing temperature to 550°C.

Figure 0007251996000001
Figure 0007251996000001

上記で得られた冷延焼鈍板について、下記の評価を行った。
<平均結晶粒径>
冷延焼鈍板の板厚方向のL断面を鏡面研磨した後、フッ酸、硝酸及びグリセリンの混合液(フッ酸:硝酸:グリセリンの質量比が3:1:2である)を用いて表面をエッチングした。このエッチングされた表面において、JIS G0551:2003の付属書Cに規定される直線試験線による切断法に準拠して平均結晶粒径を求めた。直線試験線はランダムに8箇所引き、各箇所の平均値を平均結晶粒径とした。
The cold-rolled annealed sheets obtained above were evaluated as follows.
<Average grain size>
After mirror-polishing the L cross section in the plate thickness direction of the cold-rolled annealed sheet, the surface was polished with a mixed solution of hydrofluoric acid, nitric acid and glycerin (hydrofluoric acid:nitric acid:glycerin mass ratio is 3:1:2). etched. On this etched surface, the average crystal grain size was determined according to the straight test line cutting method specified in Appendix C of JIS G0551:2003. Eight straight test lines were drawn at random, and the average value of each point was taken as the average crystal grain size.

<結晶粒界に存在する析出物の粒界被覆率>
冷延焼鈍板の板厚方向のL断面を鏡面研磨した後、10質量%のシュウ酸を含む溶液を用い、電圧6V、電流1Aの条件下で3秒間エッチングした。このエッチングされた表面において、FE-EPMAを用いてマッピング分析を行い、結晶粒界に存在する析出物の粒界被覆率を求めた。
<Grain Boundary Coverage of Precipitates Present at Grain Boundaries>
After mirror-polishing the L cross section in the thickness direction of the cold-rolled annealed sheet, etching was performed for 3 seconds using a solution containing 10% by mass of oxalic acid under the conditions of a voltage of 6 V and a current of 1 A. The etched surface was subjected to mapping analysis using FE-EPMA to determine the grain boundary coverage of precipitates present at the grain boundaries.

<算術平均粗さRa>
冷延焼鈍板からJIS5号試験片を作製し、標点間距離を50mmとして20%の引張ひずみを付与した後、標点間の算術平均粗さRaを、表面粗さ測定装置(東京精密社製;SURFCOM2900DX)を用いて測定した。測定距離は、標点間の中央部を圧延方向に対し直角方向20mmで行った。
<Arithmetic mean roughness Ra>
A JIS No. 5 test piece was prepared from the cold-rolled annealed sheet, and a tensile strain of 20% was applied with a gauge length of 50 mm. manufactured by SURFCOM2900DX). The measurement distance was 20 mm in the direction perpendicular to the rolling direction in the central part between gauge points.

<クリープ特性>
冷延焼鈍板から圧延方向長さ200mm×板幅方向長さ15mm、標点間距離を50mmの試験片を切り出した。試験片の加熱及び試験片力の負荷については、JIS Z2271:2010に準拠し、定荷重試験を行った。定荷重試験では、試験片に対し、900℃で7MPaを180秒付与した後の板幅の縮み率を求め、板幅の縮み率が1.0%以下の場合をクリープ特性が良好であると判断した。
<Creep characteristics>
A test piece having a length of 200 mm in the rolling direction, a length of 15 mm in the width direction, and a gauge length of 50 mm was cut out from the cold-rolled and annealed sheet. A constant load test was carried out in accordance with JIS Z2271:2010 for the heating of the test piece and the load of the test piece force. In the constant load test, the shrinkage rate of the sheet width after applying 7 MPa at 900 ° C. for 180 seconds to the test piece was obtained, and when the shrinkage rate of the sheet width was 1.0% or less, the creep property was considered to be good. It was judged.

<耐高温酸化性>
冷延焼鈍板から圧延方向長さ35mm×板幅方向長さ25mmの試験片を切り出し、試験片の表面を#400の番手、断面を#600の番手でそれぞれ乾式研磨した後、アセトンに5分間浸漬し、超音波洗浄を行ってから評価を行った。耐高温酸化性は、大気雰囲気中、900℃で100時間、試験片を加熱し、加熱前後の試験片の質量変化量で評価した。質量変化量が0.6mg/cm2以下の場合、耐高温酸化性が良好であると判断した。
<High temperature oxidation resistance>
A test piece with a length of 35 mm in the rolling direction and a length of 25 mm in the width direction is cut from the cold-rolled annealed sheet, and the surface of the test piece is dry-polished with #400 grit and the cross section with #600 grit, respectively. Evaluation was performed after immersion and ultrasonic cleaning. The high-temperature oxidation resistance was evaluated by heating a test piece at 900° C. for 100 hours in an air atmosphere and measuring the change in mass of the test piece before and after heating. When the amount of change in mass was 0.6 mg/cm 2 or less, it was judged that the high-temperature oxidation resistance was good.

上記の各評価結果を表2に示す。 Table 2 shows the above evaluation results.

Figure 0007251996000002
Figure 0007251996000002

表2に示されるように、所定の組成を有し、平均結晶粒径及び析出物の粒界被覆率が所定の範囲を満たす試験番号1~14(本発明例)の冷延焼鈍板は、クリープ特性及び耐高温酸化性が良好であった。
これに対して試験番号15(比較例)の冷延焼鈍板は、平均結晶粒径が小さすぎるため、クリープ特性が十分でなかった。
試験番号16及び20(比較例)の冷延焼鈍板は、Nb及びBを含んでいないため、結晶粒界に析出物が生成しなかった。そのため、この冷延焼鈍板は、クリープ特性が十分でなく、耐高温酸化性も低下した。
試験番号17(比較例)の冷延焼鈍板は、Nb含有量が少なすぎるため、析出物の粒界被覆率が低下し、クリープ特性が十分でなかった。
As shown in Table 2, the cold-rolled annealed sheets of test numbers 1 to 14 (examples of the present invention) having a predetermined composition and satisfying a predetermined range of average crystal grain size and grain boundary coverage of precipitates were: Good creep properties and high temperature oxidation resistance were obtained.
On the other hand, the cold-rolled annealed sheet of Test No. 15 (comparative example) had an insufficient creep property because the average grain size was too small.
Since the cold-rolled annealed sheets of test numbers 16 and 20 (comparative examples) did not contain Nb and B, no precipitate was formed at the grain boundaries. Therefore, this cold-rolled and annealed sheet was insufficient in creep properties and had a low high-temperature oxidation resistance.
In the cold-rolled annealed sheet of Test No. 17 (comparative example), since the Nb content was too small, the grain boundary coverage of the precipitates was lowered and the creep property was insufficient.

試験番号18(比較例)の冷延焼鈍板は、Nb及びBを含んでいないため、結晶粒界に析出物が生成せず、クリープ特性が十分でなかった。また、この冷延焼鈍板は、Al含有量が少なすぎたため、耐高温酸化性も低下した。
試験番号19(比較例)の冷延焼鈍板は、Mn含有量が高すぎたため、耐高温酸化性が低下した。
試験番号21(比較例)の冷延焼鈍板は、Si含有量及びNb含有量が少なすぎたため、析出物の粒界被覆率が低下し、クリープ特性が十分でないと共に、耐高温酸化性も低下した。
試験番号22(比較例)の冷延焼鈍板は、Cr含有量が少なすぎたため、耐高温酸化性が低下した。
試験番号23(比較例)の冷延焼鈍板は、Nbを含んでいないため、クリープ特性が十分でなかった。
Since the cold-rolled annealed sheet of test number 18 (comparative example) did not contain Nb and B, no precipitate was formed at the grain boundary, and the creep property was insufficient. In addition, since the cold-rolled annealed sheet had an excessively low Al content, the high-temperature oxidation resistance was also lowered.
The cold-rolled annealed sheet of Test No. 19 (comparative example) had too high a Mn content, so the high-temperature oxidation resistance was lowered.
In the cold-rolled annealed sheet of test number 21 (comparative example), the Si content and the Nb content were too small, so the grain boundary coverage of precipitates decreased, the creep property was insufficient, and the high-temperature oxidation resistance decreased. bottom.
The cold-rolled annealed sheet of test number 22 (comparative example) had a low high-temperature oxidation resistance because the Cr content was too low.
The cold-rolled annealed sheet of Test No. 23 (comparative example) did not contain Nb, and therefore had insufficient creep properties.

以上の結果からわかるように、本発明によれば、高温酸化性に優れると共に、板厚を小さくしてもクリープ特性が良好なAl含有フェライト系ステンレス鋼板及びその製造方法を提供することができる。 As can be seen from the above results, according to the present invention, it is possible to provide an Al-containing ferritic stainless steel sheet that has excellent high-temperature oxidation resistance and good creep properties even if the sheet thickness is reduced, and a method for producing the same.

Claims (7)

C:0.025質量%以下、Si:0.1~1.0質量%、Mn:1.0質量%以下、P:0.05質量%以下、S:0.01質量%以下、Ni:0.6質量%以下、Cr:16~22質量%、Nb:0.05~0.50質量%、Al:1.0~2.4質量%、N:0.025質量%以下、B:0.0005~0.0060質量%を含有し、残部がFe及び不可避的不純物からなる組成を有し、板厚方向の平均結晶粒径が25~90μmであり、且つ結晶粒界に存在する析出物の粒界被覆率が5%以上である、Al含有フェライト系ステンレス鋼板。 C: 0.025% by mass or less, Si: 0.1 to 1.0% by mass, Mn: 1.0% by mass or less, P: 0.05% by mass or less, S: 0.01% by mass or less, Ni: 0.6% by mass or less, Cr: 16 to 22% by mass, Nb: 0.05 to 0.50% by mass, Al: 1.0 to 2.4% by mass, N: 0.025% by mass or less, B: containing 0.0005 to 0.0060% by mass, the balance being composed of Fe and unavoidable impurities, having an average crystal grain size in the thickness direction of 25 to 90 μm, and precipitates present at grain boundaries An Al-containing ferritic stainless steel sheet having a grain boundary coverage of 5% or more. Ti:0.01~0.50質量%、V:0.01~0.50質量%、Mo:0.01~0.50質量%、Co:0.01~0.50質量%、Zr:0.01~0.50質量%、Cu:0.01~0.50質量%、Mg:0.0005~0.0030質量%、希土類元素:0.001~0.050質量%の1種以上をさらに含む、請求項1に記載のAl含有フェライト系ステンレス鋼板。 Ti: 0.01 to 0.50% by mass, V: 0.01 to 0.50% by mass, Mo: 0.01 to 0.50% by mass, Co: 0.01 to 0.50% by mass, Zr: One or more of 0.01 to 0.50% by mass, Cu: 0.01 to 0.50% by mass, Mg: 0.0005 to 0.0030% by mass, rare earth element: 0.001 to 0.050% by mass The Al-containing ferritic stainless steel sheet according to claim 1, further comprising: 厚さが0.1mm以上0.8mm未満である、請求項1又は2に記載のAl含有フェライト系ステンレス鋼板。 The Al-containing ferritic stainless steel sheet according to claim 1 or 2, having a thickness of 0.1 mm or more and less than 0.8 mm. 20%の引張ひずみを付与した後の算術平均粗さRaが5.0μm以下である、請求項1~3のいずれか一項に記載のAl含有フェライト系ステンレス鋼板。 The Al-containing ferritic stainless steel sheet according to any one of claims 1 to 3, having an arithmetic mean roughness Ra of 5.0 µm or less after applying a tensile strain of 20%. 請求項1~4のいずれか一項に記載のAl含有フェライト系ステンレス鋼板の製造方法であって、
C:0.025質量%以下、Si:0.1~1.0質量%、Mn:1.0質量%以下、P:0.05質量%以下、S:0.01質量%以下、Ni:0.6質量%以下、Cr:16~22質量%、Nb:0.05~0.50質量%、Al:1.0~2.4質量%、N:0.025質量%以下、B:0.0005~0.0060質量%を含有し、残部がFe及び不可避的不純物からなる組成を有する熱延板又は熱延焼鈍板を冷間圧延した後、加熱速度を5℃/秒以上、均熱時間を0~60秒として950~1050℃の焼鈍温度で焼鈍を行い、前記焼鈍温度から550℃までの温度範囲の冷却速度を20℃/秒以上として冷却する、Al含有フェライト系ステンレス鋼板の製造方法。
A method for producing an Al-containing ferritic stainless steel sheet according to any one of claims 1 to 4,
C: 0.025% by mass or less, Si: 0.1 to 1.0% by mass, Mn: 1.0% by mass or less, P: 0.05% by mass or less, S: 0.01% by mass or less, Ni: 0.6% by mass or less, Cr: 16 to 22% by mass, Nb: 0.05 to 0.50% by mass, Al: 1.0 to 2.4% by mass, N: 0.025% by mass or less, B: After cold-rolling a hot-rolled sheet or hot-rolled and annealed sheet having a composition containing 0.0005 to 0.0060% by mass and the balance being Fe and unavoidable impurities, the heating rate is 5 ° C./sec or more, uniform An Al-containing ferritic stainless steel plate, which is annealed at an annealing temperature of 950 to 1050°C with a heating time of 0 to 60 seconds , and cooled at a cooling rate of 20°C/second or more in the temperature range from the annealing temperature to 550°C. manufacturing method.
前記熱延板又は前記熱延焼鈍板が、Ti:0.01~0.50質量%、V:0.01~0.50質量%、Mo:0.01~0.50質量%、Co:0.01~0.50質量%、Zr:0.01~0.50質量%、Cu:0.01~0.50質量%、Mg:0.0005~0.0030質量%、希土類元素:0.001~0.050質量%の1種以上をさらに含む、請求項5に記載のAl含有フェライト系ステンレス鋼板の製造方法。 The hot-rolled sheet or the hot-rolled annealed sheet contains Ti: 0.01 to 0.50% by mass, V: 0.01 to 0.50% by mass, Mo: 0.01 to 0.50% by mass, Co: 0.01 to 0.50% by mass, Zr: 0.01 to 0.50% by mass, Cu: 0.01 to 0.50% by mass, Mg: 0.0005 to 0.0030% by mass, rare earth element: 0 The method for producing an Al-containing ferritic stainless steel sheet according to claim 5, further comprising one or more of 0.001 to 0.050% by mass. 請求項1~4のいずれか一項に記載のAl含有フェライト系ステンレス鋼板から形成された耐熱部材。 A heat-resistant member formed from the Al-containing ferritic stainless steel sheet according to any one of claims 1 to 4.
JP2019018319A 2019-02-04 2019-02-04 Al-containing ferritic stainless steel sheet and method for producing the same Active JP7251996B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019018319A JP7251996B2 (en) 2019-02-04 2019-02-04 Al-containing ferritic stainless steel sheet and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019018319A JP7251996B2 (en) 2019-02-04 2019-02-04 Al-containing ferritic stainless steel sheet and method for producing the same

Publications (2)

Publication Number Publication Date
JP2020125518A JP2020125518A (en) 2020-08-20
JP7251996B2 true JP7251996B2 (en) 2023-04-04

Family

ID=72084718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019018319A Active JP7251996B2 (en) 2019-02-04 2019-02-04 Al-containing ferritic stainless steel sheet and method for producing the same

Country Status (1)

Country Link
JP (1) JP7251996B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7284587B2 (en) * 2019-02-04 2023-05-31 日鉄ステンレス株式会社 Al-containing ferritic stainless steel sheet and method for producing the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011162843A (en) 2010-02-09 2011-08-25 Nisshin Steel Co Ltd Ferritic stainless steel having excellent oxidation resistance and secondary working brittleness resistance, and steel material and secondarily worked product

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011162843A (en) 2010-02-09 2011-08-25 Nisshin Steel Co Ltd Ferritic stainless steel having excellent oxidation resistance and secondary working brittleness resistance, and steel material and secondarily worked product

Also Published As

Publication number Publication date
JP2020125518A (en) 2020-08-20

Similar Documents

Publication Publication Date Title
EP1734143B1 (en) Ferritic stainless steel sheet excellent in formability and method for production thereof
KR102267129B1 (en) Nb-containing ferritic stainless hot-rolled steel sheet and manufacturing method thereof, Nb-containing ferritic stainless cold-rolled stainless steel sheet and manufacturing method thereof
JP6017341B2 (en) High strength cold-rolled steel sheet with excellent bendability
JP5793459B2 (en) Heat-resistant ferritic stainless steel cold-rolled steel sheet excellent in workability, ferritic stainless hot-rolled steel sheet for cold-rolled material, and production method thereof
RU2578308C1 (en) Foil from ferrite stainless steel
JP2009235555A (en) Heat resistant ferritic stainless steel sheet having excellent oxidation resistance
JP2010248620A (en) Ferritic stainless steel plate excellent in heat resistance and workability
JP5904306B2 (en) Ferritic stainless steel hot-rolled annealed steel sheet, manufacturing method thereof, and ferritic stainless steel cold-rolled annealed steel sheet
JP2019002053A (en) Ferritic stainless steel sheet, steel tube, ferritic stainless member for exhaust system component, and manufacturing method of ferritic stainless steel sheet
JP2014189808A (en) Low yield ratio-type high strength steel sheet excellent in hydrogen induced cracking resistance and bendability
KR20100076073A (en) Steel sheets and process for manufacturing the same
JP7251996B2 (en) Al-containing ferritic stainless steel sheet and method for producing the same
JP5453747B2 (en) Stainless cold-rolled steel sheet excellent in punching processability and manufacturing method thereof
KR20080038218A (en) Cr-containing steel excellent in thermal fatigue characteristics
JP6093063B1 (en) High-strength stainless steel material excellent in workability and its manufacturing method
JP7013302B2 (en) Al-containing ferritic stainless steel and processed products with excellent secondary workability and high-temperature oxidation resistance
JP7013301B2 (en) Al-containing ferritic stainless steel with excellent secondary workability and high-temperature oxidation resistance
JP2005325377A (en) Method for manufacturing heat resistant ferritic stainless steel sheet having excellent workability
JP4606113B2 (en) Austenitic stainless steel with high proportional limit stress and manufacturing method
CN111954724B (en) Ferritic stainless steel sheet, method for producing same, and ferritic stainless steel member
JP7284587B2 (en) Al-containing ferritic stainless steel sheet and method for producing the same
JP2019173116A (en) Ferritic stainless steel sheet excellent in high temperature salt damage resistance and automobile exhaust system component
CN114364820B (en) Ferritic stainless steel with improved high temperature creep resistance and method for manufacturing same
JP3844662B2 (en) Martensitic stainless steel sheet and manufacturing method thereof
KR20190068064A (en) High-carbon hot-rolled steel sheet having excellent surface quality and method for manufacturing same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20210115

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230323

R150 Certificate of patent or registration of utility model

Ref document number: 7251996

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150