JP2015187290A - Ferritic stainless steel sheet for flange, method for producing the same, and flange component - Google Patents

Ferritic stainless steel sheet for flange, method for producing the same, and flange component Download PDF

Info

Publication number
JP2015187290A
JP2015187290A JP2014064779A JP2014064779A JP2015187290A JP 2015187290 A JP2015187290 A JP 2015187290A JP 2014064779 A JP2014064779 A JP 2014064779A JP 2014064779 A JP2014064779 A JP 2014064779A JP 2015187290 A JP2015187290 A JP 2015187290A
Authority
JP
Japan
Prior art keywords
hot
ferritic stainless
stainless steel
rolled
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014064779A
Other languages
Japanese (ja)
Other versions
JP5908936B2 (en
Inventor
濱田 純一
Junichi Hamada
純一 濱田
伊藤 宏治
Koji Ito
宏治 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Stainless Steel Corp
Original Assignee
Nippon Steel and Sumikin Stainless Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=54195715&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2015187290(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nippon Steel and Sumikin Stainless Steel Corp filed Critical Nippon Steel and Sumikin Stainless Steel Corp
Priority to JP2014064779A priority Critical patent/JP5908936B2/en
Priority to CN201580016237.1A priority patent/CN106133166B/en
Priority to US15/128,891 priority patent/US10648053B2/en
Priority to KR1020167025642A priority patent/KR101928636B1/en
Priority to EP15768500.9A priority patent/EP3124635B1/en
Priority to PCT/JP2015/059470 priority patent/WO2015147211A1/en
Priority to MX2016012221A priority patent/MX2016012221A/en
Publication of JP2015187290A publication Critical patent/JP2015187290A/en
Publication of JP5908936B2 publication Critical patent/JP5908936B2/en
Application granted granted Critical
Priority to US16/834,836 priority patent/US20200232062A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/30Ferrous alloys, e.g. steel alloys containing chromium with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L23/00Flanged joints
    • F16L23/02Flanged joints the flanges being connected by members tensioned axially
    • F16L23/032Flanged joints the flanges being connected by members tensioned axially characterised by the shape or composition of the flanges
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/05Grain orientation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips

Abstract

PROBLEM TO BE SOLVED: To provide a ferritic stainless steel sheet having a sheet thickness of 5 mm or more, while preventing the cracks upon steel sheet production, and further, to provide a flange component excellent in toughness.SOLUTION: There is provided a ferritic stainless steel made of a steel comprising, by mass, 0.001 to 0.08% C, 0.01 to 1.0% Si, 0.01 to 1.0% Mn, 0.01 to 0.05% P, 0.0002 to 0.01% S, 10.0 to 20.0% Cr and 0.001 to 0.05% N, and the balance Fe with inevitable impurities, and having a sheet thickness of 5 mm or higher, where the ratio of the area ratio of crystal grains in which the <011> direction lies within 15° to the rolling direction is 20% or higher.

Description

本発明は、板厚が5mm以上のフェライト系ステンレス鋼板であって、鋼板製造時の割れを防止するとともに、本発明用途であるフランジ部品に対して耐食性、靭性に優れた素材を提供するものである。   The present invention is a ferritic stainless steel sheet having a thickness of 5 mm or more, which prevents cracking during the production of the steel sheet and provides a material excellent in corrosion resistance and toughness for the flange parts used in the present invention. is there.

自動車の排ガス経路は、エキゾーストマニホールド、マフラー、触媒、フレキシブルチューブ、センターパイプおよびフロントパイプ等様々な部品から構成されている。これらの部品をつなげる際、フランジと呼ばれる締結部品を使用することが多い。自動車の排気系部品では、加工工数が少なく済むと同時に作業空間が狭く済むため、フランジ接合が積極的に採用されている。また、振動による騒音および剛性確保の観点から、5mm厚以上の厚手フランジが使用されることが多い。フランジはプレス成形の他、打ち抜き等の加工によって製造されるが、従来普通鋼板が素材として利用されていた。しかしながら、普通鋼は耐食性に劣るため、自動車製造後に初期錆びと呼ばれる錆が発生し、美観を損なう場合があった。このため、フランジ素材として普通鋼板に換えてステンレス鋼板の使用が積極的に進められつつある。   The exhaust gas path of an automobile includes various parts such as an exhaust manifold, a muffler, a catalyst, a flexible tube, a center pipe, and a front pipe. When connecting these parts, a fastening part called a flange is often used. In automobile exhaust system parts, flange joints are actively employed because the number of processing steps is reduced and the working space is reduced. Further, from the viewpoint of ensuring noise and rigidity due to vibration, a thick flange of 5 mm or more is often used. The flange is manufactured by stamping or other processes such as stamping. Conventionally, a normal steel plate has been used as a material. However, since ordinary steel is inferior in corrosion resistance, rust called initial rust is generated after automobile production, which may impair the appearance. For this reason, the use of a stainless steel plate as a flange material is being actively promoted instead of a plain steel plate.

フェライト系ステンレス鋼板は、オーステナイト系ステンレス鋼板に比べてNi含有量が少なく低コストなため、フランジには主としてフェライト系ステンレス鋼板が適用される場合が多いが、靭性に劣ることが課題であった。靭性が低いと鋼板製造過程のライン通板時およびコイル展開時に板破断が生じてしまう問題が生じる。また、フランジ加工において、切断、打ち抜き等の加工時に割れが生じることがある。更に、冬場の低温環境において衝撃が加えられた際にフランジが割れてしまい、自動車排気管が損傷してしまう問題が生じる。5mm以上の厚手フェライト系ステンレス鋼板で特に靭性が低い場合があり、フランジに適用する場合に信頼性が低いという課題があった。   Since ferritic stainless steel sheets have a lower Ni content and are lower in cost than austenitic stainless steel sheets, ferritic stainless steel sheets are often mainly applied to flanges, but the problem is that they are inferior in toughness. If the toughness is low, there is a problem that the plate breaks during line passing and coil unfolding in the steel plate manufacturing process. In flange processing, cracks may occur during processing such as cutting and punching. Furthermore, when an impact is applied in a low-temperature environment in winter, there is a problem that the flange breaks and the automobile exhaust pipe is damaged. A thick ferritic stainless steel sheet of 5 mm or more may have particularly low toughness, and there is a problem that reliability is low when applied to a flange.

本発明は、フランジ用厚手フェライト系ステンレス鋼板の靭性に関するもので、特に熱延鋼板あるいは熱延後焼鈍・酸洗処理が施されるNo.1製品に関するものである。フェライト系ステンレス鋼板の靭性に関する課題を解決するための工夫がいくつか成されている。例えば、特許文献1および2には、板厚が5〜12mmのフェライト系ステンレス鋼熱延コイルまたは熱延焼鈍コイルを大量生産するための製造条件について開示されている。特許文献1はTi含有フェライト系ステンレス鋼を対象としており、硬さおよびシャルピー衝撃値を調整するために、巻取温度を570℃以上とし、コイルを水中に浸漬する方法が示されている。一方、特許文献2はNb含有フェライト系ステンレス鋼を対象としており、硬さおよびシャルピー衝撃値を調整するために、熱延仕上温度を890℃以上とし400℃以下で巻き取り、コイルを水中に浸漬する方法が示されている。これらは、熱延板あるいは熱延・焼鈍板の靭性向上の点から熱延条件を規定しているが、コイル全長を上記条件に制御するのは困難であるとともに、靭性向上のための金属組織的な支配因子が不明確であった。特許文献3には、フェライト相の結晶方位差が小さい亜粒界の長さを一定以上にした冷間割れ性に優れたフェライト系ステンレス鋼が開示されている。これは、熱延仕上温度を800〜1000℃、巻取温度を650℃超〜800℃とし、巻取後に水槽に浸漬する方法により得られる。また、特許文献4には粒界の析出物の占める割合を規定した靭性に優れたフェライト系ステンレス鋼板が開示されている。これらは、結晶粒界性格や粒界上析出物の制御によって靭性向上が図られているが、必ずしもフランジ用途として満足いく靭性レベルには到達していなかった。この要因としては、上記以外の靭性支配因子を制御する必要があり、本発明ではこの点について鋭意研究を推進した。   The present invention relates to the toughness of a thick ferritic stainless steel sheet for flanges. It relates to one product. Several ideas have been made to solve the problems related to the toughness of ferritic stainless steel sheets. For example, Patent Documents 1 and 2 disclose manufacturing conditions for mass-producing ferritic stainless steel hot-rolled coils or hot-rolled annealed coils having a plate thickness of 5 to 12 mm. Patent Document 1 is directed to a Ti-containing ferritic stainless steel, and shows a method in which a coiling temperature is set to 570 ° C. or higher and a coil is immersed in water in order to adjust the hardness and Charpy impact value. On the other hand, Patent Document 2 is directed to Nb-containing ferritic stainless steel, and in order to adjust the hardness and Charpy impact value, the hot rolling finish temperature is set to 890 ° C. or higher and wound at 400 ° C. or lower, and the coil is immersed in water. How to do is shown. These specify hot rolling conditions from the viewpoint of improving the toughness of hot-rolled sheets or hot-rolled / annealed sheets, but it is difficult to control the overall coil length to the above conditions, and the metal structure for improving toughness Dominating factors were unclear. Patent Document 3 discloses a ferritic stainless steel excellent in cold cracking property in which the length of a sub-grain boundary having a small crystal orientation difference of a ferrite phase is set to a certain value or more. This is obtained by a method in which the hot rolling finishing temperature is 800 to 1000 ° C., the winding temperature is more than 650 ° C. to 800 ° C., and it is immersed in a water tank after winding. Patent Document 4 discloses a ferritic stainless steel sheet having excellent toughness that defines the proportion of grain boundary precipitates. These have been improved in toughness by controlling grain boundary characteristics and precipitates on the grain boundaries, but have not necessarily reached a satisfactory toughness level for flange applications. As this factor, it is necessary to control toughness controlling factors other than those described above, and in the present invention, earnest research has been promoted on this point.

特開2012−140687号公報JP 2012-140687 A 特開2012−140688号公報JP 2012-140688 A WO2013/085005号公報WO2013 / 085005 特開2009−263714号公報JP 2009-263714 A

本発明の目的は、既知技術の問題点を解決し、靭性に優れたフランジ用フェライト系ステンレス鋼板を効率的に製造することにある。   An object of the present invention is to solve the problems of the known techniques and efficiently produce a ferritic stainless steel sheet for flanges having excellent toughness.

上記課題を解決するために、本発明者らはフェライト系ステンレス鋼板の低温靭性に関して、成分および製造過程における組織、結晶方位学的見地から詳細な研究を行った。その結果、例えば5mm以上の厚手のフェライト系ステンレス鋼板で特に熱延鋼板あるいは熱延・焼鈍鋼板の靭性向上に対しては、母相結晶方位の配向を制御することが極めて有効であることを知見した。   In order to solve the above problems, the present inventors have conducted detailed studies on the low-temperature toughness of ferritic stainless steel sheets from the viewpoints of components, structure in the manufacturing process, and crystal orientation. As a result, it has been found that controlling the orientation of the parent phase crystal orientation is extremely effective for improving the toughness of hot-rolled steel sheets or hot-rolled / annealed steel sheets, especially for thick ferritic stainless steel sheets of 5 mm or more. did.

上記課題を解決する本発明の要旨は、
(1)質量%にて、C:0.001〜0.08%、Si:0.01〜1.0%、Mn:0.01〜1.0%、P:0.01〜0.05%、S:0.0002〜0.01%、Cr:10.0〜25.0%、N:0.001〜0.05%含有し、残部がFeおよび不可避的不純物より成る鋼で、板厚が5mm以上、<011>方向が圧延方向と15°以内にある結晶粒の面積率の比率が20%以上であることを特徴とするフランジ用フェライト系ステンレス鋼。
(2)さらに質量%にて、Ti:0.01〜0.4%、Nb:0.01〜0.6%、B:0.0002〜0.0030%、Al:0.005〜0.3%、Ni:0.1〜1%、Mo:0.1〜2.0%、Cu:0.1〜3.0%、V:0.05〜1.0%、Mg:0.0002〜0.0030%、Sn:0.01〜0.3%、Sb:0.01〜0.3%、Zr:0.01〜0.1%、Ta:0.01〜0.1%、Hf:0.01〜0.1%、W:0.01〜2.0%、Co:0.01〜0.2%、Ca:0.0001〜0.0030%、REM:0.001〜0.05%、Ga:0.0002〜0.1%の1種または2種以上を含有することを特徴とする(1)記載のフランジ用フェライト系ステンレス鋼。
(3)(1)又は(2)に記載のフェライト系ステンレス鋼からなる熱延鋼板または熱延鋼帯。
(4)(1)又は(2)に記載のフェライト系ステンレス鋼からなる熱延焼鈍鋼板または熱延焼鈍鋼帯。
(5)熱間圧延を行い、熱延仕上温度を800℃以上とし、巻取温度を500℃以下とすることを特徴とする(1)または(2)記載のフランジ用フェライト系ステンレス鋼の製造方法。
(6)熱間圧延後に焼鈍を行い、焼鈍する際、10℃/sec以上の加熱速度で800〜1000℃に加熱後、10℃/sec以上で冷却することを特徴とする(1)または(2)記載のフランジ用フェライト系ステンレス鋼の製造方法。
(7)熱間圧延後にさらに焼鈍を行い、焼鈍する際、10℃/sec以上の加熱速度で800〜1000℃に加熱後、10℃/sec以上で冷却することを特徴とする(5)に記載のフランジ用フェライト系ステンレス鋼の製造方法。
(8)(5)に記載の方法で製造したフェライト系ステンレス鋼からなる熱延鋼板または熱延鋼帯。
(9)(6)または(7)に記載の方法で製造したフェライト系ステンレス鋼からなる熱延焼鈍鋼板または熱延焼鈍鋼帯。
(10)(1)又は(2)記載のフェライト系ステンレス鋼からなるフランジ部品であって、−20℃で125J以下の衝撃エネルギーの付与で破壊しないことを特徴とするフェライト系ステンレス鋼フランジ部品。
The gist of the present invention for solving the above problems is as follows.
(1) In mass%, C: 0.001 to 0.08%, Si: 0.01 to 1.0%, Mn: 0.01 to 1.0%, P: 0.01 to 0.05 %, S: 0.0002 to 0.01%, Cr: 10.0 to 25.0%, N: 0.001 to 0.05%, with the balance being Fe and inevitable impurities, A ferritic stainless steel for flanges having a thickness ratio of 5 mm or more and a ratio of the area ratio of crystal grains whose <011> direction is within 15 ° to the rolling direction is 20% or more.
(2) Further, in terms of mass%, Ti: 0.01 to 0.4%, Nb: 0.01 to 0.6%, B: 0.0002 to 0.0030%, Al: 0.005 to 0.00. 3%, Ni: 0.1 to 1%, Mo: 0.1 to 2.0%, Cu: 0.1 to 3.0%, V: 0.05 to 1.0%, Mg: 0.0002 -0.0030%, Sn: 0.01-0.3%, Sb: 0.01-0.3%, Zr: 0.01-0.1%, Ta: 0.01-0.1%, Hf: 0.01-0.1%, W: 0.01-2.0%, Co: 0.01-0.2%, Ca: 0.0001-0.0030%, REM: 0.001- The ferritic stainless steel for flanges according to (1), containing 0.05%, Ga: 0.0002 to 0.1%, or two or more.
(3) A hot-rolled steel sheet or a hot-rolled steel strip made of the ferritic stainless steel according to (1) or (2).
(4) A hot-rolled annealed steel plate or a hot-rolled annealed steel strip made of the ferritic stainless steel according to (1) or (2).
(5) Production of ferritic stainless steel for flanges according to (1) or (2), wherein hot rolling is performed, the hot rolling finishing temperature is 800 ° C. or higher, and the coiling temperature is 500 ° C. or lower. Method.
(6) When annealing is performed after hot rolling, annealing is performed at a heating rate of 10 ° C./sec or more to 800 to 1000 ° C., and then cooled at 10 ° C./sec or more (1) or ( 2) The manufacturing method of the ferritic stainless steel for flanges of description.
(7) The method according to (5), wherein annealing is further performed after hot rolling, and when annealing is performed, heating is performed at a heating rate of 10 ° C./sec or more to 800 to 1000 ° C. and then cooling is performed at 10 ° C./sec or more. The manufacturing method of the ferritic stainless steel for flanges of description.
(8) A hot-rolled steel plate or a hot-rolled steel strip made of ferritic stainless steel produced by the method described in (5).
(9) A hot-rolled annealed steel plate or a hot-rolled annealed steel strip made of ferritic stainless steel produced by the method according to (6) or (7).
(10) A ferritic stainless steel flange part comprising the ferritic stainless steel according to (1) or (2), wherein the ferritic stainless steel flange part is not broken by applying an impact energy of 125 J or less at −20 ° C.

以上の説明から明らかなように、本発明によれば靭性に優れたフランジ用フェライト系ステンレス鋼板を新規設備を必要とせず、効率的に提供することができる。   As is apparent from the above description, according to the present invention, a ferritic stainless steel sheet for flanges having excellent toughness can be efficiently provided without requiring new equipment.

<011>方位比率とシャルピー衝撃値の関係を示す図である。It is a figure which shows the relationship between <011> azimuth | direction ratio and a Charpy impact value. フランジ部品を示す図である。It is a figure which shows a flange component. フランジ部品の低温落重試験方法を示す図である。It is a figure which shows the low temperature drop test method of a flange component.

以下に本発明の限定理由について説明する。靭性向上には、結晶粒微細化、析出物の微細化ならびに軟質化が寄与する。しかしながら、添加元素が多く厚さが5mm以上の厚手フェライト系ステンレス熱延板あるいは熱延・焼鈍板に対して、これらだけではフランジ用途として十分な靭性を確保することは困難であった。本発明では、母相であるフェライト相の結晶方位に着目して靭性との関係を詳細に調査した結果、熱延の安定方位である<011>方向が圧延方向と15°以内にある結晶粒(以下「<011>方位粒」ともいう。)を面積率で20%以上形成させることにより靭性が向上することを見出した。図1に種々の製法で製造した板厚が異なる鋼(17%Cr−0.34%Nb−0.005%C−0.01%N)の熱延板あるいは熱延・焼鈍板の<011>方位粒比率とシャルピー衝撃値の関係を示す。ここで、結晶方位はEBSP(Electron Back-Sccetering Difraction pattern)を用い、熱延板あるいは熱延・焼鈍板の全板厚について結晶粒毎の方位を測定し、<011>方向が圧延方向と15°以内にある結晶粒の面積率(以下「<011>方位比率」ともいう。)を測定した。シャルピー衝撃値は、熱延・焼鈍板からVノッチ試験片(幅方向にVノッチ付与)を採取して、JISZ2242に準拠して0℃での衝撃値を計測した。これより、<011>方位比率が20%以上になると衝撃値が向上し、靭性が良好になる。ここで、良好な靭性とは0℃での衝撃値が7J/cm2以上の衝撃値を有することであり、熱延コイルの展開および通板時に脆性割れが生じない。フェライト鋼のへき開面は{100}面であり、この面に沿って脆性割れが生じることが知られているが、<011>方位粒が発達すると亀裂伝播方向とへき開面の成す角度が大きくなるため、へき開破壊の抵抗力が大きくなり、靭性値が向上すると考えられる。 The reason for limitation of the present invention will be described below. To improve toughness, refinement of crystal grains, refinement of precipitates and softening contribute. However, it has been difficult to secure sufficient toughness for flange applications only with thick ferritic stainless steel hot-rolled sheets or hot-rolled / annealed sheets having a thickness of 5 mm or more with many additive elements. In the present invention, as a result of investigating in detail the relationship with toughness by paying attention to the crystal orientation of the ferrite phase that is the parent phase, the crystal grains in which the <011> direction, which is the stable orientation of hot rolling, is within 15 ° with respect to the rolling direction. It was found that toughness is improved by forming 20% or more (hereinafter also referred to as “<011> oriented grains”) in terms of area ratio. FIG. 1 shows <011 of hot-rolled sheets or hot-rolled / annealed sheets of steels (17% Cr-0.34% Nb-0.005% C-0.01% N) manufactured by various manufacturing methods and having different thicknesses. > The relationship between the orientation grain ratio and the Charpy impact value is shown. Here, EBSP (Electron Back-Sccetering Difraction Pattern) is used as the crystal orientation, and the orientation for each crystal grain is measured for the total thickness of the hot-rolled sheet or hot-rolled / annealed sheet, and the <011> direction is the rolling direction. The area ratio of crystal grains within the range (hereinafter also referred to as “<011> orientation ratio”) was measured. For the Charpy impact value, a V-notch test piece (provided with a V-notch in the width direction) was taken from a hot-rolled / annealed plate, and the impact value at 0 ° C. was measured according to JISZ2242. Accordingly, when the <011> orientation ratio is 20% or more, the impact value is improved and the toughness is improved. Here, good toughness means that the impact value at 0 ° C. has an impact value of 7 J / cm 2 or more, and no brittle cracking occurs when the hot-rolled coil is deployed and threaded. The cleavage plane of ferritic steel is the {100} plane, and it is known that brittle cracks occur along this plane. However, when <011> oriented grains develop, the angle between the crack propagation direction and the cleavage plane increases. Therefore, it is considered that the resistance to cleavage fracture increases and the toughness value is improved.

次に鋼の成分範囲について説明する。成分含有量の%は質量%を意味する。   Next, the component range of steel will be described. % Of component content means the mass%.

Cは、固溶Cによる硬質化ならびに炭化物析出により靭性を劣化させるため、その含有量は少ないほど良い。また、0.08%超の場合、炭化物生成に起因して結晶方位のランダム化が生じ、<011>方位の発達が抑制されるため、上限を0.08%とした。但し、過度の低減は精錬コストの増加に繋がるため、下限を0.001%とした。更に、製造コスト、耐食性および熱延板靭性を考慮すると0.002〜0.015%が望ましい。   Since C deteriorates toughness by hardening by solid solution C and precipitation of carbide, the smaller the content, the better. Further, if it exceeds 0.08%, the crystal orientation is randomized due to the formation of carbides, and the development of the <011> orientation is suppressed, so the upper limit was made 0.08%. However, excessive reduction leads to an increase in refining costs, so the lower limit was made 0.001%. Furthermore, if considering the manufacturing cost, corrosion resistance, and hot rolled sheet toughness, 0.002 to 0.015% is desirable.

Siは、脱酸元素として添加される場合がある他、耐酸化性の向上をもたらすが、固溶強化元素であるため、靭性の観点からは少ないほど良い。また、1.0%超の場合、すべり系の変化に起因して、<011>方位の発達が抑制されるため、上限を1.0%とした。一方、耐酸化性確保のため、下限を0.01%とした。但し、過度の低減は精錬コストの増加に繋がるため、材質や耐初期錆び性を考慮して0.05〜0.9%が望ましい。   Si may be added as a deoxidizing element and also improves oxidation resistance. However, since Si is a solid solution strengthening element, it is better as it is smaller in terms of toughness. Further, if it exceeds 1.0%, the development of <011> orientation is suppressed due to the change of the slip system, so the upper limit was made 1.0%. On the other hand, in order to ensure oxidation resistance, the lower limit was made 0.01%. However, excessive reduction leads to an increase in refining costs, so 0.05 to 0.9% is desirable in consideration of the material and initial rust resistance.

Mnは、Si同様、固溶強化元素であるため、材質上その含有量は少ないほど良い。また、1.0%超の場合、MnS等の析出物生成に起因して結晶方位のランダム化が生じ、<011>方位の発達が抑制されるので、上限を1.0%とした。一方、過度の低減は精錬コストの増加に繋がる他、微量のMn添加はスケール剥離性を向上させるため、下限は0.01%とした。更に、材質や製造コストを考慮すると0.1〜0.5%が望ましい。   Mn, like Si, is a solid solution strengthening element, so the smaller the content, the better. Further, if it exceeds 1.0%, the crystal orientation is randomized due to the formation of precipitates such as MnS and the development of <011> orientation is suppressed, so the upper limit was made 1.0%. On the other hand, excessive reduction leads to an increase in refining cost, and addition of a small amount of Mn improves scale peelability, so the lower limit was made 0.01%. Furthermore, if considering the material and manufacturing cost, 0.1 to 0.5% is desirable.

Pは、MnやSi同様に固溶強化元素であり材料を硬質化させるため、靭性の観点からその含有量は少ないほど良い。また、0.05%超の場合、リン化物の生成に起因して結晶方位のランダム化が生じ、<011>方位の発達が抑制されるため、上限を0.05%とした。但し、過度の低減は原料コストの増加に繋がるため、下限を0.01%とした。更に、製造コストと耐食性を考慮すると0.015〜0.03%が望ましい。   P is a solid solution strengthening element like Mn and Si and hardens the material. Therefore, the smaller the content, the better from the viewpoint of toughness. Further, if it exceeds 0.05%, randomization of crystal orientation occurs due to the formation of phosphide, and the development of <011> orientation is suppressed, so the upper limit was made 0.05%. However, excessive reduction leads to an increase in raw material cost, so the lower limit was made 0.01%. Furthermore, if considering the manufacturing cost and corrosion resistance, 0.015 to 0.03% is desirable.

Sは、耐食性を劣化させる元素であるため、その含有量は少ないほど良い。また、0.01%超の場合、MnS、Ti422等の析出物生成に起因して結晶方位のランダム化が生じ、<011>方位の発達が抑制されるため、上限を0.01%とした。一方、MnやTiと結合してフランジ成形における打ち抜き性を向上させる効果があり、これを発現するのが0.0002%からなので、下限を0.0002%とした。更に、精錬コストや燃料部品とした際の隙間腐食抑制を考慮すると、0.0010〜0.0060%が望ましい。 Since S is an element that degrades corrosion resistance, the smaller the content, the better. On the other hand, if it exceeds 0.01%, the crystal orientation is randomized due to the formation of precipitates such as MnS and Ti 4 C 2 S 2 , and the development of the <011> orientation is suppressed. 0.01%. On the other hand, there is an effect of improving punchability in flange molding by combining with Mn and Ti, and since this is manifested from 0.0002%, the lower limit was made 0.0002%. Furthermore, when considering refining costs and suppression of crevice corrosion when fuel parts are used, 0.0010 to 0.0060% is desirable.

Crは、耐食性や耐酸化性を向上させる元素であり、フランジに要求される塩害性を考慮すると、10.0%以上が必要である。一方過度な添加は、硬質となり成形性や靭性を劣化させる。また、25.0%超の場合、粗大なCr炭化物ならびに窒化物等の析出物生成に起因して結晶方位のランダム化が生じ、<011>方位の発達が抑制されるため、上限を25.0%とした。尚、製造コストや靭性劣化による製造時の板破断を考慮すると、10.0〜18.0%が望ましい。   Cr is an element that improves the corrosion resistance and oxidation resistance, and considering the salt damage required for the flange, 10.0% or more is necessary. On the other hand, excessive addition becomes hard and deteriorates moldability and toughness. If it exceeds 25.0%, the crystal orientation is randomized due to the formation of precipitates such as coarse Cr carbide and nitride, and the development of the <011> orientation is suppressed. 0%. In addition, if considering the plate cost at the time of manufacturing due to the manufacturing cost and toughness deterioration, 10.0 to 18.0% is desirable.

Nは、Cと同様に靭性と耐食性を劣化させるため、その含有量は少ないほど良い。また、0.05%超の場合、窒化物生成に起因して結晶方位のランダム化が生じ、<011>方位の発達が抑制されるため、上限を0.05%とした。但し、過度の低下は精錬コストの増加に繋がるため、下限を0.001%とした。更に、製造コストと加工性及び初期錆び性を考慮すると0.005〜0.02%が望ましい。   N, like C, deteriorates toughness and corrosion resistance, so the smaller the content, the better. If it exceeds 0.05%, the crystal orientation is randomized due to the formation of nitrides, and the development of the <011> orientation is suppressed, so the upper limit was made 0.05%. However, excessive reduction leads to an increase in refining costs, so the lower limit was made 0.001%. Furthermore, if considering the manufacturing cost, workability, and initial rustability, 0.005 to 0.02% is desirable.

さらに本発明は、以下に示す元素を選択的に含有すると好ましい。   Furthermore, the present invention preferably contains the following elements selectively.

Tiは、C,N,Sと結合して耐食性、耐粒界腐食性、靭性を向上させるために必要に応じて添加する元素である。C,N固定作用は0.01%から発現するため、下限を0.01%とした。また、0.4%超の添加は硬質化する他、粗大なTi(C,N)が析出して靭性を著しく劣化させる他、<011>方位の発達を抑制するため、上限を0.4%とした。更に、製造コストなどを考慮すると、0.05〜0.25%が望ましい。   Ti is an element that is added as necessary to combine with C, N, and S to improve corrosion resistance, intergranular corrosion resistance, and toughness. Since the C and N fixing action starts from 0.01%, the lower limit was made 0.01%. Further, addition of more than 0.4% hardens, coarse Ti (C, N) precipitates and remarkably deteriorates toughness, and suppresses the development of <011> orientation. %. Furthermore, if considering the manufacturing cost, 0.05 to 0.25% is desirable.

Nbは、高温強度を向上させる他、Ti同様CやNと結合して耐食性、耐粒界腐食性、靭性を向上させるため必要に応じて添加される。この作用は、0.01%以上で発現するため、下限を0.01%とした。但し、過度な添加は硬質化し成形性を劣化させる他、粗大なNb(C,N)や熱履歴によっては(Fe,Nb)6CやFe2Nbが析出して靭性を著しく劣化させる他、<011>方位の発達を抑制するため、上限を0.6%とした。尚、原料コストや隙間腐食性を考慮すると、0.1〜0.45%が望ましい。 Nb is added as needed in order to improve the high temperature strength and to combine with C and N like Ti to improve corrosion resistance, intergranular corrosion resistance, and toughness. Since this effect appears at 0.01% or more, the lower limit was made 0.01%. However, excessive addition hardens and deteriorates formability, and depending on coarse Nb (C, N) and thermal history, (Fe, Nb) 6 C and Fe 2 Nb precipitate and remarkably deteriorate toughness. In order to suppress the development of the <011> orientation, the upper limit was made 0.6%. In consideration of raw material costs and crevice corrosion, 0.1 to 0.45% is desirable.

Bは、粒界に偏析することで製品の2次加工性を向上させる元素であり、フランジの打ち抜き性を向上させるため、必要に応じて添加される。この作用は、0.0002%以上で発現することから、下限を0.0002%とした。但し、過度な添加はほう化物が析出して靭性を劣化させる他、<011>方位の発達を抑制するため、上限を0.0030%とした。更に、コストや延性低下を考慮すると、0.0003〜0.0010%が望ましい。   B is an element that improves the secondary workability of the product by segregating at the grain boundaries, and is added as necessary to improve the punchability of the flange. Since this effect appears at 0.0002% or more, the lower limit was made 0.0002%. However, excessive addition causes precipitation of borides to deteriorate toughness and suppresses the development of the <011> orientation, so the upper limit was made 0.0030%. Furthermore, if considering cost and ductility reduction, 0.0003 to 0.0010% is desirable.

Alは、脱酸元素として添加される場合があり、その作用は0.005%から発現するため、下限を0.005%とした。また、0.3%以上の添加は、靭性の低下や、溶接性および表面品質の劣化をもたらす他、<011>方位の発達を抑制するため、上限を0.3%とした。更に、精錬コストを考慮すると0.01〜0.1%が望ましい。   In some cases, Al is added as a deoxidizing element, and its action is manifested from 0.005%, so the lower limit was made 0.005%. Further, addition of 0.3% or more brings about a decrease in toughness, deterioration of weldability and surface quality, and suppresses the development of <011> orientation, so the upper limit was made 0.3%. Furthermore, if considering the refining cost, 0.01 to 0.1% is desirable.

Niは、隙間腐食の抑制や再不働態化の促進により耐初期錆び性を向上させるため、必要に応じて添加される。この作用は、0.1%以上で発現するため、下限を0.1%とした。但し、過度な添加は硬質化し成形性を劣化させる他、<011>方位の発達を抑制したり、応力腐食割れが生じ易くなるため、上限を1%とした。尚、原料コストを考慮すると、0.1〜0.5%が望ましい。   Ni is added as needed to improve the initial rust resistance by suppressing crevice corrosion and promoting repassivation. Since this effect appears at 0.1% or more, the lower limit was made 0.1%. However, excessive addition hardens and deteriorates moldability, suppresses the development of the <011> orientation, and easily causes stress corrosion cracking, so the upper limit was made 1%. In consideration of the raw material cost, 0.1 to 0.5% is desirable.

Moは、耐食性や高温強度を向上させる元素であり、特に隙間構造を有する場合には隙間腐食を抑制するために必要な元素である。この作用は、0.1%から発現するため、下限を0.1%とした。また、2.0%を越えると著しく成形性が劣化したり、製造時の靭性劣化、<011>方位の発達を抑制が生じるため、上限を2.0%とした。更に、製造コストを考慮すると0.1〜1.2%が望ましい。   Mo is an element that improves corrosion resistance and high-temperature strength, and is an element that is necessary to suppress crevice corrosion, particularly when it has a crevice structure. Since this effect appears from 0.1%, the lower limit was made 0.1%. On the other hand, if it exceeds 2.0%, the formability is remarkably deteriorated, the toughness is deteriorated during production, and the development of the <011> orientation is suppressed, so the upper limit was made 2.0%. Furthermore, if considering the manufacturing cost, 0.1 to 1.2% is desirable.

Cuは、高温強度向上の他、隙間腐食の抑制や再不働態化を促進させるため、必要に応じて添加される。この作用は、0.1%以上から発現するため、下限を0.1%とした。但し、過度な添加は、ε−Cu析出によって硬質化し成形性と靭性を劣化させる他、<011>方位の発達を抑制するため、上限を3.0%とした。尚、製造時の酸洗性等を考慮すると、0.1〜1.2%が望ましい。   Cu is added as necessary in order to enhance crevice corrosion and promote repassivation in addition to improving high-temperature strength. Since this effect appears from 0.1% or more, the lower limit was made 0.1%. However, excessive addition hardens by ε-Cu precipitation and deteriorates formability and toughness, and also suppresses the development of the <011> orientation, so the upper limit was made 3.0%. In view of pickling properties at the time of manufacture, 0.1 to 1.2% is desirable.

Vは、隙間腐食を抑制させる他、微量添加によって靭性向上に寄与するため必要に応じて添加される。この作用は、0.05%以上から発現するため、下限を0.05%とした。但し、過度な添加は、硬質化し成形性を劣化させる他、粗大なV(C,N)が析出によって靭性劣化ならびに<011>方位の抑制につながるため、上限を1.0%とした。尚、原料コストや初期錆び性を考慮すると、0.07〜0.2%が望ましい。   V suppresses crevice corrosion and contributes to toughness improvement by addition of a small amount, and is added as necessary. Since this effect appears from 0.05% or more, the lower limit was made 0.05%. However, excessive addition hardens and deteriorates moldability, and coarse V (C, N) leads to toughness deterioration and suppression of <011> orientation due to precipitation, so the upper limit was made 1.0%. In consideration of the raw material cost and initial rusting property, 0.07 to 0.2% is desirable.

Mgは、脱酸元素として添加させる場合がある他、スラブの組織を微細化させ、成形性向上に寄与する元素である。また、Mg酸化物はTi(C,N)やNb(C,N)等の炭窒化物の析出サイトになり、これらを微細分散析出させる効果がある。この作用は0.0002%以上で発現し、靭性向上に寄与するため下限を0.0002%とした。但し、過度な添加は、溶接性や耐食性の劣化につながる他、粗大な析出物形成に起因して<011>方位の抑制につながるため、上限を0.0030%とした。精錬コストを考慮すると、0.0003〜0.0010%が望ましい。   Mg may be added as a deoxidizing element, and is an element that contributes to improving the formability by refining the slab structure. Further, the Mg oxide becomes a precipitation site for carbonitrides such as Ti (C, N) and Nb (C, N), and has an effect of finely dispersing and depositing them. This effect appears at 0.0002% or more, and contributes to toughness improvement, so the lower limit was made 0.0002%. However, excessive addition leads to deterioration of weldability and corrosion resistance, and also leads to suppression of <011> orientation due to coarse precipitate formation, so the upper limit was made 0.0030%. Considering the refining cost, 0.0003 to 0.0010% is desirable.

SnやSbは、耐食性と高温強度の向上に寄与するため,必要に応じて0.01%以上添加する.0.3%超の添加により鋼板製造時のスラブ割れが生じる場合がある他、<011>方位の発達を抑制するため上限を0.3%とする.更に,精錬コストや製造性を考慮すると、0.01〜0.15%が望ましい。   Sn and Sb are added in an amount of 0.01% or more as necessary to contribute to improvement of corrosion resistance and high temperature strength. In addition to the addition of more than 0.3%, slab cracking may occur during the manufacture of the steel sheet, and the upper limit is set to 0.3% to suppress the development of the <011> orientation. Furthermore, if considering refining costs and manufacturability, 0.01 to 0.15% is desirable.

Zr、TaおよびHfは、CやNと結合して靭性の向上に寄与するため必要に応じて0.01%以上添加する.但し,0.1%超の添加によりコスト増になる他,製造性を著しく劣化や<011>方位の発達を抑制につながるため,上限を0.1%とする.更に,精錬コストや製造性を考慮すると、0.01〜0.08%が望ましい。   Zr, Ta, and Hf are combined with C and N to contribute to improvement of toughness, and if necessary, 0.01% or more is added. However, the addition of more than 0.1% increases the cost and significantly degrades the productivity and suppresses the development of the <011> orientation, so the upper limit is made 0.1%. Furthermore, if considering refining costs and manufacturability, 0.01 to 0.08% is desirable.

Wは、耐食性と高温強度の向上に寄与するため,必要に応じて0.01%以上添加する.2.0%超の添加により鋼板製造時の靭性劣化や<011>方位の抑制ならびにコスト増につながるため,上限を2.0%とする.更に,精錬コストや製造性を考慮すると、0.01〜1.0%が望ましい。   W contributes to the improvement of corrosion resistance and high temperature strength, so 0.01% or more is added as necessary. Addition of more than 2.0% leads to toughness deterioration during steel plate production, suppression of <011> orientation and cost increase, so the upper limit is set to 2.0%. Furthermore, if refining costs and manufacturability are taken into consideration, 0.01 to 1.0% is desirable.

Coは、高温強度の向上に寄与するため,必要に応じて0.01%以上添加する.0.2%超の添加により鋼板製造時の靭性劣化や<011>方位の抑制ならびにコスト増につながるため,上限を0.2%とする.更に,精錬コストや製造性を考慮すると、0.01〜0.1%が望ましい。   Co contributes to improving the high-temperature strength, so 0.01% or more is added as necessary. Addition of over 0.2% leads to toughness deterioration during steel plate production, suppression of <011> orientation, and cost increase, so the upper limit is set to 0.2%. Furthermore, if refining costs and manufacturability are taken into consideration, 0.01 to 0.1% is desirable.

Caは、脱硫のために添加される場合があり、この効果は0.0001%以上で発現することから下限を0.0001%とした。しかしながら、0.0030%超の添加により粗大なCaSが生成し、靭性や耐食性を劣化、<011>方位を抑制させるため、上限を0.0030%とした。更に,精錬コストや製造性を考慮すると、0.0003〜0.0020%が望ましい。   Ca may be added for desulfurization, and this effect is manifested at 0.0001% or more, so the lower limit was made 0.0001%. However, addition of over 0.0030% produces coarse CaS, which deteriorates toughness and corrosion resistance and suppresses the <011> orientation, so the upper limit was made 0.0030%. Furthermore, if considering refining costs and manufacturability, 0.0003 to 0.0020% is desirable.

REMは、種々の析出物の微細化による靭性向上や耐酸化性の向上の観点から必要に応じて添加される場合があり、この効果は0.001%以上で発現することから下限を0.001%とした。しかしながら、0.05%超の添加により鋳造性が著しく悪くなる他、<011>方位の発達を抑制することから上限を0.05%とした。更に,精錬コストや製造性を考慮すると、0.001〜0.01%が望ましい。REM(希土類元素)は、一般的な定義に従い、スカンジウム(Sc)、イットリウム(Y)の2元素と、ランタン(La)からルテチウム(Lu)までの15元素(ランタノイド)の総称を指す。単独で添加してもよいし、混合物であってもよい。   REM may be added as necessary from the viewpoint of improving toughness and oxidation resistance by refining various precipitates, and since this effect is manifested at 0.001% or more, the lower limit is set to 0.00. 001%. However, addition of more than 0.05% significantly deteriorates castability and suppresses the development of the <011> orientation, so the upper limit was made 0.05%. Furthermore, if considering the refining cost and manufacturability, 0.001 to 0.01% is desirable. REM (rare earth element) refers to a generic name of two elements of scandium (Sc) and yttrium (Y) and 15 elements (lanthanoid) from lanthanum (La) to lutetium (Lu) according to a general definition. It may be added alone or as a mixture.

Gaは、耐食性向上や水素脆化抑制のため、0.1%以下で添加してもよい。硫化物や水素化物形成の観点から下限は0.0002%とする。好ましくは0.0010%以上である。さらに、製造性やコストの観点ならびに、<011>方位発達の観点から0.0040%以下が好ましい。   Ga may be added at 0.1% or less for improving corrosion resistance and suppressing hydrogen embrittlement. The lower limit is made 0.0002% from the viewpoint of sulfide and hydride formation. Preferably it is 0.0010% or more. Furthermore, 0.0040% or less is preferable from the viewpoint of manufacturability and cost, and from the viewpoint of <011> orientation development.

その他の成分について本発明では特に規定するものではないが、本発明においては、Bi等を必要に応じて、0.001〜0.1%添加してもよい。なお、As、Pb等の一般的な有害な元素や不純物元素はできるだけ低減することが好ましい。   Although it does not prescribe | regulate especially in this invention about another component, in this invention, you may add 0.001 to 0.1% of Bi etc. as needed. Note that it is preferable to reduce general harmful elements and impurity elements such as As and Pb as much as possible.

次に製造方法について説明する。本発明の鋼板は、製鋼−熱間圧延、製鋼−熱間圧延−酸洗あるいは製鋼−熱間圧延−焼鈍−酸洗の工程で製造される。製鋼においては、前記必須成分および必要に応じて添加される成分を含有する鋼を、転炉溶製し続いて2次精錬を行う方法が好適である。溶製した溶鋼は、公知の鋳造方法(連続鋳造)に従ってスラブとする。スラブは、所定の温度に加熱され、所定の板厚に連続圧延で熱間圧延される。   Next, a manufacturing method will be described. The steel sheet of the present invention is produced by the steps of steelmaking-hot rolling, steelmaking-hot rolling-pickling or steelmaking-hot rolling-annealing-pickling. In steelmaking, a method in which the steel containing the above essential components and components added as necessary is subjected to furnace melting followed by secondary refining. The molten steel is made into a slab according to a known casting method (continuous casting). The slab is heated to a predetermined temperature and hot-rolled to a predetermined plate thickness by continuous rolling.

本発明では、熱間圧延における仕上温度と巻取温度を規定する。仕上温度は、高温ほど仕上圧延後にフェライト相の加工歪が除去と組織回復が促進し、<011>方位粒(<011>方向が圧延方向と15°以内にある結晶粒)を有するサブグレイン形成によって靭性向上に寄与する。加えて、仕上温度が800℃未満では<011>方位粒以外の方位(<001>方位等)が熱延せん断歪に起因して生成および発達してしまう。仕上温度を800℃以上にすることにより、他方位を抑制し、サブグレイン組織を有する<011>方位粒が20%以上得られることから、仕上温度を800℃以上とする。しかしながら、過度な高温化は<011>方位粒の生成が抑制される他、酸洗性の低下につながることから、仕上温度上限を900℃とする。更に、表面疵を考慮すると810〜880℃が望ましい。   In the present invention, a finishing temperature and a winding temperature in hot rolling are defined. As the finishing temperature increases, the processing strain of the ferrite phase is removed and the structure recovery is accelerated after finishing rolling, and the formation of subgrains having <011> orientation grains (crystal grains whose <011> direction is within 15 ° with respect to the rolling direction). Contributes to improved toughness. In addition, when the finishing temperature is less than 800 ° C., orientations other than the <011> orientation grains (<001> orientation, etc.) are generated and developed due to hot-rolled shear strain. By setting the finishing temperature to 800 ° C. or higher, the other position is suppressed, and <011> oriented grains having a subgrain structure are obtained in an amount of 20% or more. Therefore, the finishing temperature is set to 800 ° C. or higher. However, an excessively high temperature suppresses the formation of <011> oriented grains and leads to a decrease in pickling properties, so the upper limit of the finishing temperature is set to 900 ° C. Furthermore, considering the surface defects, 810 to 880 ° C. is desirable.

仕上圧延後巻取処理がなされるが、500℃超の高温巻取で靭性低下をもたらす析出物の生成、475°脆性によって低靭化するため、巻取温度上限を500℃とする。また、仕上温度800℃以上で施された仕上圧延時に形成されたサブグレイン組織を有する<011>方位粒の結晶方位回転を抑制し、また再結晶組織にしないために、巻取上限温度の500℃が必要となる。しかしながら、過度な低温化はコイル形状が不良になることから、下限を200℃とする。更に、形状安定性、酸洗性を考慮すると巻取温度300〜450℃が望ましい。尚、熱延板厚はフランジとして多用される5mm以上とするが、過度に厚手化すると靭性が極端に低下するため、望ましくは5〜20mmが望ましい。   Although the winding process is performed after finish rolling, the upper limit of the coiling temperature is set to 500 ° C. in order to reduce the toughness due to the formation of precipitates that cause toughness reduction at high temperature coiling exceeding 500 ° C. and 475 ° brittleness. Further, in order to suppress the crystal orientation rotation of <011> oriented grains having a subgrain structure formed during finish rolling performed at a finish temperature of 800 ° C. or higher, and not to have a recrystallized structure, a coiling upper limit temperature of 500 ℃ is required. However, excessively low temperature results in a defective coil shape, so the lower limit is set to 200 ° C. Furthermore, if the shape stability and pickling properties are taken into consideration, the coiling temperature is preferably 300 to 450 ° C. The hot-rolled sheet thickness is 5 mm or more, which is frequently used as a flange. However, if the thickness is excessively increased, the toughness is extremely lowered, so that the thickness is desirably 5 to 20 mm.

熱間圧延後に焼鈍−酸洗工程を通板する場合、焼鈍条件を規定する。焼鈍温度の高温化に伴い回復・再結晶が進み、<011>方位粒が低減する。これを抑制するために、800〜1000℃に加熱する。加熱温度800℃未満では、熱延段階の加工組織が残留して回復が十分進まず硬質なため、靭性が不良となる。また、加熱温度1000℃超では再結晶完了後の粒成長が顕著に進行するとともに、結晶方位のランダム化が進み<011>方位粒が低減するため靭性が著しく劣化するからである。加熱する際、加熱速度を10℃/sec以上とする。加熱速度がこれよりも遅い場合、再結晶が進行しサブグレイン組織の消失および結晶粒の粗大化が生じ、<011>方位粒が低減して靭性が劣化する。加熱速度が10℃/sec未満で<011>方位粒が低減する要因としては、徐加熱中に他方位の生成が生じてしまい、<011>方位粒を蚕食することが原因である。特に、<112>、<100>方位が発達し、<011>方位粒の存在比率が20%を満たすことが困難となる。また、冷却速度についても10℃/sec以上とするが、これは冷却過程で靭性劣化をもたらす析出物の形成を抑制するためである。また、冷却速度が10℃/sec未満では、冷却過程で結晶方位変化が生じて<011>方位比率が低減する。更に、生産性を考慮すると、加熱速度は15℃/sec以上、冷却速度は15℃/sec以上が望ましい。なお、本発明の成分組成であれば上記の冷却速度で十分効果を発現する。上記よりも高速(例えば、50℃/sec以上)の冷却速度にしても本発明の効果は飽和する。本発明においては、表面品位、鋼板形状や製造コストを考慮して、冷却速度を50℃/sec未満とするのが好ましい。また、加熱温度については、析出物の固溶化、結晶粒の粗大化抑制および<011>方位残留の観点から850〜950℃が望ましい。   An annealing condition is prescribed | regulated, when passing an annealing-pickling process after hot rolling. As the annealing temperature is raised, recovery and recrystallization proceed, and <011> oriented grains are reduced. In order to suppress this, it heats to 800-1000 degreeC. If the heating temperature is less than 800 ° C., the work structure at the hot rolling stage remains and the recovery does not proceed sufficiently and is hard, so that the toughness becomes poor. Further, when the heating temperature exceeds 1000 ° C., the grain growth after completion of recrystallization progresses remarkably, and the randomization of the crystal orientation progresses and the <011> orientation grains are reduced, so that the toughness is remarkably deteriorated. When heating, the heating rate is set to 10 ° C./sec or more. When the heating rate is slower than this, recrystallization proceeds to cause the disappearance of the subgrain structure and the coarsening of the crystal grains, and the <011> orientation grains are reduced and the toughness is deteriorated. The reason why the <011> oriented grains are reduced at a heating rate of less than 10 ° C./sec is that the other position is generated during the slow heating and the <011> oriented grains are phagocytosed. In particular, the <112> and <100> orientations develop and it is difficult for the <011> orientation grain content ratio to satisfy 20%. Also, the cooling rate is 10 ° C./sec or more, but this is to suppress the formation of precipitates that cause toughness deterioration during the cooling process. On the other hand, when the cooling rate is less than 10 ° C./sec, the crystal orientation changes in the cooling process and the <011> orientation ratio decreases. Furthermore, in consideration of productivity, it is desirable that the heating rate is 15 ° C./sec or more and the cooling rate is 15 ° C./sec or more. In addition, if it is a component composition of this invention, an effect will fully be expressed with said cooling rate. Even if the cooling rate is higher than the above (for example, 50 ° C./sec or more), the effect of the present invention is saturated. In the present invention, it is preferable that the cooling rate is less than 50 ° C./sec in consideration of the surface quality, the shape of the steel plate and the manufacturing cost. Further, the heating temperature is preferably 850 to 950 ° C. from the viewpoints of solid solution of precipitates, suppression of crystal grain coarsening, and residual <011> orientation.

熱間圧延を経た上記本発明のフェライト系ステンレス鋼は、熱延鋼板または熱延鋼帯を構成する。熱間圧延後に焼鈍を行った上記本発明のフェライト系ステンレス鋼は、熱延焼鈍鋼板または熱延焼鈍鋼帯を構成する。   The ferritic stainless steel of the present invention that has undergone hot rolling constitutes a hot-rolled steel sheet or a hot-rolled steel strip. The ferritic stainless steel of the present invention that has been annealed after hot rolling constitutes a hot rolled annealed steel sheet or a hot rolled annealed steel strip.

表1に示す成分組成の鋼を溶製しスラブに鋳造し、スラブを5mm厚以上に熱間圧延して熱間圧延コイルとした。この際、熱延仕上温度を810〜880℃、巻取温度を300〜450℃に制御した。その後、焼鈍を施すコイルも製造し、この際の焼鈍温度は850〜950℃、加熱速度と冷却速度はいずれも15℃/secとした。これら熱延板あるいは熱延・焼鈍板から結晶方位評価サンプルとシャルピー衝撃試験片を採取した。結晶方位はEBSPを用い、熱延板あるいは熱延・焼鈍板の全板厚について結晶粒毎の方位を測定し、<011>方向が圧延方向と15°以内にある結晶粒の面積率(<011>方位比率)(面積%)を測定した。シャルピー衝撃試験を前記方法でJISZ2242に準拠して実施した。   Steel having the component composition shown in Table 1 was melted and cast into a slab, and the slab was hot-rolled to a thickness of 5 mm or more to obtain a hot-rolled coil. At this time, the hot rolling finishing temperature was controlled to 810 to 880 ° C, and the winding temperature was controlled to 300 to 450 ° C. Thereafter, a coil to be annealed was also manufactured. The annealing temperature at this time was 850 to 950 ° C., and the heating rate and the cooling rate were both 15 ° C./sec. Crystal orientation evaluation samples and Charpy impact test pieces were collected from these hot-rolled sheets or hot-rolled / annealed sheets. EBSP is used as the crystal orientation, and the orientation of each crystal grain is measured for the total thickness of the hot-rolled sheet or hot-rolled / annealed sheet, and the <011> direction is within 15 ° with respect to the rolling direction (< 011> azimuth ratio) (area%) was measured. The Charpy impact test was carried out by the above method according to JISZ2242.

Figure 2015187290
Figure 2015187290
Figure 2015187290
Figure 2015187290

表1に結果を示す。本発明例A1〜A20は、本発明の成分を有し、<011>方位比率が20%以上であり、0℃での衝撃値が7J/cm2以上であった。比較例B1〜B26はいずれかの成分が本発明範囲外であり、<011>方位比率が20%未満であり、0℃での衝撃値が7J/cm2に達しない例が多かった。0℃での衝撃値が7J/cm2以上の衝撃値を有する鋼であれば、熱延コイルの展開および通板時に脆性割れが生じないが、本発明の鋼および製造方法によれば十分な靭性を有していることが分かる。 Table 1 shows the results. Invention Examples A1 to A20 had the components of the present invention, the <011> orientation ratio was 20% or more, and the impact value at 0 ° C. was 7 J / cm 2 or more. In Comparative Examples B1 to B26, any component was outside the scope of the present invention, the <011> orientation ratio was less than 20%, and the impact value at 0 ° C. did not reach 7 J / cm 2 in many cases. If the impact value at 0 ° C. is a steel having an impact value of 7 J / cm 2 or more, brittle cracks do not occur when the hot-rolled coil is deployed and passed, but the steel and manufacturing method of the present invention are sufficient. It turns out that it has toughness.

Figure 2015187290
Figure 2015187290

本発明の成分を有する鋼に対して、表2に示すように熱延条件と焼鈍条件を変更したコイルの評価結果を示す。表2の鋼No.は、表1のNo.に対応しており、当該No.の成分を含有しており、表2に記載の製造方法を適用したものである。表2の本発明例C1〜C24は、本発明の製造条件を適用し、良好な靭性が得られている。一方、比較例D1〜D6は、いずれかの製造条件が本発明範囲外であり、<011>方位比率が20%未満であり、0℃での衝撃値が7J/cm2に達しなかった。 The evaluation result of the coil which changed hot rolling conditions and annealing conditions as shown in Table 2 with respect to the steel which has the component of this invention is shown. Steel No. in Table 2 No. in Table 1 And the corresponding No. The production method described in Table 2 is applied. Inventive examples C1 to C24 in Table 2 apply the production conditions of the present invention, and good toughness is obtained. On the other hand, in Comparative Examples D1 to D6, any of the production conditions was outside the scope of the present invention, the <011> orientation ratio was less than 20%, and the impact value at 0 ° C. did not reach 7 J / cm 2 .

また、表2には熱延板あるいは熱延・焼鈍板を素材として、フランジ加工した後に低温落重試験を実施した結果を示す。図2にフランジ部品1の一例を示す。図3に低温落重試験の方法を示す。落重試験装置2を用い、−20℃に冷やしたフランジ部品1の側面に重さ16kgの錘3を高さ80cmから自由落下させ、フランジ部品1の割れ有無を目視観察した。この場合、フランジ部品に付与されるエネルギーは125Jとなる。フランジ部品を−20℃に冷却する方法は恒温恒湿槽あるいはアルコールと液体窒素で温度調整し、−20℃に10分保持した後、衝撃を与えた。表2から、本発明鋼から作成されたフランジ部品は−20℃で125J以下の衝撃エネルギーの付与で割れが生じることがなく、低温靭性に優れたフランジ部品を提供することが可能である。   Table 2 shows the results of a low-temperature drop test after flange processing using a hot-rolled sheet or a hot-rolled / annealed sheet as a raw material. FIG. 2 shows an example of the flange component 1. FIG. 3 shows the method of the low temperature drop test. Using a drop weight test apparatus 2, a weight 3 having a weight of 16 kg was freely dropped from a height of 80 cm onto the side surface of the flange part 1 cooled to −20 ° C., and the presence or absence of cracking of the flange part 1 was visually observed. In this case, the energy applied to the flange part is 125J. The method of cooling the flange parts to −20 ° C. was performed by adjusting the temperature with a constant temperature / humidity bath or alcohol and liquid nitrogen, holding at −20 ° C. for 10 minutes, and then applying an impact. From Table 2, it is possible to provide a flange part that is excellent in low temperature toughness without being cracked by application of impact energy of −125 ° C. or lower at −20 ° C.

なお、製造工程における他の条件は適宜選択すれば良い。例えば、スラブ厚さ、熱間圧延板厚などは適宜設計すれば良い。熱延巻取後に水冷プールに浸漬しても構わない。熱延後あるいは熱延焼鈍後の酸洗については、ショットブラスト、ベンディング、ブラシ等のメカニカルデスケール方法については適宜選択すれば良く、酸液についても硫酸、硝弗酸等既設条件で構わない。更に、この後にコイル研削を表面に施しても構わない。   Note that other conditions in the manufacturing process may be appropriately selected. For example, what is necessary is just to design slab thickness, hot rolling board thickness, etc. suitably. It may be immersed in a water-cooled pool after hot rolling. For pickling after hot rolling or after hot rolling annealing, mechanical descaling methods such as shot blasting, bending, and brush may be selected as appropriate, and the existing conditions such as sulfuric acid and nitric hydrofluoric acid may be used for the acid solution. Further, after this, coil grinding may be applied to the surface.

以上の説明から明らかなように、本発明のステンレス熱延鋼板により、製造性に優れるとともに、フランジ作製時および使用時の靭性も確保されている。つまり、本発明を適用した材料を、特に自動車、二輪用部品として用いることで信頼性の確保が図られ、社会的貢献度を高めることが可能となり、産業上極めて有益である。   As is clear from the above description, the stainless hot-rolled steel sheet according to the present invention is excellent in manufacturability and toughness during flange production and use. That is, by using the material to which the present invention is applied, particularly as an automobile or a motorcycle part, it is possible to ensure reliability and increase the social contribution, which is extremely useful industrially.

1 フランジ部品
2 落重試験装置
3 錘
1 Flange parts 2 Drop weight test device 3 Weight

上記課題を解決する本発明の要旨は、
(1)質量%にて、C:0.001〜0.08%、Si:0.01〜1.0%、Mn:0.01〜1.0%、P:0.01〜0.05%、S:0.0002〜0.01%、Cr:10.0〜25.0%、N:0.001〜0.05%含有し、残部がFeおよび不可避的不純物より成る鋼で、板厚が5mm以上、<011>方向が圧延方向と15°以内にある結晶粒の面積率の比率が20%以上であることを特徴とするフランジ用フェライト系ステンレス鋼からなる熱延鋼板または熱延鋼帯
(2)さらに質量%にて、Ti:0.01〜0.4%、Nb:0.01〜0.6%、B:0.0002〜0.0030%、Al:0.005〜0.3%、Ni:0.1〜1%、Mo:0.1〜2.0%、Cu:0.1〜3.0%、V:0.05〜1.0%、Mg:0.0002〜0.0030%、Sn:0.01〜0.3%、Sb:0.01〜0.3%、Zr:0.01〜0.1%、Ta:0.01〜0.1%、Hf:0.01〜0.1%、W:0.01〜2.0%、Co:0.01〜0.2%、Ca:0.0001〜0.0030%、REM:0.001〜0.05%、Ga:0.0002〜0.1%の1種または2種以上を含有し、Mn含有量を0.01〜0.5%とすることを特徴とする(1)記載のフランジ用フェライト系ステンレス鋼からなる熱延鋼板または熱延鋼帯
)質量%にて、C:0.001〜0.08%、Si:0.01〜1.0%、Mn:0.01〜1.0%、P:0.01〜0.05%、S:0.0002〜0.01%、Cr:10.0〜25.0%、N:0.001〜0.05%含有し、残部がFeおよび不可避的不純物より成る鋼で、板厚が5mm以上、<011>方向が圧延方向と15°以内にある結晶粒の面積率の比率が20%以上であることを特徴とするフランジ用フェライト系ステンレス鋼からなる熱延焼鈍鋼板または熱延焼鈍鋼帯
)さらに質量%にて、Ti:0.01〜0.4%、Nb:0.01〜0.6%、B:0.0002〜0.0030%、Al:0.005〜0.3%、Ni:0.1〜1%、Mo:0.1〜2.0%、Cu:0.1〜3.0%、V:0.05〜1.0%、Mg:0.0002〜0.0030%、Sn:0.01〜0.3%、Sb:0.01〜0.3%、Zr:0.01〜0.1%、Ta:0.01〜0.1%、Hf:0.01〜0.1%、W:0.01〜2.0%、Co:0.01〜0.2%、Ca:0.0001〜0.0030%、REM:0.001〜0.05%、Ga:0.0002〜0.1%の1種または2種以上を含有することを特徴とする()記載のフランジ用フェライト系ステンレス鋼からなる熱延焼鈍鋼板または熱延焼鈍鋼帯
(5)熱間圧延を行い、熱延仕上温度を800℃以上とし、巻取温度を500℃以下とすることを特徴とする(1)または(2)記載のフランジ用フェライト系ステンレス鋼からなる熱延鋼板または熱延鋼帯の製造方法。
)熱間圧延を行い、熱延仕上温度を800℃以上とし、巻取温度を500℃以下とすることを特徴とする()または()記載のフランジ用フェライト系ステンレス鋼からなる熱延焼鈍鋼板または熱延焼鈍鋼帯の製造方法。
焼鈍する際、10℃/sec以上の加熱速度で800〜1000℃に加熱後、10℃/sec以上で冷却することを特徴とする()または()記載のフランジ用フェライト系ステンレス鋼からなる熱延焼鈍鋼板または熱延焼鈍鋼帯の製造方法。
焼鈍する際、10℃/sec以上の加熱速度で800〜1000℃に加熱後、10℃/sec以上で冷却することを特徴とする()に記載のフランジ用フェライト系ステンレス鋼からなる熱延焼鈍鋼板または熱延焼鈍鋼帯の製造方法。
)(1)又は(2)記載のフェライト系ステンレス鋼からなる熱延鋼板または熱延鋼帯からなるフランジ部品であって、−20℃で125J以下の衝撃エネルギーの付与で破壊しないことを特徴とするフェライト系ステンレス鋼フランジ部品。
(10)()または()記載のフェライト系ステンレス鋼からなる熱延焼鈍鋼板または熱延焼鈍鋼帯からなるフランジ部品であって、−20℃で125J以下の衝撃エネルギーの付与で破壊しないことを特徴とするフェライト系ステンレス鋼フランジ部品。
The gist of the present invention for solving the above problems is as follows.
(1) In mass%, C: 0.001 to 0.08%, Si: 0.01 to 1.0%, Mn: 0.01 to 1.0%, P: 0.01 to 0.05 %, S: 0.0002 to 0.01%, Cr: 10.0 to 25.0%, N: 0.001 to 0.05%, with the balance being Fe and inevitable impurities, A hot-rolled steel sheet or hot-rolled steel made of ferritic stainless steel for flanges, wherein the ratio of the area ratio of crystal grains having a thickness of 5 mm or more and the <011> direction within 15 ° with respect to the rolling direction is 20% or more Steel strip .
(2) Further, in terms of mass%, Ti: 0.01 to 0.4%, Nb: 0.01 to 0.6%, B: 0.0002 to 0.0030%, Al: 0.005 to 0.00. 3%, Ni: 0.1 to 1%, Mo: 0.1 to 2.0%, Cu: 0.1 to 3.0%, V: 0.05 to 1.0%, Mg: 0.0002 -0.0030%, Sn: 0.01-0.3%, Sb: 0.01-0.3%, Zr: 0.01-0.1%, Ta: 0.01-0.1%, Hf: 0.01-0.1%, W: 0.01-2.0%, Co: 0.01-0.2%, Ca: 0.0001-0.0030%, REM: 0.001- 0.05%, Ga: 0.0002 to 0.1%, or one or more, containing Mn content of 0.01 to 0.5% Ferrite stainless steel for flange Hot-rolled steel sheet or hot rolled strip of steel.
( 3 ) In mass%, C: 0.001 to 0.08%, Si: 0.01 to 1.0%, Mn: 0.01 to 1.0%, P: 0.01 to 0.05 %, S: 0.0002 to 0.01%, Cr: 10.0 to 25.0%, N: 0.001 to 0.05%, with the balance being Fe and inevitable impurities, A hot-rolled annealed steel plate or a heat-treated steel sheet made of ferritic stainless steel for flanges, characterized in that the ratio of the area ratio of crystal grains having a thickness of 5 mm or more and the <011> direction within 15 ° with respect to the rolling direction is 20% or more Annealed steel strip .
( 4 ) Further, in terms of mass%, Ti: 0.01 to 0.4%, Nb: 0.01 to 0.6%, B: 0.0002 to 0.0030%, Al: 0.005 to 0.00. 3%, Ni: 0.1 to 1%, Mo: 0.1 to 2.0%, Cu: 0.1 to 3.0%, V: 0.05 to 1.0%, Mg: 0.0002 -0.0030%, Sn: 0.01-0.3%, Sb: 0.01-0.3%, Zr: 0.01-0.1%, Ta: 0.01-0.1%, Hf: 0.01-0.1%, W: 0.01-2.0%, Co: 0.01-0.2%, Ca: 0.0001-0.0030%, REM: 0.001- The hot-rolled annealed steel sheet or hot-rolled steel made of ferritic stainless steel for flanges according to ( 3 ), containing 0.05%, Ga: 0.0002 to 0.1%, or one or more of them Annealed steel strip .
(5) subjected to hot rolling, hot-rolled finishing temperature of 800 ° C. or higher, consisting of coiling temperature, characterized in that a 500 ° C. or less (1) or (2) flange ferritic stainless steel according A method for producing a hot-rolled steel sheet or a hot-rolled steel strip .
(6) subjected to hot rolling, hot-rolled finishing temperature of 800 ° C. or higher, consisting of coiling temperature, characterized in that a 500 ° C. or less (3) or (4) flange ferritic stainless steel according A method for producing a hot-rolled annealed steel sheet or a hot-rolled annealed steel strip .
( 7 ) When annealing, the ferrite system for flange according to ( 3 ) or ( 4 ), characterized in that after heating to 800-1000 ° C at a heating rate of 10 ° C / sec or more, cooling is performed at 10 ° C / sec or more. A method for producing a hot-rolled annealed steel strip or a hot-rolled annealed steel strip made of stainless steel.
(8) when annealing from 10 ° C. / after heating sec or more heating speeds 800 to 1000 ° C., 10 ° C. /, characterized in that sec cooling above (6) flange ferritic stainless steel according to A method for producing a hot-rolled annealed steel sheet or a hot-rolled annealed steel strip .
( 9 ) A flange part made of a hot-rolled steel sheet or a hot-rolled steel strip made of ferritic stainless steel as described in (1) or (2), and not broken by applying an impact energy of ≦ 125 J at −20 ° C. Featuring ferritic stainless steel flange parts.
(10) A flange part made of a hot-rolled annealed steel plate or a hot-rolled annealed steel strip made of a ferritic stainless steel according to ( 3 ) or ( 4 ), and does not break when applied with an impact energy of 125 J or less at −20 ° C. Ferritic stainless steel flange parts characterized by this.

Claims (10)

質量%にて、C:0.001〜0.08%、Si:0.01〜1.0%、Mn:0.01〜1.0%、P:0.01〜0.05%、S:0.0002〜0.01%、Cr:10.0〜25.0%、N:0.001〜0.05%含有し、残部がFeおよび不可避的不純物より成る鋼で、板厚が5mm以上、<011>方向が圧延方向と15°以内にある結晶粒の面積率の比率が20%以上であることを特徴とするフランジ用フェライト系ステンレス鋼。   In mass%, C: 0.001 to 0.08%, Si: 0.01 to 1.0%, Mn: 0.01 to 1.0%, P: 0.01 to 0.05%, S : 0.0002 to 0.01%, Cr: 10.0 to 25.0%, N: 0.001 to 0.05%, with the balance being Fe and inevitable impurities, with a plate thickness of 5 mm As described above, the ferritic stainless steel for flanges, wherein the ratio of the area ratio of crystal grains whose <011> direction is within 15 ° with respect to the rolling direction is 20% or more. さらに質量%にて、Ti:0.01〜0.4%、Nb:0.01〜0.6%、B:0.0002〜0.0030%、Al:0.005〜0.3%、Ni:0.1〜1%、Mo:0.1〜2.0%、Cu:0.1〜3.0%、V:0.05〜1.0%、Mg:0.0002〜0.0030%、Sn:0.01〜0.3%、Sb:0.01〜0.3%、Zr:0.01〜0.1%、Ta:0.01〜0.1%、Hf:0.01〜0.1%、W:0.01〜2.0%、Co:0.01〜0.2%、Ca:0.0001〜0.0030%、REM:0.001〜0.05%、Ga:0.0002〜0.1%の1種または2種以上を含有することを特徴とする請求項1に記載のフランジ用フェライト系ステンレス鋼。   Furthermore, in mass%, Ti: 0.01-0.4%, Nb: 0.01-0.6%, B: 0.0002-0.0030%, Al: 0.005-0.3%, Ni: 0.1-1%, Mo: 0.1-2.0%, Cu: 0.1-3.0%, V: 0.05-1.0%, Mg: 0.0002-0. 0030%, Sn: 0.01 to 0.3%, Sb: 0.01 to 0.3%, Zr: 0.01 to 0.1%, Ta: 0.01 to 0.1%, Hf: 0 0.01-0.1%, W: 0.01-2.0%, Co: 0.01-0.2%, Ca: 0.0001-0.0030%, REM: 0.001-0.05 %, Ga: 0.0002 to 0.1%, or two or more of ferritic stainless steels for flanges according to claim 1. 請求項1又は2に記載のフェライト系ステンレス鋼からなる熱延鋼板または熱延鋼帯。   A hot-rolled steel plate or a hot-rolled steel strip made of the ferritic stainless steel according to claim 1. 請求項1又は2に記載のフェライト系ステンレス鋼からなる熱延焼鈍鋼板または熱延焼鈍鋼帯。   A hot-rolled annealed steel sheet or a hot-rolled annealed steel strip made of the ferritic stainless steel according to claim 1 or 2. 熱間圧延を行い、熱延仕上温度を800℃以上とし、巻取温度を500℃以下とすることを特徴とする請求項1または2記載のフランジ用フェライト系ステンレス鋼の製造方法。   The method for producing a ferritic stainless steel for flange according to claim 1 or 2, wherein hot rolling is performed, the hot rolling finishing temperature is set to 800 ° C or higher, and the winding temperature is set to 500 ° C or lower. 熱間圧延後に焼鈍を行い、焼鈍する際、10℃/sec以上の加熱速度で800〜1000℃に加熱後、10℃/sec以上で冷却することを特徴とする請求項1または2に記載のフランジ用フェライト系ステンレス鋼の製造方法。   3. The method according to claim 1, wherein when annealing is performed after hot rolling, the steel is heated to 800 to 1000 ° C. at a heating rate of 10 ° C./sec or more and then cooled at 10 ° C./sec or more. Manufacturing method of ferritic stainless steel for flanges. 熱間圧延後にさらに焼鈍を行い、焼鈍する際、10℃/sec以上の加熱速度で800〜1000℃に加熱後、10℃/sec以上で冷却することを特徴とする請求項5に記載のフランジ用フェライト系ステンレス鋼の製造方法。   6. The flange according to claim 5, further comprising annealing after hot rolling and heating to 800 to 1000 ° C. at a heating rate of 10 ° C./sec or more and then cooling at 10 ° C./sec or more. For producing ferritic stainless steels for use in steel. 請求項5に記載の方法で製造したフェライト系ステンレス鋼からなる熱延鋼板または熱延鋼帯。   A hot-rolled steel sheet or a hot-rolled steel strip made of ferritic stainless steel produced by the method according to claim 5. 請求項6または7に記載の方法で製造したフェライト系ステンレス鋼からなる熱延焼鈍鋼板または熱延焼鈍鋼帯。   A hot-rolled annealed steel sheet or a hot-rolled annealed steel strip made of ferritic stainless steel produced by the method according to claim 6 or 7. 請求項1又は2記載のフェライト系ステンレス鋼からなるフランジ部品であって、−20℃で125J以下の衝撃エネルギーの付与で破壊しないことを特徴とするフェライト系ステンレス鋼フランジ部品。   A ferritic stainless steel flange part comprising the ferritic stainless steel according to claim 1 or 2, which is not broken by applying an impact energy of 125 J or less at -20 ° C.
JP2014064779A 2014-03-26 2014-03-26 Ferritic stainless steel sheet for flange, manufacturing method thereof and flange part Active JP5908936B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2014064779A JP5908936B2 (en) 2014-03-26 2014-03-26 Ferritic stainless steel sheet for flange, manufacturing method thereof and flange part
EP15768500.9A EP3124635B1 (en) 2014-03-26 2015-03-26 Rolled ferritic stainless steel sheet, method for producing the same, and flange part
US15/128,891 US10648053B2 (en) 2014-03-26 2015-03-26 Rolled ferritic stainless steel sheet, method for producing the same, and flange part
KR1020167025642A KR101928636B1 (en) 2014-03-26 2015-03-26 Rolled ferritic stainless-steel plate, process for producing same, and flange component
CN201580016237.1A CN106133166B (en) 2014-03-26 2015-03-26 Ferrite-group stainless steel rolled plate and its manufacturing method and flange components
PCT/JP2015/059470 WO2015147211A1 (en) 2014-03-26 2015-03-26 Rolled ferritic stainless-steel plate, process for producing same, and flange component
MX2016012221A MX2016012221A (en) 2014-03-26 2015-03-26 Rolled ferritic stainless-steel plate, process for producing same, and flange component.
US16/834,836 US20200232062A1 (en) 2014-03-26 2020-03-30 Rolled ferritic stainless steel sheet, method for producing the same, and flange part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014064779A JP5908936B2 (en) 2014-03-26 2014-03-26 Ferritic stainless steel sheet for flange, manufacturing method thereof and flange part

Publications (2)

Publication Number Publication Date
JP2015187290A true JP2015187290A (en) 2015-10-29
JP5908936B2 JP5908936B2 (en) 2016-04-26

Family

ID=54195715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014064779A Active JP5908936B2 (en) 2014-03-26 2014-03-26 Ferritic stainless steel sheet for flange, manufacturing method thereof and flange part

Country Status (7)

Country Link
US (2) US10648053B2 (en)
EP (1) EP3124635B1 (en)
JP (1) JP5908936B2 (en)
KR (1) KR101928636B1 (en)
CN (1) CN106133166B (en)
MX (1) MX2016012221A (en)
WO (1) WO2015147211A1 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6022097B1 (en) * 2016-03-30 2016-11-09 日新製鋼株式会社 Ti-containing ferritic stainless steel sheet and manufacturing method
JP2017095789A (en) * 2015-11-27 2017-06-01 新日鐵住金ステンレス株式会社 Ferritic stainless steel hot rolled steel sheet for flange and manufacturing method therefor
WO2017135240A1 (en) * 2016-02-02 2017-08-10 日新製鋼株式会社 HOT ROLLED Nb-CONTAINING FERRITIC STAINLESS STEEL SHEET AND METHOD FOR PRODUCING SAME, AND COLD ROLLED Nb-CONTAINING FERRITIC STAINLESS STEEL SHEET AND METHOD FOR PRODUCING SAME
WO2017199482A1 (en) * 2016-05-16 2017-11-23 日新製鋼株式会社 Ti-containing ferrite stainless steel sheet for exhaust pipe flange component, production method and flange component
JP2018168460A (en) * 2017-03-30 2018-11-01 新日鐵住金ステンレス株式会社 Ferritic stainless steel pipe and ferritic stainless steel pipe for automotive exhaust system parts
KR20190032477A (en) * 2016-10-17 2019-03-27 제이에프이 스틸 가부시키가이샤 Ferritic stainless steel hot-rolled annealed steel sheet and manufacturing method thereof
WO2019065508A1 (en) * 2017-09-29 2019-04-04 Jfeスチール株式会社 Annealed hot-rolled ferritic stainless steel sheet and method for producing same
JP2019173115A (en) * 2018-03-29 2019-10-10 日鉄ステンレス株式会社 Ferritic stainless steel sheet excellent in high temperature salt damage resistance and automobile exhaust system component
JP6617858B1 (en) * 2018-07-18 2019-12-11 Jfeスチール株式会社 Ferritic stainless steel sheet and manufacturing method thereof
WO2020017123A1 (en) * 2018-07-18 2020-01-23 Jfeスチール株式会社 Ferrite stainless steel sheet and manufacturing method thereof
WO2020045825A1 (en) * 2018-08-28 2020-03-05 주식회사 포스코 Ferritic stainless steel having excellent pickling properties
WO2020060050A1 (en) * 2018-09-19 2020-03-26 주식회사 포스코 Ferrite-based stainless steel having excellent processability and high-temperature strength and method for manufacturing same
JP2020063473A (en) * 2018-10-16 2020-04-23 日鉄ステンレス株式会社 Ferritic stainless steel plate excellent in magnetic characteristics
JP2020100866A (en) * 2018-12-21 2020-07-02 日鉄ステンレス株式会社 Cr-BASED STAINLESS STEEL HAVING EXCELLENT HYDROGEN EMBRITTLEMENT RESISTANCE AND LOW-TEMPERATURE EMBRITTLEMENT RESISTANCE
US11214856B2 (en) * 2017-02-28 2022-01-04 Nippon Steel Corporation Ferritic stainless steel sheet, hot coil, and automobile exhaust flange member
CN115927950A (en) * 2022-07-29 2023-04-07 江西宝顺昌特种合金制造有限公司 High-chromium ferrite stainless steel containing carbon and nitrogen and manufacturing method thereof

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6295155B2 (en) * 2014-07-22 2018-03-14 新日鐵住金ステンレス株式会社 Ferritic stainless steel, manufacturing method thereof, and heat exchanger using ferritic stainless steel as a member
CN109563597A (en) 2016-09-02 2019-04-02 杰富意钢铁株式会社 Ferrite-group stainless steel
CN106591736B (en) * 2016-12-13 2018-08-21 山西太钢不锈钢股份有限公司 High-strength low straight-chromiun stainless steel and its heat treatment method
KR20180068087A (en) * 2016-12-13 2018-06-21 주식회사 포스코 Ferritic stainless steel with improved impact toughness and method of manufacturing the same
CN110312812A (en) * 2017-01-19 2019-10-08 日铁不锈钢株式会社 Ferrite-group stainless steel and automobile exhaust path components ferrite-group stainless steel
MX2019008874A (en) * 2017-01-26 2019-09-18 Jfe Steel Corp Ferrite stainless hot-rolled steel sheet and production method therefor.
WO2018158854A1 (en) * 2017-02-28 2018-09-07 新日鐵住金株式会社 Ferritic stainless steel sheet, hot coil, and flange member for motor vehicle exhaust system
JP6858056B2 (en) * 2017-03-30 2021-04-14 日鉄ステンレス株式会社 Low specific gravity ferritic stainless steel sheet and its manufacturing method
EP3587610B1 (en) * 2017-04-27 2022-07-06 JFE Steel Corporation Hot-rolled and annealed ferritic stainless steel sheet, and method for manufacturing same
CN107475597A (en) * 2017-08-17 2017-12-15 苏州双金实业有限公司 A kind of corrosion-resistant stainless steel material
KR20190022127A (en) * 2017-08-25 2019-03-06 주식회사 포스코 Ferritic stainless steel with improved impact toughness at low temperature and method of manufacturing the same
KR102603113B1 (en) * 2017-10-30 2023-11-16 제이에프이 스틸 가부시키가이샤 Ferritic stainless-steel sheet and method for manufacturing same
KR102020511B1 (en) * 2017-12-14 2019-09-10 주식회사 포스코 Ferritic stainless steel with excellent impact toughness and manufacturing method thereof
CN108342659A (en) * 2018-01-31 2018-07-31 江苏理工学院 A kind of Economic corrosion-resistant ferritic stainless steel and its manufacturing process
JP6971184B2 (en) * 2018-03-27 2021-11-24 日鉄ステンレス株式会社 Ferritic stainless steel, its manufacturing method, and fuel cell components
JP6937716B2 (en) * 2018-03-27 2021-09-22 日鉄ステンレス株式会社 Ferritic stainless steel sheets and their manufacturing methods, as well as fuel cell components
TWI801538B (en) * 2018-03-27 2023-05-11 日商日鐵不銹鋼股份有限公司 Ferritic stainless steel, method for producing the same, ferritic stainless steel sheet, method for producing the same, and members for fuel cell
JP6937717B2 (en) * 2018-03-27 2021-09-22 日鉄ステンレス株式会社 Ferritic stainless steel sheets and their manufacturing methods, as well as fuel cell components
EP3778964B1 (en) * 2018-03-30 2022-08-03 NIPPON STEEL Stainless Steel Corporation Ferrite-based stainless steel sheet and production method thereof, and ferrite-based stainless member
KR102120696B1 (en) * 2018-09-19 2020-06-09 주식회사 포스코 Non-annealed hot-rolled ferritic stainless steel sheet with excellent impact toughness and manufacturing method thereof
KR102173277B1 (en) * 2018-11-06 2020-11-03 주식회사 포스코 Hot-rolled steel sheet with excellent low temperature impact toughness and manufacturing method thereof
EP3901292A4 (en) * 2018-12-21 2022-11-23 NIPPON STEEL Stainless Steel Corporation Cr-based stainless steel having excellent hydrogen embrittlement resistance
CN109355478B (en) * 2018-12-24 2021-02-05 东北大学 B444M2 type ferritic stainless steel with improved high-temperature oxidation resistance and preparation method thereof
CN113661261B (en) * 2019-03-28 2023-09-19 日铁不锈钢株式会社 Ferritic stainless steel sheet for automobile brake disc rotor, and hot-stamped product for automobile brake disc rotor
CN109913758B (en) * 2019-03-29 2020-08-11 东北大学 Ferritic stainless steel plate with good high-temperature strength and forming performance and preparation method thereof
CN111235474A (en) * 2020-02-20 2020-06-05 孙志颜 High-corrosion-resistance stainless steel and manufacturing method thereof
KR102443423B1 (en) * 2020-12-09 2022-09-16 주식회사 포스코 Ferritic stainless steel with improved intergranular corrosion properties
KR102443422B1 (en) * 2020-12-09 2022-09-16 주식회사 포스코 High strength ferritic stainless steel with improved intergranular corrosion resistance
CN113172089B (en) * 2021-03-31 2023-04-07 甘肃酒钢集团宏兴钢铁股份有限公司 Production method of high-carbon martensitic stainless steel steckel mill
CN113699444A (en) * 2021-08-18 2021-11-26 山西太钢不锈钢股份有限公司 Manufacturing method for eliminating edge cracks of 410L black-skin steel coil
CN114574767A (en) * 2022-03-11 2022-06-03 江苏铭展特钢制造有限公司 High-temperature-resistant stainless steel bar for automobile parts and processing technology thereof
CN114959485A (en) * 2022-06-07 2022-08-30 江阴市龙润法兰有限公司 Pressure vessel flange and production process thereof
CN117187705B (en) * 2023-10-27 2024-03-26 上海交通大学 Heat treatment method of low-Cr and high-toughness alloy

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002363693A (en) * 2001-06-05 2002-12-18 Nippon Steel Corp High stretch-flange property steel sheet having excellent shape freezability and manufacturing method therefor
JP2003055738A (en) * 2001-06-05 2003-02-26 Nippon Steel Corp Ferritic steel plate with excellent shape freezing property
JP2005120453A (en) * 2003-10-20 2005-05-12 Nippon Steel Corp Cold rolled steel sheet having developed {100}<011> orientation and excellent shape freezing property, and its manufacturing method
JP2007284783A (en) * 2006-03-20 2007-11-01 Nippon Steel Corp High strength cold rolled steel sheet and its production method
JP2009030078A (en) * 2007-07-24 2009-02-12 Nippon Steel & Sumikin Stainless Steel Corp High workability ferritic stainless steel sheet excellent in ridging resistance, and producing method therefor
WO2012161241A1 (en) * 2011-05-25 2012-11-29 新日鐵住金株式会社 Cold-rolled steel sheet and method for producing same
JP2012233229A (en) * 2011-04-28 2012-11-29 Nippon Steel Corp Steel sheet excellent in young's modulus in direction perpendicular to direction of rolling and method for producing the same
JP2013173998A (en) * 2012-02-27 2013-09-05 Nippon Steel & Sumitomo Metal Corp High-strength hot-rolled steel sheet for line pipe excellent on-site weldability and production method therefor
WO2013146815A1 (en) * 2012-03-30 2013-10-03 新日鐵住金ステンレス株式会社 Heat-resistant cold rolled ferritic stainless steel sheet, hot rolled ferritic stainless steel sheet for cold rolling raw material, and methods for producing same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5340415A (en) * 1992-06-01 1994-08-23 Sumitomo Metal Industries, Ltd. Ferritic stainless steel plates and foils and method for their production
CA2422753C (en) 2000-09-21 2007-11-27 Nippon Steel Corporation Steel plate excellent in shape freezing property and method for production thereof
JP4498950B2 (en) * 2005-02-25 2010-07-07 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet for exhaust parts with excellent workability and manufacturing method thereof
JP5262029B2 (en) 2007-09-11 2013-08-14 Jfeスチール株式会社 Ferritic stainless steel plate with excellent stretch flangeability
JP5347316B2 (en) 2008-04-24 2013-11-20 Jfeスチール株式会社 Ferritic stainless steel sheet with excellent toughness
JP5737952B2 (en) 2011-01-05 2015-06-17 日新製鋼株式会社 Nb-containing ferritic stainless steel hot rolled coil and manufacturing method
JP5737951B2 (en) 2011-01-05 2015-06-17 日新製鋼株式会社 Ti-containing ferritic stainless steel hot-rolled coil and manufacturing method
WO2013085005A1 (en) 2011-12-09 2013-06-13 新日鐵住金ステンレス株式会社 Hot-rolled ferritic stainless steel sheet with excellent cold cracking resistance and manufacturing process therefor

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002363693A (en) * 2001-06-05 2002-12-18 Nippon Steel Corp High stretch-flange property steel sheet having excellent shape freezability and manufacturing method therefor
JP2003055738A (en) * 2001-06-05 2003-02-26 Nippon Steel Corp Ferritic steel plate with excellent shape freezing property
JP2005120453A (en) * 2003-10-20 2005-05-12 Nippon Steel Corp Cold rolled steel sheet having developed {100}<011> orientation and excellent shape freezing property, and its manufacturing method
JP2007284783A (en) * 2006-03-20 2007-11-01 Nippon Steel Corp High strength cold rolled steel sheet and its production method
JP2009030078A (en) * 2007-07-24 2009-02-12 Nippon Steel & Sumikin Stainless Steel Corp High workability ferritic stainless steel sheet excellent in ridging resistance, and producing method therefor
JP2012233229A (en) * 2011-04-28 2012-11-29 Nippon Steel Corp Steel sheet excellent in young's modulus in direction perpendicular to direction of rolling and method for producing the same
WO2012161241A1 (en) * 2011-05-25 2012-11-29 新日鐵住金株式会社 Cold-rolled steel sheet and method for producing same
JP2013173998A (en) * 2012-02-27 2013-09-05 Nippon Steel & Sumitomo Metal Corp High-strength hot-rolled steel sheet for line pipe excellent on-site weldability and production method therefor
WO2013146815A1 (en) * 2012-03-30 2013-10-03 新日鐵住金ステンレス株式会社 Heat-resistant cold rolled ferritic stainless steel sheet, hot rolled ferritic stainless steel sheet for cold rolling raw material, and methods for producing same
JP2013209726A (en) * 2012-03-30 2013-10-10 Nippon Steel & Sumikin Stainless Steel Corp Heat-resistant ferritic stainless cold rolled steel sheet excellent in workability, ferritic stainless hot rolled steel sheet for cold rolled raw material, and method for manufacturing them

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017095789A (en) * 2015-11-27 2017-06-01 新日鐵住金ステンレス株式会社 Ferritic stainless steel hot rolled steel sheet for flange and manufacturing method therefor
WO2017135240A1 (en) * 2016-02-02 2017-08-10 日新製鋼株式会社 HOT ROLLED Nb-CONTAINING FERRITIC STAINLESS STEEL SHEET AND METHOD FOR PRODUCING SAME, AND COLD ROLLED Nb-CONTAINING FERRITIC STAINLESS STEEL SHEET AND METHOD FOR PRODUCING SAME
CN108495944B (en) * 2016-02-02 2020-12-25 日铁不锈钢株式会社 Hot-rolled Nb-containing ferritic stainless steel sheet and method for producing same, and cold-rolled Nb-containing ferritic stainless steel sheet and method for producing same
JPWO2017135240A1 (en) * 2016-02-02 2018-02-08 日新製鋼株式会社 Nb-containing ferritic stainless steel hot-rolled steel sheet and method for producing the same, Nb-containing ferritic stainless steel cold-rolled steel sheet and method for producing the same
CN108495944A (en) * 2016-02-02 2018-09-04 日新制钢株式会社 The hot rolled steel plate of ferrite-group stainless steel containing Nb and its manufacturing method and the cold-rolled steel sheet of ferrite-group stainless steel containing Nb and its manufacturing method
TWI715713B (en) * 2016-03-30 2021-01-11 日商日鐵不銹鋼股份有限公司 Ti-CONTAINING FERRITE STAINLESS STEEL PLATE AND MANUFACTURING METHOD AND FLANGE
WO2017169011A1 (en) * 2016-03-30 2017-10-05 日新製鋼株式会社 Ti-containing ferritic stainless steel sheet, manufacturing method, and flange
RU2719968C1 (en) * 2016-03-30 2020-04-23 Ниппон Стил Стэйнлесс Стил Корпорейшн SHEET FROM Ti-CONTAINING FERRITIC STAINLESS STEEL, PRODUCTION METHOD AND FLANGE
EP3438308A4 (en) * 2016-03-30 2019-09-25 Nippon Steel Nisshin Co., Ltd. Ti-containing ferritic stainless steel sheet, manufacturing method, and flange
CN109415783A (en) * 2016-03-30 2019-03-01 日新制钢株式会社 Ferrite series stainless steel plate containing Ti and manufacturing method and flange
JP6022097B1 (en) * 2016-03-30 2016-11-09 日新製鋼株式会社 Ti-containing ferritic stainless steel sheet and manufacturing method
CN109415783B (en) * 2016-03-30 2021-02-12 日铁不锈钢株式会社 Ti-containing ferritic stainless steel sheet, method for producing same, and flange
WO2017199482A1 (en) * 2016-05-16 2017-11-23 日新製鋼株式会社 Ti-containing ferrite stainless steel sheet for exhaust pipe flange component, production method and flange component
US10995888B2 (en) 2016-05-16 2021-05-04 Nippon Steel Stainless Steel Corporation Ti-containing ferritic stainless steel sheet for exhaust pipe flange member, production method, and flange member
JP2017206723A (en) * 2016-05-16 2017-11-24 日新製鋼株式会社 Ti-CONTAINING FERRITIC STAINLESS STEEL SHEET FOR EXHAUST TUBE FLANGE COMPONENT AND MANUFACTURING METHOD
TWI694159B (en) * 2016-05-16 2020-05-21 日商日鐵不銹鋼股份有限公司 Ti-containing ferrite based stainless steel sheet for exhaust pipe flange member and method for manufacturing such steel sheet, and flange member
RU2720498C1 (en) * 2016-05-16 2020-04-30 Ниппон Стил Стэйнлесс Стил Корпорейшн Sheet from titanium-containing ferritic stainless steel for flange element of exhaust pipe, method of manufacture and flange element
KR20190032477A (en) * 2016-10-17 2019-03-27 제이에프이 스틸 가부시키가이샤 Ferritic stainless steel hot-rolled annealed steel sheet and manufacturing method thereof
KR102201004B1 (en) 2016-10-17 2021-01-11 제이에프이 스틸 가부시키가이샤 Ferritic stainless steel hot rolled annealed steel sheet and manufacturing method thereof
US11214856B2 (en) * 2017-02-28 2022-01-04 Nippon Steel Corporation Ferritic stainless steel sheet, hot coil, and automobile exhaust flange member
JP2018168460A (en) * 2017-03-30 2018-11-01 新日鐵住金ステンレス株式会社 Ferritic stainless steel pipe and ferritic stainless steel pipe for automotive exhaust system parts
US11174540B2 (en) 2017-09-29 2021-11-16 Jfe Steel Corporation Hot-rolled and annealed ferritic stainless steel sheet and method for manufacturing the same
WO2019065508A1 (en) * 2017-09-29 2019-04-04 Jfeスチール株式会社 Annealed hot-rolled ferritic stainless steel sheet and method for producing same
JP6518961B1 (en) * 2017-09-29 2019-05-29 Jfeスチール株式会社 Ferritic stainless hot rolled annealed steel sheet and method for producing the same
JP2019173115A (en) * 2018-03-29 2019-10-10 日鉄ステンレス株式会社 Ferritic stainless steel sheet excellent in high temperature salt damage resistance and automobile exhaust system component
JP7022633B2 (en) 2018-03-29 2022-02-18 日鉄ステンレス株式会社 Ferritic stainless steel sheets with excellent high-temperature salt damage resistance and automobile exhaust system parts
JP6617858B1 (en) * 2018-07-18 2019-12-11 Jfeスチール株式会社 Ferritic stainless steel sheet and manufacturing method thereof
US11377702B2 (en) 2018-07-18 2022-07-05 Jfe Steel Corporation Ferritic stainless steel sheet and method of producing same
WO2020017123A1 (en) * 2018-07-18 2020-01-23 Jfeスチール株式会社 Ferrite stainless steel sheet and manufacturing method thereof
WO2020045825A1 (en) * 2018-08-28 2020-03-05 주식회사 포스코 Ferritic stainless steel having excellent pickling properties
KR20200024603A (en) * 2018-08-28 2020-03-09 주식회사 포스코 Ferritic stainless steel excellent in pickling property
CN112639152A (en) * 2018-08-28 2021-04-09 株式会社Posco Ferritic stainless steel having excellent pickling characteristics
KR102120695B1 (en) * 2018-08-28 2020-06-09 주식회사 포스코 Ferritic stainless steel excellent in pickling property
CN112639152B (en) * 2018-08-28 2022-07-05 株式会社Posco Ferritic stainless steel having excellent pickling characteristics
KR20200033055A (en) * 2018-09-19 2020-03-27 주식회사 포스코 Ferritic stainless steel excellent in workability and high temperature strength and manufacturing method thereof
WO2020060050A1 (en) * 2018-09-19 2020-03-26 주식회사 포스코 Ferrite-based stainless steel having excellent processability and high-temperature strength and method for manufacturing same
KR102135158B1 (en) 2018-09-19 2020-07-17 주식회사 포스코 Ferritic stainless steel excellent in workability and high temperature strength and manufacturing method thereof
JP2020063473A (en) * 2018-10-16 2020-04-23 日鉄ステンレス株式会社 Ferritic stainless steel plate excellent in magnetic characteristics
JP2020100866A (en) * 2018-12-21 2020-07-02 日鉄ステンレス株式会社 Cr-BASED STAINLESS STEEL HAVING EXCELLENT HYDROGEN EMBRITTLEMENT RESISTANCE AND LOW-TEMPERATURE EMBRITTLEMENT RESISTANCE
CN115927950A (en) * 2022-07-29 2023-04-07 江西宝顺昌特种合金制造有限公司 High-chromium ferrite stainless steel containing carbon and nitrogen and manufacturing method thereof
CN115927950B (en) * 2022-07-29 2024-01-09 江西宝顺昌特种合金制造有限公司 Carbon-nitrogen-containing high-chromium ferrite stainless steel and manufacturing method thereof

Also Published As

Publication number Publication date
EP3124635A1 (en) 2017-02-01
KR20160123371A (en) 2016-10-25
EP3124635A4 (en) 2017-09-06
MX2016012221A (en) 2017-01-19
WO2015147211A1 (en) 2015-10-01
CN106133166B (en) 2018-10-23
US20170107593A1 (en) 2017-04-20
US10648053B2 (en) 2020-05-12
US20200232062A1 (en) 2020-07-23
EP3124635B1 (en) 2020-12-23
JP5908936B2 (en) 2016-04-26
KR101928636B1 (en) 2018-12-12
CN106133166A (en) 2016-11-16

Similar Documents

Publication Publication Date Title
JP5908936B2 (en) Ferritic stainless steel sheet for flange, manufacturing method thereof and flange part
JP5793459B2 (en) Heat-resistant ferritic stainless steel cold-rolled steel sheet excellent in workability, ferritic stainless hot-rolled steel sheet for cold-rolled material, and production method thereof
JP5885884B2 (en) Ferritic stainless hot-rolled steel sheet, manufacturing method thereof, and steel strip
JP5003785B2 (en) High tensile steel plate with excellent ductility and method for producing the same
JP6017341B2 (en) High strength cold-rolled steel sheet with excellent bendability
JP5316634B2 (en) High-strength steel sheet with excellent workability and method for producing the same
KR20130055019A (en) High-strength hot-rolled steel sheet having superior fatigue resistance properties and method for producing same
JPWO2016147549A1 (en) High-strength cold-rolled steel sheet and manufacturing method thereof
JP2010059452A (en) Cold-rolled steel sheet and producing method therefor
JP2005120399A (en) High-strength and low-specific-gravity steel sheet having excellent ductility, and its manufacturing method
JP5918796B2 (en) Ferritic stainless hot rolled steel sheet and steel strip with excellent toughness
CN110366601B (en) Ferritic stainless steel sheet, hot-rolled coil, and flange member for automobile exhaust system
JP6383368B2 (en) Cold rolled flat steel product for applying deep drawing and method for producing the same
JP5817671B2 (en) Hot-rolled steel sheet and manufacturing method thereof
WO2021149676A1 (en) Steel sheet and method for producing same
JP6112273B1 (en) Ferritic stainless hot-rolled steel sheet, hot-rolled annealed sheet, and methods for producing them
US11214856B2 (en) Ferritic stainless steel sheet, hot coil, and automobile exhaust flange member
JP2010138444A (en) Steel sheet with high proportion limit superior in bending workability and manufacturing method therefor
JP5453747B2 (en) Stainless cold-rolled steel sheet excellent in punching processability and manufacturing method thereof
JP6550325B2 (en) Ferritic stainless steel hot rolled steel sheet for flange and method of manufacturing the same
JP7192112B2 (en) HIGH STRENGTH FERRITIC STAINLESS STEEL FOR CLAMP AND METHOD FOR MANUFACTURING SAME
KR20180068087A (en) Ferritic stainless steel with improved impact toughness and method of manufacturing the same
JP2013036080A (en) Method for producing soft hot-rolled steel sheet
JP2013036081A (en) Method for producing soft hot-rolled steel sheet

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160324

R150 Certificate of patent or registration of utility model

Ref document number: 5908936

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250