JP2018111847A - Nonoriented electromagnetic steel sheet - Google Patents

Nonoriented electromagnetic steel sheet Download PDF

Info

Publication number
JP2018111847A
JP2018111847A JP2017001892A JP2017001892A JP2018111847A JP 2018111847 A JP2018111847 A JP 2018111847A JP 2017001892 A JP2017001892 A JP 2017001892A JP 2017001892 A JP2017001892 A JP 2017001892A JP 2018111847 A JP2018111847 A JP 2018111847A
Authority
JP
Japan
Prior art keywords
less
steel sheet
particles
number density
ferrite grains
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017001892A
Other languages
Japanese (ja)
Other versions
JP6816516B2 (en
Inventor
藤倉 昌浩
Masahiro Fujikura
昌浩 藤倉
伸一 松井
Shinichi Matsui
伸一 松井
佑輔 完戸
Yusuke Kanto
佑輔 完戸
宣憲 藤井
Nobunori Fujii
宣憲 藤井
高橋 克
Katsu Takahashi
克 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2017001892A priority Critical patent/JP6816516B2/en
Publication of JP2018111847A publication Critical patent/JP2018111847A/en
Application granted granted Critical
Publication of JP6816516B2 publication Critical patent/JP6816516B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nonoriented electromagnetic steel sheet that prevents the occurrence of flaws, has improved productivity, low iron loss and high strength, and includes fine precipitations of Cu, and a method of producing the same.SOLUTION: A nonoriented electromagnetic steel sheet contains, in mass%, C: 0.005% or less, Si: 1.0-4.0%, Mn: 0.05-1.5%, Al: less than 0.03%, Cu: 0.5-2.5%, O: 0.003-0.030%, S: 0.004% or less, N: 0.004% or less, with the balance being Fe and impurities. In the steel, the ratio of number density N1 per unit volume of an inclusion of 5 μm or less in diameter and number density N2 per unit volume of an inclusion of more than 5 μm in diameter, N1/N2, is 20 or more. The steel sheet has a metallographic structure comprising ferrite grains free of non-recrystallized structures. The ferrite grains have an average crystal grain size of 30-180 μm. Inside the ferrite grains contained are metal Cu particles with a specified number density. The metal Cu particles have an average particle size of 1.0-10.0 nm.SELECTED DRAWING: Figure 2

Description

本発明は、電気自動車などの駆動モータや各種電気機器用モータの鉄心材料として使用される高強度無方向性電磁鋼板に関する。   The present invention relates to a high-strength non-oriented electrical steel sheet used as a core material for drive motors of electric vehicles and motors for various electric devices.

近年、自動車用途などで、容量が大きく高速で回転するモータが増えてきている。当該モータの回転子用材料には、遠心力や応力変動に耐えるための機械強度が要求される。鋼の機械強度を上昇させるためには細粒強化、転位強化などの方法が用いられるが、一般にこれら強化作用は、軟磁気特性を劣化させる。機械強度と共に優れた磁気特性を維持できれば、回転子と固定子に同じ材料を用いることができる。特許文献1〜8などでは、低鉄損及び高強度の両立を目的として、冷延再結晶後に金属Cuを微細析出させる方法が提案されている。   In recent years, motors with large capacities and rotating at high speed have been increasing in automobile applications. The motor rotor material is required to have mechanical strength to withstand centrifugal force and stress fluctuation. In order to increase the mechanical strength of steel, methods such as fine grain strengthening and dislocation strengthening are used. Generally, these strengthening actions deteriorate soft magnetic properties. The same material can be used for the rotor and the stator as long as excellent magnetic properties can be maintained together with the mechanical strength. In Patent Documents 1 to 8 and the like, for the purpose of achieving both low iron loss and high strength, a method of finely depositing metal Cu after cold rolling recrystallization is proposed.

特開2004−084053号公報JP 2004-084053 A 国際公開第2005/033349号International Publication No. 2005/033349 特開2004−183066号公報JP 2004-183066 A 国際公開第2004/050934号International Publication No. 2004/050934 特開2008−223045号公報JP 2008-223045 A 特開2010−24509号公報JP 2010-24509 A 国際公開第2013/024899号International Publication No. 2013/024899 国際公開第2013/146886号International Publication No. 2013/146886

Cuを微細析出させる技術は、低い鉄損と高い機械強度を得ることができるが、含まれるCuが多いほど、熱間圧延の際に鋼板の表面に疵が発生しやすいという問題がある。本発明は、Cuを微細析出させた高強度の無方向性電磁鋼板を提供するにあたって、製造過程において、疵の発生を抑制し、生産性を向上させることを目的とする。   The technique of finely depositing Cu can obtain a low iron loss and a high mechanical strength, but the more Cu contained, the more likely that wrinkles are likely to occur on the surface of the steel sheet during hot rolling. In providing a high-strength non-oriented electrical steel sheet in which Cu is finely precipitated, an object of the present invention is to suppress generation of soot and improve productivity in a manufacturing process.

本発明者らは、Cu起因の熱延板の疵を抑えるためには、スラブ加熱時の鋼の酸化を抑えることが有効であり、そのためには、スラブが含有するAl量を制限することが有効であることを見出した。しかし単純にAl量を減少させると、窒化物や硫化物の微細析出により磁気特性が劣化することが分かった。そのため、Al量の最適化と製鋼時の介在物の制御により、窒化物や硫化物の析出を抑え、良好な磁気特性を確保する。具体的には、下記のとおりである。   In order to suppress the wrinkling of the hot-rolled sheet caused by Cu, it is effective to suppress oxidation of the steel during slab heating. For that purpose, the amount of Al contained in the slab must be limited. I found it effective. However, it was found that if the Al content is simply reduced, the magnetic properties deteriorate due to fine precipitation of nitrides and sulfides. Therefore, by optimizing the amount of Al and controlling inclusions during steelmaking, precipitation of nitrides and sulfides is suppressed, and good magnetic properties are ensured. Specifically, it is as follows.

(1)質量%で、C:0.005%以下、Si:1.0〜4.0%、Mn:0.05〜1.5%、Al:0.03%未満、Cu:0.5〜2.5%、O:0.003〜0.030%、S:0.004%以下、N:0.004%以下を含有し、残部がFe及び不純物からなり、
鋼中に含まれる、直径が5μm以下の介在物の単位体積当たりの個数密度N1と、直径が5μmを超える介在物の単位体積当たりの個数密度N2の比率、N1/N2が20以上であり、未再結晶組織を含まないフェライト粒からなる金属組織を有し、前記フェライト粒の平均結晶粒径が30μm以上、180μm以下であり、
前記フェライト粒の内部に個数密度1.0×104〜1.0×107個/μm3の金属Cu粒子を含有し、前記フェライト粒の内部の前記金属Cu粒子の平均粒径が1.0nm以上、10.0nm以下であることを特徴とする無方向性電磁鋼板。
(1) By mass%, C: 0.005% or less, Si: 1.0 to 4.0%, Mn: 0.05 to 1.5%, Al: less than 0.03%, Cu: 0.5 -2.5%, O: 0.003-0.030%, S: 0.004% or less, N: 0.004% or less, the remainder consists of Fe and impurities,
The ratio of the number density N1 per unit volume of inclusions having a diameter of 5 μm or less contained in the steel to the number density N2 per unit volume of inclusions having a diameter of more than 5 μm, N1 / N2 is 20 or more, It has a metal structure composed of ferrite grains not containing unrecrystallized structure, and the average grain size of the ferrite grains is 30 μm or more and 180 μm or less
The ferrite particles contain metal Cu particles having a number density of 1.0 × 10 4 to 1.0 × 10 7 particles / μm 3 , and the average particle size of the metal Cu particles inside the ferrite particles is 1. A non-oriented electrical steel sheet having a thickness of 0 nm or more and 10.0 nm or less.

(2)質量%でCrを0.1〜4.0%含むことを特徴とする、前記(1)に記載の無方向性電磁鋼板。   (2) The non-oriented electrical steel sheet according to (1) above, containing 0.1 to 4.0% Cr by mass%.

本発明によれば、Cuを微細析出させた高強度無方向性電磁鋼板を生産性良く製造できる。   According to the present invention, a high-strength non-oriented electrical steel sheet in which Cu is finely precipitated can be manufactured with high productivity.

代表的な合金における、酸化増量の温度変化を示す図である。It is a figure which shows the temperature change of the oxidation increase in a typical alloy. 1100℃加熱時の酸化増量に対するAl添加の影響を示す図である。It is a figure which shows the influence of Al addition with respect to the oxidation increase at the time of 1100 degreeC heating. 鉄損に対するAl含有量の影響を示す図である。It is a figure which shows the influence of Al content with respect to an iron loss. 鉄損に対する酸素濃度の影響を示す図である。It is a figure which shows the influence of the oxygen concentration with respect to an iron loss. 鉄損に対する介在物個数密度比N1/N2の影響を示す図である。It is a figure which shows the influence of the inclusion number density ratio N1 / N2 with respect to an iron loss. 介在物粒子径とS濃度の関係を示す図である。It is a figure which shows the relationship between an inclusion particle diameter and S density | concentration. 介在物内の元素分布例を示す図である。It is a figure which shows the example of element distribution in the inclusion.

Cu起因の疵を防止するためには、熱延加熱時のスラブの酸化を抑制することが重要である。なぜならば、Cuを含有する鋼が酸化すると、Cuよりも卑であるFeが選択的に酸化し、Cuがスケールと地鉄の界面に金属状態で濃化し、これが種々の疵の原因になるからである。   In order to prevent Cu-induced soot, it is important to suppress slab oxidation during hot rolling. This is because, when steel containing Cu is oxidized, Fe, which is lower than Cu, is selectively oxidized, and Cu concentrates in a metallic state at the interface between scale and ground iron, which causes various defects. It is.

<実験1>
表1に示す成分を持つ鋼を真空溶解し、できたインゴットに粗熱延を施し、粗バーから10mm×20mm×30mmの試験片を切り出し、大気中焼鈍に供した。加熱温度を1050℃〜1200℃の範囲で変化させ、均熱時間は30分とした。焼鈍前後の試料の重量を測定した。その増加分は酸化に伴う酸化増量である。加熱温度と酸化増量の関係を図1に示す。Si、Alを含まない合金a1に対して、Siを3.1%とした合金a2では、1150℃以下の酸化は効果的に抑制される。そこにAlを0.7%含有させた合金a3(Siは3.2%)では、酸化増量が増え、耐酸化性は劣化する。また、合金a2、a3共、1160℃を超えると、急激に酸化増量は増加する。
上記の結果から、SiはCu起因の疵を防止する作用を持つが、Alが複合含有されるとその疵防止作用は低下してしまう。またスラブの加熱温度1160℃以上の高温になると、Cuの析出が顕著になり、疵の原因となる。
<Experiment 1>
Steel having the components shown in Table 1 was melted in vacuum, and the resulting ingot was subjected to rough hot rolling, and a 10 mm × 20 mm × 30 mm test piece was cut out from the coarse bar and subjected to atmospheric annealing. The heating temperature was changed in the range of 1050 ° C. to 1200 ° C., and the soaking time was 30 minutes. The weight of the sample before and after annealing was measured. The increase is an increase in oxidation accompanying oxidation. The relationship between the heating temperature and the increase in oxidation is shown in FIG. Oxidation at 1150 ° C. or lower is effectively suppressed in the alloy a2 in which Si is 3.1% with respect to the alloy a1 that does not contain Si and Al. In the alloy a3 containing 0.7% Al (Si is 3.2%), the amount of oxidation increases and the oxidation resistance deteriorates. Further, when the temperatures of both alloys a2 and a3 exceed 1160 ° C., the amount of oxidation increases rapidly.
From the above results, Si has a function of preventing Cu-induced wrinkles, but when Al is contained in a composite manner, the wrinkle-preventing action decreases. Further, when the heating temperature of the slab becomes a high temperature of 1160 ° C. or higher, the precipitation of Cu becomes prominent and causes wrinkles.

<実験2>
次にSi量を3.1〜3.2%に固定し、Al量を変化させた鋼を真空溶解で溶製し、上記と同様の実験を行った。成分組成を表2に示す。図2は1100℃における酸化増量に対するAl添加量の影響である。Al量の増加と共に酸化増量は増加する。特に0.1%以上になるとその影響は顕著である。従って、Cuの析出を抑制し、熱延時の疵発生を防止するにはAlを0.1%未満とすることが有効であると考えられる。
表2のそれぞれのインゴットを供試材にして、加熱温度1100℃の粗圧延後、加熱温度1140℃、仕上げ温度850℃、仕上げ厚2.5mmの仕上げ熱延を施した。各材料における熱延板表面のヘゲ疵の有無を表2に示す。上記の様に推定された通り、Al含有量を0.1%以下とすれば熱延板の疵が発生しなかった。
<Experiment 2>
Next, the Si amount was fixed to 3.1 to 3.2%, and the steel in which the Al amount was changed was melted by vacuum melting, and an experiment similar to the above was performed. The component composition is shown in Table 2. FIG. 2 shows the influence of the Al addition amount on the oxidation increase at 1100 ° C. As the Al amount increases, the oxidation increase increases. In particular, when the amount is 0.1% or more, the influence is remarkable. Therefore, it is considered effective to make Al less than 0.1% in order to suppress Cu precipitation and prevent soot formation during hot rolling.
Each ingot of Table 2 was used as a test material, and after hot rolling at a heating temperature of 1100 ° C., finish hot rolling was performed at a heating temperature of 1140 ° C., a finishing temperature of 850 ° C., and a finishing thickness of 2.5 mm. Table 2 shows the presence or absence of lashes on the surface of the hot-rolled sheet in each material. As estimated above, the hot-rolled sheet wrinkles did not occur if the Al content was 0.1% or less.

<実験3>
次に上記熱延板に870℃の熱延板焼鈍を実施後、0.35mmに冷間圧延し、1000℃×30秒の仕上げ焼鈍を実施、その後Cuを析出させるため、550℃×30秒の焼鈍を施した。磁気特性、機械特性を同じ表2に示す。図3には、Al添加量と鉄損W10/400の関係を示す。Alが0.03〜0.08の範囲で鉄損が劣化している。鉄損が劣化するのは、スラブ加熱時にAlNが溶解し、熱延後にAlNが微細析出し、仕上げ焼鈍時の粒成長性を阻害するためと考えられる。疵を防止し、かつ、低い鉄損を得るためにAl量を0.03%よりも少なくしなければならない。
<Experiment 3>
Next, after performing 870 ° C. hot-rolled sheet annealing on the above-mentioned hot-rolled sheet, cold rolling to 0.35 mm, finishing annealing at 1000 ° C. × 30 seconds, and then depositing Cu, 550 ° C. × 30 seconds Annealed. Table 2 shows the magnetic characteristics and mechanical characteristics. FIG. 3 shows the relationship between the Al addition amount and the iron loss W10 / 400. The iron loss is degraded when Al is in the range of 0.03 to 0.08. It is considered that the iron loss is deteriorated because AlN dissolves during slab heating, AlN finely precipitates after hot rolling, and inhibits grain growth during finish annealing. In order to prevent wrinkles and obtain a low iron loss, the Al content must be less than 0.03%.

以上の様に、疵の防止と鉄損劣化を防ぐためには、鋼のAl含有量を0.03%よりも少なくしなければならないが、脱酸剤にAlを用いると溶製後のAl量をその範囲にすることは困難である。従って以下にSi脱酸を行った場合の鋼板の磁気特性について調査した。   As described above, in order to prevent flaws and iron loss deterioration, the Al content of the steel must be less than 0.03%, but if Al is used as the deoxidizer, the Al content after melting Is within that range. Therefore, the magnetic properties of the steel sheet when Si deoxidation was performed were investigated below.

<実験4>
電解鉄と鉄鉱石(Fe23)を溶解し、脱酸剤としてSiを投入し、成分調整し、脱酸剤投入から鋳型に注入するまでの保持時間を0.5分〜60分の範囲で変化させてインゴットを製造した。表3に得られたインゴットの成分分析結果を示す。酸素含有量は保持時間と共に低下するが、10分以上保持すると、約100ppmの一定の値になった。
<Experiment 4>
Electrolytic iron and iron ore (Fe 2 O 3 ) are dissolved, Si is added as a deoxidizing agent, the components are adjusted, and the holding time from the deoxidizing agent injection to the casting mold is 0.5 to 60 minutes. Ingots were produced with varying ranges. Table 3 shows the component analysis results of the ingot obtained. The oxygen content decreased with the holding time, but when it was held for 10 minutes or more, it became a constant value of about 100 ppm.

また、インゴットから試料を切り出し、断面の組織観察を行い、含まれる介在物の大きさと、その個数密度を調査した。直径が5μm以下の介在物の単位面積当たりの個数密度N1と、直径が5μmを超える介在物の単位面積当たりの個数密度N2、およびそれらの比率、N1/N2を表3に示す。直径5μm以下の介在物は、保持時間を長くしてもその個数密度の変化は小さい。介在物個数が保持時間に依存しないことから、これらは主に、鋼の凝固時に晶出する二次脱酸生成物と考えられる。一方、5μm以上の大型の介在物個数は時間と共に低下する。これらは、溶鋼中で既に晶出していた介在物と推定される。   In addition, a sample was cut out from the ingot, the structure of the cross section was observed, and the size of inclusions and the number density thereof were investigated. Table 3 shows the number density N1 per unit area of inclusions having a diameter of 5 μm or less, the number density N2 per unit area of inclusions having a diameter exceeding 5 μm, and their ratio, N1 / N2. Inclusions with a diameter of 5 μm or less have little change in the number density even if the holding time is increased. Since the number of inclusions does not depend on the holding time, these are mainly considered as secondary deoxidation products that crystallize during solidification of the steel. On the other hand, the number of large inclusions of 5 μm or more decreases with time. These are presumed to be inclusions that have already crystallized in the molten steel.

次にこれらインゴットを供試材として、加熱温度1100℃の粗圧延後、加熱温度1140℃、仕上げ温度850℃、仕上げ厚2.5mmの仕上げ熱延を施した。熱延板の表面を観察したところ、すべての熱延板で、表面のヘゲ疵は見られなかった。   Next, using these ingots as test materials, after hot rolling at a heating temperature of 1100 ° C., finish hot rolling was performed at a heating temperature of 1140 ° C., a finishing temperature of 850 ° C., and a finishing thickness of 2.5 mm. When the surface of the hot-rolled sheet was observed, no lashes on the surface were observed on all the hot-rolled sheets.

上記熱延板に870℃の熱延板焼鈍を施し、仕上げ厚0.35mmの冷延を実施後、1000℃、30秒の仕上げ焼鈍、550℃、30秒のCu析出焼鈍を行い、無方向性電磁鋼板を得た。鉄損W10/400の値を表3に示す。脱酸時間を10分以上にすることで、降伏強度や引張強度にも優れた、良好な鉄損値の無方向性電磁鋼板を得ることができる。   The hot-rolled sheet is subjected to hot-rolled sheet annealing at 870 ° C., cold-rolled to a final thickness of 0.35 mm, then subjected to 1000 ° C., 30-second finish annealing, 550 ° C., 30-second Cu precipitation annealing, and non-directional An electrical steel sheet was obtained. The value of iron loss W10 / 400 is shown in Table 3. By setting the deoxidation time to 10 minutes or longer, it is possible to obtain a non-oriented electrical steel sheet having a good iron loss value and excellent in yield strength and tensile strength.

上記結果を用いて、鋼中の含有酸素量と鉄損の関係を図4に示す。酸素量の低下と共に鉄損は低下する。図5には、N1/N2と鉄損W10/400の関係を示す。N1/N2が20以上になると、鉄損が顕著に小さくなることが分かる。   Using the above results, the relationship between the amount of oxygen contained in the steel and the iron loss is shown in FIG. As the amount of oxygen decreases, the iron loss decreases. FIG. 5 shows the relationship between N1 / N2 and iron loss W10 / 400. It can be seen that when N1 / N2 is 20 or more, the iron loss is significantly reduced.

表3のc9のインゴット中の介在物について、その直径と含有するSの関係を図6に示す。小さい介在物ほど、含有するS量が増加する傾向を持つ。含有Sが大きかった2.2μmの介在物の元素分布を図7に示す。介在物上にMnSが析出していることが分かる。 以上から、径の小さい二次脱酸生成物には、マトリックス中のSがMnSとして析出し易いと考えられる。従って、図5でN1/N2が20以上で鉄損が小さくなったのは、Sをスカベンジしない大型介在物個数が減少したと共に、小型の二次脱酸生成物上へのMnSの析出が進み、Sの無害化が進んだためと推測できる。従って、本発明では、鉄損を低減させるため、N1/N2を20以上とする。   About the inclusion in the ingot of c9 of Table 3, the relationship between the diameter and S contained is shown in FIG. Smaller inclusions tend to increase the amount of S contained. FIG. 7 shows the element distribution of inclusions of 2.2 μm in which the content S was large. It can be seen that MnS is deposited on the inclusions. From the above, it is considered that S in the matrix tends to precipitate as MnS in the secondary deoxidation product having a small diameter. Therefore, in FIG. 5, N1 / N2 was 20 or more and the iron loss was reduced because the number of large inclusions that did not scavenge S decreased and precipitation of MnS on small secondary deoxidation products progressed. It can be assumed that the detoxification of S has progressed. Therefore, in the present invention, N1 / N2 is set to 20 or more in order to reduce iron loss.

<鋼の化学組成、組織>
以下の説明において、鋼に含まれる各元素の含有量の単位である「%」は、特に断りがない限り「質量%」を意味する。
<Chemical composition and structure of steel>
In the following description, “%”, which is a unit of content of each element contained in steel, means “mass%” unless otherwise specified.

<C:0.005%以下>
Cは鉄損を劣化させるため、C含有量は低ければ低いほどよい。このような現象は、C含有量が0.005%超で顕著である。従って、C含有量は0.005%以下とし、好ましくは0.003%以下、より好ましくは0.002%以下とする。
<C: 0.005% or less>
Since C deteriorates iron loss, the lower the C content, the better. Such a phenomenon is remarkable when the C content exceeds 0.005%. Therefore, the C content is 0.005% or less, preferably 0.003% or less, more preferably 0.002% or less.

<Si:1.0〜4.0%>
Siは、先の実験で示したように、スラブ加熱時の鋼の酸化を抑えて、Cuの析出を抑制する作用を持つ。更に、Siは固有抵抗を上昇させ、鉄損を低減させる作用も持つ。Si含有量が1.0%未満では、これらの作用効果が十分に得られない。従って、Si含有量は1.0%以上とし、好ましくは2.0%以上、より好ましくは2.5%以上とする。 一方、Si含有量が4.0%超では、鋼が脆化し、圧延性が低下する。従って、Si含有量は4.0%以下とし、好ましくは3.8%以下とし、より好ましくは3.5%以下とする。
<Si: 1.0-4.0%>
As shown in the previous experiment, Si suppresses the precipitation of Cu by suppressing the oxidation of steel during slab heating. Further, Si has an effect of increasing specific resistance and reducing iron loss. If the Si content is less than 1.0%, these effects cannot be obtained sufficiently. Therefore, the Si content is 1.0% or more, preferably 2.0% or more, more preferably 2.5% or more. On the other hand, if the Si content exceeds 4.0%, the steel becomes brittle and the rollability deteriorates. Accordingly, the Si content is 4.0% or less, preferably 3.8% or less, and more preferably 3.5% or less.

<Mn:0.05%〜1.5%>
Mnは鋼の固有抵抗を高める作用と共に、MnSの溶体化温度を高めることで、熱間圧延中の硫化物の微細析出を防止する作用を持つ。Mn含有量が0.05%未満では、これらの作用効果を十分に得られない。従って、Mn含有量は0.05%以上とし、好ましくは0.1%以上、より好ましくは0.2%以上とする。一方、Mn含有量が1.5%超では、鋼が脆化することがある。従って、Mn含有量は1.5%以下とし、好ましくは1.0%以下、より好ましくは0.5%以下とする。
<Mn: 0.05% to 1.5%>
Mn has an effect of preventing fine precipitation of sulfide during hot rolling by increasing the solution temperature of MnS as well as increasing the specific resistance of steel. When the Mn content is less than 0.05%, these effects cannot be obtained sufficiently. Therefore, the Mn content is 0.05% or more, preferably 0.1% or more, more preferably 0.2% or more. On the other hand, if the Mn content exceeds 1.5%, the steel may become brittle. Therefore, the Mn content is 1.5% or less, preferably 1.0% or less, more preferably 0.5% or less.

<Al:0.03%未満>
AlはSiを含有する鋼の酸化を促進し、疵の原因となる。また、実験4の図5で示した通り、Alが0.03%以上であると、鉄損が劣化する。本発明では、Alの含有量を0.03未満にする。好ましくは0.008以下であり、より好ましくは0.005以下である。
<Al: less than 0.03%>
Al promotes oxidation of steel containing Si and causes soot. Further, as shown in FIG. 5 of Experiment 4, when the Al content is 0.03% or more, the iron loss is deteriorated. In the present invention, the Al content is less than 0.03. Preferably it is 0.008 or less, More preferably, it is 0.005 or less.

<Cu:0.5〜2.5%>
Cuは、冷延再結晶後に粒内に微細に析出させることで、鉄損の劣化なく、機械強度を上昇させる。Cu含有量が0.5%未満では、この効果を十分に得られない。従って、Cu含有量は0.5%以上とし、好ましくは0.7%以上とし、より好ましくは1.0%以上とする。一方、Cu含有量が2.5%超では、熱間圧延時の疵が生じやすく、脆化も生じやすい。従って、Cu含有量は2.5%以下とし、好ましくは2.0%以下とし、より好ましくは1.5%以下とする。
<Cu: 0.5 to 2.5%>
Cu precipitates finely in the grains after cold rolling recrystallization, thereby increasing the mechanical strength without deterioration of iron loss. If the Cu content is less than 0.5%, this effect cannot be sufficiently obtained. Therefore, the Cu content is 0.5% or more, preferably 0.7% or more, more preferably 1.0% or more. On the other hand, if the Cu content exceeds 2.5%, flaws are likely to occur during hot rolling, and embrittlement tends to occur. Therefore, the Cu content is 2.5% or less, preferably 2.0% or less, more preferably 1.5% or less.

<O:0.003〜0.030%>
一般的に、酸素は介在物を生成し、磁気特性に悪影響を与える。しかし、先に示した通り、脱酸後、凝固時に生成される二次脱酸生成物は、自身にMnSを晶出あるいは析出させ、鋼中のSを無害化する作用を持つ。この作用を持つために、Oの含有量は0.003%以上とする。好ましくは0.005%以上、更に好ましくは、0.010%以上である。一方、Oが0.030%より多いと、Sの無害化の作用を持たない大型の介在物が増え、鉄損を劣化させる。従って含有O量は0.030%以下とし、好ましくは0.025%以下、より好ましくは0.020%以下とする。
<O: 0.003-0.030%>
In general, oxygen produces inclusions and adversely affects magnetic properties. However, as previously indicated, the secondary deoxidation product produced during solidification after deoxidation has the effect of crystallizing or precipitating MnS and detoxifying S in the steel. In order to have this effect, the O content is set to 0.003% or more. Preferably it is 0.005% or more, More preferably, it is 0.010% or more. On the other hand, when O is more than 0.030%, large inclusions that do not have the effect of detoxifying S increase, and iron loss is deteriorated. Therefore, the O content is 0.030% or less, preferably 0.025% or less, more preferably 0.020% or less.

<S:0.004%以下>
Sは微細硫化物を生成し、結晶粒成長性を劣化させるため、S含有量は低ければ低いほどよい。このような現象は、S含有量が0.004%超で顕著である。従って、S含有量は0.004%以下とし、好ましくは0.003%以下、より好ましくは0.002%以下とする。
<S: 0.004% or less>
Since S produces fine sulfides and degrades crystal grain growth, the lower the S content, the better. Such a phenomenon is remarkable when the S content exceeds 0.004%. Therefore, the S content is 0.004% or less, preferably 0.003% or less, more preferably 0.002% or less.

<N:0.004%以下>
Nは微細窒化物を生成し、結晶粒成長性を劣化させるため、N含有量は低ければ低いほどよい。このような現象は、N含有量が0.004%超で顕著である。従って、N含有量は0.004%以下とし、好ましくは0.003%以下、より好ましくは0.002%以下とする。
<N: 0.004% or less>
N generates fine nitrides and degrades crystal grain growth. Therefore, the lower the N content, the better. Such a phenomenon is remarkable when the N content exceeds 0.004%. Therefore, the N content is 0.004% or less, preferably 0.003% or less, more preferably 0.002% or less.

<Cr:0.1〜4.0%>
Crは、スラブ加熱時の鋼の酸化を抑えCuの析出を抑制する作用を持つので添加することができる。Cr含有量が0.1%未満ではこの作用が十分得られない。従ってCr含有量は0.1%以上とし、好ましくは0.5%以上、更に好ましくは1%以上である。一方Cr含有量が4.0%を超えると、ヒステリシス損失が増加する。従って、Cr含有量は4.0%以下とし、好ましくは3.0%以下、より好ましくは2.0%以下とする。
<Cr: 0.1-4.0%>
Cr can be added because it has the effect of suppressing the oxidation of steel during slab heating and suppressing the precipitation of Cu. If the Cr content is less than 0.1%, this effect cannot be obtained sufficiently. Accordingly, the Cr content is 0.1% or more, preferably 0.5% or more, and more preferably 1% or more. On the other hand, when the Cr content exceeds 4.0%, the hysteresis loss increases. Therefore, the Cr content is 4.0% or less, preferably 3.0% or less, more preferably 2.0% or less.

<その他元素>
粗大な硫酸化物や硫化物を形成することでSを固定し、微細な硫化物の生成を抑制させるために、REMを0.03%以下の範囲で添加してもよい。REMとは、原子番号が57のLaから71のLuまでの15元素に原子番号が21のScと原子番号が39のYを加えた合計17元素の総称である。Caも同様の効果を持つので、0.005%以下の範囲で含有させてもよい。
<Other elements>
In order to fix S by forming coarse sulfates and sulfides and suppress the formation of fine sulfides, REM may be added in a range of 0.03% or less. REM is a generic name for a total of 17 elements including 15 elements from La with atomic number 57 to Lu with 71 and Sc with atomic number 21 and Y with atomic number 39. Since Ca has the same effect, it may be contained in a range of 0.005% or less.

磁気特性の改善を目的として、Sn、Sbをそれぞれ0.05%以下の範囲で添加することもできる。   For the purpose of improving the magnetic properties, Sn and Sb can be added in a range of 0.05% or less, respectively.

また、機械強度上昇や集合組織改善のため、Pを0.1%以下の範囲で添加することもできる。   Further, P can be added in a range of 0.1% or less in order to increase the mechanical strength and improve the texture.

その他の有害な不純物元素は、極力低減することが好ましく、特にTi、Nb、Vは、0.005%以下にすることが好ましい。
残部は、不可避不純物とFeである。
It is preferable to reduce other harmful impurity elements as much as possible, and Ti, Nb, and V are particularly preferably 0.005% or less.
The balance is inevitable impurities and Fe.

<介在物個数密度比率N1/N1:20以上>
本発明ではAl添加量を制限するため、Alを脱酸剤に用いることができない。一方で、実験4で示した様に、Si脱酸の場合は、凝固時の二次脱酸生成物が生成し易くなるが、この生成物は、自身にMnSを晶出あるいは析出させ、鋼中のSを無害化する作用を持つことが分かった。一般に、二次脱酸生成物の粒径は、溶鋼中に存在する一次脱酸生成物の粒径に比べて小さいが、実験4の結果から、5μmを境としてそれより小さい介在物は、概ね二次脱酸生成物と言える。直径が5μm以下の介在物の単位面積当たりの個数密度N1と、直径が5μmを超える介在物の単位面積当たりの個数密度N2とした時に、図5からわかるようにその比率、N1/N2を20以上にすると鉄損が良好となる。従って本発明では、N1/N2を20以上とする。好ましくは25以上、より好ましくは30以上である。一方、その上限は、O量の規定からおのずと決まるので、特に規定はしない。
<Inclusion number density ratio N1 / N1: 20 or more>
In the present invention, since the amount of Al added is limited, Al cannot be used as a deoxidizer. On the other hand, as shown in Experiment 4, in the case of Si deoxidation, a secondary deoxidation product at the time of solidification is likely to be produced, but this product crystallizes or precipitates MnS on its own, and steel It was found to have the effect of detoxifying the inside S. In general, the particle size of the secondary deoxidation product is smaller than the particle size of the primary deoxidation product present in the molten steel, but from the results of Experiment 4, inclusions smaller than 5 μm as a boundary are generally It can be said to be a secondary deoxidation product. When the number density N1 per unit area of inclusions having a diameter of 5 μm or less and the number density N2 per unit area of inclusions having a diameter exceeding 5 μm are set, the ratio, N1 / N2, is 20 as shown in FIG. If it makes it above, an iron loss will become favorable. Therefore, in the present invention, N1 / N2 is set to 20 or more. Preferably it is 25 or more, more preferably 30 or more. On the other hand, since the upper limit is naturally determined from the regulation of the amount of O, no particular regulation is provided.

尚、介在物の観察は、金属顕微鏡による観察や、EPMA(Electron Probe Micro Analyzer)によって行うことができる。   The inclusions can be observed with a metallographic microscope or with EPMA (Electron Probe Micro Analyzer).

<未再結晶組織を含まないフェライト粒からなる金属組織>
鋼板内に未再結晶組織が残留すると、鋼板の鉄損が著しく増大する。従って、本発明では、未再結晶組織を含まないフェライト粒からなる金属組織とする。
<Metal structure composed of ferrite grains not containing non-recrystallized structure>
If the non-recrystallized structure remains in the steel plate, the iron loss of the steel plate increases remarkably. Therefore, in this invention, it is set as the metal structure which consists of a ferrite grain which does not contain an unrecrystallized structure.

<フェライト粒の平均結晶粒径:30〜180μm>
フェライト粒の平均結晶粒径は、鋼板のヒステリシス損失を低減させるために、30μm以上とする必要がある。ただし、フェライト粒の平均結晶粒径が大きすぎる場合、渦電流損失の増加により、鉄損が劣化する場合もある。従って、フェライト粒の平均結晶粒径は180μm以下とする。フェライト粒の平均結晶粒径の下限値は好ましくは30μm、より好ましくは50μm、更に好ましくは70μmである。フェライト粒の平均結晶粒径の上限値は好ましくは、170μm、より好ましくは160μm、更に好ましくは150μmである。なお、フェライト粒の平均結晶粒径は、JIS G 0551「鋼−結晶粒度の顕微鏡試験方法」に従って求めることができる。
<Average crystal grain size of ferrite grains: 30 to 180 μm>
The average grain size of the ferrite grains needs to be 30 μm or more in order to reduce the hysteresis loss of the steel sheet. However, if the average grain size of the ferrite grains is too large, the iron loss may deteriorate due to an increase in eddy current loss. Accordingly, the average crystal grain size of the ferrite grains is set to 180 μm or less. The lower limit of the average grain size of the ferrite grains is preferably 30 μm, more preferably 50 μm, and even more preferably 70 μm. The upper limit value of the average grain size of the ferrite grains is preferably 170 μm, more preferably 160 μm, and still more preferably 150 μm. The average crystal grain size of the ferrite grains can be determined according to JIS G 0551 “Steel—Microscopic Test Method for Crystal Grain Size”.

<金属Cu粒子の平均粒径:1.0nm以上10.0nm以下>
再結晶粒内に析出したCu粒子は、転位の移動を妨げる。粒径が小さすぎる金属Cu粒子は、転位の移動に対する抵抗力が小さい。一方、粒径が大きい金属Cu粒子は、転位の移動に対する抵抗力が大きいが、金属Cu粒子の個数密度が減少するので、粒子間距離が大きくなり、転位の移動が容易となる。更に、粒子径が磁壁厚程度の100nm以上の金属Cu粒子は、磁壁移動を妨げ、ヒステリシス損失を増加させる。それ故、金属Cu析出粒子の平均粒径は1.0nm以上、10.0nm以下とする。好ましくは2.0nm以上、5.0nm以下、より好ましくは2.0nm以上、4.0nm以下、更に好ましくは2.0nm以上、3.0nm以下である。
<Average particle diameter of metal Cu particles: 1.0 nm or more and 10.0 nm or less>
Cu particles precipitated in the recrystallized grains hinder dislocation movement. Metal Cu particles having a particle size that is too small have a low resistance to dislocation movement. On the other hand, the metal Cu particles having a large particle size have a large resistance to dislocation movement, but the number density of the metal Cu particles decreases, so that the distance between the particles increases and the dislocation movement becomes easy. Furthermore, the metal Cu particles having a particle diameter of about 100 nm or more, which is about the thickness of the domain wall, hinder the domain wall movement and increase the hysteresis loss. Therefore, the average particle diameter of the metal Cu precipitated particles is 1.0 nm or more and 10.0 nm or less. Preferably they are 2.0 nm or more and 5.0 nm or less, More preferably, they are 2.0 nm or more and 4.0 nm or less, More preferably, they are 2.0 nm or more and 3.0 nm or less.

金属Cu粒子の平均粒径は、透過型電子顕微鏡(TEM)の明視野像を用いて求める。像内の個々のCu粒子の面積を求め、その面積を持つ円の直径(円相当径)を、個々の粒子の径とみなす。   The average particle diameter of the metal Cu particles is determined using a bright field image of a transmission electron microscope (TEM). The area of each Cu particle in the image is obtained, and the diameter of the circle having the area (circle equivalent diameter) is regarded as the diameter of each particle.

<金属Cu粒子の個数密度:1.0×104〜1.0×107/μm3
本発明では、フェライト粒内の体積1μm3当たりの金属Cu粒子の個数は1.0×104/μm3以上とする。好ましくは1.0×105/μm3以上、より好ましくは5.0×105/μm3以上である。一方、金属Cu粒子の個数密度が大きすぎる場合、鋼板の磁気特性を劣化させるおそれがある。従って、フェライト粒内の金属Cu粒子の個数密度の下限値は1.0×107/μm3以下とする。
<Number density of metal Cu particles: 1.0 × 10 4 to 1.0 × 10 7 / μm 3 >
In the present invention, the number of metal Cu particles per 1 μm 3 volume in the ferrite grains is 1.0 × 10 4 / μm 3 or more. Preferably it is 1.0 × 10 5 / μm 3 or more, more preferably 5.0 × 10 5 / μm 3 or more. On the other hand, when the number density of metal Cu particles is too large, the magnetic properties of the steel sheet may be deteriorated. Therefore, the lower limit of the number density of the metal Cu particles in the ferrite grains is set to 1.0 × 10 7 / μm 3 or less.

金属Cu粒子の個数密度とは、全てのフェライト粒内の粒径1.0nm以上の金属Cu粒子の個数密度である。粒径1.0nm未満の金属Cu粒子は、検出が困難であり、また、本実施形態に係る鋼板の特性にほぼ影響を与えないと考えられるので、計測対象とされない。本実施形態に係る鋼板のフェライト粒内の金属Cu粒子の個数密度Nは、電子顕微鏡観察像の面積をA、そこに観察されるCu粒子の数をn、その平均粒径(円相当径の算術平均)をdとしたとき、以下の数式に基づいて求められる。
N=n/(A×d)
The number density of metal Cu particles is the number density of metal Cu particles having a particle diameter of 1.0 nm or more in all ferrite grains. Metal Cu particles having a particle size of less than 1.0 nm are difficult to detect and are not considered to be measured because they are considered to have substantially no effect on the characteristics of the steel sheet according to the present embodiment. The number density N of the metal Cu particles in the ferrite grains of the steel sheet according to the present embodiment is the area of the electron microscope observation image A, the number of Cu particles observed there is n, the average particle diameter (equivalent circle diameter) When the arithmetic average) is d, it is obtained based on the following mathematical formula.
N = n / (A × d)

<製造方法>
本発明の無方向性電磁鋼板は、例えば以下の様な方法により製造できる。即ち、前記成分組成の鋼を溶製した後、連続鋳造などによりスラブとし、前記スラブに熱間圧延を施して熱間圧延鋼板とし、必要に応じて熱延板焼鈍を施して熱延焼鈍鋼板とし、前記熱間圧延鋼板あるいは熱延焼鈍鋼板に冷間圧延を施して冷間圧延鋼板とし、前記冷間圧延鋼板に再結晶焼鈍を施し、その後Cuを析出させ無方向性電磁鋼板製品とする無方向性電磁鋼板を製造する方法である。
<Manufacturing method>
The non-oriented electrical steel sheet according to the present invention can be manufactured, for example, by the following method. That is, after melting the steel of the above component composition, it is made into a slab by continuous casting or the like, hot-rolled steel plate by subjecting the slab to hot rolling, and hot-rolled steel plate annealed as necessary And cold-rolling the hot-rolled steel sheet or hot-rolled annealed steel sheet into a cold-rolled steel sheet, subjecting the cold-rolled steel sheet to recrystallization annealing, and then precipitating Cu into a non-oriented electrical steel sheet product. This is a method for producing a non-oriented electrical steel sheet.

製鋼段階においては、Siを脱酸剤に用いることが有効である。鋳造時には、先に示したN1/N2を20以上にするために、比較的大きな一次脱酸生成物を、可能な限り浮上させ除去することが重要である。そのためには、脱酸剤投入後の撹拌を十分行うと共に、タンディッシュの堰を適切に設けたり、電磁ブレーキや、鋳型内電磁撹拌を適切に用いたりすることが有効である。一方、凝固時に生成される二次脱酸生成物は、先に述べたようにSの無害化に有効であるので、鋳片の冷却を適切に行う必要がある。その温度パターンは、製造する鋼の成分組成によって多少異なるが、MnSが生成する概ね900℃〜1100℃の範囲に滞在する時間を長くすることが有効である。少なくとも1分以上、好ましくは3分以上、より好ましくは5分以上である。   In the steelmaking stage, it is effective to use Si as a deoxidizer. At the time of casting, in order to increase the above-described N1 / N2 to 20 or more, it is important to float and remove a relatively large primary deoxidation product as much as possible. For that purpose, it is effective to sufficiently stir after the deoxidizer is added, to appropriately provide a tundish weir, or to appropriately use an electromagnetic brake or in-mold electromagnetic stirring. On the other hand, since the secondary deoxidation product produced at the time of solidification is effective for detoxifying S as described above, it is necessary to cool the slab appropriately. Although the temperature pattern varies somewhat depending on the component composition of the steel to be produced, it is effective to lengthen the time for staying in the range of approximately 900 ° C. to 1100 ° C. where MnS is generated. It is at least 1 minute or more, preferably 3 minutes or more, more preferably 5 minutes or more.

次に本発明では、前記熱間圧延工程のスラブ加熱時には、前記スラブの表面の温度が1160℃を超えない様に制御することが好ましい。図1に示すように、本発明の鋼は、1160℃を超えると著しく酸化し易くなる。その場合、Cuが金属状態でスケールと地鉄の界面に析出し、熱延板にヘゲ疵などが形成され易くなる。それを防ぐため、本発明では、加熱時に表面の温度が1160℃を超えないように制御することが好ましい。   Next, in the present invention, at the time of slab heating in the hot rolling step, it is preferable to control so that the temperature of the surface of the slab does not exceed 1160 ° C. As shown in FIG. 1, the steel of the present invention is remarkably easily oxidized when the temperature exceeds 1160 ° C. In that case, Cu is deposited in a metallic state at the interface between the scale and the ground iron, so that scabs and the like are easily formed on the hot-rolled sheet. In order to prevent this, in the present invention, it is preferable to control the surface temperature not to exceed 1160 ° C. during heating.

その他の製造条件は特に限定しないが、下記の様な条件で製造できる。
熱延時のスラブ加熱温度は1000℃以上が好ましい。スラブ加熱温度が1000℃未満であると、熱間圧延が困難になる。スラブの表面温度は先の通り、1160℃を超えないように制御する。熱延仕上げ温度FTは900℃以下が好ましい。熱延鋼板の巻取温度CTは、高いと、巻取り後のコイル内でCuが析出し、熱延鋼板の靭性が低下するので、500℃以下が好ましい。熱延の仕上げ板厚は、冷間圧延時の高い圧下率によって、集合組織が劣化することを防ぐため、2.7mm以下が好ましい。ただし、あまり薄いと、熱延が困難となり、生産性が低下するので、熱延の仕上げ板厚は1.6mm以上が好ましい。
Other manufacturing conditions are not particularly limited, but can be manufactured under the following conditions.
The slab heating temperature during hot rolling is preferably 1000 ° C. or higher. When the slab heating temperature is less than 1000 ° C., hot rolling becomes difficult. As described above, the surface temperature of the slab is controlled so as not to exceed 1160 ° C. The hot rolling finishing temperature FT is preferably 900 ° C. or lower. When the coiling temperature CT of the hot-rolled steel sheet is high, Cu is precipitated in the coil after the coiling, and the toughness of the hot-rolled steel sheet is lowered. The hot-rolled finished sheet thickness is preferably 2.7 mm or less in order to prevent the texture from deteriorating due to a high rolling reduction during cold rolling. However, if it is too thin, hot rolling becomes difficult and productivity is lowered, so that the finished thickness of hot rolling is preferably 1.6 mm or more.

最終製品の集合組織を改善し、高い磁束密度を得るため、熱延鋼板に熱延板焼鈍を施してもよい。好ましい均熱温度は750〜1100℃、均熱時間は10秒〜5分である。均熱温度が750℃未満、又は、均熱時間が10秒未満であると、集合組織を改善する効果が小さい。均熱温度が1100℃を超えると、又は、均熱時間が5分を超えると、消費エネルギーの上昇、付帯設備の劣化などで製造コストの上昇を招く。冷延後、再結晶前の鋼板内のCuを微細にし、冷延後の再結晶焼鈍時にCuを再固溶させるため、800〜400℃の冷却区間は、平均冷却速度10℃/秒以上で冷却する。平均冷却速度は20℃/以上が好ましく、40℃/秒以上がより好ましい。平均冷却速度が速いことは、熱延焼鈍板の靭性の確保にもつながる。   In order to improve the texture of the final product and obtain a high magnetic flux density, the hot-rolled steel sheet may be subjected to hot-rolled sheet annealing. A preferable soaking temperature is 750 to 1100 ° C., and a soaking time is 10 seconds to 5 minutes. When the soaking temperature is less than 750 ° C. or the soaking time is less than 10 seconds, the effect of improving the texture is small. If the soaking temperature exceeds 1100 ° C., or if the soaking time exceeds 5 minutes, the production cost increases due to an increase in energy consumption, deterioration of incidental facilities, and the like. In order to make Cu in the steel plate before recrystallization finer after cold rolling and to re-dissolve Cu during recrystallization annealing after cold rolling, the cooling section of 800 to 400 ° C. has an average cooling rate of 10 ° C./second or more. Cooling. The average cooling rate is preferably 20 ° C./second or more, and more preferably 40 ° C./second or more. A high average cooling rate also leads to securing the toughness of the hot-rolled annealed sheet.

更に、本発明製造方法は、熱延鋼板に冷間圧延を施して冷延鋼板とする。冷間圧延は1回で行ってもよいし、中間焼鈍を含む2回以上を行ってもよい。最終の圧下率は60〜90%の範囲が好ましい。これにより、高磁束密度と低鉄損が得られる。中間焼鈍の温度は900〜1100℃が好ましい。この場合も、800〜400℃の冷却区間は、10℃/秒以上の平均冷却速度で冷却することが望ましい。   Further, the production method of the present invention cold-rolls the hot-rolled steel sheet to obtain a cold-rolled steel sheet. Cold rolling may be performed once, or may be performed twice or more including intermediate annealing. The final rolling reduction is preferably in the range of 60 to 90%. Thereby, a high magnetic flux density and a low iron loss are obtained. The intermediate annealing temperature is preferably 900 to 1100 ° C. Also in this case, it is desirable that the cooling section of 800 to 400 ° C. is cooled at an average cooling rate of 10 ° C./second or more.

再結晶工程では、鋼板の金属組織を再結晶させるとともに、Cuを溶体化する。前述した要件の一つであるフェライト粒の平均結晶粒径を30μm以上とするために、また、Cuを固溶させるために、均熱温度は850℃以上が好ましい。一方、均熱温度が高すぎると、フェライト粒の平均結晶粒径が規定の180μm超になり易くなると共に、エネルギー消費が大きくなり、また、ハースロールなどの付帯設備が傷み易くなるので、均熱温度は1100℃以下が好ましい。均熱時間は10秒以上2分以下が好ましい。一旦固溶したCuを冷却過程で析出させないため、冷却過程における800℃から400℃までの平均冷却速度は10℃/秒以上が好ましい。   In the recrystallization step, the metal structure of the steel sheet is recrystallized and Cu is solutionized. The soaking temperature is preferably 850 ° C. or higher in order to make the average grain size of ferrite grains 30 μm or more, which is one of the requirements described above, and to dissolve Cu. On the other hand, if the soaking temperature is too high, the average grain size of the ferrite grains tends to exceed the specified 180 μm, energy consumption increases, and incidental equipment such as a hearth roll is easily damaged. The temperature is preferably 1100 ° C. or lower. The soaking time is preferably 10 seconds or more and 2 minutes or less. In order not to precipitate Cu once dissolved in the cooling process, the average cooling rate from 800 ° C. to 400 ° C. in the cooling process is preferably 10 ° C./second or more.

次に、再結晶工程で得られる再結晶鋼板を焼鈍して、結晶粒内にCuを析出させる。フェライト粒内に析出するCu粒子の個数密度を1.0×104〜1.0×107個/μm3とし、平均サイズを1.0nm以上、10.0nm以下とするため、均熱温度は450℃以上、650℃以下が好ましい。 Next, the recrystallized steel sheet obtained in the recrystallization process is annealed to precipitate Cu in the crystal grains. The number density of Cu particles precipitated in the ferrite grains is 1.0 × 10 4 to 1.0 × 10 7 particles / μm 3 and the average size is 1.0 nm or more and 10.0 nm or less. Is preferably 450 ° C. or higher and 650 ° C. or lower.

また、均熱時間は10秒以上必要である。好ましくは30秒以上、より好ましくは40秒以上である。上記温度範囲であれば、バッチ焼鈍で数時間の均熱時間で焼鈍を行うことも可能である。均熱温度及び均熱時間の最適条件は、鋼板の成分組成、特にCu量によって多少変化するが、概ね上記範囲に含まれる。   The soaking time needs to be 10 seconds or longer. Preferably it is 30 seconds or more, more preferably 40 seconds or more. If it is the said temperature range, it is also possible to perform annealing by batch annealing in the soaking time of several hours. The optimum conditions for the soaking temperature and soaking time vary somewhat depending on the component composition of the steel sheet, particularly the amount of Cu, but are generally included in the above range.

再結晶焼鈍とCu析出焼鈍を一つの連続焼鈍ラインで同時に行う場合は、均熱温度を850℃以上、1050℃以下、均熱時間を10秒以上とし、冷却過程の600℃〜450℃の温度域に鋼板が滞留する時間を10秒以上とする。   When recrystallization annealing and Cu precipitation annealing are performed simultaneously in one continuous annealing line, the soaking temperature is 850 ° C. or more and 1050 ° C. or less, the soaking time is 10 seconds or more, and the temperature of 600 ° C. to 450 ° C. in the cooling process. The time for the steel sheet to stay in the zone is 10 seconds or longer.

本発明製造方法で得られた鋼板には、必要に応じて、絶縁皮膜を施し、高強度で低鉄損の無方向性電磁鋼板を得ることができる。   If necessary, the steel sheet obtained by the production method of the present invention can be provided with an insulating film to obtain a non-oriented electrical steel sheet having high strength and low iron loss.

<実施例1>
表4に示す成分組成の鋼を真空溶解し、得られたインゴットに加熱温度1150℃、仕上げ温度850℃、巻き取り温度400℃、仕上げ厚2.3mmの熱延を実施した。熱延板のヘゲ疵の有無を目視で確認して、結果を表4に示した。得られた熱延板に、均熱温度1000℃、保持時間30秒の熱延板焼鈍を施してから、冷間圧延に供し、0.35mmの冷延板を得た。その冷延板に均熱温度1000℃、保持時間30秒、800℃から400℃までの平均冷却速度20℃/secの再結晶焼鈍を施し、その後、均熱温度550℃、保持時間60秒のCu析出焼鈍を施し、無方向性電磁鋼板の製品板とした。得られた製品板内の、直径が5μm以下の介在物の単位体積当たりの個数密度N1と、直径が5μmを超える介在物の単位体積当たりの個数密度N2を観察し、その比率、N1/N2を求めた。更に平均のフェライト結晶粒径、析出Cuの個数密度と平均粒子径、機械特性と磁気特性を調査し、それぞれを表4に示した。製品特性として、W10/400は20W/kg以下、B50は1.60T以上、YP、TSはそれぞれ400MPa以上、500MPa以上を良好な特性とした。本発明によって、熱延板の疵なしに、良好な機械特性と良好な鉄損を両立することができる。
<Example 1>
Steels having the composition shown in Table 4 were melted in vacuum, and the obtained ingot was hot rolled at a heating temperature of 1150 ° C, a finishing temperature of 850 ° C, a winding temperature of 400 ° C, and a finishing thickness of 2.3 mm. The presence or absence of scabs on the hot-rolled sheet was visually confirmed, and the results are shown in Table 4. The obtained hot rolled sheet was subjected to hot rolled sheet annealing at a soaking temperature of 1000 ° C. and a holding time of 30 seconds, and then subjected to cold rolling to obtain a 0.35 mm cold rolled sheet. The cold rolled sheet was subjected to recrystallization annealing at a soaking temperature of 1000 ° C., a holding time of 30 seconds, and an average cooling rate of 20 ° C./sec from 800 ° C. to 400 ° C., and then a soaking temperature of 550 ° C. and a holding time of 60 seconds. Cu precipitation annealing was performed to obtain a product plate of a non-oriented electrical steel sheet. In the obtained product plate, the number density N1 per unit volume of inclusions having a diameter of 5 μm or less and the number density N2 per unit volume of inclusions having a diameter exceeding 5 μm were observed, and the ratio, N1 / N2 Asked. Further, the average ferrite crystal grain size, the number density and average particle diameter of precipitated Cu, the mechanical properties, and the magnetic properties were investigated. As product characteristics, W10 / 400 was 20 W / kg or less, B50 was 1.60 T or more, and YP and TS were 400 MPa or more and 500 MPa or more, respectively. According to the present invention, it is possible to achieve both good mechanical properties and good iron loss without wrinkling of the hot-rolled sheet.

<実施例2>
表4の合金d15の冷延板を供試材にして、均熱温度950〜1050℃、均熱時間30〜90秒の仕上げ焼鈍を施し、更に、均熱温度550〜650℃、均熱時間30秒のCu析出焼鈍を施して、無方向性電磁鋼板を得た。実施例1と同様に、比率N1/N2、平均のフェライト結晶粒径、析出Cuの個数密度と平均粒子径、機械特性と磁気特性を調査した。それぞれを表5に示した。本発明によって、良好な機械特性と良好な鉄損を両立することができる。
<Example 2>
Using a cold-rolled sheet of alloy d15 in Table 4 as a test material, finish annealing was performed at a soaking temperature of 950 to 1050 ° C. and a soaking time of 30 to 90 seconds. Further, a soaking temperature of 550 to 650 ° C. A non-oriented electrical steel sheet was obtained by performing Cu precipitation annealing for 30 seconds. In the same manner as in Example 1, the ratio N1 / N2, the average ferrite crystal particle size, the number density and average particle size of precipitated Cu, mechanical properties, and magnetic properties were investigated. Each is shown in Table 5. The present invention can achieve both good mechanical properties and good iron loss.

Claims (2)

質量%で、
C:0.005%以下
Si:1.0〜4.0%、
Mn:0.05〜1.5%、
Al:0.03%未満、
Cu:0.5〜2.5%、
O:0.003〜0.030%、
S:0.004%以下、
N:0.004%以下、
を含有し、残部がFe及び不純物からなり、
鋼中に含まれる、直径が5μm以下の介在物の単位体積当たりの個数密度N1と、直径が5μmを超える介在物の単位体積当たりの個数密度N2の比率、N1/N2が20以上であり、
未再結晶組織を含まないフェライト粒からなる金属組織を有し、
前記フェライト粒の平均結晶粒径が30μm以上、180μm以下であり、
前記フェライト粒の内部に個数密度1.0×104〜1.0×107個/μm3の金属Cu粒子を含有し、
前記フェライト粒の内部の前記金属Cu粒子の平均粒径が1.0nm以上、10.0nm以下である
ことを特徴とする無方向性電磁鋼板。
% By mass
C: 0.005% or less Si: 1.0-4.0%,
Mn: 0.05 to 1.5%,
Al: less than 0.03%,
Cu: 0.5 to 2.5%,
O: 0.003 to 0.030%,
S: 0.004% or less,
N: 0.004% or less,
And the balance consists of Fe and impurities,
The ratio of the number density N1 per unit volume of inclusions having a diameter of 5 μm or less contained in the steel to the number density N2 per unit volume of inclusions having a diameter of more than 5 μm, N1 / N2 is 20 or more,
It has a metal structure consisting of ferrite grains that do not contain unrecrystallized structure,
The average grain size of the ferrite grains is 30 μm or more and 180 μm or less,
Containing metal Cu particles having a number density of 1.0 × 10 4 to 1.0 × 10 7 particles / μm 3 inside the ferrite grains,
The non-oriented electrical steel sheet, wherein an average particle diameter of the metal Cu particles inside the ferrite grains is 1.0 nm or more and 10.0 nm or less.
質量%でCrを0.1〜4.0%含むことを特徴とする、請求項1に記載の無方向性電磁鋼板。   The non-oriented electrical steel sheet according to claim 1, comprising 0.1 to 4.0% Cr by mass%.
JP2017001892A 2017-01-10 2017-01-10 Non-oriented electrical steel sheet Active JP6816516B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017001892A JP6816516B2 (en) 2017-01-10 2017-01-10 Non-oriented electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017001892A JP6816516B2 (en) 2017-01-10 2017-01-10 Non-oriented electrical steel sheet

Publications (2)

Publication Number Publication Date
JP2018111847A true JP2018111847A (en) 2018-07-19
JP6816516B2 JP6816516B2 (en) 2021-01-20

Family

ID=62911902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017001892A Active JP6816516B2 (en) 2017-01-10 2017-01-10 Non-oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JP6816516B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020137500A1 (en) * 2018-12-27 2020-07-02 Jfeスチール株式会社 Non-oriented magnetic steel sheet
WO2020166718A1 (en) * 2019-02-14 2020-08-20 日本製鉄株式会社 Non-oriented electromagnetic steel sheet

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03104844A (en) * 1989-09-18 1991-05-01 Nippon Steel Corp Nonoriented silicon steel sheet excellent in magnetic characteristics and its manufacture
JPH0873939A (en) * 1994-06-27 1996-03-19 Nkk Corp Production of nonoriented silicon steel sheet excellent in magnetic characteristic
JP2001323348A (en) * 2000-05-15 2001-11-22 Kawasaki Steel Corp Nonoriented silicon steel sheet having high magnetic flux density and excellent in workability, recyclability and low magnetic field property
JP2004084053A (en) * 2002-06-26 2004-03-18 Nippon Steel Corp Electromagnetic steel sheet having remarkably superior magnetic property, and manufacturing method therefor
JP2004339603A (en) * 2003-04-25 2004-12-02 Jfe Steel Kk High-strength non-oriented electromagnetic steel sheet superior in high-frequency magnetic property, and manufacturing method therefor
WO2005033349A1 (en) * 2003-10-06 2005-04-14 Nippon Steel Corporation High-strength magnetic steel sheet and worked part therefrom, and process for producing them

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03104844A (en) * 1989-09-18 1991-05-01 Nippon Steel Corp Nonoriented silicon steel sheet excellent in magnetic characteristics and its manufacture
JPH0873939A (en) * 1994-06-27 1996-03-19 Nkk Corp Production of nonoriented silicon steel sheet excellent in magnetic characteristic
JP2001323348A (en) * 2000-05-15 2001-11-22 Kawasaki Steel Corp Nonoriented silicon steel sheet having high magnetic flux density and excellent in workability, recyclability and low magnetic field property
JP2004084053A (en) * 2002-06-26 2004-03-18 Nippon Steel Corp Electromagnetic steel sheet having remarkably superior magnetic property, and manufacturing method therefor
JP2004339603A (en) * 2003-04-25 2004-12-02 Jfe Steel Kk High-strength non-oriented electromagnetic steel sheet superior in high-frequency magnetic property, and manufacturing method therefor
WO2005033349A1 (en) * 2003-10-06 2005-04-14 Nippon Steel Corporation High-strength magnetic steel sheet and worked part therefrom, and process for producing them

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020137500A1 (en) * 2018-12-27 2020-07-02 Jfeスチール株式会社 Non-oriented magnetic steel sheet
JP6744601B1 (en) * 2018-12-27 2020-08-19 Jfeスチール株式会社 Non-oriented electrical steel sheet
US11732319B2 (en) 2018-12-27 2023-08-22 Jfe Steel Corporation Non-oriented electrical steel sheet
WO2020166718A1 (en) * 2019-02-14 2020-08-20 日本製鉄株式会社 Non-oriented electromagnetic steel sheet
JPWO2020166718A1 (en) * 2019-02-14 2021-10-21 日本製鉄株式会社 Non-oriented electrical steel sheet
JP7180700B2 (en) 2019-02-14 2022-11-30 日本製鉄株式会社 Non-oriented electrical steel sheet

Also Published As

Publication number Publication date
JP6816516B2 (en) 2021-01-20

Similar Documents

Publication Publication Date Title
JP5263363B2 (en) Method for producing non-oriented electrical steel sheet
JP4126479B2 (en) Method for producing non-oriented electrical steel sheet
JP6500980B2 (en) Non-oriented electrical steel sheet
JPWO2007144964A1 (en) High strength electrical steel sheet and manufacturing method thereof
JP2007039721A (en) Method for producing non-oriented electrical steel sheet for rotor
JP5892147B2 (en) High strength hot rolled steel sheet and method for producing the same
TWI535858B (en) Soft magnetic steel and its manufacturing method, and soft magnetic parts made of soft magnetic steel parts
CN111511948A (en) Non-oriented electrical steel sheet and method for manufacturing the same
JP7028313B2 (en) Non-oriented electrical steel sheet
JP2016156044A (en) Nonoriented silicon steel sheet and method for producing the same
KR20130125830A (en) High-strength non-oriented magnetic steel sheet
KR20190077025A (en) Non-oriented electrical steel sheet and manufacturing method thereof
WO2020166718A1 (en) Non-oriented electromagnetic steel sheet
JP5896183B2 (en) High-strength hot-rolled steel sheet and its manufacturing method
JP6801464B2 (en) Non-oriented electrical steel sheet
JP2020169369A (en) Nonoriented electromagnetic steel sheet
JP6816516B2 (en) Non-oriented electrical steel sheet
JP2019026891A (en) Nonoriented magnetic steel sheet, and method of producing the same
CN114901850B (en) Hot rolled steel sheet for non-oriented electromagnetic steel sheet
JP7256361B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof, rotor core core of IPM motor
JPH1088298A (en) Nonoriented silicon steel sheet
JP2007162097A (en) Method for manufacturing non-oriented electromagnetic steel sheet for rotor
JP6123551B2 (en) High-strength hot-rolled steel sheet excellent in fatigue resistance and shape freezing property after slit processing and manufacturing method thereof
CN112789363B (en) Non-oriented electrical steel sheet and method for producing slab cast sheet as material thereof
JP7473862B1 (en) Manufacturing method of non-oriented electrical steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201207

R151 Written notification of patent or utility model registration

Ref document number: 6816516

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151