JP5374233B2 - Soft magnetic steel materials, soft magnetic steel parts, and methods for producing them - Google Patents

Soft magnetic steel materials, soft magnetic steel parts, and methods for producing them Download PDF

Info

Publication number
JP5374233B2
JP5374233B2 JP2009123504A JP2009123504A JP5374233B2 JP 5374233 B2 JP5374233 B2 JP 5374233B2 JP 2009123504 A JP2009123504 A JP 2009123504A JP 2009123504 A JP2009123504 A JP 2009123504A JP 5374233 B2 JP5374233 B2 JP 5374233B2
Authority
JP
Japan
Prior art keywords
less
steel
soft magnetic
magnetic steel
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009123504A
Other languages
Japanese (ja)
Other versions
JP2010270369A (en
Inventor
敦彦 竹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2009123504A priority Critical patent/JP5374233B2/en
Publication of JP2010270369A publication Critical patent/JP2010270369A/en
Application granted granted Critical
Publication of JP5374233B2 publication Critical patent/JP5374233B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、軟磁性鋼材および軟磁性鋼部品ならびにこれらの製造方法に関するものであって、特に、優れた磁気特性を示す軟磁性鋼部品、該軟磁性鋼部品の製造に用いられる軟磁性鋼材、およびこれらの製造方法に関するものである。   The present invention relates to a soft magnetic steel material, a soft magnetic steel part, and a method for producing the same, and in particular, a soft magnetic steel part exhibiting excellent magnetic properties, a soft magnetic steel material used for manufacturing the soft magnetic steel part, And a manufacturing method thereof.

例えば自動車や産業機械に実装されている磁力を介して駆動する電装部品や電磁コイルの鉄心材に使用される鋼部品には、磁気特性として、低い外部磁界で容易に磁化し得る特性に加え、保磁力の小さいことが要求される。このため、前記鋼部品の材料として、部品内部の磁束密度が外部磁界に応答し易い、例えばC量が約0.01質量%以下の純鉄系の軟磁性鋼材が一般に用いられている。   For example, electrical parts that are driven by magnetic force mounted on automobiles and industrial machines, and steel parts used for the core material of electromagnetic coils, in addition to the characteristics that can be easily magnetized with a low external magnetic field, A small coercive force is required. For this reason, as a material for the steel part, a pure iron-based soft magnetic steel material in which the magnetic flux density inside the part easily responds to an external magnetic field, for example, having a C content of about 0.01% by mass or less is generally used.

この様に低炭素鋼とすることを前提に、例えば特許文献1には、鋼中にBを添加して不可避不純物である固溶NをBNとして固定し、固溶Nによる格子ひずみの発生を抑制することで、磁気特性を向上させることが提案されている。この特許文献1では、冷間鍛造性を向上させるとともに磁気特性の低下を抑制することを目的に、所定サイズのBNを所定の密度で分散析出させること、およびBNの粗大化を抑制する観点から、フェライト結晶粒内における平均粒径が0.1〜2μmのBNを、120〜500個/mmとすることが示されている。 Assuming that low carbon steel is used in this way, for example, in Patent Document 1, B is added to steel and solid solution N, which is an unavoidable impurity, is fixed as BN. It has been proposed to improve magnetic properties by suppressing the magnetic properties. In Patent Document 1, for the purpose of improving cold forgeability and suppressing deterioration of magnetic properties, BN having a predetermined size is dispersed and precipitated at a predetermined density and from the viewpoint of suppressing BN coarsening. It is shown that the BN having an average particle diameter of 0.1 to 2 μm in the ferrite crystal grains is set to 120 to 500 pieces / mm 2 .

しかしながら、特許文献1に記載の鋼材は、冷間鍛造性に主眼が置かれているため、BNの形態による磁気特性への悪影響は抑制されているものの、その他の介在物が磁気特性に及ぼす影響を考慮しておらず、磁気特性について十分に満足できるものとはいえない。   However, since the steel material described in Patent Document 1 focuses on cold forgeability, the adverse effect on the magnetic properties due to the form of BN is suppressed, but the influence of other inclusions on the magnetic properties. Therefore, it cannot be said that the magnetic properties are sufficiently satisfactory.

また特許文献2には、MnSの析出物サイズと密度を制御することで、磁気特性への悪影響を抑えることが提案されている。具体的には、MnSの析出物として、粒径が0.2μm以上のMnS析出物を0.02〜0.5個/μmの範囲内で存在させると共に、該MnS析出物の平均粒径を0.05〜4μmとすることで、被削性を向上させるとともに、磁気特性の低下を抑制している。 Patent Document 2 proposes that the adverse effect on the magnetic properties is suppressed by controlling the precipitate size and density of MnS. Specifically, as MnS precipitates, MnS precipitates having a particle size of 0.2 μm or more are present in the range of 0.02 to 0.5 / μm 2 , and the average particle size of the MnS precipitates By setting the thickness to 0.05 to 4 μm, the machinability is improved and the deterioration of the magnetic properties is suppressed.

しかしながら、上記特許文献2の技術は、被削性改善に主眼が置かれたものであり、MnSも被削性改善のために鋼中に分散させている。そのため、MnSによる磁気特性の低下が懸念され、磁気特性について十分に満足できるものとはいえない。   However, the technique of Patent Document 2 focuses on improving machinability, and MnS is also dispersed in steel for improving machinability. For this reason, there is a concern about a decrease in magnetic properties due to MnS, and it cannot be said that the magnetic properties are sufficiently satisfactory.

更に特許文献3には、Fe−Co合金を主体とした成分系とすることで、優れた飽和磁束密度が得られることが提案されている。しかしながら、この鋼材は、希少金属であるCoを多量に使用しているため鋼材コストが極めて高く、加工性も極めて悪いため、製造方法が焼結などに限定され、自動車などの普及品の量産製造には適さないといった問題がある。   Further, Patent Document 3 proposes that an excellent saturation magnetic flux density can be obtained by using a component system mainly composed of an Fe—Co alloy. However, since this steel material uses a large amount of rare metal Co, the cost of the steel material is extremely high and the workability is extremely poor, so the manufacturing method is limited to sintering and the mass production of popular products such as automobiles. There is a problem that is not suitable for.

特開2007−238970号公報JP 2007-238970 A 特開2003−55745号公報JP 2003-55745 A 特開2006−336038号公報JP 2006-336038 A

本発明は上記の様な事情に着目してなされたものであって、その目的は、より優れた磁気特性(具体的には、低磁界領域および高磁界領域のいずれにおいても高い磁束密度を示すといった優れた磁束密度特性、ならびに低い保磁力を示すといった保磁力特性)を示す軟磁性鋼部品と、この軟磁性鋼部品の製造に用いられる軟磁性鋼材、およびこれらの製造方法を確立することにある。   The present invention has been made by paying attention to the above-described circumstances, and its purpose is to provide more excellent magnetic characteristics (specifically, a high magnetic flux density in both a low magnetic field region and a high magnetic field region). To establish a soft magnetic steel part exhibiting excellent magnetic flux density characteristics and a low coercive force characteristic), a soft magnetic steel material used for manufacturing the soft magnetic steel part, and a manufacturing method thereof. is there.

上記課題を解決し得た本発明の軟磁性鋼材は、
C:0.002〜0.01%(質量%の意味、成分について以下同じ)、
Si:0.1%以下(0%を含まない)、
Mn:0.01〜0.09%、
P:0.025%以下(0%を含まない)、
S:0.005%以下(0%を含まない)、
Al:0.005%以下(0%を含まない)、
N:0.0025%以下(0%を含まない)、
B:0.0008〜0.0025%、および
O:0.006%以下(0%を含まない)
を満たし、残部:鉄および不可避不純物からなり、下記式(1)を満たすと共に、
鋼組織がフェライト単相組織であり、かつMnSの面積率が1.2%以下であるところに特徴を有する。
−0.0013≦[N]−(10.8/14)[B]≦0.0013 …(1)
{式(1)において、[N]は鋼中のN量(質量%)、[B]は鋼中のB量(質量%)を示す}
The soft magnetic steel material of the present invention capable of solving the above problems is
C: 0.002 to 0.01% (meaning mass%, the same applies to the components below),
Si: 0.1% or less (excluding 0%),
Mn: 0.01 to 0.09%,
P: 0.025% or less (excluding 0%),
S: 0.005% or less (excluding 0%),
Al: 0.005% or less (excluding 0%),
N: 0.0025% or less (excluding 0%),
B: 0.0008 to 0.0025%, and O: 0.006% or less (excluding 0%)
And the balance: iron and inevitable impurities, satisfying the following formula (1),
It is characterized in that the steel structure is a ferrite single phase structure and the area ratio of MnS is 1.2% or less.
−0.0013 ≦ [N] − (10.8 / 14) [B] ≦ 0.0013 (1)
{In Formula (1), [N] represents the N content (mass%) in the steel, and [B] represents the B content (mass%) in the steel}

前記軟磁性鋼材は、不可避不純物として含まれうる、Cuが0.04%以下(0%を含む)、Niが0.04%以下(0%を含む)、かつCrが0.04%以下(0%を含む)に抑えられたものが好ましい。   The soft magnetic steel material may be included as inevitable impurities, Cu is 0.04% or less (including 0%), Ni is 0.04% or less (including 0%), and Cr is 0.04% or less ( (Including 0%) is preferable.

本発明は、前記軟磁性鋼材を製造する方法も規定するものであって、該方法は、前記成分組成を有する鋼を、1000〜1200℃に加熱してから熱間圧延し、850℃以上の温度(圧延終了温度)で圧延終了後、800℃以上で巻取りを完了するところに特徴を有する。   The present invention also prescribes a method for producing the soft magnetic steel material, the method comprising: heating the steel having the component composition to 1000 to 1200 ° C. and then hot rolling to 850 ° C. or higher. It is characterized in that the winding is completed at 800 ° C. or higher after the rolling is completed at the temperature (rolling completion temperature).

また本発明は、前記軟磁性鋼材を用いて得られる軟磁性鋼部品であって、前記成分組成を満たし、かつ鋼組織が、フェライト単相組織であると共に、JIS G 0552(2005年)で規定するフェライト結晶粒度番号が4.0以下であるところに特徴を有する軟磁性鋼部品も含む。   Further, the present invention is a soft magnetic steel part obtained by using the soft magnetic steel material, which satisfies the component composition, and the steel structure is a ferrite single phase structure, and is defined by JIS G 0552 (2005). Also included are soft magnetic steel parts characterized by a ferrite grain size number of 4.0 or less.

更に、前記軟磁性鋼部品の製造方法であって、前記軟磁性鋼材を、部品形状に加工後、850〜900℃で2時間以上焼鈍するところに特徴を有する軟磁性鋼部品の製造方法も本発明に含まれる。   Furthermore, the present invention also relates to a method for manufacturing the soft magnetic steel part, characterized in that the soft magnetic steel material is processed into a part shape and then annealed at 850 to 900 ° C. for 2 hours or more. Included in the invention.

本発明によれば、焼鈍後に優れた磁気特性を示す軟磁性鋼材(例えば棒鋼や線材)が得られる。この軟磁性鋼材を、自動車や電車、船舶、各種産業機械等に使用される、例えばソレノイド、リレーあるいは電磁弁の鉄心材といった電装部品(軟磁性鋼部品)の製造に用いれば、優れた磁気特性を示すため、上記電装部品の高効率化や軽量化に寄与できる。   According to the present invention, it is possible to obtain a soft magnetic steel material (for example, a steel bar or a wire) that exhibits excellent magnetic properties after annealing. Excellent magnetic properties when this soft magnetic steel material is used in the manufacture of electrical parts (soft magnetic steel parts) such as solenoids, relays, and iron cores of solenoid valves used in automobiles, trains, ships, various industrial machines, etc. Therefore, it is possible to contribute to high efficiency and light weight of the electrical component.

図1は、規定の式(1)における[N]−(10.8/14)[B]と磁束密度(磁界の強さ:100A/m)の関係を示したグラフである。FIG. 1 is a graph showing the relationship between [N] − (10.8 / 14) [B] and the magnetic flux density (magnetic field strength: 100 A / m) in the prescribed formula (1). 図2は、規定の式(1)における[N]−(10.8/14)[B]と保磁力の関係を示したグラフである。FIG. 2 is a graph showing the relationship between [N] − (10.8 / 14) [B] and the coercive force in the prescribed formula (1). 図3は、鋼中Mn量と磁束密度(磁界の強さ:100A/m)の関係を示したグラフである。FIG. 3 is a graph showing the relationship between the amount of Mn in steel and the magnetic flux density (magnetic field strength: 100 A / m). 図4は、鋼中Mn量と保磁力の関係を示したグラフである。FIG. 4 is a graph showing the relationship between the amount of Mn in steel and the coercive force.

本発明者は、優れた磁気特性を示す軟磁性鋼部品とこの軟磁性鋼部品の製造に用いられる軟磁性鋼材、およびこれらの製造方法を確立すべく、特に化学成分や鋼組織(母相組織や析出物)が前記磁気特性に及ぼす影響について、成分組成や製造方法など様々な角度から実験し検討を行った。   In order to establish a soft magnetic steel part exhibiting excellent magnetic properties, a soft magnetic steel material used for manufacturing the soft magnetic steel part, and a manufacturing method thereof, in particular, the present inventor has developed a chemical composition and a steel structure (matrix structure). And the effect of the precipitates) on the magnetic properties were examined and examined from various angles such as component composition and manufacturing method.

軟磁性鋼材の磁気特性を高めるには、不純物元素を低減して素地の磁気モーメントを増加させることにより磁束密度を向上させたり、結晶粒径の粗大化、磁壁移動の障害となる転位、析出物、固溶元素およびそれらによる格子ひずみを抑制して、磁壁移動を容易に行えるようにして、磁束密度を向上させたり保磁力を低減させることが挙げられるが、本発明者は、その中でも特に、固溶Nの低減と、固溶MnおよびMnSの低減を十分に図ることによって、磁束密度を十分に高めうると共に保磁力を十分に小さくできることを見出した。   In order to improve the magnetic properties of soft magnetic steel materials, the magnetic flux density can be improved by reducing the impurity elements and increasing the magnetic moment of the substrate, and the dislocations and precipitates can hinder crystal grain coarsening and domain wall motion. In addition, it is possible to suppress the solid solution elements and lattice distortion caused by them, and to easily perform the domain wall movement to improve the magnetic flux density or reduce the coercive force. It has been found that the magnetic flux density can be sufficiently increased and the coercive force can be sufficiently reduced by sufficiently reducing the solid solution N and the solid solution Mn and MnS.

具体的には、
(ア)下記式(1)を満たすように、鋼中N量と鋼中B量のバランスを図り、特に鋼中Bにより固溶Nを低減させること;および、
(イ)鋼中Mn量を0.09%以下と、従来の軟磁性鋼材よりも十分に低減させて、固溶Mn量を低減させると共に、MnSを一定以下とすればよいこと;
を見出し、本発明を完成した。
−0.0013≦[N]−(10.8/14)[B]≦0.0013 …(1)
{式(1)において、[N]は鋼中のN量(質量%、以下「%」と示す)、[B]は鋼中のB量(質量%、以下「%」と示す)を示す}
In particular,
(A) Balance the amount of N in the steel and the amount of B in the steel so as to satisfy the following formula (1), and particularly reduce the solute N by the B in the steel; and
(B) The amount of Mn in steel is 0.09% or less, which is sufficiently lower than that of conventional soft magnetic steel materials to reduce the amount of dissolved Mn, and to keep MnS below a certain level;
The present invention has been completed.
−0.0013 ≦ [N] − (10.8 / 14) [B] ≦ 0.0013 (1)
{In Formula (1), [N] represents the amount of N in the steel (mass%, hereinafter referred to as “%”), and [B] represents the amount of B in the steel (mass%, hereinafter referred to as “%”). }

まず、上記(ア)について詳述する。   First, (A) will be described in detail.

本発明では、鋼中N量:[N](%)と鋼中B量:[B](%)についての因子:[N]−(10.8/14)[B]を、上記式(1)に示す通り一定範囲内とすればよいことを見出した。   In the present invention, the factor for [N] in steel: [N] (%) and B in steel: [B] (%): [N] − (10.8 / 14) [B] is expressed by the above formula ( As shown in 1), it was found that it should be within a certain range.

図1は、後述する実施例の結果を用いて、上記[N]−(10.8/14)[B]と磁束密度(磁界の強さ:100A/m)の関係を示したものであるが、磁束密度(磁界の強さ:100A/m):0.94T以上を達成するには、[N]−(10.8/14)[B]を0.0013%以下とすればよいことがわかる。これは、[N]−(10.8/14)[B]を0.0013%以下とすることにより、固溶NをBNとして十分に固定でき、かつ転位の固着を抑制できて、固溶Nおよび固着した転位による格子ひずみが抑制されることにより、磁壁移動が容易となり、磁束密度を高めることができたものと考えられる。より高い磁束密度を達成するには、上記[N]−(10.8/14)[B]を0.0011%以下とすることが好ましい。一方、[N]−(10.8/14)[B]が小さくなりすぎると、結晶粒界にFeBとして析出し易くなり、上記磁束密度:0.94T以上を達成できなくなる。この様な観点から、上記[N]−(10.8/14)[B]を−0.0013%以上(好ましくは−0.0011%以上)とする。 FIG. 1 shows the relationship between [N]-(10.8 / 14) [B] and magnetic flux density (magnetic field strength: 100 A / m) using the results of the examples described later. However, in order to achieve magnetic flux density (magnetic field strength: 100 A / m): 0.94 T or more, [N] − (10.8 / 14) [B] should be 0.0013% or less. I understand. This is because when [N]-(10.8 / 14) [B] is 0.0013% or less, solid solution N can be sufficiently fixed as BN, and dislocation can be prevented from sticking. It is considered that the domain wall movement is facilitated and the magnetic flux density can be increased by suppressing the lattice distortion due to N and the fixed dislocation. In order to achieve a higher magnetic flux density, the above [N]-(10.8 / 14) [B] is preferably set to 0.0011% or less. On the other hand, if [N]-(10.8 / 14) [B] becomes too small, Fe 2 B tends to be precipitated at the crystal grain boundary, and the magnetic flux density of 0.94 T or more cannot be achieved. From such a viewpoint, the above [N]-(10.8 / 14) [B] is set to -0.0013% or more (preferably -0.0011% or more).

また、図2は、後述する実施例の結果を用いて、上記[N]−(10.8/14)[B]と保磁力の関係を示したものであるが、保磁力:55A/m以下を達成するためにも、[N]−(10.8/14)[B]を0.0013%以下とすればよいことがわかる。この場合も、上記関係を満たすことで、固溶Nおよび固着した転位による格子ひずみを抑制でき、保磁力を抑えることができたものと考えられる。より低い保磁力を達成するには、上記[N]−(10.8/14)[B]を0.0011%以下とすることが好ましい。一方、[N]−(10.8/14)[B]が小さくなりすぎると、上述した通り、結晶粒界に析出するFeBが原因で保磁力が高まりやすくなる。よって、上記[N]−(10.8/14)[B]は−0.0013%以上(好ましくは−0.0011%以上)とする。 FIG. 2 shows the relationship between [N]-(10.8 / 14) [B] and the coercive force using the results of the examples described later. The coercive force is 55 A / m. It can be seen that [N]-(10.8 / 14) [B] may be 0.0013% or less to achieve the following. Also in this case, it is considered that by satisfying the above relationship, the lattice distortion due to the solid solution N and the fixed dislocations can be suppressed, and the coercive force can be suppressed. In order to achieve a lower coercive force, the above [N]-(10.8 / 14) [B] is preferably made 0.0011% or less. On the other hand, when [N]-(10.8 / 14) [B] becomes too small, as described above, the coercive force is likely to increase due to Fe 2 B precipitated at the crystal grain boundaries. Therefore, the above [N]-(10.8 / 14) [B] is set to -0.0013% or more (preferably -0.0011% or more).

次に、上記(イ)について詳述する。   Next, the above (A) will be described in detail.

固溶Mnは、素地の磁気モーメントを低下させ、磁気特性を劣化させる原因となる。また、析出物であるMnSも磁気特性の低下原因となる。   The solid solution Mn reduces the magnetic moment of the substrate and causes the magnetic properties to deteriorate. Further, MnS which is a precipitate also causes a decrease in magnetic properties.

図3は、後述する実施例の結果を用いて、鋼中Mn量と磁束密度(磁界の強さ:100A/m)の関係を示したグラフである。また図4は、後述する実施例の結果を用いて、鋼中Mn量と保磁力の関係を示したグラフであるが、この図3および図4から、磁束密度(磁界の強さ:100A/m):0.94T以上を達成すると共に、保磁力:55A/m以下を達成するには、鋼中Mn量を0.09%以下に抑えて、上記固溶MnやMnSの生成を抑制することが有効であることがわかる。より高い磁束密度やより低い保磁力を達成するには、鋼中Mn量を0.06%以下とすることが好ましい。   FIG. 3 is a graph showing the relationship between the amount of Mn in steel and the magnetic flux density (magnetic field strength: 100 A / m) using the results of Examples described later. FIG. 4 is a graph showing the relationship between the amount of Mn in steel and the coercive force using the results of Examples described later. From FIG. 3 and FIG. 4, the magnetic flux density (magnetic field strength: 100 A / m): In order to achieve 0.94T or more and to achieve a coercive force of 55 A / m or less, the amount of Mn in the steel is suppressed to 0.09% or less, and the formation of the above-mentioned solid solution Mn and MnS is suppressed. Can be seen to be effective. In order to achieve a higher magnetic flux density and a lower coercive force, the amount of Mn in steel is preferably 0.06% or less.

尚、鋼中Mn量が少なすぎても、MnSを形成しないSが原因で、熱間脆性により割れが発生することから、鋼中Mn量は、0.01%以上(好ましくは0.03%以上)とする。   Even if the amount of Mn in the steel is too small, cracks occur due to hot brittleness due to S that does not form MnS. Therefore, the amount of Mn in the steel is 0.01% or more (preferably 0.03%). Above).

また本発明では、上記MnSの形成を抑制する観点から、MnS(フェライト結晶粒内およびフェライト結晶粒界に存在するMnSをいう)の面積率を1.2%以下に抑える。好ましくは1.05%以下である。   In the present invention, from the viewpoint of suppressing the formation of MnS, the area ratio of MnS (referred to as MnS existing in ferrite crystal grains and ferrite grain boundaries) is suppressed to 1.2% or less. Preferably it is 1.05% or less.

尚、上記MnSとしては、Mnの硫化物が単独で存在するものの他、MnO、MgO、Al等の酸化物との複合析出物や、窒化物との複合析出物として形成されたものも含まれる。 Incidentally, those examples of the MnS, which others sulfide Mn is present alone, MnO, and composite precipitates MgO, an oxide such as Al 2 O 3, formed as a composite precipitate with nitride Is also included.

磁気焼鈍を施して優れた磁気特性を示す鋼部品(軟磁性鋼部品)を得るには、該鋼部品の組織を、JIS G 0552(2005年)で規定するフェライト結晶粒度番号で4.0以下と結晶粒の粗大なフェライト単相組織とし、粒界面積を低減することが不可欠である。磁気特性は、材料の自発磁化の大きさと鋼材内部を移動する磁束を固定するエネルギー量に関係しており、フェライト結晶粒の大きさの影響を受ける。フェライト結晶粒をこの様に粗大化させて粒界面積を低減させれば、保磁力を小さくかつ磁束密度を高めることができ、電装部品の構成部材として好適な磁気特性を確保することができる。   In order to obtain a steel part (soft magnetic steel part) exhibiting excellent magnetic properties by performing magnetic annealing, the structure of the steel part is 4.0 or less in terms of ferrite grain size specified in JIS G 0552 (2005). It is indispensable to use a ferrite single-phase structure with coarse grains and reduce the grain interface area. The magnetic characteristics are related to the magnitude of the spontaneous magnetization of the material and the amount of energy for fixing the magnetic flux moving inside the steel material, and are affected by the size of the ferrite crystal grains. If the ferrite crystal grains are thus coarsened to reduce the grain boundary area, the coercive force can be reduced and the magnetic flux density can be increased, and magnetic characteristics suitable as a component member of the electrical component can be ensured.

尚、フェライト結晶粒が大きくなりすぎても上記効果は飽和する。焼鈍時間等の生産性の観点から、フェライト結晶粒度番号の下限は0〜1程度となる。   Even if the ferrite crystal grains become too large, the above effect is saturated. From the viewpoint of productivity such as annealing time, the lower limit of the ferrite grain size number is about 0 to 1.

上記磁気焼鈍を施して優れた磁気特性を示す鋼部品を容易に得るには、該鋼部品の製造に用いられる鋼材(軟磁性鋼材)の鋼組織を、フェライト単相組織であって、好ましくはJIS G 0552(2005年)で規定するフェライト結晶粒度番号が6.0以下の整粒(結晶粒度番号の差異が±1.5の範囲内の、混粒発生が抑制された状態)とするのがよい。該鋼材(圧延材)を用いて加工を行い、その後、後述する条件で磁気焼鈍を施して再結晶生成および粒成長を促進させることにより、上記フェライト結晶粒の粗大化された鋼部品を得ることができる。   In order to easily obtain a steel part exhibiting excellent magnetic properties by performing the magnetic annealing, the steel structure of the steel material (soft magnetic steel material) used for manufacturing the steel part is a ferrite single phase structure, preferably The ferrite grain size number specified in JIS G 0552 (2005) is sized to 6.0 or less (a state where the difference in crystal grain size number is within a range of ± 1.5 and the generation of mixed grains is suppressed). Is good. The steel material (rolled material) is processed, and then subjected to magnetic annealing under the conditions described later to promote recrystallization generation and grain growth, thereby obtaining a steel part with coarsened ferrite grains. Can do.

尚、本発明でいう「フェライト単相組織」とは、フェライト組織以外に、上記BNやMnS、製造工程で不可避的に形成され得るその他の析出物を含む意図である。   The “ferrite single phase structure” in the present invention is intended to include the above BN, MnS, and other precipitates that can be unavoidably formed in the manufacturing process, in addition to the ferrite structure.

本発明のポイントは、鋼中N量と鋼中B量のバランスを図り、特に鋼中Bによる固溶Nの低減を図ると共に、鋼中Mn量を一定以下として固溶MnとMnSを低減させることにより、優れた磁気特性を確保する点にあるが、これらの作用効果を有効に発揮させると共に、鋼部品の製造工程における優れた加工性(例えば冷間鍛造性)を確保し、かつ最終的に電装部品等として使用する場合の特性(強度等)を確保するには、鋼材・鋼部品におけるMn以外の成分を下記範囲内とする必要がある。   The point of the present invention is to balance the amount of N in the steel and the amount of B in the steel, in particular, to reduce the solid solution N by the B in the steel, and to reduce the solid solution Mn and MnS by keeping the amount of Mn in the steel below a certain level. In order to ensure excellent magnetic properties, these functions and effects can be effectively demonstrated, and excellent workability (for example, cold forgeability) in the manufacturing process of steel parts is ensured, and finally In order to secure the characteristics (strength etc.) when used as electrical parts, etc., it is necessary to make components other than Mn in steel materials and steel parts within the following ranges.

〔C:0.002〜0.01%〕
Cは、鋼材の強度と延性のバランスを支配する基本元素であり、含有量が低減するほど強度は低下し、延性は向上する。またCは、鋼中に固溶してひずみ時効硬化を生じさせ易い元素であるため、極力低減することが望ましく、優れた磁気特性を確保する(JIS−SUYB−0種以上の磁気特性を満足させる)面から極低量であることが好ましい。よって本発明では、C量の上限を0.01%とした。好ましくは0.007%以下である。一方、電装部品としての最低限の強度の確保や、Bが過剰に存在した場合に、このBを安定な炭化物として存在させる観点から、C量の下限を0.002%とした。好ましくは0.003%以上である。
[C: 0.002 to 0.01%]
C is a basic element that governs the balance between strength and ductility of the steel material, and as the content decreases, the strength decreases and the ductility improves. Further, C is an element that is easily dissolved in steel and easily causes strain age hardening, so it is desirable to reduce it as much as possible and ensure excellent magnetic properties (satisfying magnetic properties of JIS-SUYB-0 or higher). It is preferable that the amount is extremely low in terms of the surface. Therefore, in the present invention, the upper limit of the C amount is set to 0.01%. Preferably it is 0.007% or less. On the other hand, the lower limit of the amount of C is set to 0.002% from the viewpoint of ensuring the minimum strength as an electrical component and allowing B to exist as a stable carbide when B is excessively present. Preferably it is 0.003% or more.

〔Si:0.1%以下(0%を含まない)〕
Siは、溶製時に脱酸剤として作用し、また磁気特性を向上させる効果をもたらす元素である。この様な効果を発揮させる観点からは、Siを0.003%以上含有させてもよいが、Si量が過剰になると冷間鍛造性が低下する。本発明では、部品成型時の冷間鍛造性を確保する観点から、0.1%を上限とした。好ましくは0.05%以下、より好ましくは0.01%以下である。
[Si: 0.1% or less (excluding 0%)]
Si is an element that acts as a deoxidizer during melting and brings about an effect of improving magnetic properties. From the viewpoint of exerting such an effect, Si may be contained in an amount of 0.003% or more. However, if the amount of Si becomes excessive, cold forgeability deteriorates. In the present invention, from the viewpoint of securing cold forgeability during component molding, the upper limit is set to 0.1%. Preferably it is 0.05% or less, More preferably, it is 0.01% or less.

〔P:0.025%以下(0%を含まない)〕
P(リン)は、粒界偏析を起こして、冷間鍛造性と磁気特性の低下を招く元素である。よって本発明では、P量の上限を0.025%とする。好ましくは0.015%以下である。
[P: 0.025% or less (excluding 0%)]
P (phosphorus) is an element that causes grain boundary segregation and causes a decrease in cold forgeability and magnetic properties. Therefore, in the present invention, the upper limit of the P content is 0.025%. Preferably it is 0.015% or less.

〔S:0.005%以下(0%を含まない)〕
S(硫黄)は、著しい凝固偏析を示し、熱間脆性が低下する。またSが過剰であると、FeSの形成により磁気特性が低下する。そのため、S量の上限を0.005%とする必要がある。好ましくは0.003%以下である。
[S: 0.005% or less (excluding 0%)]
S (sulfur) shows remarkable solidification segregation and decreases hot brittleness. On the other hand, if S is excessive, the magnetic properties are degraded due to the formation of FeS. Therefore, the upper limit of the S amount needs to be 0.005%. Preferably it is 0.003% or less.

〔Al:0.005%以下(0%を含まない)〕
Alは、固溶NをAlNの形で固定する元素である。Al量が過剰になり、AlNが多く存在すると、結晶粒の成長が抑制されて結晶粒界が増加しやすく、磁気特性の低下を招く。そのため、本発明ではAl量を0.005%以下に抑える。好ましくは0.003%以下である。
[Al: 0.005% or less (excluding 0%)]
Al is an element that fixes solute N in the form of AlN. If the amount of Al becomes excessive and a large amount of AlN is present, the growth of crystal grains is suppressed and the crystal grain boundaries are likely to increase, leading to a decrease in magnetic properties. Therefore, in the present invention, the amount of Al is suppressed to 0.005% or less. Preferably it is 0.003% or less.

〔N:0.0025%以下(0%を含まない)〕
N(窒素)は、Ti、B、Al等と結合して窒化物を形成するが、これらの元素と窒化物を形成しないNは、固溶Nの状態で残存する。固溶Nが増加すると、上述した通りフェライト相の格子ひずみが増加し、磁気特性が低下する。固溶N量を低減するには、鋼中の全窒素量を低減することが効果的であることから、N量を0.0025%以下とする。好ましくは0.0020%以下である。
[N: 0.0025% or less (excluding 0%)]
N (nitrogen) combines with Ti, B, Al and the like to form nitrides, but N which does not form nitrides with these elements remains in a solid solution N state. When the solid solution N increases, the lattice strain of the ferrite phase increases as described above, and the magnetic properties deteriorate. In order to reduce the solute N amount, it is effective to reduce the total nitrogen amount in the steel, so the N amount is set to 0.0025% or less. Preferably it is 0.0020% or less.

〔B:0.0008〜0.0025%〕
Bは、固溶NをBNの形で固定し、フェライト相の格子ひずみによる磁気特性の低下を抑制する。この効果を発揮させるため、Bを0.0008%以上含有させる。好ましくは0.0010%以上である。Nと結合しなかったBは、安定な炭化物[Fe23(CB)]を形成するが、B量が過剰になると、結晶粒界にFeBとして析出し、熱間延性の著しい低下を招くと共に、磁気特性が低下する。よって、B量は0.0025%を上限とする。好ましくは0.0020%以下である。
[B: 0.0008 to 0.0025%]
B fixes solute N in the form of BN, and suppresses a decrease in magnetic properties due to lattice distortion of the ferrite phase. In order to exert this effect, 0.0008% or more of B is contained. Preferably it is 0.0010% or more. B not bonded to N forms a stable carbide [Fe 23 (CB) 6 ], but when the amount of B becomes excessive, it precipitates as Fe 2 B at the grain boundary, and the hot ductility is significantly reduced. At the same time, the magnetic properties deteriorate. Therefore, the upper limit of the B amount is 0.0025%. Preferably it is 0.0020% or less.

〔O:0.006%以下(0%を含まない)〕
O(酸素)は常温では鋼にほとんど固溶せず、硬質酸化物(Al、SiOなど)として存在し、磁気特性を大幅に低下させる。また、上記硬質酸化物の増大を招き、変形抵抗が上昇する原因ともなる。ゆえにO量は極力低減すべきであり、本発明では0.006%以下に抑える。好ましくは0.004%以下である。
[O: 0.006% or less (excluding 0%)]
O (oxygen) hardly dissolves in steel at room temperature, exists as a hard oxide (Al 2 O 3 , SiO 2, etc.), and greatly reduces magnetic properties. Moreover, the increase of the said hard oxide is caused and it becomes a cause which a deformation resistance rises. Therefore, the amount of O should be reduced as much as possible, and is limited to 0.006% or less in the present invention. Preferably it is 0.004% or less.

本発明で規定する含有元素は前記の通りであって、残部は鉄および不可避不純物であり、該不可避不純物として、原料、資材、製造設備等の状況によって持ち込まれる元素の混入が許容され得る。   The contained elements defined in the present invention are as described above, and the balance is iron and unavoidable impurities. As the unavoidable impurities, mixing of elements brought in depending on the situation of raw materials, materials, production facilities, etc. can be allowed.

不可避不純物として含まれうるCu、Ni、Crは、磁気特性の低下を招く元素である。よって、いずれの元素についても、0.04%以下(より好ましくは0.02%以下)に抑えることが好ましい。   Cu, Ni, and Cr that can be included as inevitable impurities are elements that cause a decrease in magnetic properties. Therefore, it is preferable to suppress any element to 0.04% or less (more preferably 0.02% or less).

次に、本発明で軟磁性鋼材の製造方法を規定した理由について説明する。本発明で規定する鋼組織を実現させて、磁気焼鈍を施すことにより優れた磁気特性を発揮する軟磁性鋼材を得るには、前記成分組成を満たす鋼を一般的な方法で溶解、鋳造した後、下記の条件で熱間圧延することが大変有効である。以下、各条件について詳述する。   Next, the reason why the method for producing a soft magnetic steel material is specified in the present invention will be described. In order to achieve the steel structure defined in the present invention and obtain a soft magnetic steel material that exhibits excellent magnetic properties by performing magnetic annealing, after melting and casting the steel satisfying the above component composition by a general method It is very effective to perform hot rolling under the following conditions. Hereinafter, each condition will be described in detail.

〔熱間圧延に際しての加熱温度:1000〜1200℃〕
合金成分を母相に完全に固溶させるには、できるだけ高温で加熱することが望ましい。また加熱温度が低すぎると、圧延中に異なる相が局所的に生成し、圧延時に割れが生じる場合がある。更には圧延時のロール負荷が上昇し、生産性が低下し易くなる。これらの観点から加熱温度を1000℃以上とする。好ましくは1050℃以上である。しかし、加熱温度が高すぎると、フェライト結晶粒の粗大化が部分的に顕著となり、部品成形時の冷間鍛造性が低下する。よって加熱温度の上限を1200℃とする。好ましくは1150℃以下である。
[Heating temperature during hot rolling: 1000 to 1200 ° C.]
In order to completely dissolve the alloy components in the matrix, it is desirable to heat at as high a temperature as possible. If the heating temperature is too low, different phases are locally generated during rolling, and cracking may occur during rolling. Furthermore, the roll load at the time of rolling increases, and the productivity tends to decrease. From these viewpoints, the heating temperature is set to 1000 ° C. or higher. Preferably it is 1050 degreeC or more. However, if the heating temperature is too high, the coarsening of the ferrite crystal grains becomes partly remarkable, and the cold forgeability at the time of component molding is lowered. Therefore, the upper limit of the heating temperature is set to 1200 ° C. Preferably it is 1150 degrees C or less.

〔圧延終了温度(仕上げ圧延終了温度):850℃以上〕
熱間圧延における圧延終了温度が低すぎると、鋼組織(ミクロ組織)が細粒となりやすく、その後の冷却過程や部品製造時の焼鈍過程において、部分的な異常粒成長(GG、混粒)の発生を招く。GG発生部は冷間鍛造時の肌荒れや磁気特性ばらつきの原因となるため、均一な整粒を確保するのがよい。この様な観点から圧延終了温度を850℃以上とする。好ましくは875℃以上である。
[Rolling end temperature (finish rolling end temperature): 850 ° C. or higher]
If the rolling end temperature in hot rolling is too low, the steel structure (microstructure) tends to become fine grains, and partial abnormal grain growth (GG, mixed grains) may occur in the subsequent cooling process or annealing process during component manufacturing. Incurs outbreaks. Since the GG generating part causes rough skin and variations in magnetic characteristics during cold forging, it is preferable to ensure uniform sizing. From such a viewpoint, the rolling end temperature is set to 850 ° C. or higher. Preferably it is 875 degreeC or more.

〔熱間圧延後の巻取り温度:800℃以上〕
熱間圧延後の巻取り温度が低いと、上記圧延終了温度が低い場合と同様に、鋼組織(ミクロ組織)が細粒となりやすく、冷間鍛造性が低下する。また磁気特性も低下する。よって巻取りは800℃以上(好ましくは850℃以上)で完了させる。尚、巻取り後の冷却方法については特に問わず、例えば徐冷等を行えばよい。
[Winding temperature after hot rolling: 800 ° C or higher]
If the coiling temperature after hot rolling is low, the steel structure (microstructure) tends to be fine and the cold forgeability is reduced as in the case where the rolling end temperature is low. Also, the magnetic properties are degraded. Therefore, the winding is completed at 800 ° C. or higher (preferably 850 ° C. or higher). In addition, the cooling method after winding is not particularly limited, and for example, slow cooling or the like may be performed.

本発明の軟磁性鋼材は、前記条件で熱間圧延して例えば棒状または線状として得られるが、そのサイズは、最終製品である電装部品に応じて適宜決めることができる。   The soft magnetic steel material of the present invention is hot-rolled under the above conditions to obtain, for example, a rod shape or a linear shape, and the size can be appropriately determined according to the electrical component that is the final product.

〔焼鈍条件について〕
磁気焼鈍を施していない本発明の軟磁性鋼材であっても優れた磁気特性を示すが、JIS−SUYB−0種レベルのより優れた磁気特性を発揮する軟磁性鋼部品を製造するには、前記軟磁性鋼材を所定の部品形状に加工(例えば、冷間鍛造または温間鍛造(好ましくは冷間鍛造)や切削加工等)した後、下記条件で磁気焼鈍を行い、上記鋼部品の鋼組織を、JIS G 0552(2005年)で規定するフェライト結晶粒度番号で4.0以下とフェライト結晶粒の粗大化したフェライト単相組織とすることが大変有効である。
[About annealing conditions]
In order to produce a soft magnetic steel part that exhibits excellent magnetic properties even in the soft magnetic steel material of the present invention that has not been subjected to magnetic annealing, but exhibits superior magnetic properties of the JIS-SUYB-0 class level, After processing the soft magnetic steel material into a predetermined part shape (for example, cold forging or warm forging (preferably cold forging) or cutting), magnetic annealing is performed under the following conditions, and the steel structure of the steel part Is a ferrite single-phase structure in which the ferrite crystal grain size is 4.0 or less as defined in JIS G 0552 (2005) and the ferrite crystal grains are coarsened.

磁気焼鈍における焼鈍温度が低すぎると、存在する窒化物等の析出物がフェライト結晶粒の成長を阻害するため、実用的な焼鈍時間で、フェライト結晶粒度番号が4.0以下の粗大な結晶粒とすることが難しい。よって焼鈍温度は850℃以上とする。しかし焼鈍温度が高くなりすぎると、相変態に伴うひずみにより磁気特性(特に保磁力や、低磁界側の磁束密度)が低下するため、その上限を900℃とする。   When the annealing temperature in magnetic annealing is too low, the existing precipitates such as nitrides inhibit the growth of ferrite crystal grains, so that coarse crystal grains having a ferrite grain size number of 4.0 or less in practical annealing time. It is difficult to do. Therefore, annealing temperature shall be 850 degreeC or more. However, if the annealing temperature becomes too high, the magnetic properties (particularly the coercive force and the magnetic flux density on the low magnetic field side) are reduced due to strain accompanying the phase transformation, so the upper limit is made 900 ° C.

また、焼鈍時間が短すぎると、焼鈍温度を高めに設定しても、フェライト結晶粒を十分に粗大化させることができない。よって、前記焼鈍温度での焼鈍時間は2時間以上とする。好ましくは3時間以上である。しかし焼鈍時間が長すぎても、結晶粒を粗大化する効果は飽和する。よって焼鈍時間は6時間以下とすることが好ましい。   If the annealing time is too short, the ferrite crystal grains cannot be sufficiently coarsened even if the annealing temperature is set high. Therefore, the annealing time at the annealing temperature is 2 hours or more. Preferably it is 3 hours or more. However, even if the annealing time is too long, the effect of coarsening the crystal grains is saturated. Therefore, the annealing time is preferably 6 hours or less.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention.

表1に示す成分組成の供試材を真空溶製にて各150kg試作した。そして、溶製材を断面サイズが155mm×155mmの棒状に熱間鍛造加工し、ダミービレット材に溶接した後、表2に示す条件で熱間圧延を行って直径40mmの鋼線材(軟磁性鋼材)を得た。これを用いて、断面組織観察を行うと共に、磁気特性向上を目的とした磁気焼鈍(焼鈍条件は表2に示す通り)を行った後に、断面組織観察を行い、かつ磁気特性の評価を行った。   150 kg each of sample materials having the composition shown in Table 1 were manufactured by vacuum melting. Then, the melted material is hot forged into a bar shape having a cross-sectional size of 155 mm × 155 mm, welded to a dummy billet material, and then hot-rolled under the conditions shown in Table 2 to produce a steel wire material having a diameter of 40 mm (soft magnetic steel material). Got. Using this, the cross-sectional structure was observed, and after magnetic annealing (annealing conditions are as shown in Table 2) for the purpose of improving the magnetic characteristics, the cross-sectional structure was observed and the magnetic characteristics were evaluated. .

磁気焼鈍前後の試料の断面組織観察(鋼組織の分類とフェライト結晶粒径の測定)は次の方法で行った。即ち、磁気焼鈍前後のそれぞれの鋼線材を用い、この鋼線材の横断面(圧延方向に垂直な断面)が露出する状態で樹脂に埋め込み、研磨後、5%のピクリン酸アルコール液に15〜30秒間浸漬して腐食させた後、光学顕微鏡(Nikon EPIPHOT 200)によって、D/4(Dは直径、以下同じ)部位の組織を、100倍で10視野撮影し、組織の種類と、JIS G 0552(2005年)で規定するフェライト結晶粒度番号を確定した。尚、全ての試料において、磁気焼鈍前後の鋼組織はフェライト単相組織であった。   Observation of the cross-sectional structure of the sample before and after magnetic annealing (classification of steel structure and measurement of ferrite crystal grain size) was performed by the following method. That is, using each steel wire before and after magnetic annealing, the steel wire was embedded in a resin in a state where the cross section (cross section perpendicular to the rolling direction) of the steel wire was exposed, and after polishing, 15% to 30% in a 5% picric acid alcohol solution. After immersing and corroding for 2 seconds, the tissue of the D / 4 (D is a diameter, the same applies hereinafter) site was photographed at 10 times with an optical microscope (Nikon EPIPOT 200), and the type of tissue and JIS G 0552 The ferrite grain size number specified in (2005) was established. In all samples, the steel structure before and after magnetic annealing was a ferrite single phase structure.

MnSの面積率は、次の様にして測定した。即ち、上記鋼線材の横断面(圧延方向に垂直な断面)が露出する状態で樹脂に埋め込み、エメリー紙、ダイヤモンドバフで試料表面を研磨した。次いで、中心部を光学顕微鏡にて倍率400倍で5視野(1視野のサイズ:91mm×73mm)を写真撮影した。そして、粒子解析ソフト(「粒子解析III」)を用いて、一般的な条件で画像を2値化処理し、黒色部分をMnSとして、上記5視野におけるMnSの面積率の平均値を求めた。   The area ratio of MnS was measured as follows. That is, the steel wire was embedded in a resin in a state where the cross section (cross section perpendicular to the rolling direction) of the steel wire was exposed, and the sample surface was polished with emery paper or diamond buff. Next, five fields of view (size of one field of view: 91 mm × 73 mm) were photographed at a magnification of 400 times in the center with an optical microscope. Then, using the particle analysis software (“Particle Analysis III”), the image was binarized under general conditions, and the average value of the area ratio of MnS in the five fields of view was determined with the black portion as MnS.

各試料の磁気特性は次の方法で評価した。即ち、上記鋼線材を用いて外径38mm×内径30mm×厚さ4mmのリング状試料を作製し、磁気焼鈍を表2に示す温度(保持温度)、時間(保持時間)の条件で行った後、これに、磁界印加用の1次コイルと磁束検出用の2次コイルを巻線し、自動磁化測定装置[理研電子株式会社製 直流磁化B−H特性自動記録装置(BHS−40)]を用いてH−B曲線を測定することにより求めた。尚、No.10は、試験片に割れが生じたため、上記磁気特性の評価は行わなかった。   The magnetic properties of each sample were evaluated by the following method. That is, after producing a ring-shaped sample having an outer diameter of 38 mm, an inner diameter of 30 mm, and a thickness of 4 mm using the steel wire, and performing magnetic annealing under the conditions of temperature (holding temperature) and time (holding time) shown in Table 2. In addition, a primary coil for magnetic field application and a secondary coil for magnetic flux detection are wound, and an automatic magnetization measuring device [DC magnetization BH characteristic automatic recording device (BHS-40) manufactured by Riken Electronics Co., Ltd.] is installed. And determined by measuring the H-B curve. No. In No. 10, since the test piece was cracked, the magnetic characteristics were not evaluated.

これらの結果を表2に併記する(尚、表2における特性の評価基準を表3に示す)。   These results are also shown in Table 2 (note that the evaluation criteria for characteristics in Table 2 are shown in Table 3).

Figure 0005374233
Figure 0005374233

Figure 0005374233
Figure 0005374233

Figure 0005374233
Figure 0005374233

表1、2から次のように考察することができる(尚、下記のNo.は、表2中の実験No.を示す)。   It can be considered as follows from Tables 1 and 2 (the following No. indicates the experiment No. in Table 2).

No.1〜4、11、12、26は、本発明で規定する成分組成を満たしており、かつ本発明で規定する方法で製造したので、得られた鋼材(鋼線材)は、高い磁気特性を期待できる。また該鋼材に焼鈍を施して得られた鋼部品は、いずれも評価基準以上の優れた磁気特性を示すことがわかる。   No. Since 1-4, 11, 12, and 26 satisfy | fill the component composition prescribed | regulated by this invention and were manufactured by the method prescribed | regulated by this invention, the obtained steel materials (steel wire) are expecting a high magnetic characteristic. it can. Moreover, it turns out that all the steel parts obtained by giving annealing to this steel material show the outstanding magnetic characteristic more than evaluation criteria.

これに対しNo.5〜10、13〜25、27〜29は、鋼材の化学成分が本発明の規定要件を外れるか、本発明で規定する条件で製造を行わなかったため、評価基準の磁気特性を満たす鋼部品が得られない等の好ましくない結果となった。   In contrast, no. 5 to 10, 13 to 25, and 27 to 29 are steel components that satisfy the magnetic properties of the evaluation criteria because the chemical components of the steel materials deviate from the requirements of the present invention or were not manufactured under the conditions defined in the present invention. Unfavorable results such as not being obtained.

No.5は、[N]−(10.8/14)[B]が規定範囲の上限を超えているため、鋼中の固溶NをBNとして十分固定できず、固溶Nによる格子ひずみが生じて磁気特性が低下した。   No. No. 5, because [N]-(10.8 / 14) [B] exceeds the upper limit of the specified range, solid solution N in steel cannot be sufficiently fixed as BN, and lattice distortion due to solid solution N occurs. As a result, the magnetic properties deteriorated.

No.6は、[N]−(10.8/14)[B]が規定範囲の下限を下回るため、過剰なBの存在によるFeBが析出し、磁気特性が低下した。 No. In No. 6, since [N]-(10.8 / 14) [B] was below the lower limit of the specified range, Fe 2 B was precipitated due to the presence of excess B, and the magnetic properties were deteriorated.

No.7は、C量が上限値を超えており、Cによる格子ひずみの影響により磁気特性が低下している。   No. In No. 7, the amount of C exceeds the upper limit value, and the magnetic characteristics are deteriorated due to the effect of lattice distortion due to C.

No.8、9は、Si量が上限値を超えており、部品加工において割れが発生した。また、No.9の通り、Siを著しく過剰に含有させると、低磁界の磁束密度には影響が少ないが、高磁界の磁束密度が小さくなることがわかる。   No. In Nos. 8 and 9, the amount of Si exceeded the upper limit value, and cracking occurred during part processing. No. As can be seen from FIG. 9, when Si is excessively contained, the magnetic flux density in the low magnetic field is less affected, but the magnetic flux density in the high magnetic field is reduced.

No.10より、Mn量が不足すると、Sによる熱間脆性が低下して加熱圧延時に割れが生じることがわかる。   No. 10, it can be seen that when the amount of Mn is insufficient, the hot brittleness due to S decreases and cracks occur during hot rolling.

No.13、14より、Mn量が過剰であると、フェライト中に固溶したMnにより素地の磁気モーメントが低下すると共に、MnSの面積率が規定値を超えており、磁気特性が低下することがわかる。   No. From 13 and 14, it can be seen that if the amount of Mn is excessive, the magnetic moment of the substrate is lowered by Mn solid-dissolved in ferrite, and the area ratio of MnS exceeds the specified value, and the magnetic properties are lowered. .

No.15は、P量が過剰であるため、粒界にPが偏析し、磁気特性が低下している。   No. In No. 15, since the amount of P is excessive, P is segregated at the grain boundary and the magnetic properties are deteriorated.

No.16は、S量が過剰であるため、粒界に硫化物の偏析が生じ、磁気特性が低下している。   No. In No. 16, since the amount of S is excessive, segregation of sulfide occurs at the grain boundary, and the magnetic properties are deteriorated.

No.17は、Ni量が過剰であるため、No.18は、Cr量が過剰であるため、またNo.19は、Cu量が過剰であるため、いずれも固溶元素による格子ひずみが生じ、磁気特性が低下している。   No. No. 17 has an excessive amount of Ni. No. 18 has an excessive amount of Cr. In No. 19, since the amount of Cu is excessive, lattice strain is caused by solid solution elements, and the magnetic properties are deteriorated.

No.20は、Al量が過剰であるため、AlNの生成により結晶粒の粗大化が抑制されて結晶粒界が増加しているため、磁気特性が低下している。   No. In No. 20, since the amount of Al is excessive, the coarsening of the crystal grains is suppressed by the generation of AlN and the crystal grain boundaries are increased, so that the magnetic properties are deteriorated.

No.21は、N量が過剰であり、かつ[N]−(10.8/14)[B]が規定範囲の上限を超えているため、固溶Nの低減が十分でなく、格子ひずみによる磁気特性の低下が生じている。   No. No. 21 has an excessive amount of N, and [N]-(10.8 / 14) [B] exceeds the upper limit of the specified range, so that the reduction of solid solution N is not sufficient, and magnetism due to lattice strain The characteristic is deteriorated.

No.22は、B量が過剰であり、かつ[N]−(10.8/14)[B]が規定範囲の下限を下回っているため、過剰Bにより格子ひずみが発生し、磁気特性が低下する結果となった。またフェライトに固溶しきれなかったBが結晶粒界にFeBとして析出し、磁気特性の低下が生じている。 No. In No. 22, since the amount of B is excessive and [N]-(10.8 / 14) [B] is below the lower limit of the specified range, lattice distortion occurs due to excess B, and the magnetic properties are degraded. As a result. Further, B that could not be completely dissolved in the ferrite was precipitated as Fe 2 B at the grain boundaries, resulting in a decrease in magnetic properties.

No.23は、O量が過剰であるため、硬質酸化物(SiO、Al等)が増大して、磁気特性が低下していることがわかる。 No. No. 23 has an excessive amount of O, so that hard oxides (SiO 2 , Al 2 O 3, etc.) are increased and the magnetic properties are deteriorated.

No.24は、Mn量が過剰であると共に、B量が不足し、かつ[N]−(10.8/14)[B]が規定範囲の上限を超えているため、固溶Mnによる素地の磁気モーメントの低下、MnSの過剰な析出および固溶Nによる格子ひずみが発生し、磁気特性が低下していることがわかる。   No. In No. 24, since the amount of Mn is excessive, the amount of B is insufficient, and [N]-(10.8 / 14) [B] exceeds the upper limit of the specified range, It can be seen that the magnetic properties are deteriorated due to moment reduction, excessive precipitation of MnS and lattice distortion due to solute N.

No.25は、Mn、S、Cr、Nがいずれも過剰に含まれていると共に、B量が不足し、かつ[N]−(10.8/14)[B]が規定範囲の上限を超えているため、固溶Mnによる素地の磁気モーメントの低下、MnSの過剰な析出および固溶Nによる格子ひずみが発生し、磁気特性が低下していることがわかる。   No. 25, Mn, S, Cr, and N are all contained excessively, the amount of B is insufficient, and [N]-(10.8 / 14) [B] exceeds the upper limit of the specified range. Therefore, it can be seen that the magnetic properties of the substrate are reduced due to a decrease in the magnetic moment of the substrate due to solute Mn, excessive precipitation of MnS, and lattice distortion due to solute N.

No.27〜29は、鋼材の成分組成は本発明の規定要件を満足しているが、製造条件が本発明の要件を外れていることから次の不具合が生じている。即ちNo.27は、熱間圧延時の仕上圧延温度と巻取り温度が共に低すぎたため、圧延材の組織の一部に異常粒成長部(GG)が生じて混粒となり、磁気焼鈍での再結晶および結晶粒成長が均一に進まず磁気特性が低下する結果となった。   No. In Nos. 27 to 29, the component composition of the steel material satisfies the specified requirements of the present invention, but the following problems occur because the manufacturing conditions deviate from the requirements of the present invention. That is, no. No. 27, because the finish rolling temperature and the coiling temperature during hot rolling were both too low, abnormal grain growth (GG) occurred in a part of the structure of the rolled material, resulting in mixed grains, and recrystallization in magnetic annealing and As a result, the crystal growth did not progress uniformly and the magnetic properties deteriorated.

No.28、29では、磁気焼鈍を規定の条件で行わなかったため、再結晶が十分に進まず、粒界面積が多い組織となり磁気特性に劣る結果となった。   No. In Nos. 28 and 29, since the magnetic annealing was not performed under the specified conditions, recrystallization did not proceed sufficiently, resulting in a structure with a large grain boundary area, resulting in poor magnetic properties.

Claims (5)

C:0.002〜0.01%(質量%の意味、成分について以下同じ)、
Si:0.1%以下(0%を含まない)、
Mn:0.01〜0.06%、
P:0.025%以下(0%を含まない)、
S:0.005%以下(0%を含まない)、
Al:0.005%以下(0%を含まない)、
N:0.0025%以下(0%を含まない)、
B:0.0008〜0.0025%、および
O:0.006%以下(0%を含まない)
を満たし、残部:鉄および不可避不純物からなり、下記式(1)を満たすと共に、
鋼組織がフェライト単相組織であり、かつMnSの面積率が1.05%以下であることを特徴とする軟磁性鋼材。
−0.0013≦[N]−(10.8/14)[B]≦0.0013 …(1)
{式(1)において、[N]は鋼中のN量(質量%)、[B]は鋼中のB量(質量%)を示す}
C: 0.002 to 0.01% (meaning mass%, the same applies to the components below),
Si: 0.1% or less (excluding 0%),
Mn: 0.01 to 0.06 %,
P: 0.025% or less (excluding 0%),
S: 0.005% or less (excluding 0%),
Al: 0.005% or less (excluding 0%),
N: 0.0025% or less (excluding 0%),
B: 0.0008 to 0.0025%, and O: 0.006% or less (excluding 0%)
And the balance: iron and inevitable impurities, satisfying the following formula (1),
A soft magnetic steel material characterized in that the steel structure is a ferrite single phase structure and the area ratio of MnS is 1.05 % or less.
−0.0013 ≦ [N] − (10.8 / 14) [B] ≦ 0.0013 (1)
{In Formula (1), [N] represents the N content (mass%) in the steel, and [B] represents the B content (mass%) in the steel}
更に、Cu:0.04%以下(0%を含む)、Ni:0.04%以下(0%を含む)、およびCr:0.04%以下(0%を含む)を満たす請求項1に記載の軟磁性鋼材。   Furthermore, Cu: 0.04% or less (including 0%), Ni: 0.04% or less (including 0%), and Cr: 0.04% or less (including 0%) The soft magnetic steel described. 請求項1または2に記載の軟磁性鋼材を製造する方法であって、請求項1または2に記載の成分組成を有する鋼を、1000〜1200℃に加熱してから熱間圧延し、850℃以上の温度(圧延終了温度)で圧延終了後、800℃以上で巻取りを完了することを特徴とする軟磁性鋼材の製造方法。   A method for producing the soft magnetic steel material according to claim 1 or 2, wherein the steel having the component composition according to claim 1 or 2 is heated to 1000 to 1200 ° C and hot-rolled to obtain 850 ° C. A method for producing a soft magnetic steel material, characterized in that after completion of rolling at the above temperature (rolling end temperature), winding is completed at 800 ° C. or higher. 請求項1または2に記載の軟磁性鋼材を用い、焼鈍を施して得られる軟磁性鋼部品であって、請求項1または2に記載の成分組成を満たし、かつ鋼組織が、フェライト単相組織であると共に、JIS G 0552(2005年)で規定するフェライト結晶粒度番号が4.0以下であることを特徴とする軟磁性鋼部品。 A soft magnetic steel part obtained by annealing using the soft magnetic steel material according to claim 1 or 2, wherein the steel composition satisfies the component composition according to claim 1 or 2, and the steel structure is a ferrite single phase structure And a ferrite magnetic grain size number defined by JIS G 0552 (2005) is 4.0 or less, a soft magnetic steel part. 請求項4に記載の軟磁性鋼部品の製造方法であって、請求項1または2に記載の軟磁性鋼材を、部品形状に加工後、850〜900℃で2時間以上焼鈍することを特徴とする軟磁性鋼部品の製造方法。   The method for producing a soft magnetic steel part according to claim 4, wherein the soft magnetic steel material according to claim 1 or 2 is annealed at 850 to 900 ° C for 2 hours or more after being processed into a part shape. To produce soft magnetic steel parts.
JP2009123504A 2009-05-21 2009-05-21 Soft magnetic steel materials, soft magnetic steel parts, and methods for producing them Expired - Fee Related JP5374233B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009123504A JP5374233B2 (en) 2009-05-21 2009-05-21 Soft magnetic steel materials, soft magnetic steel parts, and methods for producing them

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009123504A JP5374233B2 (en) 2009-05-21 2009-05-21 Soft magnetic steel materials, soft magnetic steel parts, and methods for producing them

Publications (2)

Publication Number Publication Date
JP2010270369A JP2010270369A (en) 2010-12-02
JP5374233B2 true JP5374233B2 (en) 2013-12-25

Family

ID=43418626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009123504A Expired - Fee Related JP5374233B2 (en) 2009-05-21 2009-05-21 Soft magnetic steel materials, soft magnetic steel parts, and methods for producing them

Country Status (1)

Country Link
JP (1) JP5374233B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6630592B2 (en) * 2016-02-29 2020-01-15 株式会社神戸製鋼所 Movable iron core and solenoid device
CN113403547B (en) * 2021-06-29 2022-04-26 宝武集团鄂城钢铁有限公司 High-cleanness soft magnetic steel with excellent welding performance and production method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0774385B2 (en) * 1990-09-10 1995-08-09 住友金属工業株式会社 Method for manufacturing electromagnetic thick plate with excellent electromagnetic characteristics

Also Published As

Publication number Publication date
JP2010270369A (en) 2010-12-02

Similar Documents

Publication Publication Date Title
KR101591222B1 (en) Method of producing non-oriented electrical steel sheet
JP6855684B2 (en) Electromagnetic steel sheet and its manufacturing method
JP4464889B2 (en) Soft magnetic steel materials with excellent cold forgeability, machinability and magnetic properties, and soft magnetic steel parts with excellent magnetic properties
EP1197569B1 (en) Fe-Ni permalloy and method of producing the same
JP4126479B2 (en) Method for producing non-oriented electrical steel sheet
JP2017145462A (en) Electromagnetic steel sheet, and method for producing the same
JP4586741B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP4515355B2 (en) Soft magnetic steel materials with excellent magnetic properties and machinability in high magnetic fields and soft magnetic steel components with excellent magnetic properties in high magnetic fields
JP7180700B2 (en) Non-oriented electrical steel sheet
JP4646834B2 (en) Soft magnetic steel materials with excellent magnetic properties and stability and cold forgeability, soft magnetic steel parts with excellent magnetic properties and stability, and methods for producing the same
JP5416452B2 (en) Soft magnetic steel materials, soft magnetic steel parts, and manufacturing methods thereof
JP5374233B2 (en) Soft magnetic steel materials, soft magnetic steel parts, and methods for producing them
JP4223701B2 (en) Soft magnetic low carbon steel material excellent in machinability and magnetic properties and method for producing the same, and method for producing soft magnetic low carbon steel parts using the steel material
JP4223726B2 (en) Soft magnetic steel material excellent in cold forgeability and magnetic permeability characteristics, soft magnetic steel part excellent in magnetic permeability characteristics and manufacturing method thereof
JP4502889B2 (en) Soft magnetic steel material excellent in cold forgeability, cutting workability and AC magnetic characteristics, soft magnetic steel parts excellent in AC magnetic characteristics, and method for producing the same
JP2006241554A (en) Method for manufacturing non-oriented electromagnetic steel sheet having high magnetic flux density
CN114901850A (en) Hot-rolled steel sheet for non-oriented electromagnetic steel sheet
JP4646872B2 (en) Soft magnetic steel material, soft magnetic component and method for manufacturing the same
KR101110257B1 (en) Non-oriented electrical steel sheet with high magnetic flux density and manufacturing method thereof
JP4398639B2 (en) Soft magnetic steel materials with excellent machinability and magnetic properties, soft magnetic steel components with excellent magnetic properties, and methods for producing soft magnetic steel components
JP5826284B2 (en) Wire rods, steel wires having excellent magnetic properties, and methods for producing them
JP4223727B2 (en) Soft magnetic steel material excellent in cold forgeability and magnetic properties, soft magnetic steel parts excellent in magnetic properties, and manufacturing method thereof
JP4266336B2 (en) Soft magnetic steel material excellent in hot forgeability, magnetic properties and machinability, soft magnetic steel parts excellent in magnetic properties and manufacturing method thereof
US20230257859A1 (en) Soft magnetic member and intermediate therefor, methods respectively for producing said member and said intermediate, and alloy for soft magnetic member
JP2009084645A (en) Soft magnetic steel member having excellent induction hardenability and cold forgeability, and high strength soft magnetic steel component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130625

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130917

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130920

R150 Certificate of patent or registration of utility model

Ref document number: 5374233

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees