JP7022633B2 - Ferritic stainless steel sheets with excellent high-temperature salt damage resistance and automobile exhaust system parts - Google Patents

Ferritic stainless steel sheets with excellent high-temperature salt damage resistance and automobile exhaust system parts Download PDF

Info

Publication number
JP7022633B2
JP7022633B2 JP2018064002A JP2018064002A JP7022633B2 JP 7022633 B2 JP7022633 B2 JP 7022633B2 JP 2018064002 A JP2018064002 A JP 2018064002A JP 2018064002 A JP2018064002 A JP 2018064002A JP 7022633 B2 JP7022633 B2 JP 7022633B2
Authority
JP
Japan
Prior art keywords
less
salt damage
exhaust system
stainless steel
temperature salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018064002A
Other languages
Japanese (ja)
Other versions
JP2019173115A (en
Inventor
篤剛 林
俊希 吉澤
航 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Stainless Steel Corp
Original Assignee
Nippon Steel Stainless Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Stainless Steel Corp filed Critical Nippon Steel Stainless Steel Corp
Priority to JP2018064002A priority Critical patent/JP7022633B2/en
Publication of JP2019173115A publication Critical patent/JP2019173115A/en
Application granted granted Critical
Publication of JP7022633B2 publication Critical patent/JP7022633B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exhaust Silencers (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

本発明は、高温強度や耐酸化性が必要な自動車排気系部材に使用することに最適な耐熱性ステンレス鋼において、特に耐高温塩害性に優れた塩分付着が促進される構造の自動車排気系用フェライト系ステンレス鋼板及び自動車排気系部品に関するものである。 INDUSTRIAL APPLICABILITY The present invention is for heat-resistant stainless steel, which is most suitable for use in automobile exhaust system members that require high-temperature strength and oxidation resistance, and is for automobile exhaust systems having a structure that promotes salt adhesion, which is particularly excellent in high-temperature salt damage resistance. It relates to ferritic stainless steel plates and automobile exhaust system parts.

自動車の排気マニホールド、フロントパイプ及びセンターパイプなどの排気系部材は、エンジンから排出される高温の排気ガスを通すため、排気系部材を構成する材料には耐酸化性、高温強度、熱疲労特性など多様な特性が要求される。 Exhaust system members such as automobile exhaust manifolds, front pipes and center pipes allow high-temperature exhaust gas discharged from the engine to pass through, so the materials that make up the exhaust system members are diverse, such as oxidation resistance, high-temperature strength, and thermal fatigue characteristics. Characteristics are required.

従来、自動車排気系部材には鋳鉄が使用されるのが一般的であったが、排ガス規制の強化、エンジン性能の向上、車体軽量化などの観点から、ステンレス鋼製の排気マニホールドが使用されるようになった。排気ガス温度は、車種によって異なり、近年では750~850℃程度が多いが、更に高温に達する場合もある。このような温度域で長時間使用される環境において高い高温強度、耐酸化性を有する材料が要望されている。 Conventionally, cast iron was generally used for automobile exhaust system members, but stainless steel exhaust manifolds are used from the viewpoints of tightening exhaust gas regulations, improving engine performance, and reducing the weight of the vehicle body. It became so. The exhaust gas temperature varies depending on the vehicle model, and in recent years, it is often about 750 to 850 ° C., but it may reach a higher temperature. There is a demand for a material having high high temperature strength and oxidation resistance in an environment where it is used for a long time in such a temperature range.

ステンレス鋼の中でオーステナイト系ステンレス鋼は、耐熱性や加工性に優れているが、熱膨張係数が大きいために、排気マニホールドのように加熱・冷却を繰り返し受ける部材に適用した場合、熱疲労破壊が生じやすい。 Among stainless steels, austenitic stainless steel has excellent heat resistance and workability, but because of its large coefficient of thermal expansion, it suffers from thermal fatigue failure when applied to members that are repeatedly heated and cooled, such as exhaust manifolds. Is likely to occur.

フェライト系ステンレス鋼は、オーステナイト系ステンレス鋼に比べて熱膨張係数が小さいため、熱疲労特性に優れている。また、オーステナイト系ステンレス鋼に比べて、高価なNiをほとんど含有しないため材料コストも安く、汎用的に使用されている。但し、フェライト系ステンレス鋼は、オーステナイト系ステンレス鋼に比べて、高温強度が低いために、高温強度を向上させる技術が開発されてきた。さらに、耐酸化性、成形性、製造性、更なる低コスト化の観点からも様々な技術の開発がされてきた。 Ferritic stainless steel has an excellent thermal fatigue characteristic because it has a smaller thermal expansion coefficient than austenitic stainless steel. In addition, compared to austenitic stainless steel, it contains almost no expensive Ni, so the material cost is low and it is used for general purposes. However, since ferritic stainless steel has a lower high-temperature strength than austenitic stainless steel, a technique for improving the high-temperature strength has been developed. Furthermore, various technologies have been developed from the viewpoints of oxidation resistance, moldability, manufacturability, and further cost reduction.

例えば、SUS430J1L(Nb添加鋼)、Nb-Si添加鋼、SUS444(Nb-Mo添加鋼)があり、Nb添加を基本に、Si、Moの添加によって高温強度を向上させるものであった。 For example, there are SUS430J1L (Nb-added steel), Nb-Si-added steel, and SUS444 (Nb-Mo-added steel), and the high-temperature strength is improved by adding Si and Mo based on the addition of Nb.

一方、車体下部に位置するセンターパイプ等の部材は排気系部材の中でも温度はやや低い部材であるが、路面凍結防止のため散布される融雪塩や海水に由来される塩分が付着し易く高温塩害が懸念される。高温塩害とは高温酸化環境において塩分が付着することで高温腐食が促進される現象である。これらを対象として主にCr濃度が質量%で11~14%の鋼において耐高温塩害性改善技術が検討されてきた。 On the other hand, members such as the center pipe located at the bottom of the vehicle body have a slightly lower temperature than other exhaust system members, but snowmelt salt sprayed to prevent road surface freezing and salt derived from seawater easily adhere to them, causing high-temperature salt damage. I am concerned. High-temperature salt damage is a phenomenon in which high-temperature corrosion is promoted by the adhesion of salt in a high-temperature oxidizing environment. For these subjects, techniques for improving high temperature salt damage resistance have been studied mainly for steels having a Cr concentration of 11 to 14% by mass.

特許文献1には、Si、Mo、Niの添加量を調整し耐高温塩害腐食性を改善する技術が開示されている。Cr濃度は質量%で10.0~14.0%での検討である。 Patent Document 1 discloses a technique for adjusting the addition amounts of Si, Mo, and Ni to improve high-temperature salt damage resistance. The Cr concentration was examined at 10.0 to 14.0% by mass.

特許文献2には、Si、Crの添加量を調整し耐高温塩害性を改善する技術が開示されている。Cr濃度は質量%で10.0~17.0%となっているが、実施例を見てみると実質は13%での検討である。 Patent Document 2 discloses a technique for adjusting the addition amounts of Si and Cr to improve high temperature salt damage resistance. The Cr concentration is 10.0 to 17.0% by mass, but when looking at the examples, the actual value is 13%.

しかし近年では排気系の設置構造の変化や、新たな部品が付属されることで排気マニホールドやフロントパイプのような排気系の中でも高温に位置する部材においても塩分が付着する場合が生じている。具体例を2つ挙げる。1つめは排ガスの高温化に対して、ファン設置や通気性の改善により排気系を強制空冷する場合である。一例を図2(A)に示す。この排気系部材を強制空冷する強制冷却機構3は排気系部材への塩分付着を促進する要因となる。強制冷却機構は主に近年普及が加速しているターボ搭載車において適用される場合がある。2つめはコンバーター等の排ガス浄化部品及びその前の排気系の周囲を断熱材で覆う断熱構造を設け、排ガス温度を上げることで触媒反応を促進する場合である。一例を図2(B)に示す。自動車排気系部材1に被覆する断熱材7はウール状セラミックス等が使用され、保水しやすくなる。そのため断熱材で覆うことは塩分も保持しやくなり、排気系への塩分付着を促進する。断熱材の適用は主に今後の普及が期待されるHCCI(予混合圧縮自動着火)で燃焼するエンジンの排気系に適用される場合がある。 However, in recent years, due to changes in the installation structure of the exhaust system and the attachment of new parts, salt may adhere to members located at high temperatures in the exhaust system such as exhaust manifolds and front pipes. Here are two specific examples. The first is the case where the exhaust system is forcibly air-cooled by installing a fan or improving the air permeability in response to the high temperature of the exhaust gas. An example is shown in FIG. 2 (A). The forced cooling mechanism 3 that forcibly air-cools the exhaust system member is a factor that promotes the adhesion of salt to the exhaust system member. The forced cooling mechanism may be applied mainly to turbocharged vehicles, which have been accelerating in recent years. The second is a case where an exhaust gas purification component such as a converter and a heat insulating structure for covering the periphery of the exhaust system in front of the converter with a heat insulating material are provided to promote the catalytic reaction by raising the exhaust gas temperature. An example is shown in FIG. 2 (B). Wool-like ceramics or the like is used for the heat insulating material 7 that covers the automobile exhaust system member 1, and it becomes easy to retain water. Therefore, covering with a heat insulating material makes it easier to retain salt and promotes salt adhesion to the exhaust system. The application of the heat insulating material may be mainly applied to the exhaust system of an engine that burns by HCCI (premixed compression automatic ignition), which is expected to be widely used in the future.

さらに、これらの強制冷却機構または断熱構造を使用することによって通常の部材が曝される環境より湿度の高い環境となる。強制冷却機構では部品に水分を巻き上げる環境では常に水分を吹き付けることとなり、断熱構造を使用する場合は断熱材をカバーで覆うために水蒸気が籠る環境となる。そのため、高温塩害環境は塩分付着とともに酸化環境に水蒸気酸化が伴う従来とは異なる環境となる。 Furthermore, by using these forced cooling mechanisms or heat insulating structures, the environment becomes higher in humidity than the environment in which ordinary members are exposed. In the forced cooling mechanism, moisture is always sprayed in an environment where moisture is swirled around the parts, and when a heat insulating structure is used, the heat insulating material is covered with a cover, which creates an environment in which water vapor is trapped. Therefore, the high-temperature salt-damaged environment becomes a different environment from the conventional one in which water vapor oxidation accompanies the oxidation environment with salt adhesion.

つまり、強制冷却機構または断熱構造を適用する場合、排気マニホールドやフロントパイプ等の上流の部材には新たに耐高温塩害性を必要とするようになるだけでなく、従来とは異なる水蒸気酸化を伴う環境の耐高温塩害性が必要となった。すなわち、強制冷却機構や断熱構造が適用される自動車排気系部材は従来の自動車排気系部材とは異なる新たな用途として開発が必要となった。 In other words, when a forced cooling mechanism or a heat insulating structure is applied, not only is the upstream member such as the exhaust manifold and front pipe required to be newly resistant to high-temperature salt damage, but also an environment with steam oxidation different from the conventional one. High temperature salt damage resistance was required. That is, the automobile exhaust system member to which the forced cooling mechanism and the heat insulating structure are applied needs to be developed as a new application different from the conventional automobile exhaust system member.

本新用途に対して、特許文献1および2のようなCr濃度が質量%で11~14%を主体とした技術では、排気マニホールドやフロントパイプとしての各種耐熱性だけでなく、耐高温塩害性も不足する。一方、各種耐熱性と従来の耐高温塩害性のみならば有する技術も過去に開示はある。 For this new application, the technologies such as Patent Documents 1 and 2 in which the Cr concentration is mainly 11 to 14% by mass have not only various heat resistance as an exhaust manifold and a front pipe but also high temperature salt damage resistance. Run short. On the other hand, there have been disclosures in the past of technologies that have only various heat resistance and conventional high temperature salt damage resistance.

特許文献3には、Cr濃度が質量%で12.0~16.0%で、Alの添加量を調整し耐高温塩害性を改善する技術が開示されている。しかし、Al濃度が質量%で0.5超~7.0%であり、通常のフェライト系ステンレス鋼より極度に高く、製造性や加工性などを損なう可能性がある。また、耐高温塩害性には水蒸気酸化も伴う環境は考慮されていない。 Patent Document 3 discloses a technique in which the Cr concentration is 12.0 to 16.0% by mass and the amount of Al added is adjusted to improve the high temperature salt damage resistance. However, the Al concentration is more than 0.5 to 7.0% by mass, which is extremely higher than that of ordinary ferritic stainless steel, and may impair manufacturability and workability. Moreover, the environment accompanied by steam oxidation is not considered for the high temperature salt damage resistance.

特許文献4には、Cr濃度が質量%で16~20%で、N、V、Alの添加量を調整し耐高温塩害腐食性を改善する技術が開示されている。しかし、V濃度が質量%で0.30~0.60%であり、通常のフェライト系ステンレス鋼より極度に高く、製造性などを損なう可能性がある。また、耐高温塩害性には水蒸気酸化も伴う環境は考慮されていない。 Patent Document 4 discloses a technique in which the Cr concentration is 16 to 20% by mass and the addition amounts of N, V, and Al are adjusted to improve the high temperature salt damage resistance. However, the V concentration is 0.30 to 0.60% in mass%, which is extremely higher than that of ordinary ferritic stainless steel, and may impair manufacturability and the like. Moreover, the environment accompanied by steam oxidation is not considered for the high temperature salt damage resistance.

特開平6-248394号公報Japanese Unexamined Patent Publication No. 6-248394 特許第2879630号公報Japanese Patent No. 2879630 特許第3903853号公報Japanese Patent No. 3903853 特開2010-53421号公報Japanese Unexamined Patent Publication No. 2010-53421

上記のように自動車排気系に強制冷却機構または断熱構造を適用する場合、排気マニホールドやフロントパイプ等の上流の部材においても新たに耐高温塩害性を付与することが必要となるだけでなく、従来とは異なる水蒸気酸化を伴う環境の耐高温塩害性が必要となった。しかし、従来の耐高温塩害性改善技術では耐熱性が不足する、もしくは、Al、V等を通常のフェライト系ステンレス鋼より極度に高く添加する必要があった。また、水蒸気酸化を伴う高温塩害は検討されていなかった。 When applying a forced cooling mechanism or a heat insulating structure to an automobile exhaust system as described above, it is not only necessary to newly impart high-temperature salt damage resistance to upstream members such as exhaust manifolds and front pipes, but also to the conventional case. Needed high temperature salt damage resistance in the environment with different steam oxidation. However, the conventional high-temperature salt damage resistance improving technique lacks heat resistance, or it is necessary to add Al, V, or the like extremely higher than that of ordinary ferritic stainless steel. In addition, high-temperature salt damage accompanied by steam oxidation was not investigated.

即ち、本発明の目的は排気マニホールドとしての耐熱性を有し、さらに耐高温塩害性に優れたフェライト系ステンレス鋼板及び自動車排気系部品を提供することにある。 That is, an object of the present invention is to provide a ferritic stainless steel plate and automobile exhaust system parts which have heat resistance as an exhaust manifold and are also excellent in high temperature salt damage resistance.

上記課題を解決するために、本発明者らはフェライト系ステンレス鋼の耐高温塩害性に及ぼす各種成分の影響を鋭意検討した。その結果、耐高温塩害性に優れたフェライト系ステンレス鋼を発明するに至った。具体的にはNb添加型のCr濃度が質量%で15.0%以上で耐熱性を確保し、これをベースとして耐高温塩害性に優れるフェライト系ステンレス鋼を提供することである。なお、高温塩害は水蒸気酸化を伴う環境にも対応する。 In order to solve the above problems, the present inventors have diligently investigated the influence of various components on the high temperature salt damage resistance of ferritic stainless steel. As a result, they have invented a ferritic stainless steel having excellent high temperature salt damage resistance. Specifically, it is an object of the present invention to provide a ferrite-based stainless steel having an Nb-added type Cr concentration of 15.0% or more in mass% and ensuring heat resistance, and having excellent high-temperature salt damage resistance based on this. In addition, high-temperature salt damage also corresponds to the environment accompanied by steam oxidation.

すなわち、上記課題を解決することを目的とした本発明の要旨は、以下のとおりである。
(1)質量%で、
C:0.020%以下、
N:0.020%以下、
Si:0.05%以上、2.00%以下、
Mn:0.01%以上、0.40%以下、または、0.80%以上、2.00%以下、
P:0.040%以下、
S:0.0020%以下、
Cr:15.0%以上、23.0%以下、
Ni:0.01%以上、0.50%以下、
Cu:0.01%以上、1.50%以下、
Mo:0.05%以上、2.20%以下、
Nb:0.10%以上、1.00%以下、
Ti:0.001%以上、0.220%以下、
Al:0.002%以上、0.200%以下、
V:0.01%以上、0.20%以下、
B:0.0001%以上、0.0050%以下、
O:0.0050%以下、
を含有し、残部がFe及び不可避的不純物からなり、かつ、下記(i)~(ix)式を満たす組成を有することを特徴とする耐高温塩害性に優れたフェライト系ステンレス鋼板。
0.40≦Si+Mo ・・・式(i)
0.05≦Mo<0.50の場合、Si≦2.00 ・・・式(ii)
0.50≦Mo<0.90の場合、Si≦1.20 ・・・式(iii)
0.90≦Mo<1.20の場合、Si≦0.90 ・・・式(iv)
1.20≦Mo≦2.20の場合、Si≦0.70 ・・・式(v)
Ti<0.05の場合、C+N≦0.022 ・・・式(vi)
Ti≧0.05の場合、C+N≦0.030 ・・・式(vii)
Al/O≧1.2 ・・・式(viii)
Ti≧0.05の場合、Al>0.015 ・・・式(ix)
但し、式中の元素記号は、当該元素の含有量(質量%)を意味する。
(2)質量%にて、更に
W:0.01%以上、2.20%以下、
Y:0.001%以上、0.20%以下、
REM:0.001%以上、0.20%以下、
Ca:0.0002%以上、0.0030%以下、
Zr:0.01%以上、0.30%以下、
Hf:0.001%以上、1.0%以下、
Sn:0.002%以上、1.0%以下、
Mg:0.0002%以上、0.0030%以下、
Co:0.01%以上、0.30%以下、
Sb:0.005%以上、0.50%以下、
Bi:0.001%以上、1.0%以下、
Ta:0.001%以上、1.0%以下、
Ga:0.0002%以上、0.30%以下、
の1種または2種以上を含有することを特徴とする(1)に記載の耐高温塩害性に優れたフェライト系ステンレス鋼板。
(3)強制冷却機構により塩分付着が促進されている環境において自動車排気系部材に使用される(1)または(2)に記載の耐高温塩害性に優れたフェライト系ステンレス鋼板。
(4)自動車排気系部材の周囲を断熱材で覆う断熱構造が適用されることにより塩分付着が促進されている環境において自動車排気系部材に使用される(1)または(2)に記載の耐高温塩害性に優れたフェライト系ステンレス鋼板。
That is, the gist of the present invention for solving the above problems is as follows.
(1) By mass%,
C: 0.020% or less,
N: 0.020% or less,
Si: 0.05% or more, 2.00% or less,
Mn: 0.01% or more, 0.40% or less, or 0.80% or more, 2.00% or less,
P: 0.040% or less,
S: 0.0020% or less,
Cr: 15.0% or more, 23.0% or less,
Ni: 0.01% or more, 0.50% or less,
Cu: 0.01% or more, 1.50% or less,
Mo: 0.05% or more, 2.20% or less,
Nb: 0.10% or more, 1.00% or less,
Ti: 0.001% or more, 0.220% or less,
Al: 0.002% or more, 0.200% or less,
V: 0.01% or more, 0.20% or less,
B: 0.0001% or more, 0.0050% or less,
O: 0.0050% or less,
A ferrite-based stainless steel sheet having excellent high-temperature salt damage resistance, characterized in that the balance is composed of Fe and unavoidable impurities and has a composition satisfying the following formulas (i) to (ix).
0.40 ≤ Si + Mo ・ ・ ・ Equation (i)
When 0.05 ≤ Mo <0.50, Si ≤ 2.00 ... Equation (ii)
When 0.50 ≤ Mo <0.90, Si ≤ 1.20 ... Equation (iii)
When 0.90 ≤ Mo <1.20, Si ≤ 0.90 ... Equation (iv)
When 1.20 ≤ Mo ≤ 2.20, Si ≤ 0.70 ... Equation (v)
When Ti <0.05, C + N ≤ 0.022 ... Equation (vi)
When Ti ≧ 0.05, C + N ≦ 0.030 ・ ・ ・ Equation (vii)
Al / O ≧ 1.2 ・ ・ ・ Equation (viii)
When Ti ≧ 0.05, Al> 0.015 ・ ・ ・ Equation (ix)
However, the element symbol in the formula means the content (mass%) of the element.
(2) In mass%, W: 0.01% or more and 2.20% or less,
Y: 0.001% or more, 0.20% or less,
REM: 0.001% or more, 0.20% or less,
Ca: 0.0002% or more, 0.0030% or less,
Zr: 0.01% or more, 0.30% or less,
Hf: 0.001% or more, 1.0% or less,
Sn: 0.002% or more, 1.0% or less,
Mg: 0.0002% or more, 0.0030% or less,
Co: 0.01% or more, 0.30% or less,
Sb: 0.005% or more, 0.50% or less,
Bi: 0.001% or more, 1.0% or less,
Ta: 0.001% or more, 1.0% or less,
Ga: 0.0002% or more, 0.30% or less,
The ferrite-based stainless steel sheet having excellent high-temperature salt damage resistance according to (1), which contains one or more of the above.
(3) The ferrite-based stainless steel sheet having excellent high-temperature salt damage resistance according to (1) or (2), which is used for automobile exhaust system members in an environment where salt adhesion is promoted by a forced cooling mechanism.
(4) The resistance according to (1) or (2), which is used for an automobile exhaust system member in an environment where salt adhesion is promoted by applying a heat insulating structure that covers the periphery of the automobile exhaust system member with a heat insulating material. Ferritic stainless steel sheet with excellent high-temperature salt damage.

(5)(1)または(2)に記載の耐高温塩害性に優れたフェライト系ステンレス鋼板を用いた自動車排気系部材と、それを強制冷却する強制冷却機構とを備えた自動車排気系部品。
(6)(1)または(2)に記載の耐高温塩害性に優れたフェライト系ステンレス鋼板を用いた自動車排気系部材と、その周囲を断熱材で覆う断熱構造とを備えた自動車排気系部品。
(5) An automobile exhaust system component provided with an automobile exhaust system member using the ferrite stainless steel plate having excellent high temperature salt damage resistance according to (1) or (2) and a forced cooling mechanism for forcibly cooling the member.
(6) An automobile exhaust system member having an automobile exhaust system member using the ferritic stainless steel plate having excellent high temperature salt damage resistance according to (1) or (2) and a heat insulating structure covering the periphery thereof with a heat insulating material. ..

また、上記本発明で、下限の規定をしないものについては、不可避的不純物レベルまで含むことを示す。 Further, in the present invention, those in which the lower limit is not specified are shown to include unavoidable impurity levels.

本発明によれば、強制冷却機構や断熱構造が適用され塩分付着が促進される自動車排気系部材として使用される耐高温塩害性に優れたフェライト系ステンレス鋼板を提供できる。 According to the present invention, it is possible to provide a ferritic stainless steel sheet having excellent high temperature salt damage resistance, which is used as an automobile exhaust system member to which a forced cooling mechanism and a heat insulating structure are applied to promote salt adhesion.

表1の本発明例A~T及び比較例a、b、f~jについて、750℃加熱、飽和NaCl水溶液浸漬を含み、更に水蒸気酸化も伴う環境における高温塩害試験後の腐食減量に及ぼすSi、Moの影響を示した図である。With respect to Examples A to T of the present invention and Comparative Examples a, b, f to j in Table 1, Si, which is affected by corrosion reduction after a high-temperature salt damage test in an environment including heating at 750 ° C. and immersion in a saturated NaCl aqueous solution and also accompanied by steam oxidation. It is a figure which showed the influence of Mo. 自動車排気系部品の一例を示す図であり、(A)は強制冷却機構を備えたもの、(B)は断熱構造を備えたものである。It is a figure which shows an example of an automobile exhaust system component, (A) is provided with a forced cooling mechanism, (B) is provided with a heat insulating structure.

以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.

まず、本発明のフェライト系ステンレス鋼の鋼組成の限定理由について説明する。ここで、鋼組成についての「%」は質量%を意味する。 First, the reason for limiting the steel composition of the ferritic stainless steel of the present invention will be described. Here, "%" for the steel composition means mass%.

(C:0.020%以下)
Cは、成形性と耐食性を劣化させ、高温強度の低下をもたらす元素であり、0.020%以下とする。また、過度な添加による耐酸化性や耐粒界腐食性の低下を考慮すると、上限は0.015%とすることが望ましい。但し、過度な低減は精錬コストの増加に繋がるため、下限は0.001%とすることが望ましい。
(C: 0.020% or less)
C is an element that deteriorates moldability and corrosion resistance and causes a decrease in high-temperature strength, and is 0.020% or less. Further, considering the decrease in oxidation resistance and intergranular corrosion resistance due to excessive addition, it is desirable that the upper limit is 0.015%. However, since excessive reduction leads to an increase in refining cost, it is desirable to set the lower limit to 0.001%.

(N:0.020%以下)
NはCと同様、成形性と耐食性を劣化させ、高温強度の低下をもたらす元素であり、0.020%以下とする。また、過度な添加による耐酸化性や耐粒界腐食性の低下を考慮すると、上限は0.015%とすることが望ましい。但し、過度な低減は精錬コストの増加に繋がるため、下限は0.003%とすることが望ましい。
(N: 0.020% or less)
Like C, N is an element that deteriorates moldability and corrosion resistance and causes a decrease in high-temperature strength, and is 0.020% or less. Further, considering the decrease in oxidation resistance and intergranular corrosion resistance due to excessive addition, it is desirable that the upper limit is 0.015%. However, since excessive reduction leads to an increase in refining cost, it is desirable to set the lower limit to 0.003%.

(Si:0.05%以上、2.00%以下)
Siは、脱酸剤として添加される元素であるとともに、耐酸化性を改善する元素である。また、Siは耐高温塩害性を改善する重要な元素である。Si添加によりFeやCrの酸化物の下にSi酸化物が形成され、これが補助皮膜として働き耐高温塩害性を改善する。耐高温塩害性を発現するためには0.05%以上の添加を必要とする。しかし、過度な添加は加工性の低下を招くため、2.00%以下とする。また、精錬コストや製造性を考慮すると、下限は0.10%とすることが望ましく、上限は1.5%が望ましい。より望ましくは、0.15~1.2%の範囲である。
(Si: 0.05% or more, 2.00% or less)
Si is an element added as a deoxidizing agent and an element that improves oxidation resistance. In addition, Si is an important element for improving high temperature salt damage resistance. By adding Si, Si oxide is formed under the oxide of Fe and Cr, which acts as an auxiliary film and improves high temperature salt damage resistance. Addition of 0.05% or more is required to develop resistance to high temperature salt damage. However, excessive addition causes deterioration of processability, so the content should be 2.00% or less. Further, in consideration of refining cost and manufacturability, it is desirable that the lower limit is 0.10% and the upper limit is 1.5%. More preferably, it is in the range of 0.15 to 1.2%.

(Mn:0.01%以上、0.40%以下、または、0.80%以上、2.00%以下)
Mnは、脱酸剤として添加される元素であり、0.01%以上添加する。また、Mnは酸化速度やスケール剥離性に影響を与え、その点から耐高温塩害性にも影響を及ぼす。添加量が増えるとスケールの保護性が低下し酸化速度が上がる。これにより高温塩害が低下する。しかし、一定以上の添加量になってくると耐スケール剥離性が改善される。これにより耐高温塩害性も改善する。つまり、耐高温塩害性が低下する範囲があり、これを避けるためには、0.40%以下、または、0.80%以上とする必要がある。しかし、過度な添加は均一伸びの低下を招くため、2.00%以下とする。また、精錬コスト、熱間加工性や耐食性を考慮すると、0.10~0.40%、または、0.85~1.50%の範囲が望ましい。より望ましくは、0.15~0.35%、または、0.90~1.20%の範囲である。
(Mn: 0.01% or more, 0.40% or less, or 0.80% or more, 2.00% or less)
Mn is an element added as a deoxidizing agent, and is added in an amount of 0.01% or more. In addition, Mn affects the oxidation rate and scale peeling property, and from that point, it also affects the high temperature salt damage resistance. As the amount added increases, the protection of the scale decreases and the oxidation rate increases. This reduces high temperature salt damage. However, when the addition amount exceeds a certain level, the scale peeling resistance is improved. This also improves high temperature salt damage resistance. That is, there is a range in which the high temperature salt damage resistance is lowered, and in order to avoid this, it is necessary to set it to 0.40% or less or 0.80% or more. However, excessive addition causes a decrease in uniform elongation, so the content should be 2.00% or less. Further, in consideration of refining cost, hot workability and corrosion resistance, a range of 0.10 to 0.40% or 0.85 to 1.50% is desirable. More preferably, it is in the range of 0.15 to 0.35% or 0.90 to 1.20%.

(P:0.040%以下)
Pは、製鋼精錬時に主として原料から混入してくる不純物であり、含有量が高くなると、靭性や溶接性が低下するため、その含有量は少ないほど良いため、0.040%以下とする。また、製造性を考慮すると、上限は0.035%とすることが望ましい。但し、過度な低減は精錬コストの増加に繋がるため、下限は0.01%とすることが望ましい。
(P: 0.040% or less)
P is an impurity mainly mixed from the raw material during steelmaking refining, and when the content is high, the toughness and weldability are lowered. Therefore, the smaller the content, the better, so the content is 0.040% or less. Further, in consideration of manufacturability, it is desirable that the upper limit is 0.035%. However, since excessive reduction leads to an increase in refining cost, it is desirable to set the lower limit to 0.01%.

(S:0.0020%以下)
Sは、製鋼精錬時に主として原料から混入してくる不純物であり、耐食性を劣化させる。また、耐スケール剥離性を低下させることによって耐高温塩害性も低下させる。したがって、0.0020%以下とする。また、製造性を考慮すると、上限は0.0015%とすることが望ましい。但し、過度な低減は精錬コストの増加に繋がるため、下限は0.0003%とすることが望ましい。
(S: 0.0020% or less)
S is an impurity mainly mixed from the raw material during steelmaking refining and deteriorates corrosion resistance. Further, by lowering the scale peeling resistance, the high temperature salt damage resistance is also lowered. Therefore, it should be 0.0020% or less. Further, in consideration of manufacturability, it is desirable that the upper limit is 0.0015%. However, since excessive reduction leads to an increase in refining cost, it is desirable to set the lower limit to 0.0003%.

(Cr:15.0%以上、23.0%以下)
Crは、耐食性および耐酸化性を向上する元素であるとともに、耐高温塩害性を改善する元素でもあり、15.0%以上添加する。しかし、過度な添加は加工性の低下や靭性の劣化を招くため、23.0%以下とする。また、高温強度、高温疲労特性や原料コストを考慮すると、下限は16.0%とすることが望ましく、上限は20.0%が望ましい。より望ましくは、16.5~18.5%の範囲である。
(Cr: 15.0% or more and 23.0% or less)
Cr is an element that improves corrosion resistance and oxidation resistance, and is also an element that improves high-temperature salt damage resistance, and is added in an amount of 15.0% or more. However, excessive addition causes deterioration of workability and toughness, so the content should be 23.0% or less. Further, considering the high temperature strength, high temperature fatigue characteristics and raw material cost, the lower limit is preferably 16.0%, and the upper limit is preferably 20.0%. More preferably, it is in the range of 16.5 to 18.5%.

(Ni:0.01%以上、0.50%以下)
Niは、耐食性を向上させる元素であるとともに、高温強度及び靭性を向上させる効果もある。しかし、過度な添加は成型性の低下を招く。したがって、0.01~0.50%の範囲とする。また、原料コストを考慮すると、上限は0.40%とすることが望ましい。より望ましくは、0.05~0.30%の範囲である。
(Ni: 0.01% or more, 0.50% or less)
Ni is an element that improves corrosion resistance and also has the effect of improving high-temperature strength and toughness. However, excessive addition causes a decrease in moldability. Therefore, the range is set to 0.01 to 0.50%. Further, considering the raw material cost, it is desirable that the upper limit is 0.40%. More preferably, it is in the range of 0.05 to 0.30%.

(Cu:0.01%以上、1.50%以下)
Cuは、耐食性向上に有効な元素であるとともに、高温強度を向上させる効果もある。しかし、過度な添加は耐酸化性の低下を招く。したがって、0.01~1.50%の範囲とする。また、熱間加工性やプレス成型性を考慮すると、上限は1.40%とすることが望ましい。より望ましくは、0.03~1.30%の範囲である。
(Cu: 0.01% or more, 1.50% or less)
Cu is an element effective for improving corrosion resistance and also has an effect of improving high temperature strength. However, excessive addition causes a decrease in oxidation resistance. Therefore, the range is set to 0.01 to 1.50%. Further, considering hot workability and press moldability, it is desirable that the upper limit is 1.40%. More preferably, it is in the range of 0.03 to 1.30%.

(Mo:0.05%以上、2.20%以下)
Moは、耐食性を向上させるとともに、耐高温塩害性を改善する重要な元素である。Mo添加によりFeやCrの酸化物自体の保護性が向上し、耐高温塩害性を改善する。耐高温塩害性を発現するためには0.05%以上の添加とする。しかし、過度な添加は成型性の低下を招くため、2.20%以下とする。また、高温強度、原料コスト、製造性を考慮すると、下限は0.20%とすることが望ましく、上限は2.00%が望ましい。より望ましくは、0.25~1.90%の範囲である。
(Mo: 0.05% or more and 2.20% or less)
Mo is an important element that improves corrosion resistance and high temperature salt damage resistance. The addition of Mo improves the protection of the Fe and Cr oxides themselves and improves the high temperature salt damage resistance. In order to develop high temperature salt damage resistance, add 0.05% or more. However, excessive addition causes deterioration of moldability, so the content should be 2.20% or less. In consideration of high temperature strength, raw material cost, and manufacturability, the lower limit is preferably 0.20%, and the upper limit is preferably 2.00%. More preferably, it is in the range of 0.25 to 1.90%.

(Nb:0.10%以上、1.00%以下)
Nbは、固溶強化及び析出物微細化強化により高温強度を向上させるとともに、CやNを炭窒化物として固定し、耐食性、耐酸化性を向上させる元素であり、0.10%以上添加する。しかし、過度な添加は均一伸びの低下や穴広げ性の劣化を招くため、1.00%以下とする。また、溶接部の粒界腐食性、製造性、原料コストを考慮すると、下限は0.20%とすることが望ましく、上限は0.60%が望ましい。より望ましくは、0.25~0.55%の範囲である。
(Nb: 0.10% or more, 1.00% or less)
Nb is an element that improves high-temperature strength by strengthening solid solution and refining precipitates, and also fixes C and N as carbonitrides to improve corrosion resistance and oxidation resistance, and is added in an amount of 0.10% or more. .. However, excessive addition causes a decrease in uniform elongation and a deterioration in hole-spreading property, so the content is set to 1.00% or less. Further, considering the intergranular corrosion property, manufacturability, and raw material cost of the welded portion, the lower limit is preferably 0.20%, and the upper limit is preferably 0.60%. More preferably, it is in the range of 0.25 to 0.55%.

(Ti:0.001%以上、0.220%以下)
Tiは、C,N,Sと結合して耐食性、耐粒界腐食性、深絞り性の指標となるr値を向上させる元素であり、0.001%以上添加する。しかし、過度な添加は均一伸びの低下や粗大なTi系析出物の形成による穴広げ加工性の低下を招くため、0.220%以下とする。また、表面疵の発生や靭性を考慮すると、下限は0.003%とすることが望ましく、上限は0.200%が望ましい。より望ましくは、0.005~0.160%の範囲である。
(Ti: 0.001% or more, 0.220% or less)
Ti is an element that binds to C, N, and S to improve the r value, which is an index of corrosion resistance, intergranular corrosion resistance, and deep drawing property, and is added in an amount of 0.001% or more. However, excessive addition causes a decrease in uniform elongation and a decrease in hole widening workability due to the formation of coarse Ti-based precipitates, so the content should be 0.220% or less. Further, considering the occurrence of surface defects and toughness, the lower limit is preferably 0.003%, and the upper limit is preferably 0.200%. More preferably, it is in the range of 0.005 to 0.160%.

(Al:0.002%以上、0.200%以下)
Alは、脱酸元素として添加されるとともに、耐酸化性を改善する元素であり、0.002%以上添加する。しかし、過度な添加は均一伸びの低下や靭性の低下を招くため、0.200%以下とする。また、精錬コスト、表面疵の発生や溶接性を考慮すると、下限は0.010%とすることが望ましく、上限は0.150%が望ましい。より望ましくは、0.015~0.130%の範囲である。
(Al: 0.002% or more, 0.200% or less)
Al is an element that is added as a deoxidizing element and improves oxidation resistance, and is added in an amount of 0.002% or more. However, excessive addition causes a decrease in uniform elongation and a decrease in toughness, so the content should be 0.200% or less. Further, considering the refining cost, the occurrence of surface defects and weldability, the lower limit is preferably 0.010% and the upper limit is preferably 0.150%. More preferably, it is in the range of 0.015 to 0.130%.

(V:0.01%以上、0.20%以下)
Vは、高温強度を向上させる元素である。しかし、過度な添加は析出物の粗大化による高温強度の低下や熱疲労寿命の低下を招く。したがって、0.01~0.20%の範囲とする。また、製造性を考慮すると、上限は0.15%とすることが望ましい。より望ましくは、0.02~0.10%の範囲である。
(V: 0.01% or more, 0.20% or less)
V is an element that improves high temperature strength. However, excessive addition causes a decrease in high-temperature strength and a decrease in thermal fatigue life due to the coarsening of precipitates. Therefore, the range is set to 0.01 to 0.20%. Further, in consideration of manufacturability, it is desirable that the upper limit is 0.15%. More preferably, it is in the range of 0.02 to 0.10%.

(B:0.0001%以上、0.0050%以下)
Bは、高温強度や熱疲労特性を向上させる元素である。しかし、過度な添加は熱間加工性の低下や鋼表面の表面性状の低下を招く。したがって、0.0001~0.0050%の範囲とする。また、製造性や成型性を考慮すると、上限は0.0030%とすることが望ましい。より望ましくは、0.0003~0.0015%の範囲である。
(B: 0.0001% or more, 0.0050% or less)
B is an element that improves high temperature strength and thermal fatigue characteristics. However, excessive addition causes deterioration of hot workability and deterioration of the surface texture of the steel surface. Therefore, the range is 0.0001 to 0.0050%. Further, in consideration of manufacturability and moldability, it is desirable that the upper limit is 0.0030%. More preferably, it is in the range of 0.0003 to 0.0015%.

(O:0.0050%以下)
Oは、不可避的に含まれる不純物であり、気泡や介在物による表面疵の原因となる。したがって、0.0050%以下とする。また、製造性を考慮すると、上限は0.0040%とすることが望ましい。但し、過度な低減は精錬コストの増加に繋がるため、下限は0.0003%とすることが望ましい。ここで、OはT.Oを意味する。
(O: 0.0050% or less)
O is an impurity that is inevitably contained and causes surface defects due to bubbles and inclusions. Therefore, it should be 0.0050% or less. Further, in consideration of manufacturability, it is desirable that the upper limit is 0.0040%. However, since excessive reduction leads to an increase in refining cost, it is desirable to set the lower limit to 0.0003%. Here, O is T.I. Means O.

次に、式(i)~(ix)について説明する。 Next, the equations (i) to (ix) will be described.

耐高温塩害性向上にはSiとMoが最も有効であり、その合計添加量は重要となる。本発明者らは優れた耐高温塩害性を発現するためにはSiとMoの合計添加量が0.40%以上必要であることを見出し、式(i)の下限とした。しかし、Si、Moはともに過度な添加で加工性を低下させる元素である。発明者らはMoの添加量を一定範囲で区切り、常温の伸びを指標として加工性が著しく低下しない範囲のSi添加量を検討し、式(ii)~(v)の関係を見出した。なお、式(i)の上限は式(ii)~(v)の範囲内におけるSiとMoの合計添加量の上限である。
0.40≦Si+Mo ・・・式(i)
0.05≦Mo<0.50の場合、Si≦2.00 ・・・式(ii)
0.50≦Mo<0.90の場合、Si≦1.20 ・・・式(iii)
0.90≦Mo<1.20の場合、Si≦0.90 ・・・式(iv)
1.20≦Mo≦2.20の場合、Si≦0.70 ・・・式(v)
また、望ましくは式(ii)’~(v)’である。
0.40≦Si+Mo≦2.70 ・・・式(i)’
0.05≦Mo<0.50の場合、Si≦1.50 ・・・式(ii)’
0.50≦Mo<0.90の場合、Si≦0.90 ・・・式(iii)’
0.90≦Mo<1.20の場合、Si≦0.70 ・・・式(iv)’
1.20≦Mo≦2.20の場合、Si≦0.50 ・・・式(v)’
Si and Mo are the most effective for improving high temperature salt damage resistance, and the total amount added is important. The present inventors have found that the total addition amount of Si and Mo needs to be 0.40% or more in order to exhibit excellent high-temperature salt damage resistance, and set it as the lower limit of the formula (i). However, both Si and Mo are elements that reduce processability due to excessive addition. The inventors divided the amount of Mo added in a certain range, examined the amount of Si added in a range in which the processability did not significantly decrease using the elongation at room temperature as an index, and found the relationship of the formulas (ii) to (v). The upper limit of the formula (i) is the upper limit of the total amount of Si and Mo added within the range of the formulas (ii) to (v).
0.40 ≤ Si + Mo ・ ・ ・ Equation (i)
When 0.05 ≤ Mo <0.50, Si ≤ 2.00 ... Equation (ii)
When 0.50 ≤ Mo <0.90, Si ≤ 1.20 ... Equation (iii)
When 0.90 ≤ Mo <1.20, Si ≤ 0.90 ... Equation (iv)
When 1.20 ≤ Mo ≤ 2.20, Si ≤ 0.70 ... Equation (v)
Further, it is preferably the equations (ii)'to (v)'.
0.40 ≤ Si + Mo ≤ 2.70 ... Equation (i)'
When 0.05 ≤ Mo <0.50, Si ≤ 1.50 ... Equation (ii)'
When 0.50 ≤ Mo <0.90, Si ≤ 0.90 ... Equation (iii)'
When 0.90 ≤ Mo <1.20, Si ≤ 0.70 ... Equation (iv)'
When 1.20 ≤ Mo ≤ 2.20, Si ≤ 0.50 ... Equation (v)'

また、耐高温塩害性にTi、C、N、Al、Oの添加量のバランスが影響する。C、Nは安定化元素であるTiやNbの量が少ないとCr炭窒化物を形成し耐高温塩害性を低下させる。本発明者らは、特に影響が大きいTiの添加量の範囲によってCとNの合計量を制限する必要を見出し、式(vi)、(vii)として規定した。また、鋼中のOに対してAlが一定量以上ある場合はスケール剥離を抑制することで耐高温塩害性を改善することを見出し、式(viii)を得た。更に、Tiの添加量が多い場合はスケールが剥離し易くなり耐高温塩害性が低下する場合がある。その場合はAlを更に添加することで改善することも見出し、式(ix)を得た。
Ti<0.05の場合、C+N≦0.022 ・・・式(vi)
Ti≧0.05の場合、C+N≦0.030 ・・・式(vii)
Al/O≧1.2 ・・・式(viii)
Ti≧0.05の場合、Al>0.015 ・・・式(ix)
但し、式中の元素記号は、当該元素の含有量(質量%)を意味する。
Further, the balance of the addition amounts of Ti, C, N, Al and O affects the high temperature salt damage resistance. When the amounts of Ti and Nb, which are stabilizing elements, are small, C and N form Cr carbonitrides and reduce the high temperature salt damage resistance. The present inventors have found that it is necessary to limit the total amount of C and N by the range of the amount of Ti added, which has a particularly large influence, and have defined them as the formulas (vi) and (vii). Further, it was found that when Al is more than a certain amount with respect to O in the steel, scale peeling is suppressed to improve the high temperature salt damage resistance, and the formula (viii) is obtained. Further, when the amount of Ti added is large, the scale is easily peeled off and the high temperature salt damage resistance may be lowered. In that case, it was also found that it could be improved by further adding Al, and the formula (ix) was obtained.
When Ti <0.05, C + N ≤ 0.022 ... Equation (vi)
When Ti ≧ 0.05, C + N ≦ 0.030 ・ ・ ・ Equation (vii)
Al / O ≧ 1.2 ・ ・ ・ Equation (viii)
When Ti ≧ 0.05, Al> 0.015 ・ ・ ・ Equation (ix)
However, the element symbol in the formula means the content (mass%) of the element.

加えて、本発明では、必要に応じて選択的に、W、Y、REM、Ca、Zr、Hf、Sn、Mg、Co、Sb、Bi、Ta、Gaの1種または2種以上を添加することにより、特性を更に向上させることができる。 In addition, in the present invention, one or more of W, Y, REM, Ca, Zr, Hf, Sn, Mg, Co, Sb, Bi, Ta, and Ga are selectively added as needed. Thereby, the characteristics can be further improved.

(W:0.01%以上、2.20%以下)
Wは、耐食性と高温強度を向上するとともに、耐高温塩害性も改善する元素であり、必要に応じて0.01%以上添加する。しかし、過度な添加は加工性、靭性、製造性の低下を招くため、上限を2.20%とする。また、高温強度、原料コスト、製造性を考慮すると、下限は0.20%とすることが望ましく、上限は2.00%が望ましい。より望ましくは、0.25~1.90%の範囲である。
(W: 0.01% or more and 2.20% or less)
W is an element that improves corrosion resistance and high-temperature strength as well as high-temperature salt damage resistance, and is added in an amount of 0.01% or more as necessary. However, excessive addition causes deterioration of processability, toughness, and manufacturability, so the upper limit is set to 2.20%. In consideration of high temperature strength, raw material cost, and manufacturability, the lower limit is preferably 0.20%, and the upper limit is preferably 2.00%. More preferably, it is in the range of 0.25 to 1.90%.

(Y:0.001%以上、0.20%以下)
Yは、鋼の清浄度を向上し、耐銹性、熱間加工性を向上するとともに、耐酸化性、耐高温塩害性も改善する元素であり、必要に応じて0.001%以上添加する。しかし、過度の添加は合金コストの上昇と製造性の低下を招くため、上限を0.20%とする。
(Y: 0.001% or more, 0.20% or less)
Y is an element that improves the cleanliness of steel, rust resistance and hot workability, as well as oxidation resistance and high temperature salt damage resistance, and is added in an amount of 0.001% or more as necessary. .. However, excessive addition causes an increase in alloy cost and a decrease in manufacturability, so the upper limit is set to 0.20%.

(REM:0.001%以上、0.20%以下)
REM(希土類元素)は、鋼の清浄度を向上し、耐銹性、熱間加工性を向上するとともに、耐酸化性、耐高温塩害性も改善する元素であり、必要に応じて0.001%以上添加する。しかし、過度な添加は合金コストの上昇と製造性の低下を招くため、上限を0.20%とする。REMは、スカンジウム(Sc)とランタン(La)からルテチウム(Lu)までの15元素(ランタノイド)の総称を指す。単独で添加しても良いし、混合物であっても良い。
(REM: 0.001% or more, 0.20% or less)
REM (rare earth element) is an element that improves the cleanliness of steel, rust resistance and hot workability, as well as oxidation resistance and high temperature salt damage resistance, and is 0.001 if necessary. % Or more is added. However, excessive addition causes an increase in alloy cost and a decrease in manufacturability, so the upper limit is set to 0.20%. REM is a general term for 15 elements (lanthanoids) from scandium (Sc) and lanthanum (La) to lutetium (Lu). It may be added alone or as a mixture.

(Ca:0.0002%以上、0.0030%以下)
Caは、脱硫を促進する元素であり、必要に応じて0.0002%以上添加する。しかし、過度な添加は水溶性の介在物であるCaSの生成による耐食性の低下を招くため、上限を0.0030%とする。
(Ca: 0.0002% or more, 0.0030% or less)
Ca is an element that promotes desulfurization, and 0.0002% or more is added as needed. However, excessive addition causes a decrease in corrosion resistance due to the formation of CaS, which is a water-soluble inclusion, so the upper limit is set to 0.0030%.

(Zr:0.01%以上、0.30%以下)
Zrは、耐食性、耐粒界腐食性、高温強度、耐酸化性を向上する元素であり、必要に応じて0.01%以上添加する。しかし、過度な添加は加工性、製造性の低下を招くため、上限を0.30%とする。
(Zr: 0.01% or more, 0.30% or less)
Zr is an element that improves corrosion resistance, intergranular corrosion resistance, high temperature strength, and oxidation resistance, and is added in an amount of 0.01% or more as necessary. However, excessive addition causes deterioration of processability and manufacturability, so the upper limit is set to 0.30%.

(Hf:0.001%以上、1.0%以下)
Hfは耐食性、耐粒界腐食性、高温強度、耐酸化性を向上する元素であり、必要に応じて0.001%以上添加する。しかし、過度な添加は加工性、製造性の低下を招くため、上限を1.0%とする。
(Hf: 0.001% or more, 1.0% or less)
Hf is an element that improves corrosion resistance, intergranular corrosion resistance, high temperature strength, and oxidation resistance, and is added in an amount of 0.001% or more as necessary. However, excessive addition causes deterioration of processability and manufacturability, so the upper limit is set to 1.0%.

(Sn:0.002%以上、1.0%以下)
Snは、耐食性と高温強度を向上する元素であり、必要に応じて0.002%以上添加する。しかし、過度の添加は靭性、製造性の低下を招くため、上限を1.0%とする。
(Sn: 0.002% or more, 1.0% or less)
Sn is an element that improves corrosion resistance and high-temperature strength, and is added in an amount of 0.002% or more as necessary. However, excessive addition causes deterioration of toughness and manufacturability, so the upper limit is set to 1.0%.

(Mg:0.0002%以上、0.0030%以下)
Mgは、脱酸元素として添加させる場合がある他、スラブの組織を微細化させ、成型性を向上する元素であり、必要に応じて0.0002%以上添加する。しかし、過度な添加は耐食性、溶接性、表面品質の低下を招くため、上限を0.0030%とする。
(Mg: 0.0002% or more, 0.0030% or less)
Mg may be added as a deoxidizing element, and is an element that refines the structure of the slab and improves moldability, and is added in an amount of 0.0002% or more as necessary. However, excessive addition causes deterioration of corrosion resistance, weldability, and surface quality, so the upper limit is set to 0.0030%.

(Co:0.01%以上、0.30%以下)
Coは、高温強度を向上する元素であり、必要に応じて0.01%以上添加する。しかし、過度な添加は靭性、製造性の低下を招くため、上限を0.30%とする。
(Co: 0.01% or more, 0.30% or less)
Co is an element that improves high-temperature strength, and is added in an amount of 0.01% or more as necessary. However, excessive addition causes deterioration of toughness and manufacturability, so the upper limit is set to 0.30%.

(Sb:0.005%以上、0.50%以下)
Sbは、高温強度を向上する元素であり、必要に応じて0.005%以上添加する。しかし、過度な添加は溶接性、靭性の低下を招くため、上限を0.50%とする。
(Sb: 0.005% or more, 0.50% or less)
Sb is an element that improves high-temperature strength, and 0.005% or more is added as needed. However, excessive addition causes deterioration of weldability and toughness, so the upper limit is set to 0.50%.

(Bi:0.001%以上、1.0%以下)
Biは、冷間圧延時に発生するローピングを抑制し、製造性を向上する元素であり、必要に応じて0.001%以上添加する。しかし、過度な添加は熱間加工性の低下を招くため、上限を1.0%とする。
(Bi: 0.001% or more, 1.0% or less)
Bi is an element that suppresses roping that occurs during cold rolling and improves manufacturability, and is added in an amount of 0.001% or more as necessary. However, excessive addition causes a decrease in hot workability, so the upper limit is set to 1.0%.

(Ta:0.001%以上、1.0%以下)
Taは、高温強度を向上する元素であり、必要に応じて0.001%以上添加する。しかし、過度な添加は靭性、製造性の低下を招くため、上限を1.0%とする。
(Ta: 0.001% or more, 1.0% or less)
Ta is an element that improves high-temperature strength, and 0.001% or more is added as necessary. However, excessive addition causes deterioration of toughness and manufacturability, so the upper limit is set to 1.0%.

(Ga:0.0002%以上、0.30%以下)
Gaは、耐食性と耐水素脆化特性を向上する元素であり、必要に応じて0.0002%以上添加する。しかし、過度な添加は加工性の低下を招くため、上限を0.30%とする。
(Ga: 0.0002% or more, 0.30% or less)
Ga is an element that improves corrosion resistance and hydrogen embrittlement resistance, and is added in an amount of 0.0002% or more as necessary. However, since excessive addition causes deterioration of processability, the upper limit is set to 0.30%.

次に、本発明における耐高温塩害性に優れたフェライト系ステンレス鋼板の製造方法について説明する。 Next, a method for manufacturing a ferrite-based stainless steel sheet having excellent high-temperature salt damage resistance in the present invention will be described.

本発明の鋼板の製造方法については、フェライト系ステンレス鋼を製造する一般的な工程を採用できる。一般に、転炉又は電気炉で溶鋼とし、AOD炉やVOD炉などで精練して、連続鋳造法又は造塊法で鋼片とした後、熱間圧延-熱延板の焼鈍-酸洗-冷間圧延-仕上げ焼鈍-酸洗の工程を経て製造される。必要に応じて、熱延板の焼鈍を省略してもよいし、冷間圧延-仕上げ焼鈍-酸洗を繰り返し行ってもよい。これら各工程の条件は一般的条件で良く、例えば熱延加熱温度1000~1300℃、熱延板焼鈍温度900~1200℃、冷延板焼鈍温度800~1200℃等で行うことができる。但し、本発明は製造条件を特徴とするものではなく、その製造条件は限定されるものではない。そのため、熱延条件、熱延板厚、熱延板焼鈍の有無、冷延条件、熱延板及び冷延板焼鈍温度、雰囲気などは適宜選択することができる。また、仕上酸洗前の処理は一般的な処理を行って良く、例えば、ショットブラストや研削ブラシなどの機械的処理や、溶融ソルト処理や中性塩電解処理などの化学的処理を行うことができる。また、冷延・焼鈍後に調質圧延やテンションレベラーを付与しても構わない。更に、製品板厚についても、要求部材厚に応じて選択すれば良い。また、この鋼板を素材として電気抵抗溶接、TIG溶接、レーザー溶接などの通常の排気系部材用ステンレス鋼管の製造方法によって溶接管として製造しても良い。 As the method for producing a steel sheet of the present invention, a general process for producing a ferritic stainless steel can be adopted. Generally, molten steel is made in a converter or an electric furnace, refined in an AOD furnace or a VOD furnace to make steel pieces by a continuous casting method or an ingot method, and then hot-rolled-annealing of hot-rolled plates-pickling-cooling. Manufactured through the steps of inter-rolling-finish annealing-pickling. If necessary, annealing of the hot-rolled plate may be omitted, or cold rolling-finish annealing-pickling may be repeated. The conditions of each of these steps may be general conditions, for example, a hot-rolled plate annealing temperature of 1000 to 1300 ° C., a hot-rolled plate annealing temperature of 900 to 1200 ° C., a cold-rolled plate annealing temperature of 800 to 1200 ° C., and the like. However, the present invention is not characterized by manufacturing conditions, and the manufacturing conditions are not limited. Therefore, the hot-rolled conditions, the hot-rolled plate thickness, the presence or absence of hot-rolled plate annealing, the cold-rolled conditions, the hot-rolled and cold-rolled plate annealing temperatures, the atmosphere, and the like can be appropriately selected. In addition, the treatment before finish pickling may be a general treatment, for example, a mechanical treatment such as shot blasting or a grinding brush, or a chemical treatment such as a melt salt treatment or a neutral salt electrolysis treatment. can. Further, temper rolling or tension leveler may be applied after cold rolling and annealing. Further, the product plate thickness may be selected according to the required member thickness. Further, this steel plate may be used as a welded pipe by a normal method for manufacturing a stainless steel pipe for an exhaust system member such as electric resistance welding, TIG welding, and laser welding.

本発明の自動車排気系部品は、図2(A)に示すように、上記本発明のフェライト系ステンレス鋼板を用いた自動車排気系部材1と、それを強制冷却する強制冷却機構3とを備えている。図2(A)においては、冷却ファン4の送風口5からの冷却空気流11が自動車排気系部材1(排気マニホールド2)を強制空冷する。このような、排気マニホールド2やフロントパイプのような排気系の中でも高温に位置する自動車排気系部材1を強制空冷する強制冷却機構3は排気系部材への塩分付着を促進する要因となる。このような自動車排気系部品において、自動車排気系部材1として上記本発明のフェライト系ステンレス鋼板を用いることにより、十分な耐高温塩害性が付与されることとなる。 As shown in FIG. 2A, the automobile exhaust system component of the present invention includes an automobile exhaust system member 1 using the ferritic stainless steel plate of the present invention and a forced cooling mechanism 3 for forcibly cooling the member. There is. In FIG. 2A, the cooling air flow 11 from the air outlet 5 of the cooling fan 4 forcibly air-cools the automobile exhaust system member 1 (exhaust manifold 2). Such a forced cooling mechanism 3 for forcibly air-cooling an automobile exhaust system member 1 located at a high temperature in an exhaust system such as an exhaust manifold 2 or a front pipe is a factor for promoting salt adhesion to the exhaust system member. By using the ferrite-based stainless steel sheet of the present invention as the automobile exhaust system member 1 in such an automobile exhaust system component, sufficient high-temperature salt damage resistance is imparted.

本発明の自動車排気系部品はまた、図2(B)に示すように、上記本発明のフェライト系ステンレス鋼板を用いた自動車排気系部材1と、その周囲を断熱材7で覆う断熱構造6とを備えている。図2(B)に示す断熱構造6においては、自動車排気系部材1(排気マニホールド2)の外周を断熱材7で覆い、断熱材カバー8で保護している。断熱材7はウール状セラミックス等が使用され、保水しやすくなる。そのため断熱材で覆うことは塩分も保持しやくなり、排気系への塩分付着を促進する。このような自動車排気系部品において、自動車排気系部材1として上記本発明のフェライト系ステンレス鋼板を用いることにより、十分な耐高温塩害性が付与されることとなる。 As shown in FIG. 2B, the automobile exhaust system component of the present invention also includes an automobile exhaust system member 1 using the ferritic stainless steel plate of the present invention, and a heat insulating structure 6 having a heat insulating material 7 covering the periphery thereof. It is equipped with. In the heat insulating structure 6 shown in FIG. 2B, the outer periphery of the automobile exhaust system member 1 (exhaust manifold 2) is covered with the heat insulating material 7 and protected by the heat insulating material cover 8. Wool-like ceramics or the like is used for the heat insulating material 7, which facilitates water retention. Therefore, covering with a heat insulating material makes it easier to retain salt and promotes salt adhesion to the exhaust system. By using the ferrite-based stainless steel sheet of the present invention as the automobile exhaust system member 1 in such an automobile exhaust system component, sufficient high-temperature salt damage resistance is imparted.

以下、実施例により本発明の効果をより明らかなものとする。なお、本発明は、以下の実施例に限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することができる。 Hereinafter, the effects of the present invention will be further clarified by examples. The present invention is not limited to the following examples, and can be appropriately modified and implemented without changing the gist thereof.

表1、表2に示す成分組成を有する供試材(本発明例A~T,比較例a~v)を真空溶解炉で溶製して30kgインゴットに鋳造した。得られたインゴットは厚さ4.5mmの熱延鋼板とした。熱間圧延の加熱条件は、1200℃であった。熱延板焼鈍は、1000℃とした。アルミナブラストで脱スケール処理した後、冷間圧延にて1.5mmの厚さの板とし、1100℃保持の仕上焼鈍を実施した。このようにして得られた冷延焼鈍板から、引張試験用と高温塩害試験用の試験片を作製した。引張試験用としてはJIS Z 2241に準拠した圧延方向の13B号試験片を作製した。高温塩害試験用としては厚さ1.5mm×幅20mm×長さ50mmで全面P600湿式研磨仕上げした試験片を作製した。 Test materials having the component compositions shown in Tables 1 and 2 (Examples A to T of the present invention, Comparative Examples a to v) were melted in a vacuum melting furnace and cast into a 30 kg ingot. The obtained ingot was a hot-rolled steel plate having a thickness of 4.5 mm. The heating conditions for hot rolling were 1200 ° C. The hot-rolled sheet was annealed at 1000 ° C. After descaling with alumina blasting, a plate having a thickness of 1.5 mm was obtained by cold rolling, and finish annealing was carried out at 1100 ° C. From the cold-rolled annealed plate thus obtained, test pieces for tensile test and high-temperature salt damage test were prepared. For the tensile test, a No. 13B test piece in the rolling direction according to JIS Z 2241 was prepared. For the high-temperature salt damage test, a test piece having a thickness of 1.5 mm, a width of 20 mm, and a length of 50 mm and having a P600 wet polishing finish on the entire surface was prepared.

Figure 0007022633000001
Figure 0007022633000001

Figure 0007022633000002
Figure 0007022633000002

(引張試験)
引張試験の供試材としては本発明例A~T、比較例a~vを用いた。試験はJIS Z 2241に準拠して行い、常温における全伸びを評価した。全伸びが28%以上であるものを良好とした。更に加工性に配慮するならば、望ましくは全伸びが30%以上である。
上記の引張試験における常温における全伸びを表3、表4に示す。
本発明例A~Tおよび比較例a~nは式(ii)~(v)を満足しており、全伸びは良好である。
比較例o、pは式(ii)を満足せず、q、rは式(iii)を満足せず、s、tは式(iv)を満足せず、u、vは式(v)を満足せず、全伸びが不十分である。
(Tensile test)
Examples A to T of the present invention and Comparative Examples a to v were used as test materials for the tensile test. The test was carried out in accordance with JIS Z 2241, and the total elongation at room temperature was evaluated. Those having a total elongation of 28% or more were considered to be good. Further, if workability is taken into consideration, the total elongation is preferably 30% or more.
Tables 3 and 4 show the total elongation at room temperature in the above tensile test.
Examples A to T of the present invention and Comparative Examples a to n satisfy the formulas (ii) to (v), and the total elongation is good.
Comparative examples o and p do not satisfy the equation (ii), q and r do not satisfy the equation (iii), s and t do not satisfy the equation (iv), and u and v satisfy the equation (v). Not satisfied and the total growth is insufficient.

Figure 0007022633000003
Figure 0007022633000003

Figure 0007022633000004
Figure 0007022633000004

(高温塩害試験)
高温塩害試験の供試材としては、引張試験で良好な結果を得た本発明例A~T、比較例a~nを用いた。高温塩害試験としては試験片を加熱、冷却、塩水浸漬、乾燥のサイクルを20サイクル実施した後の腐食減量を評価した。加熱条件は、温度を750℃、保持時間を130分とした。冷却条件は、温度を常温、保持時間を30分とした。塩水浸漬条件は、塩水を飽和NaCl水溶液、温度を常温、浸漬時間を30分とした。乾燥条件は、温度を50℃、保持時間を30分とした。加熱、冷却、乾燥の雰囲気は露点40~50℃の空気中とした。高温塩害試験前と高温塩害試験で生成した腐食生成物を除去した後の試験片の重量差を測定し、これを高温塩害試験前の試験片表面積当りの値としたものを腐食減量とした。高温塩害試験後の試験片表面の腐食生成物の除去としては、試験片を沸騰15質量%くえん酸2水素アンモニウム水溶液に20分浸漬し、水洗した後ブラッシングをすることを数回繰り返すことで実施した。このようにして得られた高温塩害試験の腐食減量を用いて、耐高温塩害性を評価した。腐食減量が150mg/cm2以下であれば、耐高温塩害性は良好とした。
(High temperature salt damage test)
As the test materials for the high-temperature salt damage test, Examples A to T of the present invention and Comparative Examples a to n, which obtained good results in the tensile test, were used. As a high-temperature salt damage test, the corrosion weight loss after 20 cycles of heating, cooling, salt water immersion, and drying of the test piece was evaluated. The heating conditions were a temperature of 750 ° C. and a holding time of 130 minutes. The cooling conditions were a temperature of room temperature and a holding time of 30 minutes. The salt water immersion conditions were a saturated NaCl aqueous solution for salt water, a temperature of room temperature, and an immersion time of 30 minutes. The drying conditions were a temperature of 50 ° C. and a holding time of 30 minutes. The atmosphere for heating, cooling, and drying was in air with a dew point of 40 to 50 ° C. The weight difference between the test pieces before the high-temperature salt damage test and after removing the corrosion products generated in the high-temperature salt damage test was measured, and the value per surface area of the test piece before the high-temperature salt damage test was used as the corrosion weight loss. To remove the corrosion products on the surface of the test piece after the high-temperature salt damage test, the test piece was immersed in a boiling 15% by mass aqueous solution of ammonium dihydrogen dihydrogen citrate for 20 minutes, washed with water, and then brushed several times. did. The corrosion resistance of the high temperature salt damage test thus obtained was used to evaluate the high temperature salt damage resistance. When the corrosion weight loss was 150 mg / cm 2 or less, the high temperature salt damage resistance was considered to be good.

上記の高温塩害試験における腐食減量の測定結果を表3、表4に示す。
本発明例A~Tは成分組成が適正範囲内であり、更に、式(i)および(vi)~(ix)を満足しており、耐高温塩害性は良好である。
比較例a、bはSiが適正範囲の下限を外れ、比較例cはMnが不適な範囲内であり、比較例dはSが適正範囲の上限を外れ、比較例eはCrが適正範囲の下限を外れ、比較例f、gはMoが適正範囲の下限を外れ、耐高温塩害性が不十分である。
比較例h~nは個別の成分組成は適正範囲内であるが、h、i、jは式(i)を満足せず、kは式(vi)を満足せず、lは式(vii)を満足せず、mは式(viii)を満足せず、nは式(ix)を満足せず、耐高温塩害性が不十分である。
Tables 3 and 4 show the measurement results of the corrosion weight loss in the above high-temperature salt damage test.
Examples A to T of the present invention have a component composition within an appropriate range, further satisfy the formulas (i) and (vi) to (ix), and have good high temperature salt damage resistance.
In Comparative Examples a and b, Si is out of the lower limit of the appropriate range, in Comparative Example c, Mn is within the inappropriate range, in Comparative Example d, S is out of the upper limit of the appropriate range, and in Comparative Example e, Cr is in the appropriate range. In Comparative Examples f and g, Mo is out of the lower limit of the appropriate range, and the high temperature salt damage resistance is insufficient.
In Comparative Examples h to n, the individual component compositions are within an appropriate range, but h, i, and j do not satisfy the formula (i), k does not satisfy the formula (vi), and l is the formula (vii). , M does not satisfy the formula (viii), n does not satisfy the formula (ix), and the high temperature salt damage resistance is insufficient.

なお、加熱温度を650℃、700℃、800℃等で実施した場合や、塩水を飽和CaCl2水溶液にした場合や、雰囲気を乾燥大気にした場合においても本発明鋼の耐高温塩害性は良好であった。これより、本発明例は様々な高温塩害環境で優れた耐高温塩害性を示すと考えられる。 The high temperature salt damage resistance of the steel of the present invention is good even when the heating temperature is 650 ° C, 700 ° C, 800 ° C, etc., when the salt water is a saturated CaCl 2 aqueous solution, or when the atmosphere is a dry atmosphere. Met. From this, it is considered that the examples of the present invention exhibit excellent high-temperature salt damage resistance in various high-temperature salt damage environments.

これらから明らかなように、本発明で規定する個別の成分組成を有し、式(i)~(ix)を満足する鋼は加工性および耐高温塩害性に優れていることがわかる。 As is clear from these, it can be seen that the steels having the individual component compositions specified in the present invention and satisfying the formulas (i) to (ix) are excellent in workability and high temperature salt damage resistance.

本発明によれば、耐高温塩害性を必要とする排気マニホールドやフロントパイプといった用途に耐高温塩害性に優れたフェライト系ステンレス鋼板を提供することができる。具体的な用途としては強制冷却機構により塩分付着が促進されている自動車排気系部品や、自動車排気系の周囲を断熱材で覆う断熱構造が適用されることにより塩分付着が促進されている自動車排気系部品である。これらの部品を可能とすることで、これら部品が適用されるターボ搭載車やHCCI(予混合圧縮自動着火)燃焼するエンジン車の普及を促進し、自動車の燃費改善および環境負荷の低減に寄与できる。 According to the present invention, it is possible to provide a ferrite stainless steel sheet having excellent high temperature salt damage resistance for applications such as exhaust manifolds and front pipes that require high temperature salt damage resistance. Specific applications include automobile exhaust system parts where salt adhesion is promoted by a forced cooling mechanism, and automobile exhaust where salt adhesion is promoted by applying a heat insulating structure that covers the periphery of the automobile exhaust system with a heat insulating material. It is a system part. By making these parts possible, it is possible to promote the spread of turbo-equipped vehicles to which these parts are applied and engine vehicles that burn HCCI (premixed compression automatic ignition), and contribute to improving the fuel efficiency of automobiles and reducing the environmental load. ..

1 自動車排気系部材
2 排気マニホールド
3 強制冷却機構
4 冷却ファン
5 送風口
6 断熱構造
7 断熱材
8 断熱材カバー
10 排気ガス
11 冷却空気流
1 Automobile exhaust system member 2 Exhaust manifold 3 Forced cooling mechanism 4 Cooling fan 5 Blower 6 Insulation structure 7 Insulation material 8 Insulation material cover 10 Exhaust gas 11 Cooling air flow

Claims (6)

質量%で、
C:0.020%以下、
N:0.020%以下、
Si:0.05%以上、2.00%以下、
Mn:0.01%以上、0.40%以下、または、0.80%以上、2.00%以下、
P:0.040%以下、
S:0.0020%以下、
Cr:15.0%以上、23.0%以下、
Ni:0.01%以上、0.50%以下、
Cu:0.01%以上、1.50%以下、
Mo:0.05%以上、2.20%以下、
Nb:0.10%以上、1.00%以下、
Ti:0.001%以上、0.220%以下、
Al:0.002%以上、0.200%以下、
V:0.01%以上、0.20%以下、
B:0.0001%以上、0.0050%以下、
O:0.0050%以下、
を含有し、残部がFe及び不可避的不純物からなり、かつ、下記(i)~(ix)式を満たす組成を有することを特徴とする耐高温塩害性に優れたフェライト系ステンレス鋼板。
0.40≦Si+Mo ・・・式(i)
0.05≦Mo<0.50の場合、Si≦2.00 ・・・式(ii)
0.50≦Mo<0.90の場合、Si≦1.20 ・・・式(iii)
0.90≦Mo<1.20の場合、Si≦0.90 ・・・式(iv)
1.20≦Mo≦2.20の場合、Si≦0.70 ・・・式(v)
Ti<0.05の場合、C+N≦0.022 ・・・式(vi)
Ti≧0.05の場合、C+N≦0.030 ・・・式(vii)
Al/O≧1.2 ・・・式(viii)
Ti≧0.05の場合、Al>0.015 ・・・式(ix)
但し、式中の元素記号は、当該元素の含有量(質量%)を意味する。
By mass%,
C: 0.020% or less,
N: 0.020% or less,
Si: 0.05% or more, 2.00% or less,
Mn: 0.01% or more, 0.40% or less, or 0.80% or more, 2.00% or less,
P: 0.040% or less,
S: 0.0020% or less,
Cr: 15.0% or more, 23.0% or less,
Ni: 0.01% or more, 0.50% or less,
Cu: 0.01% or more, 1.50% or less,
Mo: 0.05% or more, 2.20% or less,
Nb: 0.10% or more, 1.00% or less,
Ti: 0.001% or more, 0.220% or less,
Al: 0.002% or more, 0.200% or less,
V: 0.01% or more, 0.20% or less,
B: 0.0001% or more, 0.0050% or less,
O: 0.0050% or less,
A ferrite-based stainless steel sheet having excellent high-temperature salt damage resistance, characterized in that the balance is composed of Fe and unavoidable impurities and has a composition satisfying the following formulas (i) to (ix).
0.40 ≤ Si + Mo ・ ・ ・ Equation (i)
When 0.05 ≤ Mo <0.50, Si ≤ 2.00 ... Equation (ii)
When 0.50 ≤ Mo <0.90, Si ≤ 1.20 ... Equation (iii)
When 0.90 ≤ Mo <1.20, Si ≤ 0.90 ... Equation (iv)
When 1.20 ≤ Mo ≤ 2.20, Si ≤ 0.70 ... Equation (v)
When Ti <0.05, C + N ≤ 0.022 ... Equation (vi)
When Ti ≧ 0.05, C + N ≦ 0.030 ・ ・ ・ Equation (vii)
Al / O ≧ 1.2 ・ ・ ・ Equation (viii)
When Ti ≧ 0.05, Al> 0.015 ・ ・ ・ Equation (ix)
However, the element symbol in the formula means the content (mass%) of the element.
質量%にて、更に
W:0.01%以上、2.20%以下、
Y:0.001%以上、0.20%以下、
REM:0.001%以上、0.20%以下、
Ca:0.0002%以上、0.0030%以下、
Zr:0.01%以上、0.30%以下、
Hf:0.001%以上、1.0%以下、
Sn:0.002%以上、1.0%以下、
Mg:0.0002%以上、0.0030%以下、
Co:0.01%以上、0.30%以下、
Sb:0.005%以上、0.50%以下、
Bi:0.001%以上、1.0%以下、
Ta:0.001%以上、1.0%以下、
Ga:0.0002%以上、0.30%以下、
の1種または2種以上を含有することを特徴とする請求項1に記載の耐高温塩害性に優れたフェライト系ステンレス鋼板。
By mass%, W: 0.01% or more and 2.20% or less,
Y: 0.001% or more, 0.20% or less,
REM: 0.001% or more, 0.20% or less,
Ca: 0.0002% or more, 0.0030% or less,
Zr: 0.01% or more, 0.30% or less,
Hf: 0.001% or more, 1.0% or less,
Sn: 0.002% or more, 1.0% or less,
Mg: 0.0002% or more, 0.0030% or less,
Co: 0.01% or more, 0.30% or less,
Sb: 0.005% or more, 0.50% or less,
Bi: 0.001% or more, 1.0% or less,
Ta: 0.001% or more, 1.0% or less,
Ga: 0.0002% or more, 0.30% or less,
The ferrite-based stainless steel sheet having excellent high-temperature salt damage resistance according to claim 1, which contains one or more of the above-mentioned.
強制冷却機構により塩分付着が促進されている環境において自動車排気系部材に使用される請求項1または請求項2に記載の耐高温塩害性に優れたフェライト系ステンレス鋼板。 The ferritic stainless steel sheet having excellent high temperature salt damage resistance according to claim 1 or 2, which is used for an automobile exhaust system member in an environment where salt adhesion is promoted by a forced cooling mechanism. 自動車排気系部材の周囲を断熱材で覆う断熱構造が適用されることにより塩分付着が促進されている環境において自動車排気系部材に使用される請求項1または請求項2に記載の耐高温塩害性に優れたフェライト系ステンレス鋼板。 The high temperature salt damage resistance according to claim 1 or 2, which is used for an automobile exhaust system member in an environment where salt adhesion is promoted by applying a heat insulating structure that covers the periphery of the automobile exhaust system member with a heat insulating material. Excellent ferritic stainless steel plate. 請求項1または請求項2に記載の耐高温塩害性に優れたフェライト系ステンレス鋼板を用いた自動車排気系部材と、それを強制冷却する強制冷却機構とを備えた自動車排気系部品。 An automobile exhaust system component provided with an automobile exhaust system member using the ferritic stainless steel plate having excellent high temperature salt damage resistance according to claim 1 or 2, and a forced cooling mechanism for forcibly cooling the member. 請求項1または請求項2に記載の耐高温塩害性に優れたフェライト系ステンレス鋼板を用いた自動車排気系部材と、その周囲を断熱材で覆う断熱構造とを備えた自動車排気系部品。 An automobile exhaust system component provided with an automobile exhaust system member using the ferritic stainless steel plate having excellent high temperature salt damage resistance according to claim 1 or 2, and a heat insulating structure covering the periphery thereof with a heat insulating material.
JP2018064002A 2018-03-29 2018-03-29 Ferritic stainless steel sheets with excellent high-temperature salt damage resistance and automobile exhaust system parts Active JP7022633B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018064002A JP7022633B2 (en) 2018-03-29 2018-03-29 Ferritic stainless steel sheets with excellent high-temperature salt damage resistance and automobile exhaust system parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018064002A JP7022633B2 (en) 2018-03-29 2018-03-29 Ferritic stainless steel sheets with excellent high-temperature salt damage resistance and automobile exhaust system parts

Publications (2)

Publication Number Publication Date
JP2019173115A JP2019173115A (en) 2019-10-10
JP7022633B2 true JP7022633B2 (en) 2022-02-18

Family

ID=68166590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018064002A Active JP7022633B2 (en) 2018-03-29 2018-03-29 Ferritic stainless steel sheets with excellent high-temperature salt damage resistance and automobile exhaust system parts

Country Status (1)

Country Link
JP (1) JP7022633B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004307901A (en) 2003-04-03 2004-11-04 Nippon Steel Corp HIGHLY WORKABLE Mo-CONTAINING FERRITIC STAINLESS STEEL SHEET HAVING EXCELLENT PRODUCIBILITY AND ITS PRODUCTION METHOD
JP2006063938A (en) 2004-08-30 2006-03-09 Sankei Giken Kogyo Co Ltd Engine exhaust system
JP2006263811A (en) 2005-02-28 2006-10-05 Jfe Steel Kk Ferritic stainless steel filler metal rod for tig welding
JP2013508596A (en) 2009-10-14 2013-03-07 ウエスキャスト インダストリーズ インク. Fluid-cooled exhaust manifold
JP2015187290A (en) 2014-03-26 2015-10-29 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet for flange, method for producing the same, and flange component
JP2015526593A5 (en) 2013-06-26 2015-10-29
JP2017179398A (en) 2016-03-28 2017-10-05 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet for exhaust manifold and exhaust manifold

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI125855B (en) * 2012-06-26 2016-03-15 Outokumpu Oy Ferritic stainless steel

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004307901A (en) 2003-04-03 2004-11-04 Nippon Steel Corp HIGHLY WORKABLE Mo-CONTAINING FERRITIC STAINLESS STEEL SHEET HAVING EXCELLENT PRODUCIBILITY AND ITS PRODUCTION METHOD
JP2006063938A (en) 2004-08-30 2006-03-09 Sankei Giken Kogyo Co Ltd Engine exhaust system
JP2006263811A (en) 2005-02-28 2006-10-05 Jfe Steel Kk Ferritic stainless steel filler metal rod for tig welding
JP2013508596A (en) 2009-10-14 2013-03-07 ウエスキャスト インダストリーズ インク. Fluid-cooled exhaust manifold
JP2015526593A5 (en) 2013-06-26 2015-10-29
JP2015187290A (en) 2014-03-26 2015-10-29 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet for flange, method for producing the same, and flange component
JP2017179398A (en) 2016-03-28 2017-10-05 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet for exhaust manifold and exhaust manifold

Also Published As

Publication number Publication date
JP2019173115A (en) 2019-10-10

Similar Documents

Publication Publication Date Title
TWI399443B (en) Heat-resistant fat iron-based stainless steel
JP5297713B2 (en) Alloy-saving ferritic stainless steel for automobile exhaust system members with excellent corrosion resistance after heating
TWI531665B (en) Ferritic stainless steel having excellent oxidation resistance
KR101705135B1 (en) Ferritic stainless steel sheet
KR20050007572A (en) Heat-resistant ferritic stainless steel and method for production thereof
JP5125600B2 (en) Ferritic stainless steel with excellent high-temperature strength, steam oxidation resistance and workability
JP2009197306A (en) Ferritic stainless steel excellent in high-temperature strength and toughness
JP7009278B2 (en) Ferritic stainless steel sheets with excellent heat resistance and exhaust parts and their manufacturing methods
JP7022634B2 (en) Ferritic stainless steel sheets with excellent high-temperature salt damage resistance and automobile exhaust system parts
JP5677819B2 (en) Ferritic stainless steel plate with excellent oxidation resistance
JP3269799B2 (en) Ferritic stainless steel for engine exhaust parts with excellent workability, intergranular corrosion resistance and high-temperature strength
JP2004076154A (en) Ferritic stainless steel having excellent corrosion resistance, high temperature strength and high temperature oxidation resistance
JP7019482B2 (en) Ferritic stainless steel sheets with excellent high-temperature salt damage resistance and automobile exhaust system parts
JP7022633B2 (en) Ferritic stainless steel sheets with excellent high-temperature salt damage resistance and automobile exhaust system parts
JP4154932B2 (en) Ferritic stainless steel with excellent high-temperature strength, high-temperature oxidation resistance, and high-temperature salt damage resistance
KR101673218B1 (en) Ferritic stainless steel
JP3941267B2 (en) High corrosion-resistant chromium-containing steel with excellent oxidation resistance and intergranular corrosion resistance
JPH02156048A (en) Chromium steel excellent in corrosion resistance
JP7479209B2 (en) Ferritic stainless steel sheet, method for producing the same, and automobile exhaust system part
JP6665936B2 (en) Ferritic stainless steel
JP7475205B2 (en) Ferritic stainless steel sheet, method for producing the same, and automobile exhaust system part
JP7479210B2 (en) Ferritic stainless steel sheet, method for producing the same, and automobile exhaust system part
JP5343446B2 (en) Ferritic stainless steel with excellent thermal fatigue properties, oxidation resistance and high temperature salt corrosion resistance
JP5417764B2 (en) Ferritic stainless steel with excellent thermal fatigue properties and oxidation resistance
JPH06100990A (en) Ferritic stainless steel excellent in strength at high temperature

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201211

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220207

R150 Certificate of patent or registration of utility model

Ref document number: 7022633

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150