JP2020063473A - Ferritic stainless steel plate excellent in magnetic characteristics - Google Patents

Ferritic stainless steel plate excellent in magnetic characteristics Download PDF

Info

Publication number
JP2020063473A
JP2020063473A JP2018195060A JP2018195060A JP2020063473A JP 2020063473 A JP2020063473 A JP 2020063473A JP 2018195060 A JP2018195060 A JP 2018195060A JP 2018195060 A JP2018195060 A JP 2018195060A JP 2020063473 A JP2020063473 A JP 2020063473A
Authority
JP
Japan
Prior art keywords
less
stainless steel
magnetic properties
ferritic stainless
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018195060A
Other languages
Japanese (ja)
Other versions
JP6722741B2 (en
Inventor
秦野 正治
Masaharu Hatano
正治 秦野
修 池上
Osamu Ikegami
修 池上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Stainless Steel Corp
Original Assignee
Nippon Steel Stainless Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Stainless Steel Corp filed Critical Nippon Steel Stainless Steel Corp
Priority to JP2018195060A priority Critical patent/JP6722741B2/en
Publication of JP2020063473A publication Critical patent/JP2020063473A/en
Application granted granted Critical
Publication of JP6722741B2 publication Critical patent/JP6722741B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a ferritic stainless steel plate excellent in magnetic characteristics.SOLUTION: A ferritic stainless steel plate contains C:0.020% or less, Si:1.00% or less, Mn:1.00% or less, P:0.035% or less, S:0.0030% or less, Cr:10.0-18.0%, N:0.020% or less, Nb:0.5% or less, Ti:0.5% or less, Al:0.10% or less, and the balance Fe with impurities, in which an aggregate structure in the plate surface satisfies the following (i) and (ii): (i) an area ratio of grains in the {110}±15° orientation where an angle difference between a normal direction on the surface of the steel plate in the plate surface and {110} orientation is within 15° of more than 3.0% and less than 30%; and (ii) when an area ratio of the grains in the {110}±15° orientation on the plate surface is represented by A and an area ratio of the grains in the {111}±15° orientation is represented by B, a relationship of 0.10<A/B<0.80 is held.SELECTED DRAWING: None

Description

本発明は磁気特性に優れたフェライト系ステンレス鋼板に関するものであり、特に、磁気遮断器の接点材として好適なフェライト系ステンレス鋼板に関する。   The present invention relates to a ferritic stainless steel sheet having excellent magnetic properties, and particularly to a ferritic stainless steel sheet suitable as a contact material for a magnetic circuit breaker.

ハイブリッド車や電気自動車には、車両に搭載された高電圧回路において電流遮断を確実に行うために、車両1台あたり複数個の磁気遮断器が搭載されている。特にこれらの車両では、大容量の電流を遮断する必要がある。この用途に使用される磁気遮断器としては、接点装置と、電磁式の開閉装置とを有するものが知られている。接点装置には、固定接点部を有する固定接点部材と、可動接点部を有する可動接点部材と、これらを収納する筐体とが備えられており、可動接点部材は開閉装置によって可動自在とされている。磁気遮断器によって高電圧回路を電流遮断する場合は、開閉装置によって可動接点部材を駆動させ、可動接点部と固定接点部とを非接触状態にすることで、電流遮断を行っている。   Hybrid vehicles and electric vehicles are equipped with a plurality of magnetic circuit breakers per vehicle in order to reliably interrupt current in a high-voltage circuit mounted on the vehicle. Particularly in these vehicles, it is necessary to cut off a large amount of current. As a magnetic circuit breaker used for this purpose, one having a contact device and an electromagnetic switch is known. The contact device is provided with a fixed contact member having a fixed contact portion, a movable contact member having a movable contact portion, and a housing for housing these, and the movable contact member is movable by an opening / closing device. There is. When the high-voltage circuit is interrupted by the magnetic circuit breaker, the movable contact member is driven by the switchgear to bring the movable contact portion and the fixed contact portion into a non-contact state to interrupt the current.

磁気遮断器による電流遮断は、車両の運転状況によって頻繁に行われる。このため、可動接点や固定接点には、耐衝撃性が求められる。また、磁気遮断器の一部には、電流遮断時に発生するアーク放電を速やかに消弧させるために、接点装置の筐体の内部に磁界を生じさせるものがある。すなわち、固定接点と可動接点を離間させる際に接点間に生じたアークを、磁界の作用によって、各接点の端まで移動させ、更にはアークを引き延ばさせることで、アーク電圧を上昇させて遮断を完了させている。このため、筐体内部に配置される固定接点部材及び可動接点部材は、磁化しやすい性質(磁気特性)に優れることが求められる。   The current interruption by the magnetic circuit breaker is frequently performed depending on the driving situation of the vehicle. Therefore, impact resistance is required for the movable contact and the fixed contact. Some magnetic circuit breakers generate a magnetic field inside the casing of the contact device in order to quickly extinguish the arc discharge generated when the current is cut off. That is, when the fixed contact and the movable contact are separated from each other, the arc generated between the contacts is moved to the end of each contact by the action of the magnetic field, and further, the arc is extended to increase the arc voltage. The shutoff is complete. For this reason, the fixed contact member and the movable contact member arranged inside the housing are required to have excellent magnetizing properties (magnetic characteristics).

固定接点部材や可動接点部材には、導電性金属(例えば銅または銅合金)そのもの、または、セラミックスに導電性金属を複合化したものが使用されている。しかし、銅または銅合金は磁気特性が十分ではない。また、セラミックスは耐衝撃性及び磁気特性が低いという問題がある。そこで、耐衝撃性及び磁気特性に優れる材料として、ステンレス鋼の適用が考えられる。   For the fixed contact member and the movable contact member, a conductive metal (for example, copper or copper alloy) itself or a composite of ceramics and a conductive metal is used. However, copper or copper alloys do not have sufficient magnetic properties. Further, ceramics have a problem that impact resistance and magnetic properties are low. Therefore, application of stainless steel can be considered as a material having excellent impact resistance and magnetic properties.

特許文献1には、磁気特性に優れたフェライト系ステンレス鋼板として、重量%にて、C≦0.01%、Si:0.1〜0.6%、Mn:0.1〜1.0%、S≦0.004%、Cr:5〜13%、Ti:0.05〜0.5%、O≦0.004%、N≦0.015%を含有し、かつC+N≦0.015%であり、残部がFeおよび不可避的不純物からなり、表層および中心層における(111)面強度の和が10以下であり、最大比透磁率≧4000であるフェライト系ステンレス鋼板が記載されている。   In Patent Document 1, as a ferritic stainless steel sheet having excellent magnetic properties, C ≦ 0.01%, Si: 0.1 to 0.6%, Mn: 0.1 to 1.0% in weight%. , S ≦ 0.004%, Cr: 5 to 13%, Ti: 0.05 to 0.5%, O ≦ 0.004%, N ≦ 0.015%, and C + N ≦ 0.015% And the balance consists of Fe and inevitable impurities, the sum of the (111) plane strengths in the surface layer and the central layer is 10 or less, and the maximum relative magnetic permeability is ≧ 4000.

また、特許文献2には、磁気特性に優れたフェライト系ステンレス鋼板として、重量%で、C:0.015%以下、N:0.015%以下、Si:1.5%以下、Mn:1.0%以下、Cr:10〜14%、Ti:0.05〜0.30%を含有するスラブを熱間圧延により熱延板としたのち、該熱延板に圧下率:20〜60%の冷間圧延を施し、ついで、800〜930℃で焼鈍することによって製造されるフェライト系ステンレス鋼板が記載されている。   Further, in Patent Document 2, as a ferritic stainless steel sheet having excellent magnetic properties, C: 0.015% or less, N: 0.015% or less, Si: 1.5% or less, Mn: 1 by weight%. A slab containing 0.0% or less, Cr: 10 to 14%, and Ti: 0.05 to 0.30% is hot-rolled into a hot-rolled sheet, and the hot-rolled sheet has a reduction rate of 20 to 60%. Of the ferritic stainless steel sheet manufactured by subjecting the steel sheet to cold rolling, followed by annealing at 800 to 930 ° C.

特許第3629102号公報Japanese Patent No. 3629102 特開平11−61255号公報JP-A-11-61255

特許文献1及び2に記載されたフェライト系ステンレス鋼板は、銅、銅合金またはセラミックスに比べると、耐衝撃性及び磁気特性に優れる。しかし、磁気特性に関しては、磁気遮断器用の接点材料として満足できる程度の磁気特性を有するものではない。   The ferritic stainless steel sheets described in Patent Documents 1 and 2 are superior in impact resistance and magnetic properties as compared with copper, copper alloys or ceramics. However, regarding magnetic properties, they do not have magnetic properties that are satisfactory as contact materials for magnetic circuit breakers.

本発明は、上記事情に鑑みてなされたものであり、耐衝撃性及び磁気特性に優れ、磁気遮断器の接点部材として好適なフェライト系ステンレス鋼板を提供することを課題とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a ferritic stainless steel sheet which is excellent in impact resistance and magnetic characteristics and which is suitable as a contact member of a magnetic circuit breaker.

上記課題を解決するため、本発明は以下の構成を採用する。
[1] 質量%で、
C:0.020%以下、
Si:1.00%以下、
Mn:1.00%以下、
P:0.035%以下、
S:0.0030%以下、
Cr:10.0〜18.0%、
N:0.020%以下、
Nb:0.5%以下、
Ti:0.5%以下、
Al:0.10%以下を含み、
残部がFeおよび不純物からなり、
板表面における集合組織が下記の(i)および(ii)を満たすことを特徴とする磁気特性に優れたフェライト系ステンレス鋼板。
(i)板表面における鋼板表面の法線方向と{110}面方位との角度差が15°以内である{110}±15°方位粒の面積率が3.0%超30%未満。
(ii)板表面において{110}±15°方位粒の面積率をA、{111}±15°方位粒の面積率をBとしたとき、0.10<A/B<0.80。
[2] さらに質量%で、
Sn:0.001〜0.5%、
B:0.005%以下
の1種または2種を含有することを特徴とする[1]に記載の磁気特性に優れたフェライト系ステンレス鋼板。
[3] さらに質量%で、
Ni:1%以下、
Cu:1%以下、
Mo:1%以下、
Sb:0.2%以下、
V:0.5%以下、
W:0.5%以下、
Zr:0.5%以下、
Co:0.5%以下、
Mg:0.005%以下、
Ca:0.005%以下、
Ga:0.015%以下、
La:0.1%以下、
Y:0.1%以下、
Hf:0.1%以下、
REM:0.1%以下
の1種または2種以上を含有することを特徴とする[1]または[2]に記載の磁気特性に優れたフェライト系ステンレス鋼板。
[4] 磁界内に配置される接点部材として用いられることを特徴とする[1]乃至[3]の何れか一項に記載の磁気特性に優れたフェライト系ステンレス鋼板。
In order to solve the above problems, the present invention adopts the following configurations.
[1] In mass%,
C: 0.020% or less,
Si: 1.00% or less,
Mn: 1.00% or less,
P: 0.035% or less,
S: 0.0030% or less,
Cr: 10.0 to 18.0%,
N: 0.020% or less,
Nb: 0.5% or less,
Ti: 0.5% or less,
Al: including 0.10% or less,
The balance consists of Fe and impurities,
A ferritic stainless steel sheet having excellent magnetic properties, characterized in that the texture on the plate surface satisfies the following (i) and (ii).
(I) The area difference of {110} ± 15 ° orientation grains, in which the angular difference between the normal direction of the steel sheet surface and the {110} plane orientation on the plate surface is within 15 °, is more than 3.0% and less than 30%.
(Ii) When the area ratio of {110} ± 15 ° oriented grains on the plate surface is A and the area ratio of {111} ± 15 ° oriented grains is B, 0.10 <A / B <0.80.
[2] Further, in mass%,
Sn: 0.001-0.5%,
B: Ferrite-based stainless steel sheet having excellent magnetic properties according to [1], which contains one or two 0.005% or less.
[3] Further, in mass%,
Ni: 1% or less,
Cu: 1% or less,
Mo: 1% or less,
Sb: 0.2% or less,
V: 0.5% or less,
W: 0.5% or less,
Zr: 0.5% or less,
Co: 0.5% or less,
Mg: 0.005% or less,
Ca: 0.005% or less,
Ga: 0.015% or less,
La: 0.1% or less,
Y: 0.1% or less,
Hf: 0.1% or less,
REM: A ferritic stainless steel sheet having excellent magnetic properties according to [1] or [2], which contains 0.1% or less of one type or two or more types.
[4] The ferritic stainless steel sheet having excellent magnetic properties according to any one of [1] to [3], which is used as a contact member arranged in a magnetic field.

本発明によれば、耐衝撃性及び磁気特性に優れたフェライト系ステンレス鋼板を提供できる。また、本発明のフェライト系ステンレス鋼板は、磁気遮断器の接点部材用の材料として好適に用いることができる。   According to the present invention, it is possible to provide a ferritic stainless steel sheet having excellent impact resistance and magnetic properties. Further, the ferritic stainless steel sheet of the present invention can be suitably used as a material for a contact member of a magnetic circuit breaker.

磁気遮断器の一例を示す断面模式図である。It is a cross-sectional schematic diagram which shows an example of a magnetic circuit breaker.

本発明者らは、前記した課題を解決するために、フェライト系ステンレス鋼板において、耐衝撃性及び磁気特性に影響を及ぼす合金元素について鋭意検討を行い,下記の新しい知見を得て本発明をなすに至った。   In order to solve the above-mentioned problems, the present inventors have earnestly studied alloy elements that affect impact resistance and magnetic properties in ferritic stainless steel sheets, and obtained the following new findings to form the present invention. Came to.

(a)上述のように、磁気遮断器の接点材料に求められる特性としては、耐衝撃性及び磁気特性がある。ステンレス鋼は、銅等の他の接点材料に比べて耐衝撃性及び磁気特性に優れるが、磁気特性については、磁気遮断器の接点部材として好適な特性を有するものは得られていない。磁気特性の指標となる比透磁率の値は外部磁場に依存し、車載用途での外部磁場は必ずしもステンレス鋼の飽和磁化に到達しない印加磁場力(例えば1000A/m)を想定し磁化の容易さを評価する必要がある。ステンレス鋼は一般に、耐食性を高めるために合金元素を含有させるが、合金元素を含有させるとFeの含有量が相対的に低下し、磁気特性が低下する。従って、磁気遮断器の接点材料として好適なステンレス鋼を実現するためには、合金元素の含有量を可能な限り低減させる必要があり、特にCr量については、含有量を18%以下に抑制することが好ましいことを知見した。
(b)ステンレス鋼の磁気特性は、結晶粒界の影響を受ける。結晶粒界は磁気の障壁となって磁気特性を低下させやすい。特にステンレス鋼では、結晶粒界にPやS等の不純物元素が偏析して磁気特性を低下させる。PやSの他に、結晶粒界に偏析して磁気特性を阻害する元素としてC、Nといった元素もある。本発明者らは、上述したP、S、C、Nの過度な低下によらず磁気特性の改善に有効な集合組織の制御を見出した。
(c)また、Ti及びNbを含有させることで、P、S、C、N等と化合してリン化物、硫化物、炭化物、窒化物等を形成させてP、S、C、N等を固定させて、磁気特性の劣化を抑制する効果があることを見出した。また、本発明者らは、TiやNbはそれ自体が粒界に偏析することで、PやSの粒界偏析を抑制して磁気特性の劣化を防止できることも見出した。
(d)また、ステンレス鋼では、結晶粒界にPやS等の不純物元素が偏析して磁気特性を低下させるが、本発明者らはSnに着目した。Snは粒界偏析元素であり、PやS等の粒界偏析を抑制して磁気特性の改善に有効な元素である。Snを所定の範囲で含有させることにより、磁気特性の更なる改善が見込まれることを見出した。
(e)磁気特性に関して、従来、磁気特性を改善させるためには、磁化容易方位である{110}方位の結晶粒を成長・粗大化させて磁気特性を改善していたが、結晶粒の粗大化によって鋼の靱性を低下させていた。本発明は、鋼の集合組織に着目し、{110}方位粒を3.0超〜30%未満の範囲で生成させて{111}や{211}方位粒を分断することで、磁気特性と靱性の両方を改善できることを見出した。
(A) As described above, the characteristics required for the contact material of the magnetic circuit breaker include impact resistance and magnetic characteristics. Although stainless steel is superior in impact resistance and magnetic characteristics to other contact materials such as copper, no one having suitable magnetic characteristics as a contact member for a magnetic circuit breaker has been obtained. The value of relative permeability, which is an index of magnetic properties, depends on the external magnetic field, and the external magnetic field for in-vehicle use is assumed to be an applied magnetic field force (for example, 1000 A / m) that does not necessarily reach the saturation magnetization of stainless steel. Need to be evaluated. In general, stainless steel contains an alloying element in order to improve the corrosion resistance, but when the alloying element is contained, the content of Fe relatively decreases and the magnetic properties decrease. Therefore, in order to realize a stainless steel suitable as a contact material for a magnetic circuit breaker, it is necessary to reduce the content of alloying elements as much as possible, and especially the content of Cr is suppressed to 18% or less. It was found that this is preferable.
(B) The magnetic properties of stainless steel are affected by grain boundaries. The crystal grain boundaries serve as a magnetic barrier and easily deteriorate the magnetic characteristics. Particularly in stainless steel, impurity elements such as P and S segregate at the crystal grain boundaries to deteriorate the magnetic properties. In addition to P and S, there are elements such as C and N as elements that segregate at the crystal grain boundaries and obstruct magnetic properties. The present inventors have found that the control of the texture is effective for improving the magnetic properties without depending on the excessive reduction of P, S, C and N described above.
(C) Further, by containing Ti and Nb, P, S, C, N, etc. are combined to form phosphide, sulfide, carbide, nitride, etc. It was found that there is an effect of suppressing the deterioration of magnetic characteristics by fixing. The present inventors have also found that segregation of Ti and Nb themselves at grain boundaries can suppress grain boundary segregation of P and S and prevent deterioration of magnetic properties.
(D) Further, in stainless steel, impurity elements such as P and S segregate in the crystal grain boundaries to deteriorate the magnetic properties, but the present inventors have focused on Sn. Sn is a grain boundary segregation element, and is an element effective in improving the magnetic properties by suppressing grain boundary segregation such as P and S. It has been found that further improvement of magnetic properties is expected by incorporating Sn in a predetermined range.
(E) Regarding magnetic characteristics, conventionally, in order to improve the magnetic characteristics, the crystal characteristics in the {110} direction, which is the easy magnetization direction, are grown and coarsened to improve the magnetic characteristics. However, the toughness of the steel was deteriorated by this. The present invention focuses on the texture of steel and generates {110} oriented grains in the range of more than 3.0 to less than 30% to divide {111} or {211} oriented grains to obtain magnetic properties. It has been found that both toughness can be improved.

上記(a)〜(e)の知見に基づいて成された本発明の要旨は、以下の通りである。
本実施形態のフェライト系ステンレス鋼板は、質量%で、C:0.020%以下、Si:1.00%以下、Mn:1.00%以下、P:0.035%以下、S:0.0030%以下、Cr:10.0〜18.0%、N:0.020%以下、Nb:0.5%以下、Ti:0.5%以下、Al:0.10%以下を含み、残部がFeおよび不純物からなり、板表面における集合組織が下記の(i)および(ii)を満たす磁気特性に優れたフェライト系ステンレス鋼板である。
(i)板表面における鋼板表面の法線方向と{110}面方位との角度差が15°以内である{110}±15°方位粒の面積率が3.0%超30%未満。
(ii)板表面において{110}±15°方位粒の面積率をA、{111}±15°方位粒の面積率をBとしたとき、0.10<A/B<0.80。
また、本実施形態のフェライト系ステンレス鋼板は、さらに質量%で、Sn:0.001〜0.5%、B:0.005%以下の1種または2種を含有することが好ましい。
また、本実施形態のフェライト系ステンレス鋼板は、さらに質量%で、Ni:1%以下、Cu:1%以下、Mo:1%以下、Sb:0.2%以下、V:0.5%以下、W:0.5%以下、Zr:0.5%以下、Co:0.5%以下、Mg:0.005%以下、Ca:0.005%以下、Ga:0.005%以下、La:0.1%以下、Y:0.1%以下、Hf:0.1%以下、REM:0.1%以下、の1種または2種以上を含有してもよい。
また、本実施形態のフェライト系ステンレス鋼板は、磁界内に配置される接点部材として用いられることが好ましい。
The gist of the present invention made based on the findings (a) to (e) is as follows.
The ferritic stainless steel sheet of the present embodiment is, in mass%, C: 0.020% or less, Si: 1.00% or less, Mn: 1.00% or less, P: 0.035% or less, S: 0.0. 0030% or less, Cr: 10.0 to 18.0%, N: 0.020% or less, Nb: 0.5% or less, Ti: 0.5% or less, Al: 0.10% or less, and the balance Is Fe and impurities, and the texture on the plate surface is a ferritic stainless steel sheet having excellent magnetic properties satisfying the following (i) and (ii).
(I) The area difference of {110} ± 15 ° orientation grains, in which the angular difference between the normal direction of the steel sheet surface and the {110} plane orientation on the plate surface is within 15 °, is more than 3.0% and less than 30%.
(Ii) When the area ratio of {110} ± 15 ° oriented grains on the plate surface is A and the area ratio of {111} ± 15 ° oriented grains is B, 0.10 <A / B <0.80.
Further, the ferritic stainless steel sheet of the present embodiment preferably further contains, by mass%, one or two of Sn: 0.001 to 0.5% and B: 0.005% or less.
Further, the ferritic stainless steel sheet of the present embodiment is further mass%, Ni: 1% or less, Cu: 1% or less, Mo: 1% or less, Sb: 0.2% or less, V: 0.5% or less. , W: 0.5% or less, Zr: 0.5% or less, Co: 0.5% or less, Mg: 0.005% or less, Ca: 0.005% or less, Ga: 0.005% or less, La : 0.1% or less, Y: 0.1% or less, Hf: 0.1% or less, REM: 0.1% or less, or two or more thereof may be contained.
Further, the ferritic stainless steel plate of the present embodiment is preferably used as a contact member arranged in a magnetic field.

以下、本発明の各要件について詳しく説明する。なお、各元素の含有量の「%」表示は「質量%」を意味する。   Hereinafter, each requirement of the present invention will be described in detail. The “%” display of the content of each element means “mass%”.

C:0.020%以下
Cは、含有量が多すぎると合金中に炭化物を形成ならびに粒界偏析して磁気特性を劣化させ、更には靱性を低下させて耐衝撃性を悪化させるため、その含有量は少ないほどよく、上限を0.020%以下とする。ただし、炭素量を低減させるには精錬工程が煩雑になりコストが増大する。よってC量は0.001%以上とすることが好ましい。精錬コストも考慮した好ましい範囲は0.003〜0.015%であり、更に好ましい範囲は0.003〜0.010%である。
C: 0.020% or less When C is too much, C forms carbides in the alloy and segregates at grain boundaries to deteriorate magnetic properties, and further reduces toughness to deteriorate impact resistance. The lower the content, the better, and the upper limit is 0.020% or less. However, in order to reduce the amount of carbon, the refining process becomes complicated and the cost increases. Therefore, the C content is preferably 0.001% or more. Considering the refining cost, the preferable range is 0.003 to 0.015%, and the more preferable range is 0.003 to 0.010%.

Si:1.00%以下
Siは、脱酸元素として有効であり、磁気特性の向上にも有効な元素だが、過剰に含有させると、Siは固溶強化元素として作用し、加工性の低下を招くため、上限を1.00%以下とする。磁気特性を確保するために下限を0.01%以上とすることが好ましい。好ましい範囲は、効果と製造性を考慮して0.05〜0.50%であり、0.05〜0.30%であってもよい。
Si: 1.00% or less Si is an element that is effective as a deoxidizing element and is also effective in improving magnetic properties. However, if it is contained in excess, Si acts as a solid solution strengthening element, which lowers workability. Therefore, the upper limit is made 1.00% or less. In order to secure magnetic properties, the lower limit is preferably 0.01% or more. Considering the effect and manufacturability, the preferable range is 0.05 to 0.50%, and may be 0.05 to 0.30%.

Mn:1.00%以下
Mnは、脱酸元素として有効な元素であり、また、磁気特性を低下させるSの固定するために有効な元素でもある。一方、Mnは耐食性や耐酸化性の低下を招くため、上限を1.00%以下とする。脱酸やS固定の作用を確保するため、下限は0.01%以上とすることが好ましい。好ましい範囲は、効果と製造コストを考慮して0.05〜0.50%であり、0.05〜0.30%であってもよい。
Mn: 1.00% or less Mn is an element that is effective as a deoxidizing element and is also an element that is effective for fixing S that deteriorates magnetic properties. On the other hand, Mn causes deterioration of corrosion resistance and oxidation resistance, so the upper limit is made 1.00% or less. In order to secure the effects of deoxidation and S fixing, the lower limit is preferably 0.01% or more. The preferable range is 0.05 to 0.50% in consideration of the effect and manufacturing cost, and may be 0.05 to 0.30%.

P:0.035%以下
Pは、粒界偏析して磁気特性を低下させ、また、製造性を阻害する元素であり、その含有量は少ないほどよいため、上限を0.035%以下とする。但し、過度の低減は精錬コストの増加に繋がるため、下限を0.005%以上とする。好ましい範囲は、製造コストを考慮して0.010〜0.030%であり、0.010〜0.020%であってもよい。
P: 0.035% or less P is an element that segregates at grain boundaries to deteriorate magnetic properties and impairs manufacturability. The lower the content, the better. Therefore, the upper limit is 0.035%. . However, excessive reduction leads to an increase in refining cost, so the lower limit is made 0.005% or more. The preferable range is 0.010 to 0.030% in consideration of manufacturing cost, and may be 0.010 to 0.020%.

S:0.0030%以下
Sは、多量に含有させると合金中に硫化物を形成して磁気特性を劣化させ、また、粒界偏析することによっても磁気特性を劣化させるため、その含有量は少ないほどよく、上限を0.0030%以下とする。但し、過度の低減は原料及び精錬コストの増加に繋がるため、下限を0.0001%以上とする。好ましい範囲は、磁気特性の向上や製造コストを考慮して0.0002〜0.0015%であり、0.0002〜0.0008%であってもよい。
S: 0.0030% or less S contains S in a large amount to form sulfides in the alloy to deteriorate the magnetic properties, and also segregates at the grain boundaries to deteriorate the magnetic properties. The smaller the better, the better, and the upper limit is made 0.0030% or less. However, excessive reduction leads to an increase in raw materials and refining costs, so the lower limit is made 0.0001% or more. A preferable range is 0.0002 to 0.0015%, and may be 0.0002 to 0.0008% in consideration of improvement of magnetic properties and manufacturing cost.

Cr:10.0〜18.0%
Crは、本実施形態のフェライト系ステンレス鋼の基本元素であり、耐食性及び磁気特性を確保するために必須の元素である。本実施形態の磁気遮断器の接点材料としての用途を想定した耐食性を確保するために下限を10.0%以上とする。上限は、磁気特性の向上の観点から18.0%以下とする。非磁性元素であるCrが18.0%を超えると磁気特性が劣化する。より好ましいCrの範囲は、10.0〜15.0%未満としてもよく、10.0〜12.0%でもよい。
Cr: 10.0 to 18.0%
Cr is a basic element of the ferritic stainless steel of this embodiment, and is an essential element for ensuring corrosion resistance and magnetic properties. The lower limit is made 10.0% or more in order to secure the corrosion resistance assuming the use as the contact material of the magnetic circuit breaker of the present embodiment. The upper limit is 18.0% or less from the viewpoint of improving magnetic properties. If Cr, which is a non-magnetic element, exceeds 18.0%, the magnetic properties deteriorate. The more preferable range of Cr may be 10.0 to less than 15.0%, or may be 10.0 to 12.0%.

N:0.020%以下
Nは、CやSと同様に、過剰に含有すると合金中に窒化物を形成して磁気特性を低下させ、また、Nが粒界偏析することでも磁気特性を低下させるため、その含有量は少ないほどよく、上限を0.020%以下とする。但し、過度の低減は精錬コストの増加に繋がるため、下限を0.001%以上とすることが好ましい。好ましい範囲は、磁気特性と製造コストを考慮して0.005〜0.015%である。
N: 0.020% or less N, like C and S, when contained in excess, forms a nitride in the alloy to deteriorate the magnetic properties, and also segregates N at the grain boundaries to deteriorate the magnetic properties. Therefore, the smaller the content, the better, and the upper limit is made 0.020% or less. However, excessive reduction leads to an increase in refining cost, so the lower limit is preferably made 0.001% or more. A preferable range is 0.005 to 0.015% in consideration of magnetic properties and manufacturing cost.

Nb:0.5%以下
Ti:0.5%以下
Nb、Tiは、粒界に偏析することでPやSの粒界偏析を抑制して磁気特性の改善を図る作用がある。また、Nb、Tiには、磁気特性を阻害するC,N,P,Sを固定するための安定化元素としての作用もある。Nb,Tiとも、これら2つの作用を発揮するが、Nbは特に前者の作用に有効に働き、Tiは後者の作用に有効に働くと推測される。これらの作用によりTi、Nbは、耐食性の改善に加えて、本発明の目標とする磁気特性の改善に有効な元素となる。含有する場合は、それぞれその効果が発現する0.01%以上とする。但し、過度な含有は合金コストの上昇や加工性の低下に繋がり、また、靱性が低下して耐衝撃性が劣化するため、上限をそれぞれ0.5%以下とする。好ましい範囲は、磁気特性の向上効果と合金コストおよび製造性を考慮して、Nb、Tiについてそれぞれ0.05〜0.5%とする。より好ましい範囲はそれぞれ0.08〜0.3%であり、それぞれ0.1〜0.3%であってもよい。
Nb: 0.5% or less Ti: 0.5% or less Nb and Ti segregate at the grain boundaries to suppress the grain boundary segregation of P and S, and have the effect of improving the magnetic properties. In addition, Nb and Ti also have a function as a stabilizing element for fixing C, N, P, and S that obstruct magnetic properties. Both Nb and Ti exhibit these two actions, but it is presumed that Nb works particularly effectively on the former action and Ti works effectively on the latter action. Due to these actions, Ti and Nb become effective elements for improving the corrosion resistance as well as for improving the magnetic properties targeted by the present invention. When it is contained, the content is set to 0.01% or more so that the respective effects are exhibited. However, an excessive content leads to an increase in alloy cost and a decrease in workability, and further, the toughness decreases and the impact resistance deteriorates, so the upper limits are made 0.5% or less. Considering the effect of improving the magnetic properties, alloy cost and manufacturability, the preferable ranges are 0.05 to 0.5% for Nb and Ti, respectively. A more preferable range is 0.08 to 0.3%, and each may be 0.1 to 0.3%.

Al:0.10%以下
Alは、脱酸元素として極めて有効な元素である。一方、鋼の靭性の低下を招くため、上限を0.10%以下とする。下限は、脱酸効果を考慮して0.005%以上とすることが好ましい。好ましい範囲は、製造性と性能を考慮して0.01〜0.07%であり、0.01〜0.05%であってもよい。
Al: 0.10% or less Al is an extremely effective element as a deoxidizing element. On the other hand, since the toughness of steel is reduced, the upper limit is made 0.10% or less. The lower limit is preferably 0.005% or more in consideration of the deoxidizing effect. Considering manufacturability and performance, the preferable range is 0.01 to 0.07%, and may be 0.01 to 0.05%.

上記した元素以外は、Feおよび不純物からなる。但し、本発明の技術特徴が奏する効果を阻害しない範囲で、上記以外の以下に記載する元素を、選択的に含有させることができる。以下に限定理由を記載する。   Other than the above-mentioned elements, it consists of Fe and impurities. However, the elements described below other than the above can be selectively contained within a range that does not impair the effects exhibited by the technical features of the present invention. The reasons for limitation are described below.

Sn:0.001〜0.5%
Snは、耐食性に加えて、本発明の目標とする磁気特性を向上させるために有効な元素である。ステンレス鋼の結晶粒界には、PやS等の不純物元素が偏析して磁気特性を低下させる。Snは、自身が粒界偏析元素であり、PやS等の粒界偏析を抑制して磁気特性の改善に有効な元素である。Snを所定の範囲で含有させることにより、磁気特性の改善が見込まれるので、本発明では0.001〜0.5%の範囲で含有させる。Snを0.001%以上含有させることで、前出の効果が発現されて磁気特性が向上する。但し、過度な含有は、結晶粒界におけるSn濃度を増大させて磁気特性の低下につながり、また、靱性を低下させて耐衝撃性の低下を招くため、上限を0.5%以下とする。好ましくは0.005〜0.3%であり、0.010〜0.2%でもよい。
Sn: 0.001-0.5%
Sn is an element effective for improving the magnetic characteristics targeted by the present invention, in addition to corrosion resistance. Impurity elements such as P and S segregate in the crystal grain boundaries of stainless steel to deteriorate the magnetic properties. Sn is a grain boundary segregation element itself, and is an element effective for improving the magnetic properties by suppressing grain boundary segregation such as P and S. Since the improvement of magnetic properties is expected by containing Sn in a predetermined range, in the present invention, it is contained in a range of 0.001 to 0.5%. When Sn is contained in an amount of 0.001% or more, the above-described effect is exhibited and the magnetic characteristics are improved. However, an excessive content increases the Sn concentration in the crystal grain boundary and leads to deterioration of magnetic properties, and also lowers toughness and causes deterioration of impact resistance, so the upper limit is made 0.5% or less. It is preferably 0.005 to 0.3%, and may be 0.010 to 0.2%.

B:0.005%以下
Bは、粒界偏析元素であり、Snと同様に磁気特性を向上させるとともに熱間加工性を向上させる元素であり、本実施形態のフェライト系ステンレス鋼に含有させることは有効である。Bの下限は磁気特性の向上を図るため0.0003%以上とすることが好ましい。しかし、過度のBの含有は、伸びの低下をもたらし製造性を低下させるため、上限を0.005%以下とする。好ましくは0.0005〜0.002%とし、0.001〜0.002%でもよい。
B: 0.005% or less B is a grain boundary segregation element, which, like Sn, improves magnetic properties and hot workability, and should be contained in the ferritic stainless steel of the present embodiment. Is valid. The lower limit of B is preferably 0.0003% or more in order to improve the magnetic properties. However, excessive B content causes a decrease in elongation and reduces manufacturability, so the upper limit is made 0.005% or less. It is preferably 0.0005 to 0.002%, and may be 0.001 to 0.002%.

Ni:1%以下
Cu:1%以下
Mo:1%以下
Ni、Cu、Moは、耐食性に有効な元素である。この効果を発揮させるため、Ni、Cu、Moはそれぞれ、0.05%以上の範囲で含有させてもよい。過度の含有は、ステンレス鋼の再結晶および結晶粒成長を阻害して磁気特性の低下を招くため、それぞれ上限は1%以下とする。より好ましい範囲はそれぞれ、0.1%以上0.8%以下であり、更に好ましくは0.3%以上0.6%以下である。
Ni: 1% or less Cu: 1% or less Mo: 1% or less Ni, Cu, and Mo are elements effective for corrosion resistance. In order to exert this effect, each of Ni, Cu, and Mo may be contained in the range of 0.05% or more. Excessive content hinders recrystallization and crystal grain growth of stainless steel and causes deterioration of magnetic properties. Therefore, the upper limit of each content is set to 1% or less. A more preferable range is 0.1% or more and 0.8% or less, and a still more preferable range is 0.3% or more and 0.6% or less.

Sb:0.2%以下
V:0.5%以下
W:0.5%以下
Zr:0.5%以下
Co:0.5%以下
Sb、V、W、Zr、Coは、耐食性の改善とP、Sの粒界偏析を抑制して磁気特性の向上に有効な元素であり、必要に応じて含有させる。特にSbは強力な粒界偏析元素であり、SnやBと同様に、P、Sなど不純物元素の粒界偏析を排除する作用を持つ。これらの元素を含有させる場合は、それぞれその効果が発現する0.01%以上とする。過度な含有は製造性や磁気特性の低下に繋がるため、Sbを0.2%以下、V、W、Zr、Coをそれぞれ0.5%以下とする。より好ましいSbの範囲は、0.02〜0.15%、更に好ましくは0.02〜0.1%以下である。V、W、Zr、Coのより好ましい範囲は0.02〜0.3%、更に好ましい範囲は0.02〜0.2%である。
Sb: 0.2% or less V: 0.5% or less W: 0.5% or less Zr: 0.5% or less Co: 0.5% or less Sb, V, W, Zr, and Co improve corrosion resistance. It is an element effective in suppressing the grain boundary segregation of P and S and improving the magnetic properties, and is contained if necessary. In particular, Sb is a strong grain boundary segregation element and, like Sn and B, has a function of eliminating grain boundary segregation of impurity elements such as P and S. When these elements are contained, the content of each element is set to 0.01% or more. Since excessive content leads to deterioration of manufacturability and magnetic properties, Sb is set to 0.2% or less, and V, W, Zr, and Co are each set to 0.5% or less. A more preferable range of Sb is 0.02 to 0.15%, further preferably 0.02 to 0.1% or less. A more preferable range of V, W, Zr, and Co is 0.02 to 0.3%, and a further preferable range is 0.02 to 0.2%.

Mg:0.005%以下
Mgは、溶鋼中でAlとともにMg酸化物を形成し脱酸剤として作用する他、TiNの晶出核として作用する。TiNは凝固過程においてフェライト相の凝固核となり、TiNの晶出を促進させることで、凝固時にフェライト相を微細生成させることができる。凝固組織を微細化させることにより、再結晶と結晶粒成長を促進して磁気特性を向上させることができる。含有させる場合は、これら効果を発現する0.0001%以上とする。但し、Mgが0.005%を超えると磁気特性が劣化するため、上限を0.005%以下とする。好ましくは0.0003〜0.002%とし、更に好ましくは0.0003〜0.001%する。
Mg: 0.005% or less Mg forms Mg oxide with Al in molten steel and acts as a deoxidizing agent, and also acts as a crystallization nucleus of TiN. TiN serves as a solidification nucleus of the ferrite phase in the solidification process, and promotes crystallization of TiN, so that the ferrite phase can be finely generated during solidification. By refining the solidified structure, recrystallization and crystal grain growth can be promoted and magnetic characteristics can be improved. When it is contained, the content is set to 0.0001% or more for exhibiting these effects. However, if Mg exceeds 0.005%, the magnetic properties deteriorate, so the upper limit is made 0.005% or less. It is preferably 0.0003 to 0.002%, and more preferably 0.0003 to 0.001%.

Ca:0.005%以下
Ga:0.015%以下
Ca、Gaは、鋼の清浄度を向上させる元素であり、必要に応じて含有させる。含有させる場合は、これら効果を発現するためにCaは0.0003%以上、Gaは0.001%以上とする。しかし、過度の含有は磁気特性の劣化に繋がるため、上限をCaは0.005%以下、Gaは0.015%以下とする。Caは好ましくは0.0003〜0.0015%とし、更に好ましくは0.0003〜0.001%とする。Gaは好ましくは0.001〜0.013%、0.005〜0.010%とする。
Ca: 0.005% or less Ga: 0.015% or less Ca and Ga are elements that improve the cleanliness of steel, and are contained as necessary. When it is contained, Ca is 0.0003% or more and Ga is 0.001% or more in order to exert these effects. However, since excessive content leads to deterioration of magnetic properties, the upper limits are set to 0.005% or less for Ca and 0.015% or less for Ga. Ca is preferably 0.0003 to 0.0015%, more preferably 0.0003 to 0.001%. Ga is preferably 0.001 to 0.013% and 0.005 to 0.010%.

La:0.1%以下
Y:0.1%以下
Hf:0.1%以下
REM:0.1%以下
La、Y、Hf、REMは、Ca、Gaと同様に鋼の清浄度を向上させる元素であり、必要に応じて含有してもよい。含有させる場合は、効果が発現するためにそれぞれ0.001%以上とする。しかし、過度の含有は、磁気特性の劣化に繋がるため、上限をそれぞれ0.1%以下とする。好ましくはそれぞれ0.001〜0.05%とし、更に好ましくは0.001〜0.03%とする。
La: 0.1% or less Y: 0.1% or less Hf: 0.1% or less REM: 0.1% or less La, Y, Hf, and REM improve the cleanliness of steel similarly to Ca and Ga. It is an element and may be contained if necessary. When it is contained, the content is 0.001% or more in order to exert the effect. However, excessive contents lead to deterioration of magnetic properties, so the upper limits are made 0.1% or less. It is preferably 0.001 to 0.05%, and more preferably 0.001 to 0.03%.

REM(希土類元素)は、スカンジウム(Sc)、イットリウム(Y)の2元素と、周期律表においてセリウム(Ce)からルテチウム(Lu)までの14元素(ランタノイド)の総称を指す。これらの元素は単独で含有させてもよいし、混合物であってもよい。   REM (rare earth element) is a general term for two elements, scandium (Sc) and yttrium (Y), and 14 elements (lanthanoids) from cerium (Ce) to lutetium (Lu) in the periodic table. These elements may be contained alone or in a mixture.

なお、残部に含まれる不純物とは、鋼板を工業的に製造する際に、原料としての鉱石、スクラップ、または製造環境などから混入されるものであって、本発明の鋼板に悪影響を与えない範囲で許容されるものを意味する。   Incidentally, the impurities contained in the balance, when industrially manufacturing a steel sheet, ore as a raw material, scrap, or those that are mixed from the manufacturing environment, etc., the range that does not adversely affect the steel sheet of the present invention Means acceptable.

次に本実施形態のフェライト系ステンレス鋼板の集合組織について説明する。本実施形態のフェライト系ステンレス鋼板は、板表面における集合組織が下記の(i)および(ii)を満たすものである。   Next, the texture of the ferritic stainless steel sheet of this embodiment will be described. In the ferritic stainless steel sheet of the present embodiment, the texture on the sheet surface satisfies the following (i) and (ii).

(i)板表面における鋼板表面の法線方向と{110}面方位との角度差が15°以内である{110}±15°方位粒の面積率が3.0%超30%未満。
(ii)板表面において{110}±15°方位粒の面積率をA、{111}±15°方位粒の面積率をBとしたとき0.10<A/B<0.80。
(I) The area difference of {110} ± 15 ° orientation grains, in which the angular difference between the normal direction of the steel sheet surface and the {110} plane orientation on the plate surface is within 15 °, is more than 3.0% and less than 30%.
(Ii) 0.10 <A / B <0.80, where A is the area ratio of {110} ± 15 ° oriented grains and B is the area ratio of {111} ± 15 ° oriented grains on the plate surface.

{110}方位はGoss方位と呼ばれ、圧延方向が鉄の磁化容易軸に一致しているため良好な磁気特性を有している。本発明ではこれらGoss方位の過度な生成によらず、板表面において{110}±15°以下の方位粒の面積率を制御することが効果的であることを知見した。{110}±15°方位粒の面積率は、3.0%超30%未満の範囲で含むことにより、{111}及び{112}方位粒を分断して磁気特性の上昇に寄与することができる。特性と製造性の観点から、好ましい範囲は5.0〜25%、より好ましい範囲は10〜20%である。   The {110} orientation is called the Goss orientation and has good magnetic properties because the rolling direction coincides with the easy axis of magnetization of iron. In the present invention, it has been found that it is effective to control the area ratio of oriented grains of {110} ± 15 ° or less on the plate surface without depending on the excessive generation of these Goss orientations. By including the area ratio of the {110} ± 15 ° oriented grains in the range of more than 3.0% and less than 30%, the {111} and {112} oriented grains may be divided to contribute to an increase in magnetic properties. it can. From the viewpoint of characteristics and manufacturability, the preferable range is 5.0 to 25%, and the more preferable range is 10 to 20%.

また、板表面において{110}±15°方位粒の面積率をA、{111}±15°方位粒の面積率をBとしたとき、再結晶集合組織の主方位である{111}±15°方位粒との比率(A/B)を0.10超0.80未満の範囲に高めることが有効である。   When the area ratio of {110} ± 15 ° oriented grains on the plate surface is A and the area ratio of {111} ± 15 ° oriented grains is B, {111} ± 15 which is the main orientation of the recrystallization texture. It is effective to increase the ratio (A / B) with the orientation grains to a range of more than 0.10 and less than 0.80.

A/Bは、加工性の低下から上限は0.80未満とする。製造性の低下からA/Bの上限は0.70未満としてもよい。特性と製造性の観点から、好ましいA/Bの範囲は0.20〜0.70、より好ましい範囲は0.40〜0.70である。   The upper limit of A / B is less than 0.80 because of the deterioration of workability. The upper limit of A / B may be less than 0.70 in order to reduce manufacturability. From the viewpoint of characteristics and manufacturability, the preferable A / B range is 0.20 to 0.70, and the more preferable range is 0.40 to 0.70.

本発明において、「板表面」とは、鋼板の板厚tのt/8までの領域であり、鋼板の表面から当該鋼板の両側の面方向に1/8tの厚さまでの領域をいう。また、(111)±15°方位粒とは、鋼板表面の法線方向と{111}面方位との角度差が15°以内である結晶方位を持つ結晶粒をいう。   In the present invention, the “plate surface” is a region up to t / 8 of the plate thickness t of the steel plate, and refers to a region from the surface of the steel plate to a thickness of 1/8 t in the surface direction on both sides of the steel plate. Further, the (111) ± 15 ° orientation grains mean crystal grains having a crystal orientation in which an angle difference between the normal direction of the steel sheet surface and the {111} plane orientation is within 15 °.

前記した磁気特性に及ぼす集合組織の影響については、電子線後方散乱回折法(以下、EBSD)を用いて解析することができる。EBSDは、試料表面のミクロ領域における結晶粒毎の結晶方位を高速に測定・解析するものである。磁気特性に寄与する結晶方位集団は、板厚中心部における{110}±15°方位粒と{111}±15°方位粒の2つの領域に分割した結晶方位マップを表示させて数値化することができる。例えば、鋼板表面に平行な面において、板幅方向850μm、圧延方向2250μmの測定領域で倍率100としてEBSDの測定を行い、鋼板表面に平行な面の法線方向と{110}面方位との角度差が15°以内である結晶粒(すなわち{110}±15°方位粒)の結晶方位マップを表示させてその面積率を表示することができる。   The influence of the texture on the magnetic properties described above can be analyzed using electron beam backscattering diffraction (hereinafter referred to as EBSD). EBSD is to measure and analyze the crystal orientation of each crystal grain in a micro region of the sample surface at high speed. The crystallographic orientation group that contributes to the magnetic properties should be digitized by displaying a crystallographic orientation map divided into two regions of {110} ± 15 ° oriented grains and {111} ± 15 ° oriented grains in the center of plate thickness. You can For example, in a plane parallel to the steel plate surface, EBSD is measured with a magnification of 100 in a measurement region of a plate width direction of 850 μm and a rolling direction of 2250 μm, and an angle between the normal direction of the plane parallel to the steel plate surface and the {110} plane orientation. The area ratio can be displayed by displaying a crystal orientation map of crystal grains having a difference of 15 ° or less (that is, {110} ± 15 ° orientation grains).

本実施形態のフェライト系ステンレス鋼板は、磁気特性として、比透磁率が高く、保磁力が小さいことが好ましい。比透磁率と保磁力は、以下の測定条件により得られる数値により接点部材への適用性を評価する。測定条件は、外径Φ45mm、内径Φ33mmのリング状試験片を作製し、巻き線数100、印加磁化力1000A/mとし、室温にて磁気測定(B−H曲線)を行い、比透磁率(μ)と保磁力(Hc[A/m])を求める。印加磁化力は、飽和磁化に到達しない値として磁化の容易さを評価する。磁化の容易さは比透磁率が高いほど、ヒステリシス損は保磁力が小さいほど良好である。
比透磁率μは、500以上がよく、好ましくは600以上、より好ましくは700以上である。保磁力Hcは400A/m以下、好ましくは300A/m以下、より好ましくは250A/m以下である。
比透磁率が高く、保磁力が低いと、フェライト系ステンレス鋼を接点部材に適用した際に、磁化しやすくヒシテリスス損が小さいので好ましい。
The ferritic stainless steel sheet of the present embodiment preferably has high magnetic permeability and low coercive force as magnetic characteristics. The relative permeability and the coercive force are evaluated for their applicability to contact members by the numerical values obtained under the following measurement conditions. The measurement conditions were such that a ring-shaped test piece with an outer diameter of Φ45 mm and an inner diameter of Φ33 mm was prepared, the number of windings was 100, the applied magnetizing force was 1000 A / m, and magnetic measurement (B-H curve) was performed at room temperature to obtain a relative permeability ( μ) and coercive force (Hc [A / m]). The applied magnetizing force evaluates the ease of magnetization as a value that does not reach saturation magnetization. The ease of magnetization is better as the relative permeability is higher, and the hysteresis loss is better as the coercive force is smaller.
The relative permeability μ is preferably 500 or more, preferably 600 or more, and more preferably 700 or more. The coercive force Hc is 400 A / m or less, preferably 300 A / m or less, and more preferably 250 A / m or less.
A high relative magnetic permeability and a low coercive force are preferable because when the ferritic stainless steel is applied to a contact member, it is easy to magnetize and the hysteresis loss is small.

次に、本実施形態のフェライト系ステンレス鋼板の製造方法について説明する。
本実施形態のフェライト系ステンレス鋼板は、上記の化学成分を満足すれば、鋳造、熱間加工、冷間加工等の通常のプロセス条件で製造しても本発明の目標とする磁気特性を確保することが可能である。
より好ましくは、本実施形態のフェライト系ステンレス鋼板は、上記の化学組成を有する鋼を、熱間圧延後、熱処理を省略もしくは700℃以下で熱処理し、その後に圧延率40%以下の冷間圧延を行い、900℃超の熱処理を行うことで製造する。
Next, a method for manufacturing the ferritic stainless steel sheet according to this embodiment will be described.
The ferritic stainless steel sheet of the present embodiment will secure the magnetic properties targeted by the present invention even if it is manufactured under normal process conditions such as casting, hot working, cold working, etc., if the above-mentioned chemical components are satisfied. It is possible.
More preferably, the ferritic stainless steel sheet of the present embodiment is a steel having the above chemical composition, after hot rolling, the heat treatment is omitted or heat treatment is performed at 700 ° C. or less, and then cold rolling at a rolling ratio of 40% or less. And heat treatment at over 900 ° C. to manufacture.

熱間圧延後、熱処理を省略して冷間圧延を行うか、もしくは、700℃以下の均熱温度で熱処理してから冷間圧延を行う。熱間圧延後の熱処理を700℃超の均熱温度で実施すると、本発明において磁気特性を高めるために有効な{110}方位粒が減少する場合もある。磁気特性を高めるために有効な{110}±15°方位粒は、歪エネルギーの高い結晶粒界から再結晶しやすいため、熱間圧延後の熱処理を省略もしくは熱間圧延時の歪エネルギーが解消しない700℃以下で熱処理をした後、冷間圧延を施すことが好ましい。   After hot rolling, heat treatment is omitted and cold rolling is performed, or heat treatment is performed at a soaking temperature of 700 ° C. or less and then cold rolling is performed. When the heat treatment after hot rolling is carried out at a soaking temperature higher than 700 ° C., the {110} oriented grains effective for enhancing the magnetic properties in the present invention may decrease. The {110} ± 15 ° oriented grains, which are effective for enhancing magnetic properties, are easily recrystallized from grain boundaries with high strain energy, so heat treatment after hot rolling is omitted or strain energy during hot rolling is eliminated. It is preferable to carry out cold rolling after heat treatment at 700 ° C. or lower.

熱処理する場合の均熱時間は、10秒〜10分とすることが好ましい。均熱時間が10秒以上であれば、冷間圧延のための材料の軟質化が図れるので好ましい。また、均熱時間が10分以下であれば、磁気特性を高めるために有効な{110}方位粒を消失させずに、磁気特性を高めるために有効な{110}±15°方位粒を歪エネルギーの高い結晶粒界から再結晶させやすくすることができる。   The soaking time during heat treatment is preferably 10 seconds to 10 minutes. A soaking time of 10 seconds or more is preferable because the material for cold rolling can be softened. Further, if the soaking time is 10 minutes or less, the {110} oriented grains effective for enhancing the magnetic properties are not dissipated and the {110} ± 15 ° oriented grains effective for enhancing the magnetic properties are strained. It is possible to facilitate recrystallization from a grain boundary having high energy.

冷間圧延は、40%以下の圧下率で冷暗圧延することが好ましい。冷間圧延率が40%超となると、再結晶集合組織である{111}±15°方位粒の形成と成長により、{110}±15°方位粒が低下する場合もある。従って、冷間圧延の圧下率が40%以下とするとよい。   Cold rolling is preferably cold-dark rolling at a reduction rate of 40% or less. If the cold rolling rate exceeds 40%, the {110} ± 15 ° oriented grains may be lowered due to the formation and growth of {111} ± 15 ° oriented grains which are recrystallized textures. Therefore, the rolling reduction of cold rolling is preferably 40% or less.

冷間圧延後の熱処理は、{110}±15°方位粒を成長させるために、900℃超の熱処理温度で熱処理することが好ましい。過度な温度上昇は、{110}±15°方位粒が低下・消失を招くため、熱処理温度の上限は1050℃であることが好ましい。また、熱処理時の雰囲気は特に規定するものではないが、大気中、LNG燃料雰囲気、BA雰囲気であることが好ましい。   The heat treatment after cold rolling is preferably performed at a heat treatment temperature of more than 900 ° C. in order to grow {110} ± 15 ° oriented grains. Excessive temperature rise causes reduction and disappearance of {110} ± 15 ° oriented grains, so the upper limit of the heat treatment temperature is preferably 1050 ° C. Further, the atmosphere during the heat treatment is not particularly specified, but it is preferable that the atmosphere is LNG fuel atmosphere or BA atmosphere.

冷間圧延後の熱処理の均熱時間は、1秒〜5分とすることが好ましい。Goss方位を生成させるために、均熱時間は1秒以上とすることが好ましい。また、均熱時間が5分以下であれば、{110}±15°方位粒が低下・消失を防止できる。   The soaking time of the heat treatment after cold rolling is preferably 1 second to 5 minutes. In order to generate the Goss orientation, the soaking time is preferably 1 second or longer. Further, if the soaking time is 5 minutes or less, it is possible to prevent the {110} ± 15 ° oriented grains from being reduced or lost.

本実施形態のフェライト系ステンレス鋼板は、磁界内に配置される接点部材として好適に用いることができる。
図1には、磁気遮断器の一例を示す。図1に示す磁気遮断器1は、リレー部10と駆動部20とを備える。磁気遮断器1は、リレー部10に備えられた可動接点部材13が駆動部20によって上下に駆動することで、一対の固定接点部材12に可動接点部材13が接触または非接触するように構成されている。固定接点部材12は外部回路に接続されている。そして、可動接点部材13と固定接点部材12とが接触状態にあるときには外部回路の電流が遮断されず、非接触状態にあるときには外部回路の電流を遮断するようになっている。以下、磁気遮断器1の構造について説明する。本実施形態のフェライト系ステンレス鋼板は、可動接点部材13及び固定接点部材12の素材に適用される。
The ferritic stainless steel sheet of this embodiment can be suitably used as a contact member arranged in a magnetic field.
FIG. 1 shows an example of a magnetic circuit breaker. The magnetic circuit breaker 1 shown in FIG. 1 includes a relay unit 10 and a drive unit 20. The magnetic circuit breaker 1 is configured such that the movable contact member 13 provided in the relay unit 10 is driven up and down by the drive unit 20 so that the movable contact member 13 contacts or does not contact the pair of fixed contact members 12. ing. The fixed contact member 12 is connected to an external circuit. The current of the external circuit is not cut off when the movable contact member 13 and the fixed contact member 12 are in contact with each other, and the current of the external circuit is cut off when they are in non-contact with each other. The structure of the magnetic circuit breaker 1 will be described below. The ferritic stainless steel plate of this embodiment is applied to the materials of the movable contact member 13 and the fixed contact member 12.

リレー部10は、中空箱状のリレー部筐体11と、リレー部筐体11の上面11aを貫通する2つの柱状の固定接点部材12と、リレー部側筐体11の内部に配置された棒状の可動接点部材13と、可動接点部材13を固定接点部材12側に付勢するばね14とを備えている。可動接点部材13及び固定接点部材12は、本実施形態のフェライト系ステンレス鋼によって形成されている。2つの固定接点部材12は、相互に離間して配置されている。柱状の固定接点部材12は、一端側に固定接点部12aが設けられ、他端側には外部端子部12bが設けられている。固定接点部12aは、リレー部筐体11の内部に挿入され、可動接点部材13に対向するように配置されている。外部端子部12bは、リレー部筐部材11の外側に配置されており、外部回路に接続される。   The relay unit 10 includes a hollow box-shaped relay unit casing 11, two columnar fixed contact members 12 penetrating the upper surface 11 a of the relay unit casing 11, and a rod-shaped member arranged inside the relay unit-side casing 11. Of the movable contact member 13 and a spring 14 for urging the movable contact member 13 toward the fixed contact member 12 side. The movable contact member 13 and the fixed contact member 12 are formed of the ferritic stainless steel of this embodiment. The two fixed contact members 12 are arranged apart from each other. The columnar fixed contact member 12 is provided with a fixed contact portion 12a on one end side and an external terminal portion 12b on the other end side. The fixed contact portion 12 a is inserted inside the relay portion housing 11 and is arranged so as to face the movable contact member 13. The external terminal portion 12b is arranged outside the relay casing member 11 and is connected to an external circuit.

棒状の可動接点部材13は、上面に可動接点部13aを有している。可動接点部材13は、可動接点部13aが2つの固定接点部12bと対向するようにリレー部筐体11内に配置されている。可動接点部材13は、駆動部20の接続シャフト24に接続されている。図1では、可動接点部材13がその可動範囲の最下方に位置している状態を示している。この状態は、可動接点部13aと固定接点部12aが離間して外部回路の電流が遮断された状態にある。また、図1に示す一点鎖線は、可動接点部材13がその可動範囲の最上方に位置している状態を示している。この状態は、可動接点部13aと固定接点部12aが接触して外部回路の電流が遮断されていない状態にある。   The rod-shaped movable contact member 13 has a movable contact portion 13a on the upper surface. The movable contact member 13 is arranged in the relay housing 11 such that the movable contact portion 13a faces the two fixed contact portions 12b. The movable contact member 13 is connected to the connection shaft 24 of the drive unit 20. FIG. 1 shows a state in which the movable contact member 13 is located at the bottom of its movable range. In this state, the movable contact portion 13a and the fixed contact portion 12a are separated from each other and the current of the external circuit is cut off. Further, the alternate long and short dash line shown in FIG. 1 indicates a state in which the movable contact member 13 is located at the uppermost part of its movable range. In this state, the movable contact portion 13a and the fixed contact portion 12a are in contact with each other and the current of the external circuit is not interrupted.

リレー部筐体11の内部には、ばね14が配置されている。ばね14は、可動接点部材13を固定接点部材12に接触させるために、可動接点部材13を固定接点部材12側に付勢する。ばね14には、接続シャフト24が挿通されている。また、リレー部筐体11の内部には図示略の磁石によって磁界が形成されている。   A spring 14 is arranged inside the relay unit housing 11. The spring 14 biases the movable contact member 13 toward the fixed contact member 12 in order to bring the movable contact member 13 into contact with the fixed contact member 12. The connection shaft 24 is inserted through the spring 14. A magnetic field is formed inside the relay housing 11 by a magnet (not shown).

駆動部20は、駆動部筐体21と、駆動部筐体21の内部に配置された電磁石コイル22と、電磁石コイル22の中空部22aに挿入された筒状のヨーク23と、ヨーク23に挿入された接続シャフト24と、ヨーク23を案内する中空筒状のガイド部材25とが備えられている。接続シャフト24は、駆動部筐体21を貫通して可動接点部材13に接続されている。   The drive unit 20 includes a drive unit housing 21, an electromagnet coil 22 arranged inside the drive unit housing 21, a cylindrical yoke 23 inserted into a hollow portion 22 a of the electromagnet coil 22, and a yoke 23. The connecting shaft 24 and the hollow tubular guide member 25 that guides the yoke 23 are provided. The connection shaft 24 penetrates the drive unit casing 21 and is connected to the movable contact member 13.

磁気遮断器1の動作を説明する。電磁石コイル22に通電しない場合は、ばね14によって可動接点部材13が固定接点部材12側に付勢され、可動接点部13aと固定接点部12aとが接触する。これにより、外部回路の電流が流される。一方、電磁石コイル22に通電して磁力を発生させると、ばね14の付勢力に抗してヨーク23が電磁石コイル22に吸引され、これにより、接続シャフト24を介して可動接点部材13が固定接点部材12から離間され、外部回路の電流が遮断される。リレー部筐体11の内部には図示略の磁石によって磁界が形成されており、電流遮断時に発生するアークは、リレー部筐体11の内部の磁界によって引き延ばされることで、たとえ大電流であっても確実に遮断される。   The operation of the magnetic breaker 1 will be described. When the electromagnet coil 22 is not energized, the movable contact member 13 is biased toward the fixed contact member 12 by the spring 14, and the movable contact portion 13a and the fixed contact portion 12a come into contact with each other. As a result, the current of the external circuit is passed. On the other hand, when the electromagnet coil 22 is energized to generate a magnetic force, the yoke 23 is attracted to the electromagnet coil 22 against the urging force of the spring 14, whereby the movable contact member 13 is fixed to the fixed contact via the connecting shaft 24. The member 12 is separated from the member 12, and the current of the external circuit is cut off. A magnetic field is formed inside the relay housing 11 by a magnet (not shown), and the arc generated when the current is cut off is extended even by the magnetic field inside the relay housing 11, resulting in a large current. Even if it is cut off surely.

上記の磁気遮断器1の可動接点部材13及び固定接点部材12は、本実施形態のフェライト系ステンレス鋼によって形成されている。本実施形態のフェライト系ステンレス鋼板は、従来の接点材料である銅合金等に比べて、耐衝撃性に優れるため、可動接点部材13と固定接点部材12との接触/非接触が何度も繰り返された場合であっても、可動接点部材13及び固定接点部材12の破損を防止できる。また、本実施形態のフェライト系ステンレス鋼板は、磁気特性にも優れるため、可動接点部材13及び固定接点部材12は、リレー部筐体11の内部に発生させた磁界によって容易に磁化される。これにより、リレー部筐体11内部の磁界の分布が、可動接点部材13と固定接点部材12によって乱されることがなく、磁界による電流遮断時のアークの引き延ばしを阻害することがなく、電流を確実に遮断させることができる。   The movable contact member 13 and the fixed contact member 12 of the magnetic circuit breaker 1 are made of the ferritic stainless steel of this embodiment. The ferritic stainless steel sheet of the present embodiment is superior in impact resistance as compared with the conventional contact material such as copper alloy, so that contact / non-contact between the movable contact member 13 and the fixed contact member 12 is repeated many times. Even if it is broken, the movable contact member 13 and the fixed contact member 12 can be prevented from being damaged. In addition, since the ferritic stainless steel sheet of this embodiment has excellent magnetic characteristics, the movable contact member 13 and the fixed contact member 12 are easily magnetized by the magnetic field generated inside the relay housing 11. As a result, the distribution of the magnetic field inside the relay part housing 11 is not disturbed by the movable contact member 13 and the fixed contact member 12, and the extension of the arc at the time of interruption of the current due to the magnetic field is not hindered, and the current flow is reduced. It can be surely shut off.

なお、本実施形態のフェライト系ステンレス鋼板は、図1に示す磁気遮断器1に限定されるものではなく、磁界によってアークを消弧させる遮断器であれば、その接点材料として好適に用いることができる。   The ferritic stainless steel sheet of the present embodiment is not limited to the magnetic circuit breaker 1 shown in FIG. 1, and any circuit breaker that extinguishes an arc by a magnetic field can be suitably used as a contact material. it can.

以下、本発明の実施例を説明する。
表1の成分組成を有するフェライト系ステンレス鋼を溶製し、加熱温度1150〜1250℃まで加熱して熱間圧延を行い、板厚4.0mmの熱延鋼板を製造した。熱延鋼板を表2に示す条件にて焼鈍し、酸洗後に板厚1.5〜3.0mmまで冷間圧延し、880〜980℃の仕上げ焼鈍と酸洗を行った。このようにして、フェライト系ステンレス鋼を製造した。得られたフェライト系ステンレス鋼について、磁気特性および耐衝撃特性の評価に供した。
Examples of the present invention will be described below.
Ferritic stainless steel having the composition of the components shown in Table 1 was melted, heated to a heating temperature of 1150 to 1250 ° C. and hot-rolled to manufacture a hot-rolled steel sheet having a thickness of 4.0 mm. The hot-rolled steel sheet was annealed under the conditions shown in Table 2, pickled and then cold-rolled to a sheet thickness of 1.5 to 3.0 mm, followed by finish annealing at 880 to 980 ° C and pickling. In this way, ferritic stainless steel was manufactured. The obtained ferritic stainless steel was evaluated for magnetic properties and impact resistance.

磁気特性の評価は、JIS C 2556準拠して以下の手順で実施した。
磁気特性の評価は、外径Φ45mm、内径Φ33mmのリング状試験片を作製し、巻き線数100、印加磁化力1000A/mとし、室温にて磁気測定(B−H曲線)を行い、比透磁率(μ)と保磁力(Hc[A/m])を求めた。印加磁場力は、飽和磁化に到達しない値として磁化の容易さを評価した。評価基準は以下の通りとした。評価ランク1〜3を合格とし、評価ランク4を不合格とした。
The evaluation of magnetic properties was carried out according to the following procedure according to JIS C 2556.
To evaluate the magnetic properties, a ring-shaped test piece with an outer diameter of Φ45 mm and an inner diameter of Φ33 mm was prepared, the number of windings was 100, the applied magnetizing force was 1000 A / m, and the magnetic measurement (B-H curve) was performed at room temperature to determine the relative permeability. The magnetic susceptibility (μ) and the coercive force (Hc [A / m]) were obtained. The applied magnetic field force evaluated the ease of magnetization as a value that did not reach saturation magnetization. The evaluation criteria are as follows. The evaluation ranks 1 to 3 were passed, and the evaluation rank 4 was rejected.

評価ランク
1:比透磁率が700以上かつ保磁力が250A/m以下を満たす。
2:比透磁率が600以上700未満かつ保磁力が250A/m超300A/m以下を満たす。
3:比透磁率が500以上600未満かつ保磁力が300A/m超400A/m以下を満たす。
4:比透磁率が500未満または保磁力が400A/m超の何れか一方または両方を満たす。
Evaluation rank 1: The relative magnetic permeability is 700 or more and the coercive force is 250 A / m or less.
2: The relative magnetic permeability satisfies 600 or more and less than 700 and the coercive force exceeds 250 A / m and 300 A / m or less.
3: A relative magnetic permeability of 500 or more and less than 600 and a coercive force of more than 300 A / m and 400 A / m or less are satisfied.
4: Either the relative magnetic permeability is less than 500 or the coercive force exceeds 400 A / m, or both are satisfied.

耐衝撃特性は、シャルピー衝撃試験によって評価した。シャルピー衝撃試験は、JIS Z 2242に準拠して実施した。試験片は板厚×10mm幅×55mm長さのVノッチ形状とし、試験温度は−40℃とした。衝撃値が20J/cm以上の場合を合格(○)とし、衝撃値が20J/cm未満の場合を不合格(×)とした。衝撃値が20J/cm以上の場合に延性的な破面形状が現れるのでこれを合格とし、衝撃値が20J/cm未満の場合は脆性的な破面形状が現れるため不合格とした。 The impact resistance was evaluated by the Charpy impact test. The Charpy impact test was performed according to JIS Z 2242. The test piece had a V-notch shape with a plate thickness x 10 mm width x 55 mm length, and the test temperature was -40 ° C. The case where the impact value was 20 J / cm 2 or more was judged as pass (◯), and the case where the impact value was less than 20 J / cm 2 was judged as fail (x). When the impact value was 20 J / cm 2 or more, a ductile fracture surface shape appeared, so this was accepted, and when the impact value was less than 20 J / cm 2 , a brittle fracture surface shape appeared, and therefore it was rejected.

集合組織は、電子線後方散乱回折法(以下、EBSD)を用いて解析した。磁気特性に寄与する結晶方位集団は、板厚中心部における{110}±15°方位粒と{111}±15°方位粒の2つの領域に分割した結晶方位マップを表示させて数値化した。すなわち、鋼板表面に平行な面において、板幅方向850μm、圧延方向2250μmの測定領域で倍率100としてEBSDの測定を行い、鋼板表面に平行な面の法線方向と{110}面方位との角度差が15°以内である結晶粒(すなわち{110}±15°方位粒)の結晶方位マップを表示させてその面積率を表示させ、測定した。   The texture was analyzed using an electron backscatter diffraction method (hereinafter referred to as EBSD). The crystal orientation group that contributes to the magnetic properties was quantified by displaying a crystal orientation map divided into two regions of {110} ± 15 ° oriented grains and {111} ± 15 ° oriented grains in the central portion of the plate thickness. That is, on the plane parallel to the steel plate surface, EBSD was measured with a magnification of 100 in the measurement region of the plate width direction 850 μm and the rolling direction 2250 μm, and the angle between the normal direction of the plane parallel to the steel plate surface and the {110} plane orientation. A crystal orientation map of crystal grains having a difference of 15 ° or less (that is, {110} ± 15 ° orientation grains) was displayed, and the area ratio was displayed and measured.

表2に試験結果をまとめて示す。
No.1〜13は、何れも本発明範囲の化学成分及び集合組織を有するフェライト系ステンレス鋼であり、磁気特性及び耐衝撃特性が良好であった。特に、熱間圧延後の鋼板に700℃以下で熱処理を行うか熱処理を省略し、40%以下の圧延率で冷間圧延を行い、更に、900℃超で熱処理を行ったNo.5、7、9、11は、同じ化学成分でありながら前記の製造条件から外れた条件で製造したNo.4、6、8、10に比べて、磁気特性が更に向上した。No.5、7、9は、より好ましい製造条件で製造したため、{110}±15°方位粒の面積率Aと{111}±15°方位粒の面積率Bの比A/Bが0.40〜0.70のより好ましい範囲になり、磁気特性がより向上したと推測される。
The test results are summarized in Table 2.
No. Nos. 1 to 13 were all ferritic stainless steels having the chemical composition and texture within the scope of the present invention, and had good magnetic properties and impact resistance properties. In particular, the steel sheet after hot rolling was subjected to heat treatment at 700 ° C. or lower, or the heat treatment was omitted, cold rolling was performed at a rolling ratio of 40% or lower, and further heat treatment was performed at over 900 ° C. Nos. 5, 7, 9, and 11 have the same chemical composition, but were manufactured under conditions deviating from the above manufacturing conditions. Compared with 4, 6, 8 and 10, the magnetic characteristics were further improved. No. Since Nos. 5, 7, and 9 were manufactured under more preferable manufacturing conditions, the ratio A / B of the area ratio A of {110} ± 15 ° oriented grains and the area ratio B of {111} ± 15 ° oriented grains was 0.40. It is inferred that the magnetic property was further improved because it was in a more preferable range of 0.70.

No.14〜19は、何れも本発明範囲の化学成分を有しないフェライト系ステンレス鋼であり、好ましい集合組織が形成されなかったため、磁気特性または耐衝撃特性のいずれか一方または両方が劣った。
No.14は、C量が過剰であり、炭化物が粒界偏析し、更に好ましい集合組織が形成されなかったため、磁気特性及び耐衝撃特性の両方が劣った。
No.15は、Si量が過剰であり、好ましい集合組織が形成されなかったため、磁気特性及び耐衝撃特性が劣った。
No.16は、Mn量及びAl量が過剰であり、好ましい集合組織が形成されなかったため、磁気特性が劣った。
No.17は、P量が過剰であり、Pが結晶粒界に過剰に偏析し、好ましい集合組織が形成されなかったため、磁気特性及び耐衝撃特性の両方が劣った。
No.18は、S量が過剰であり、合金中に硫化物を形成し、またSが結晶粒界に過剰に偏析し、好ましい集合組織が形成されなかったため、磁気特性及び耐衝撃特性の両方が劣った。
No.19は、Cr量およびN量が過剰であり、非磁性元素であるCrが多くなり、また、合金中に窒化物を形成し、更にNが結晶粒界に過剰に偏析し、更に好ましい集合組織が形成されなかったため、磁気特性が劣り、耐衝撃性も劣った。
No. Nos. 14 to 19 are ferritic stainless steels having no chemical components within the scope of the present invention, and a preferable texture was not formed, so that either one or both of the magnetic characteristics and the impact resistance were inferior.
No. No. 14 had an excessive amount of C, segregated carbides at the grain boundaries, and did not form a more preferable texture, and thus both magnetic properties and impact resistance properties were poor.
No. In No. 15, the amount of Si was excessive and a preferable texture was not formed, so the magnetic properties and the impact resistance properties were poor.
No. In No. 16, the amount of Mn and the amount of Al were excessive and a preferable texture was not formed, so that the magnetic properties were poor.
No. In No. 17, the amount of P was excessive, P was excessively segregated at the grain boundaries, and a preferable texture was not formed, so that both magnetic properties and impact resistance properties were poor.
No. No. 18 had an excessive amount of S, formed sulfides in the alloy, and was excessively segregated at the grain boundaries, and a favorable texture was not formed, so that both magnetic properties and impact resistance properties were poor. It was
No. No. 19 has an excessive amount of Cr and N, an increased amount of Cr, which is a non-magnetic element, forms a nitride in the alloy, and N is excessively segregated at the crystal grain boundaries. Was not formed, the magnetic properties were poor and the impact resistance was also poor.

Figure 2020063473
Figure 2020063473

Figure 2020063473
Figure 2020063473

1…磁気遮断器、10…リレー部、12…固定接点部材、13…可動接点部材、20…駆動部。   DESCRIPTION OF SYMBOLS 1 ... Magnetic circuit breaker, 10 ... Relay part, 12 ... Fixed contact member, 13 ... Movable contact member, 20 ... Driving part.

上記課題を解決するため、本発明は以下の構成を採用する。
[1] 質量%で、
C:0.020%以下、
Si:1.00%以下、
Mn:1.00%以下、
P:0.035%以下、
S:0.0030%以下、
Cr:10.0〜18.0%、
N:0.020%以下、
Nb:0.5%以下、
Ti:0.5%以下、
Al:0.10%以下を含み、
残部がFeおよび不純物からなり、
板表面における集合組織が下記の(i)および(ii)を満たし、
比透磁率μが500以上、保磁力Hcが400A/m以下であることを特徴とする磁気特性に優れたフェライト系ステンレス鋼板。
(i)板表面における鋼板表面の法線方向と{110}面方位との角度差が15°以内である{110}±15°方位粒の面積率が3.0%超30%未満。
(ii)板表面において{110}±15°方位粒の面積率をA、{111}±15°方位粒の面積率をBとしたとき、0.10<A/B<0.80。
[2] さらに質量%で、
Sn:0.001〜0.5%、
B:0.005%以下
の1種または2種を含有することを特徴とする[1]に記載の磁気特性に優れたフェライト系ステンレス鋼板。
[3] さらに質量%で、
Ni:1%以下、
Cu:1%以下、
Mo:1%以下、
Sb:0.2%以下、
V:0.5%以下、
W:0.5%以下、
Zr:0.5%以下、
Co:0.5%以下、
Mg:0.005%以下、
Ca:0.005%以下、
Ga:0.015%以下、
La:0.1%以下、
Y:0.1%以下、
Hf:0.1%以下、
REM:0.1%以下
の1種または2種以上を含有することを特徴とする[1]または[2]に記載の磁気特性に優れたフェライト系ステンレス鋼板。
[4] 磁界内に配置される接点部材として用いられることを特徴とする[1]乃至[3]の何れか一項に記載の磁気特性に優れたフェライト系ステンレス鋼板。
In order to solve the above problems, the present invention adopts the following configurations.
[1] In mass%,
C: 0.020% or less,
Si: 1.00% or less,
Mn: 1.00% or less,
P: 0.035% or less,
S: 0.0030% or less,
Cr: 10.0 to 18.0%,
N: 0.020% or less,
Nb: 0.5% or less,
Ti: 0.5% or less,
Al: including 0.10% or less,
The balance consists of Fe and impurities,
Texture in the plate surface meets the (i) and (ii) below,
A ferritic stainless steel sheet having excellent magnetic properties, which has a relative permeability μ of 500 or more and a coercive force Hc of 400 A / m or less .
(I) The area difference of {110} ± 15 ° orientation grains, in which the angular difference between the normal direction of the steel sheet surface and the {110} plane orientation on the plate surface is within 15 °, is more than 3.0% and less than 30%.
(Ii) When the area ratio of {110} ± 15 ° oriented grains on the plate surface is A and the area ratio of {111} ± 15 ° oriented grains is B, 0.10 <A / B <0.80.
[2] Further, in mass%,
Sn: 0.001-0.5%,
B: Ferrite-based stainless steel sheet having excellent magnetic properties according to [1], which contains one or two 0.005% or less.
[3] Further, in mass%,
Ni: 1% or less,
Cu: 1% or less,
Mo: 1% or less,
Sb: 0.2% or less,
V: 0.5% or less,
W: 0.5% or less,
Zr: 0.5% or less,
Co: 0.5% or less,
Mg: 0.005% or less,
Ca: 0.005% or less,
Ga: 0.015% or less,
La: 0.1% or less,
Y: 0.1% or less,
Hf: 0.1% or less,
REM: A ferritic stainless steel sheet having excellent magnetic properties according to [1] or [2], which contains 0.1% or less of one type or two or more types.
[4] The ferritic stainless steel sheet having excellent magnetic properties according to any one of [1] to [3], which is used as a contact member arranged in a magnetic field.

Claims (4)

質量%で、
C:0.020%以下、
Si:1.00%以下、
Mn:1.00%以下、
P:0.035%以下、
S:0.0030%以下、
Cr:10.0〜18.0%、
N:0.020%以下、
Nb:0.5%以下、
Ti:0.5%以下、
Al:0.10%以下を含み、
残部がFeおよび不純物からなり、
板表面における集合組織が下記の(i)および(ii)を満たすことを特徴とする磁気特性に優れたフェライト系ステンレス鋼板。
(i)板表面における鋼板表面の法線方向と{110}面方位との角度差が15°以内である{110}±15°方位粒の面積率が3.0%超30%未満。
(ii)板表面において{110}±15°方位粒の面積率をA、{111}±15°方位粒の面積率をBとしたとき、0.10<A/B<0.80。
In mass%,
C: 0.020% or less,
Si: 1.00% or less,
Mn: 1.00% or less,
P: 0.035% or less,
S: 0.0030% or less,
Cr: 10.0 to 18.0%,
N: 0.020% or less,
Nb: 0.5% or less,
Ti: 0.5% or less,
Al: including 0.10% or less,
The balance consists of Fe and impurities,
A ferritic stainless steel sheet having excellent magnetic properties, characterized in that the texture on the plate surface satisfies the following (i) and (ii).
(I) The area difference of {110} ± 15 ° orientation grains, in which the angular difference between the normal direction of the steel sheet surface and the {110} plane orientation on the plate surface is within 15 °, is more than 3.0% and less than 30%.
(Ii) When the area ratio of {110} ± 15 ° oriented grains on the plate surface is A and the area ratio of {111} ± 15 ° oriented grains is B, 0.10 <A / B <0.80.
さらに質量%で、
Sn:0.001〜0.5%、
B:0.005%以下
の1種または2種を含有することを特徴とする請求項1に記載の磁気特性に優れたフェライト系ステンレス鋼板。
Furthermore, in mass%,
Sn: 0.001-0.5%,
B: 0.005% or less of 1 type or 2 types is contained, The ferritic stainless steel sheet excellent in the magnetic characteristic of Claim 1 characterized by the above-mentioned.
さらに質量%で、
Ni:1%以下、
Cu:1%以下、
Mo:1%以下、
Sb:0.2%以下、
V:0.5%以下、
W:0.5%以下、
Zr:0.5%以下、
Co:0.5%以下、
Mg:0.005%以下、
Ca:0.005%以下、
Ga:0.015%以下、
La:0.1%以下、
Y:0.1%以下、
Hf:0.1%以下、
REM:0.1%以下
の1種または2種以上を含有することを特徴とする請求項1または請求項2に記載の磁気特性に優れたフェライト系ステンレス鋼板。
Furthermore, in mass%,
Ni: 1% or less,
Cu: 1% or less,
Mo: 1% or less,
Sb: 0.2% or less,
V: 0.5% or less,
W: 0.5% or less,
Zr: 0.5% or less,
Co: 0.5% or less,
Mg: 0.005% or less,
Ca: 0.005% or less,
Ga: 0.015% or less,
La: 0.1% or less,
Y: 0.1% or less,
Hf: 0.1% or less,
REM: A ferritic stainless steel sheet having excellent magnetic properties according to claim 1 or 2, containing 0.1% or less of one type or two or more types.
磁界内に配置される接点部材として用いられることを特徴とする請求項1乃至請求項3の何れか一項に記載の磁気特性に優れたフェライト系ステンレス鋼板。   The ferritic stainless steel sheet having excellent magnetic properties according to any one of claims 1 to 3, which is used as a contact member arranged in a magnetic field.
JP2018195060A 2018-10-16 2018-10-16 Ferritic stainless steel sheet with excellent magnetic properties Active JP6722741B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018195060A JP6722741B2 (en) 2018-10-16 2018-10-16 Ferritic stainless steel sheet with excellent magnetic properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018195060A JP6722741B2 (en) 2018-10-16 2018-10-16 Ferritic stainless steel sheet with excellent magnetic properties

Publications (2)

Publication Number Publication Date
JP2020063473A true JP2020063473A (en) 2020-04-23
JP6722741B2 JP6722741B2 (en) 2020-07-15

Family

ID=70388137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018195060A Active JP6722741B2 (en) 2018-10-16 2018-10-16 Ferritic stainless steel sheet with excellent magnetic properties

Country Status (1)

Country Link
JP (1) JP6722741B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023121273A1 (en) * 2021-12-22 2023-06-29 주식회사 포스코 Grain oriented electrical steel sheet and manufacturing method of same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03264652A (en) * 1990-02-13 1991-11-25 Sumitomo Metal Ind Ltd Ferritic stainless steel sheet and production thereof
JPH06306552A (en) * 1993-04-23 1994-11-01 Tohoku Tokushuko Kk Silicon stainless steel sheet
JPH09176802A (en) * 1995-12-27 1997-07-08 Nippon Steel Corp Ferritic stainless steel sheet excellent in magnetic property and its production
JPH1046295A (en) * 1996-07-31 1998-02-17 Nippon Steel Corp Ferritic stainless steel sheet excellent in magnetic property and its production
JPH1192887A (en) * 1997-09-22 1999-04-06 Nippon Steel Corp Ferritic stainless steel sheet excellent in magnetic property and its production
WO2004053171A1 (en) * 2002-12-12 2004-06-24 Nippon Steel & Sumikin Stainless Steel Corporation Cr-CONTAINING HEAT-RESISTANT STEEL SHEET EXCELLENT IN WORKABILITY AND METHOD FOR PRODUCTION THEREOF
JP2015187290A (en) * 2014-03-26 2015-10-29 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet for flange, method for producing the same, and flange component

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03264652A (en) * 1990-02-13 1991-11-25 Sumitomo Metal Ind Ltd Ferritic stainless steel sheet and production thereof
JPH06306552A (en) * 1993-04-23 1994-11-01 Tohoku Tokushuko Kk Silicon stainless steel sheet
JPH09176802A (en) * 1995-12-27 1997-07-08 Nippon Steel Corp Ferritic stainless steel sheet excellent in magnetic property and its production
JPH1046295A (en) * 1996-07-31 1998-02-17 Nippon Steel Corp Ferritic stainless steel sheet excellent in magnetic property and its production
JPH1192887A (en) * 1997-09-22 1999-04-06 Nippon Steel Corp Ferritic stainless steel sheet excellent in magnetic property and its production
WO2004053171A1 (en) * 2002-12-12 2004-06-24 Nippon Steel & Sumikin Stainless Steel Corporation Cr-CONTAINING HEAT-RESISTANT STEEL SHEET EXCELLENT IN WORKABILITY AND METHOD FOR PRODUCTION THEREOF
JP2015187290A (en) * 2014-03-26 2015-10-29 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet for flange, method for producing the same, and flange component

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023121273A1 (en) * 2021-12-22 2023-06-29 주식회사 포스코 Grain oriented electrical steel sheet and manufacturing method of same

Also Published As

Publication number Publication date
JP6722741B2 (en) 2020-07-15

Similar Documents

Publication Publication Date Title
US7419634B2 (en) Fe-Ni based permalloy and method of producing the same and cast slab
KR20180089500A (en) Non-oriented electric steel sheet and manufacturing method thereof
KR101628193B1 (en) High-strength electrical steel sheet and method of producing the same
KR20210082516A (en) Non-oriented electrical steel sheet and its manufacturing method
KR20130125830A (en) High-strength non-oriented magnetic steel sheet
JP4515355B2 (en) Soft magnetic steel materials with excellent magnetic properties and machinability in high magnetic fields and soft magnetic steel components with excellent magnetic properties in high magnetic fields
JP6722740B2 (en) Ferritic stainless steel with excellent magnetic properties
JP6722741B2 (en) Ferritic stainless steel sheet with excellent magnetic properties
JP2971080B2 (en) Non-oriented electrical steel sheet with excellent magnetic properties
WO2014157302A1 (en) Steel material having excellent corrosion resistance and excellent magnetic properties and production method therefor
JP6801464B2 (en) Non-oriented electrical steel sheet
JP2803522B2 (en) Ni-Fe-based magnetic alloy excellent in magnetic properties and manufacturability and method for producing the same
JP7475181B2 (en) Ferritic Stainless Steel
TW201502285A (en) Isotropic electromagnetic steel sheet
JP2018111847A (en) Nonoriented electromagnetic steel sheet
JP6621504B2 (en) Steel material excellent in corrosion resistance and magnetic properties and method for producing the same
JP6900889B2 (en) Non-oriented electrical steel sheet
JP5374233B2 (en) Soft magnetic steel materials, soft magnetic steel parts, and methods for producing them
JP2004307977A (en) Wire rod of nonmagnetic sulfur free-cutting stainless steel superior in cold drawability and corrosion resistance
WO2022219742A1 (en) Hot-rolled steel sheet for non-oriented electrical steel sheet and method for manufacturing same
JP2022107220A (en) Ferritic stainless steel sheet
US20240035131A1 (en) Non-oriented electrical steel sheet and manufacturing method therefor
JP6852965B2 (en) Electrical steel sheet and its manufacturing method
JP2022056669A (en) Ferritic stainless steel
JPH06306552A (en) Silicon stainless steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200526

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200622

R150 Certificate of patent or registration of utility model

Ref document number: 6722741

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250