JP2004018916A - Ferritic stainless steel with excellent high-temperature oxidation resistance and high-temperature salt damage resistance - Google Patents

Ferritic stainless steel with excellent high-temperature oxidation resistance and high-temperature salt damage resistance Download PDF

Info

Publication number
JP2004018916A
JP2004018916A JP2002173770A JP2002173770A JP2004018916A JP 2004018916 A JP2004018916 A JP 2004018916A JP 2002173770 A JP2002173770 A JP 2002173770A JP 2002173770 A JP2002173770 A JP 2002173770A JP 2004018916 A JP2004018916 A JP 2004018916A
Authority
JP
Japan
Prior art keywords
less
temperature
resistance
oxidation resistance
salt damage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002173770A
Other languages
Japanese (ja)
Other versions
JP3903853B2 (en
Inventor
Atsushi Miyazaki
宮崎  淳
Kenji Takao
高尾 研治
Osamu Furukimi
古君  修
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2002173770A priority Critical patent/JP3903853B2/en
Publication of JP2004018916A publication Critical patent/JP2004018916A/en
Application granted granted Critical
Publication of JP3903853B2 publication Critical patent/JP3903853B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To produce ferritic stainless steel having excellent high-temperature oxidation resistance and high-temperature salt damage resistance and capable of withstanding use at high temperatures exceeding 900°C. <P>SOLUTION: Material components are regulated to a composition range consisting of, by mass, ≤0.02% C, ≤2.0% Si, ≤2.0% Mn, 12.0 to 16.0% Cr, 1.0 to 5.0% Mo, >2.0 to 5.0% W, >0.5 to 7.0% Al, 5(C+N) to 1.0% Nb, ≤0.02% N and the balance Fe with inevitable impurities. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、自動車やオートバイの排気管、触媒外筒材および火力発電プラントの排気ダクトあるいは燃料電池関連部材等の高温環境下で使用される部材に供して好適な、耐高温酸化性および耐高温塩害性に優れたフェライト系ステンレス鋼に関するものである。
【0002】
【従来の技術】
自動車の排気系環境で使用される、例えばエキゾーストマニホールド、排気パイプ、コンバーターケースおよびマフラー等に代表される排気系部材には、後述するような高温での耐酸化性と耐塩害性の改善が求められている。
その理由は、エンジン性能を向上させるためには、排ガス温度の上昇が避けられないからである。
【0003】
また、上記の用途においては、加工性も重要であり、この観点から Type429鋼(14Cr−0.9Si −0.4Nb 系)が多用されている。
【0004】
【発明が解決しようとする課題】
しかしながら、上記したような排気系部材であっても、 900℃を超えるような高温における耐酸化性すなわち耐高温酸化性の面に問題を残していた。
すなわち、エンジン性能をより向上させるためには、排ガス温度の一層の上昇が避けられないが、排ガス温度が 900℃を超えて上昇した場合には、現行の材料ではいずれも異常酸化が生じて、実使用に耐え得ないという問題が生じたのである。
ここに、異常酸化とは、材料が高温の排ガスに曝された場合に、Fe酸化物が生成し、このFe酸化物は酸化速度が異常に速いことから、酸化が急激に進行し、素材がぼろぼろになる現象をいう。
【0005】
また、上記したように排ガス温度が高くなると、高温での塩害に対する抵抗性すなわち耐高温塩害性も重要となる。
ここに、高温塩害とは、特に寒冷地において路面に散布された路面凍結阻止剤中の塩分や海岸地方における海水の塩分が排気パイプ等に付着したのち、高温に加熱された場合の腐食のことであり、このような腐食で板厚が減少していく。
【0006】
この発明は、上記の問題を有利に解決するもので、排ガス温度が 900℃を超えるような高温下での使用に耐え得る、耐高温酸化性および耐高温塩害性に優れたフェライト系ステンレス鋼を提案することを目的とする。
【0007】
【課題を解決するための手投】
さて、発明者らは、上記の目的を達成すべく鋭意研究を重ねた結果、耐高温酸化性の向上には、Wの添加特にMoとWとを複合添加することが、また耐高温塩害性の向上には、Alの添加が有効であるとの知見を得た。
この発明は、上記の知見に立脚するものである。
【0008】
すなわち、この発明の要旨構成は次のとおりである。
1.質量%で、
C:0.02%以下、
Si:2.0 %以下、
Mn:2.0 %以下、
Cr:12.0〜16.0%、
Mo:1.0 〜5.0 %、
W:2.0 %超、5.0 %以下、
Al:0.5 %超、7.0 %以下、
Nb:5(C+N)〜1.0 %および
N:0.02%以下
を含有し、残部はFeおよび不可避的不純物の組成になることを特徴とする、耐高温酸化性および耐高温塩害性に優れたフェライト系ステンレス鋼。
【0009】
2.上記1において、MoおよびWの合計量が、質量%で
(Mo+W)≧4.3 %
を満足することを特徴とする、耐高温酸化性および耐高温塩害性に優れたフェライト系ステンレス鋼。
【0010】
3.上記1または2において、鋼がさらに、質量%で
Ti:0.5 %以下、
Zr:0.5 %以下および
V:0.5 %以下
のうちから選んだ少なくとも一種を含有する組成になることを特徴とする、耐高温酸化性および耐高温塩害性に優れたフェライト系ステンレス鋼。
【0011】
4.上記1,2または3において、鋼がさらに、質量%で
Ni:2.0 %以下、
Cu:1.0 %以下、
Co:1.0 %以下および
Ca:0.01%以下
のうちから選んだ少なくとも一種を含有する組成になることを特徴とする、耐高温酸化性および耐高温塩害性に優れたフェライト系ステンレス鋼。
【0012】
5.上記1〜4のいずれかにおいて、鋼がさらに、質量%で
B:0.01%以下、
Mg:0.01%以下
のうちから選んだ少なくとも一種を含有する組成になることを特徴とする、耐高温酸化性および耐高温塩害性に優れたフェライト系ステンレス鋼。
【0013】
6.上記1〜5のいずれかにおいて、鋼がさらに、質量%で
REM:0.1 %以下
を含有する組成になることを特徴とする、耐高温酸化性および耐高温塩害性に優れたフェライト系ステンレス鋼。
【0014】
【発明の実施の形態】
以下、この発明において、成分組成を上記の範囲に限定した理由について説明する。なお、成分に関する「%」表示は特に断らない限り質量%を意味するものとする。
C:0.02%以下
Cは、靱性や加工性を劣化させるので、その混入は極力低減することが好ましい。この観点から、この発明ではC量を0.02%以下に限定した。より好ましくは0.008%以下である。
【0015】
Si:2.0 %以下
Siは、耐高温塩害性の向上に有効に寄与するが、一方で室温での硬さを増大し加工性を低下させるので、2.0 %以下に限定した。なお、この発明では、Alの添加によって耐高温塩害性の向上を図っているので、十分な量のAlが添加された場合には、加工性の面ではSi量はむしろ低減した方が好ましく、この観点からはSi量は 0.5%以下とすることが好ましい。より好ましくは 0.1%以下である。
【0016】
Mn:2.0 %以下
Mnは、脱酸剤として有効に寄与するが、過剰の添加はMnSを形成して耐食性を低下させるので、2.0 %以下に限定した。より好ましくは 1.0%以下である。なお、耐スケール剥離性の観点からは、Mn量は高いほど好ましくいので、この観点からは 0.3%以上含有させることが好ましい。
【0017】
Cr:12.0〜16.0%
Crは、耐食性および耐酸化性を向上させる基本元素であるが、一方で室温での強度が増大して加工性を低下させる不利がある。この発明では、W, Alの添加によって高温での耐酸化性の向上を図っているので、加工性の観点からCr量は16.0%以下で含有させるものとした。一方、Cr量が12.0%を下回ると、WやAlが添加されていても耐食性の低下が著しいので、その下限をは12.0%とした。より好ましくは14.0〜16.0%の範囲である。
【0018】
Mo:1.0 〜5.0 %
Moは、高温強度のみならず、耐酸化性および耐食性の向上に有効に寄与するので、この発明では 1.0%以上含有させるものとした。しかしながら、含有量があまりに多くなると室温での強度が増大して加工性が低下するので、5.0 %を上限とした。より好ましくは 1.8〜2.5 %の範囲である。
【0019】
W:2.0 %超、5.0 %以下
Wは、この発明において特に重要な元素である。すなわち、上記したMoを添加したフェライト系ステンレス鋼に、Wを複合含有させることによって、耐高温酸化性の著しい向上を図ることができる。また、高温強度の向上にも有効に寄与する。しかしながら、W量が 2.0%以下ではその添加効果に乏しく、一方 5.0%を超えて多量に含有させるとコストの上昇を招くので、Wは 2.0%超、5.0 %以下の範囲で含有させるものとした。より好ましくは 3.0〜3.5 %の範囲である。
【0020】
図1に、 14%Cr−0.1%Si−1.5%Al−0.5%Nb−1.8%Mo鋼をベースに、Wを種々の割合で添加した時の耐高温酸化性について調べた結果を示す。
耐高温酸化性試験は、1050℃の大気雰囲気中に 100時間保持し、この試験後の試験片の重量変化で評価した。試験後の重量変化が 10 mg/cm以下であれば耐高温酸化性に優れているといえる。
同図に示したとおり、Wを 2.0%超含有させることによって、耐高温酸化性は格段に向上する。
【0021】
(Mo+W)≧4.3 %
上述したとおり、MoとWとを複合含有させることによって、耐高温酸化性の著しい向上を図ることができる。そのためには、これら元素の合計量は 4.3%以上とすることが好ましい。より好ましくは 4.7%以上である。
【0022】
Al:0.5 %超、7.0 %以下
Alは、耐高温塩害性の向上に有効に寄与するので、この発明では必須元素として 0.5%超の範囲で含有させるものとした。しかしながら、含有量が 7.0%を超えると鋼材の脆化が著しくなるので、Alの上限は 7.0%とした。
【0023】
Nb:5(C+N)〜1.0 %
Nbは、高温強度の改善に有効な元素であり、この効果を発揮させるためには、CおよびN量との兼ね合いで5(C+N)以上含有させる必要がある。しかしながら、あまりに多量の添加は、室温での強度が増大して加工性が低下するので、1.0 %を上限とした。より好ましくは 0.4〜0.7 %の範囲である。
【0024】
N:0.02%以下
Nも、Cと同様、靱性や加工性を劣化させるので、その混入は極力低減することが好ましい。この観点から、この発明ではN量を0.02%以下に限定した。より好ましくは 0.008%以下である。
【0025】
以上、基本成分について説明したが、この発明ではその他にも、以下に述べる元素を適宜含有させることができる。
Ti:0.5 %以下、Zr:0.5 %以下およびV:0.5 %以下のうちから選んだ少なくとも一種
Ti,ZrおよびVはいずれも、CやNを固定して耐粒界腐食性を向上させる作用があり、この観点からはそれぞれ0.02%以上含有させることが好ましい。しかしながら、含有量が 0.5%を超えると、鋼材の脆化を招くので、それぞれ 0.5%以下で含有させるものとした。
なお、これらの元素は、高温強度の向上にも有効であるので、前記したWおよび後述するCuを合わせた(W+Ti+Zr+V+Cu)量は、3%超で含有させることが好適である。
【0026】
Ni:2.0 %以下、Cu:1.0 %以下、Co:1.0 %以下およびCa:0.01%以下のうちから選んだ少なくとも一種
Ni,Cu,CoおよびCaはいずれも、靱性の改善に有用な元素であり、それぞれNi:2.0 %以下、Cu:1.0 %以下、Co:1.0 %以下、Ca:0.01%以下で含有させるものとした。特にCaは、Tiが含有された場合、連続鋳造時のノズル詰まりの防止にも有効に寄与する。なお、これらの元素の効果を十分に発揮させるためには、それぞれNi:0.5 %以上、Cu:0.05%以上、Co:0.03%以上、Ca:0.0005%以上の範囲で含有させることが好ましい。
【0027】
B:0.01%以下、Mg:0.01%以下のうちから選んだ少なくとも一種
BおよびMgいずれも、2次加工脆性の改善に有効に寄与するが、含有量が0.01%を超えると室温での強度が増して延性の低下を招くので、それぞれ0.01%以下で含有させるものとした。より好ましくはB:0.0003%以上、Mg:0.0003%以上である。
【0028】
REM:0.1 %以下
REM は、耐酸化性の向上に有効に寄与するので 0.1%以下で含有させるものとした。より好ましくは 0.002%以上である。なお、この発明において REMとは、ランタノイド系元素およびYを意味する。
【0029】
次に、この発明鋼の好適製造方法について説明する。この発明鋼の製造条件はとくに限定されるものではなく、Cr含有鋼の一般的な製造方法を好適に利用できる。
例えば、上記した適正組成範囲に調整した溶鋼を、転炉、 電気炉等の溶製炉、さらには取鍋精錬、 真空精錬等の精錬を利用して溶製したのち、連続鋳造法または造塊−分塊法でスラブとしたのち、 熱間圧延、熱延板焼鈍、酸洗、冷間圧延、仕上げ焼鈍、酸洗の各工程を順次に経て、冷延焼鈍板板とするのが好ましい。 また、冷間圧延は、1回または中間焼鈍を含む2回以上の冷間圧延としてもよい。冷間圧延、仕上げ焼鈍、酸洗の工程は繰り返し打ってもよい。なお、場合によっては熱延板焼鈍は省略してもよい。さらに、光沢性が要求される場合には、スキンパス等を施すことが有利である。
【0030】
【実施例】
表1に示す成分組成になる50kg鋼塊を作製し、 これらの鋼塊を1100℃に加熱後、 熱間圧延により5mm厚の熱延板とした。 ついで、これらの熱延板に対し、熱延板焼鈍(焼鈍温度:1000℃)−酸洗−冷間圧延(冷延圧下率:60%)−仕上げ焼鈍(焼鈍温度:1000℃)−酸洗を順次施して、2mm厚の冷延焼鈍板とした。
かくして得られた冷延焼鈍板の耐高温酸化性および耐高温塩害性について調べた結果を、表2に示す。
【0031】
なお、各特性は次のようにして評価した。
(1) 耐高温酸化性
各冷延焼鈍板から、試験片(2mm厚×20mm幅×30mm長さ)を各2本ずつ採取し、これらの試験片を、1050℃の大気雰囲気中に 100時間保持した。試験前後における各試験片の重量を測定し、試験前後の重量変化を算出して、2本の平均値を求めた。この重量変化が 10 mg/cm以下であれば耐高温酸化性に優れているといえる。
(2) 耐高温塩害性
各冷延焼鈍板から、試験片(2mm厚×20mm幅×30mm長さ)を各2本ずつ採取し、5%食塩水に1時間浸漬したのち、700 ℃の大気雰囲気中で23時間加熱し、5分冷却する工程を1サイクルとし、10サイクル後の重量変化を測定し、その平均値を求めた。この重量変化が小さいほど耐高温塩害性に優れており、この発明では、重量変化量Δwが40(mg/cm)以上の場合を×、30≦Δw<40(mg/cm)の場合を○、20≦Δw<30(mg/cm)の場合を◎、Δw<20(mg/cm)の場合を☆と評価した。
【0032】
【表1】

Figure 2004018916
【0033】
【表2】
Figure 2004018916
【0034】
表2から明らかなように、この発明に従う鋼板はいずれも、耐高温酸化性および耐高温塩害性とも良好な特性値が得られている。
【0035】
【発明の効果】
かくして、この発明によれば、耐高温酸化性および耐高温塩害性にも優れたフェライト系ステンレス鋼を安定して得ることができる。
従って、この発明によれば、エンジン性能の向上により、排ガス温度が 900℃を超えるような自動車関連用途においては言うまでもなく、燃料電池関連用途や発電プラント関連用途においても、それに耐え得るステンレス鋼を安定して供給することができる。
【図面の簡単な説明】
【図1】14%Cr−0.1%Si−1.5%Al−0.5%Nb−1.8%Mo鋼をベースに、Wを種々の割合で添加した時の耐高温酸化性について調べた結果を示したグラフである。[0001]
TECHNICAL FIELD OF THE INVENTION
INDUSTRIAL APPLICABILITY The present invention is suitable for high-temperature oxidation resistance and high-temperature resistance suitable for members used in high-temperature environments, such as exhaust pipes of automobiles and motorcycles, catalyst outer cylinders, exhaust ducts of thermal power plants, and fuel cell-related members. The present invention relates to a ferritic stainless steel excellent in salt damage.
[0002]
[Prior art]
Exhaust system members used in the exhaust system environment of automobiles, such as exhaust manifolds, exhaust pipes, converter cases and mufflers, are required to have improved oxidation resistance and salt damage resistance at high temperatures as described later. Have been.
The reason is that an increase in exhaust gas temperature is inevitable to improve engine performance.
[0003]
In the above applications, workability is also important, and from this viewpoint, Type 429 steel (14Cr-0.9Si-0.4Nb-based) is frequently used.
[0004]
[Problems to be solved by the invention]
However, even the exhaust system member described above has a problem in terms of oxidation resistance at high temperatures exceeding 900 ° C., that is, high-temperature oxidation resistance.
That is, in order to further improve engine performance, a further increase in exhaust gas temperature is inevitable, but when the exhaust gas temperature rises above 900 ° C, abnormal oxidation occurs in any of the current materials, The problem was that it could not withstand actual use.
Here, abnormal oxidation means that when a material is exposed to a high-temperature exhaust gas, an Fe oxide is generated. Since the oxidation speed of the Fe oxide is abnormally high, the oxidation proceeds rapidly, and It refers to the phenomenon of becoming ragged.
[0005]
Further, as described above, when the exhaust gas temperature increases, resistance to salt damage at high temperatures, that is, high-temperature salt damage resistance also becomes important.
Here, high-temperature salt damage refers to corrosion caused when salt in road surface freeze inhibitors sprayed on the road surface in cold regions or seawater salt in coastal areas adheres to exhaust pipes and is heated to high temperatures. The plate thickness decreases due to such corrosion.
[0006]
The present invention advantageously solves the above-mentioned problems, and provides a ferritic stainless steel that can withstand use at high temperatures such as an exhaust gas temperature exceeding 900 ° C. and has excellent high-temperature oxidation resistance and high-temperature salt damage resistance. The purpose is to propose.
[0007]
[Hands to solve the problem]
The present inventors have conducted intensive studies to achieve the above-mentioned object. As a result, in order to improve the high-temperature oxidation resistance, the addition of W, especially the combined addition of Mo and W, has the problem that It has been found that the addition of Al is effective in improving Al.
The present invention is based on the above findings.
[0008]
That is, the gist configuration of the present invention is as follows.
1. In mass%,
C: 0.02% or less,
Si: 2.0% or less,
Mn: 2.0% or less,
Cr: 12.0 to 16.0%,
Mo: 1.0 to 5.0%,
W: more than 2.0%, 5.0% or less,
Al: more than 0.5%, not more than 7.0%,
Nb: 5 (C + N) to 1.0% and N: 0.02% or less, with the balance being Fe and inevitable impurities, characterized by high-temperature oxidation resistance and high-temperature salt damage resistance. Excellent ferritic stainless steel.
[0009]
2. In the above item 1, the total amount of Mo and W is (Mo + W) ≧ 4.3% by mass%.
A ferritic stainless steel excellent in high-temperature oxidation resistance and high-temperature salt damage resistance, characterized by satisfying the following conditions.
[0010]
3. In the above 1 or 2, the steel further contains Ti: 0.5% or less by mass%;
A ferritic stainless steel excellent in high-temperature oxidation resistance and high-temperature salt damage resistance, having a composition containing at least one selected from Zr: 0.5% or less and V: 0.5% or less. .
[0011]
4. In the above 1, 2 or 3, the steel further contains Ni: 2.0% or less by mass%;
Cu: 1.0% or less,
A ferritic stainless steel excellent in high-temperature oxidation resistance and high-temperature salt damage resistance, having a composition containing at least one selected from Co: 1.0% or less and Ca: 0.01% or less. .
[0012]
5. In any one of the above 1 to 4, the steel further contains B: 0.01% or less by mass%;
Mg: A ferritic stainless steel excellent in high-temperature oxidation resistance and high-temperature salt damage resistance, having a composition containing at least one selected from 0.01% or less.
[0013]
6. The ferritic stainless steel according to any one of the above items 1 to 5, characterized in that the steel further has a composition containing 0.1% or less of REM by mass%. steel.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the reason for limiting the component composition to the above range in the present invention will be described. In addition, "%" display about a component shall mean the mass% unless there is particular notice.
C: not more than 0.02% C deteriorates toughness and workability, so its inclusion is preferably reduced as much as possible. From this viewpoint, in the present invention, the C content is limited to 0.02% or less. More preferably, it is 0.008% or less.
[0015]
Si: 2.0% or less Si effectively contributes to improvement of high-temperature salt damage resistance, but on the other hand, increases the hardness at room temperature and lowers the workability, so it was limited to 2.0% or less. In the present invention, since the addition of Al improves the high-temperature salt damage resistance, when a sufficient amount of Al is added, it is preferable to reduce the amount of Si in terms of workability, From this viewpoint, the amount of Si is preferably set to 0.5% or less. It is more preferably at most 0.1%.
[0016]
Mn: 2.0% or less Mn effectively contributes as a deoxidizing agent, but excessive addition forms MnS and lowers the corrosion resistance, so it was limited to 2.0% or less. More preferably, it is 1.0% or less. From the viewpoint of scale peeling resistance, the higher the amount of Mn, the better. Therefore, from this viewpoint, it is preferable to contain 0.3% or more.
[0017]
Cr: 12.0 to 16.0%
Cr is a basic element that improves corrosion resistance and oxidation resistance, but has the disadvantage of increasing strength at room temperature and reducing workability. In the present invention, since the oxidation resistance at a high temperature is improved by adding W and Al, the Cr content is set to 16.0% or less from the viewpoint of workability. On the other hand, if the Cr content is less than 12.0%, the corrosion resistance is significantly reduced even if W or Al is added, so the lower limit was set to 12.0%. More preferably, it is in the range of 14.0 to 16.0%.
[0018]
Mo: 1.0 to 5.0%
Mo effectively contributes to improvement of not only high temperature strength but also oxidation resistance and corrosion resistance. Therefore, in the present invention, Mo is contained in an amount of 1.0% or more. However, if the content is too large, the strength at room temperature increases and the workability decreases, so the upper limit was set to 5.0%. More preferably, it is in the range of 1.8 to 2.5%.
[0019]
W: more than 2.0%, 5.0% or less W is an element that is particularly important in the present invention. That is, by adding W in the above-mentioned ferritic stainless steel to which Mo is added, remarkable improvement in high-temperature oxidation resistance can be achieved. Also, it effectively contributes to improvement of high-temperature strength. However, when the W content is 2.0% or less, the effect of the addition is poor. On the other hand, when the W content is more than 5.0%, the cost is increased. Therefore, W is more than 2.0% and 5.0% or less. In the range described above. More preferably, it is in the range of 3.0 to 3.5%.
[0020]
Fig. 1 shows the high temperature oxidation resistance when W is added at various ratios based on 14% Cr-0.1% Si-1.5% Al-0.5% Nb-1.8% Mo steel. The result of examining is shown.
In the high-temperature oxidation resistance test, the test piece was kept in an air atmosphere at 1050 ° C. for 100 hours, and the weight of the test piece after this test was evaluated. If the weight change after the test is 10 mg / cm 2 or less, it can be said that the high-temperature oxidation resistance is excellent.
As shown in the figure, when W is contained more than 2.0%, the high-temperature oxidation resistance is remarkably improved.
[0021]
(Mo + W) ≧ 4.3%
As described above, the high-temperature oxidation resistance can be significantly improved by adding Mo and W in combination. For that purpose, the total amount of these elements is preferably set to 4.3% or more. It is more preferably at least 4.7%.
[0022]
Al: more than 0.5%, not more than 7.0% Al effectively contributes to the improvement of high-temperature salt damage resistance. Therefore, in the present invention, it is included as an essential element in a range of more than 0.5%. However, if the content exceeds 7.0%, the embrittlement of the steel material becomes remarkable, so the upper limit of Al is set to 7.0%.
[0023]
Nb: 5 (C + N) to 1.0%
Nb is an element effective for improving the high-temperature strength, and in order to exhibit this effect, it is necessary to contain 5 (C + N) or more in consideration of the amounts of C and N. However, too much addition increases the strength at room temperature and lowers workability, so the upper limit was 1.0%. More preferably, it is in the range of 0.4 to 0.7%.
[0024]
N: 0.02% or less N also deteriorates the toughness and workability similarly to C, so it is preferable to minimize the incorporation of N. From this viewpoint, in the present invention, the N content is limited to 0.02% or less. More preferably, it is 0.008% or less.
[0025]
As described above, the basic components have been described. However, in the present invention, other elements described below can be appropriately contained.
At least one of Ti, Zr and V selected from Ti: 0.5% or less, Zr: 0.5% or less and V: 0.5% or less: From this viewpoint, it is preferable to contain each of them in an amount of 0.02% or more. However, if the content exceeds 0.5%, the steel material will be embrittled. Therefore, each content is set to 0.5% or less.
Since these elements are also effective in improving the high-temperature strength, it is preferable that the total (W + Ti + Zr + V + Cu) amount of the above-mentioned W and Cu described later is more than 3%.
[0026]
Ni: 2.0% or less, Cu: 1.0% or less, Co: 1.0% or less, and Ca: 0.01% or less Ni, Cu, Co and Ca are all toughness. Are effective elements for improving Ni, and are contained at Ni: 2.0% or less, Cu: 1.0% or less, Co: 1.0% or less, and Ca: 0.01% or less, respectively. In particular, Ca, when Ti is contained, effectively contributes to prevention of nozzle clogging during continuous casting. In order to sufficiently exhibit the effects of these elements, Ni: 0.5% or more, Cu: 0.05% or more, Co: 0.03% or more, and Ca: 0.0005% or more. It is preferable to include them.
[0027]
At least one of B and Mg selected from B: 0.01% or less and Mg: 0.01% or less, both of which effectively contribute to improvement of the brittleness in secondary processing, but the content exceeds 0.01%. In addition, since the strength at room temperature is increased and the ductility is reduced, the content of each is set to 0.01% or less. More preferably, B: 0.0003% or more and Mg: 0.0003% or more.
[0028]
REM: 0.1% or less REM effectively contributes to the improvement of oxidation resistance. More preferably, it is 0.002% or more. In the present invention, REM means a lanthanoid element and Y.
[0029]
Next, a preferred method for producing the steel of the present invention will be described. The production conditions of the steel according to the present invention are not particularly limited, and a general production method of Cr-containing steel can be suitably used.
For example, after smelting molten steel adjusted to the above appropriate composition range using smelting furnaces such as converters and electric furnaces, and further using smelting such as ladle refining and vacuum refining, continuous casting or ingot casting -It is preferable that after the slab is formed by the lumping method, each of the steps of hot rolling, hot rolling annealing, pickling, cold rolling, finish annealing, and pickling is sequentially performed to obtain a cold rolled annealed plate. The cold rolling may be performed once or two or more times including intermediate annealing. The steps of cold rolling, finish annealing, and pickling may be repeated. In some cases, the hot-rolled sheet annealing may be omitted. Further, when glossiness is required, it is advantageous to apply a skin pass or the like.
[0030]
【Example】
50 kg steel ingots having the component compositions shown in Table 1 were produced, and these ingots were heated to 1100 ° C., and then hot-rolled into hot-rolled sheets having a thickness of 5 mm. Then, for these hot rolled sheets, hot rolled sheet annealing (annealing temperature: 1000 ° C)-pickling-cold rolling (cold rolling reduction: 60%)-finish annealing (annealing temperature: 1000 ° C)-pickling In order to obtain a cold-rolled annealed plate having a thickness of 2 mm.
Table 2 shows the results of examining the high-temperature oxidation resistance and high-temperature salt damage resistance of the thus obtained cold-rolled annealed sheet.
[0031]
In addition, each characteristic was evaluated as follows.
(1) High-temperature oxidation resistance Two test pieces (2 mm thick x 20 mm width x 30 mm length) were sampled from each cold-rolled annealed plate, and these test pieces were placed in an air atmosphere at 1050 ° C for 100 hours. Held. The weight of each test piece before and after the test was measured, the change in weight before and after the test was calculated, and the average value of the two pieces was obtained. If this weight change is 10 mg / cm 2 or less, it can be said that the high-temperature oxidation resistance is excellent.
(2) High-temperature salt damage resistance Two test pieces (2 mm thick x 20 mm width x 30 mm length) were sampled from each cold-rolled annealed plate, immersed in 5% saline for 1 hour, and then heated to 700 ° C in air. The process of heating for 23 hours in an atmosphere and cooling for 5 minutes was defined as one cycle, and the weight change after 10 cycles was measured, and the average value was determined. The smaller the weight change, the better the high-temperature salt damage resistance. In the present invention, the case where the weight change Δw is 40 (mg / cm 2 ) or more is x, and the case where 30 ≦ Δw <40 (mg / cm 2 ) Was evaluated as ○, 20 ≦ Δw <30 (mg / cm 2 ) as ◎, and Δw <20 (mg / cm 2 ) as ☆.
[0032]
[Table 1]
Figure 2004018916
[0033]
[Table 2]
Figure 2004018916
[0034]
As is clear from Table 2, all the steel sheets according to the present invention have good characteristic values in both high-temperature oxidation resistance and high-temperature salt damage resistance.
[0035]
【The invention's effect】
Thus, according to the present invention, a ferritic stainless steel excellent in high-temperature oxidation resistance and high-temperature salt damage resistance can be stably obtained.
Therefore, according to the present invention, by improving the engine performance, it is possible to stabilize stainless steel that can withstand not only automotive-related applications where the exhaust gas temperature exceeds 900 ° C. but also fuel cell-related applications and power plant-related applications. Can be supplied.
[Brief description of the drawings]
FIG. 1 shows high-temperature oxidation resistance when W is added at various ratios based on 14% Cr-0.1% Si-1.5% Al-0.5% Nb-1.8% Mo steel. 6 is a graph showing the results of examining the results.

Claims (6)

質量%で、
C:0.02%以下、
Si:2.0 %以下、
Mn:2.0 %以下、
Cr:12.0〜16.0%、
Mo:1.0 〜5.0 %、
W:2.0 %超、5.0 %以下、
Al:0.5 %超、7.0 %以下、
Nb:5(C+N)〜1.0 %および
N:0.02%以下
を含有し、残部はFeおよび不可避的不純物の組成になることを特徴とする、耐高温酸化性および耐高温塩害性に優れたフェライト系ステンレス鋼。
In mass%,
C: 0.02% or less,
Si: 2.0% or less,
Mn: 2.0% or less,
Cr: 12.0 to 16.0%,
Mo: 1.0 to 5.0%,
W: more than 2.0%, 5.0% or less,
Al: more than 0.5%, not more than 7.0%,
Nb: 5 (C + N) to 1.0% and N: 0.02% or less, with the balance being Fe and unavoidable impurities, characterized by high-temperature oxidation resistance and high-temperature salt damage resistance. Excellent ferritic stainless steel.
請求項1において、MoおよびWの合計量が、質量%で
(Mo+W)≧4.3 %
を満足することを特徴とする、耐高温酸化性および耐高温塩害性に優れたフェライト系ステンレス鋼。
2. The composition according to claim 1, wherein the total amount of Mo and W is (Mo + W) ≧ 4.3% by mass%.
A ferritic stainless steel excellent in high-temperature oxidation resistance and high-temperature salt damage resistance, characterized by satisfying the following conditions.
請求項1または2において、鋼がさらに、質量%で
Ti:0.5 %以下、
Zr:0.5 %以下および
V:0.5 %以下
のうちから選んだ少なくとも一種を含有する組成になることを特徴とする、耐高温酸化性および耐高温塩害性に優れたフェライト系ステンレス鋼。
3. The steel according to claim 1, wherein the steel further comprises Ti: 0.5% or less by mass%.
A ferritic stainless steel excellent in high-temperature oxidation resistance and high-temperature salt damage resistance, having a composition containing at least one selected from Zr: 0.5% or less and V: 0.5% or less. .
請求項1,2または3において、鋼がさらに、質量%で
Ni:2.0 %以下、
Cu:1.0 %以下、
Co:1.0 %以下および
Ca:0.01%以下
のうちから選んだ少なくとも一種を含有する組成になることを特徴とする、耐高温酸化性および耐高温塩害性に優れたフェライト系ステンレス鋼。
The steel according to claim 1, 2, or 3, further comprising: Ni: 2.0% or less by mass%.
Cu: 1.0% or less,
A ferritic stainless steel excellent in high-temperature oxidation resistance and high-temperature salt damage resistance, having a composition containing at least one selected from Co: 1.0% or less and Ca: 0.01% or less. .
請求項1〜4のいずれかにおいて、鋼がさらに、質量%で
B:0.01%以下、
Mg:0.01%以下
のうちから選んだ少なくとも一種を含有する組成になることを特徴とする、耐高温酸化性および耐高温塩害性に優れたフェライト系ステンレス鋼。
5. The steel according to claim 1, wherein the steel further contains B: 0.01% or less by mass%.
Mg: A ferritic stainless steel excellent in high-temperature oxidation resistance and high-temperature salt damage resistance, having a composition containing at least one selected from 0.01% or less.
請求項1〜5のいずれかにおいて、鋼がさらに、質量%で
REM:0.1 %以下
を含有する組成になることを特徴とする、耐高温酸化性および耐高温塩害性に優れたフェライト系ステンレス鋼。
The ferrite system according to any one of claims 1 to 5, wherein the steel further has a composition containing 0.1% or less of REM by mass%. Stainless steel.
JP2002173770A 2002-06-14 2002-06-14 Ferritic stainless steel with excellent high temperature oxidation resistance and high temperature salt damage resistance Expired - Fee Related JP3903853B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002173770A JP3903853B2 (en) 2002-06-14 2002-06-14 Ferritic stainless steel with excellent high temperature oxidation resistance and high temperature salt damage resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002173770A JP3903853B2 (en) 2002-06-14 2002-06-14 Ferritic stainless steel with excellent high temperature oxidation resistance and high temperature salt damage resistance

Publications (2)

Publication Number Publication Date
JP2004018916A true JP2004018916A (en) 2004-01-22
JP3903853B2 JP3903853B2 (en) 2007-04-11

Family

ID=31172916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002173770A Expired - Fee Related JP3903853B2 (en) 2002-06-14 2002-06-14 Ferritic stainless steel with excellent high temperature oxidation resistance and high temperature salt damage resistance

Country Status (1)

Country Link
JP (1) JP3903853B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007191740A (en) * 2006-01-18 2007-08-02 Jfe Steel Kk Heat resistant material having excellent oxidation resistance and creep property
KR20140048886A (en) * 2011-06-21 2014-04-24 포르슝스젠트룸 율리히 게엠베하 Heat-resistant iron-chromium-aluminium alloy with low chromium vaporization rate and elevated thermal stability
WO2020080104A1 (en) * 2018-10-15 2020-04-23 Jfeスチール株式会社 Ferritic stainless steel

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104332266A (en) * 2014-10-30 2015-02-04 安徽首文高新材料有限公司 Manufacturing method of high temperature resistant iron powder core

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007191740A (en) * 2006-01-18 2007-08-02 Jfe Steel Kk Heat resistant material having excellent oxidation resistance and creep property
KR20140048886A (en) * 2011-06-21 2014-04-24 포르슝스젠트룸 율리히 게엠베하 Heat-resistant iron-chromium-aluminium alloy with low chromium vaporization rate and elevated thermal stability
JP2014523967A (en) * 2011-06-21 2014-09-18 オウトクンプ ファオデーエム ゲゼルシャフト ミット ベシュレンクテル ハフツング Heat-resistant iron-chromium-aluminum alloy with low chromium evaporation rate and improved heat resistance
KR101642064B1 (en) 2011-06-21 2016-07-22 파우데엠 메탈스 게엠베하 Heat-resistant iron-chromium-aluminium alloy with low chromium vaporization rate and elevated thermal stability
US10196721B2 (en) 2011-06-21 2019-02-05 Vdm Metals International Gmbh Heat-resistant iron-chromium-aluminum alloy with low chromium vaporization rate and elevated thermal stability
WO2020080104A1 (en) * 2018-10-15 2020-04-23 Jfeスチール株式会社 Ferritic stainless steel
JPWO2020080104A1 (en) * 2018-10-15 2021-02-15 Jfeスチール株式会社 Ferritic stainless steel

Also Published As

Publication number Publication date
JP3903853B2 (en) 2007-04-11

Similar Documents

Publication Publication Date Title
JP5700175B2 (en) Ferritic stainless steel
TWI377257B (en) Excellent heat-resistance ferrite stainless steel
TWI531665B (en) Ferritic stainless steel having excellent oxidation resistance
KR100676659B1 (en) Heat-resistant ferritic stainless steel and method for production thereof
JP3903855B2 (en) Ferritic stainless steel that is soft at room temperature and excellent in high-temperature oxidation resistance
CN114761594B (en) Ferritic stainless steel sheet
TWI460292B (en) Ferritic stainless steel
TW201326423A (en) Ferritic stainless steel
JP5125600B2 (en) Ferritic stainless steel with excellent high-temperature strength, steam oxidation resistance and workability
JP2009197306A (en) Ferritic stainless steel excellent in high-temperature strength and toughness
WO2014087648A1 (en) Ferritic stainless steel sheet
JP4206836B2 (en) Ferritic stainless steel with excellent corrosion resistance, high temperature strength and high temperature oxidation resistance
JP4154932B2 (en) Ferritic stainless steel with excellent high-temperature strength, high-temperature oxidation resistance, and high-temperature salt damage resistance
JP2005146345A (en) Ferritic stainless steel superior in oxidation resistance
JP3903853B2 (en) Ferritic stainless steel with excellent high temperature oxidation resistance and high temperature salt damage resistance
JPH0717946B2 (en) Method for producing duplex stainless steel with excellent resistance to concentrated sulfuric acid corrosion
JP3937940B2 (en) Cr-containing steel with excellent high temperature oxidation resistance and high temperature salt resistance
US20170275722A1 (en) Ferritic stainless steel sheet
JP7022634B2 (en) Ferritic stainless steel sheets with excellent high-temperature salt damage resistance and automobile exhaust system parts
JP7019482B2 (en) Ferritic stainless steel sheets with excellent high-temperature salt damage resistance and automobile exhaust system parts
JP3903854B2 (en) Cr-containing steel with excellent high-temperature oxidation resistance
JP6665936B2 (en) Ferritic stainless steel
JP4259151B2 (en) Heat resistant material
JP7475205B2 (en) Ferritic stainless steel sheet, method for producing the same, and automobile exhaust system part
JP7022633B2 (en) Ferritic stainless steel sheets with excellent high-temperature salt damage resistance and automobile exhaust system parts

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050517

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20061214

Free format text: JAPANESE INTERMEDIATE CODE: A971007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061219

A61 First payment of annual fees (during grant procedure)

Effective date: 20070101

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110119

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120119

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20130119

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130119

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20140119

LAPS Cancellation because of no payment of annual fees