JP6801464B2 - Non-oriented electrical steel sheet - Google Patents

Non-oriented electrical steel sheet Download PDF

Info

Publication number
JP6801464B2
JP6801464B2 JP2017003439A JP2017003439A JP6801464B2 JP 6801464 B2 JP6801464 B2 JP 6801464B2 JP 2017003439 A JP2017003439 A JP 2017003439A JP 2017003439 A JP2017003439 A JP 2017003439A JP 6801464 B2 JP6801464 B2 JP 6801464B2
Authority
JP
Japan
Prior art keywords
less
steel sheet
particles
content
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017003439A
Other languages
Japanese (ja)
Other versions
JP2018111865A (en
Inventor
藤倉 昌浩
昌浩 藤倉
伸一 松井
伸一 松井
佑輔 完戸
佑輔 完戸
宣憲 藤井
宣憲 藤井
高橋 克
克 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2017003439A priority Critical patent/JP6801464B2/en
Publication of JP2018111865A publication Critical patent/JP2018111865A/en
Application granted granted Critical
Publication of JP6801464B2 publication Critical patent/JP6801464B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、電気自動車などの駆動モータや各種電気機器用モータの鉄心材料として使用される高強度無方向性電磁鋼板の製造方法に関する。 The present invention relates to a method for manufacturing a high-strength non-oriented electrical steel sheet used as an iron core material for a drive motor such as an electric vehicle or a motor for various electric devices.

近年、自動車用途などで、容量が大きく高速で回転するモータが増えてきている。当該モータの回転子用材料には、遠心力や応力変動に耐えるための機械強度が要求される。鋼の機械強度を上昇させるためには細粒強化、転位強化などの方法が用いられるが、一般にこれら強化作用は、軟磁気特性を劣化させる。機械強度と共に優れた磁気特性を維持できれば、回転子と固定子に同じ材料を用いることができる。特許文献1〜8などでは、低鉄損及び高強度の両立を目的として、冷延再結晶後に金属Cuを微細析出させる方法が提案されている。 In recent years, the number of motors having a large capacity and rotating at high speed has been increasing for automobile applications and the like. The rotor material of the motor is required to have mechanical strength to withstand centrifugal force and stress fluctuations. In order to increase the mechanical strength of steel, methods such as fine grain strengthening and dislocation strengthening are used, but in general, these strengthening actions deteriorate the soft magnetic properties. The same material can be used for the rotor and stator as long as it can maintain excellent magnetic properties as well as mechanical strength. Patent Documents 1 to 8 and the like have proposed a method of finely precipitating metallic Cu after cold-rolled recrystallization for the purpose of achieving both low iron loss and high strength.

特開2004−084053号公報Japanese Unexamined Patent Publication No. 2004-084053 国際公開第2005/033349号International Publication No. 2005/033349 特開2004−183066号公報Japanese Unexamined Patent Publication No. 2004-183066 国際公開第2004/050934号International Publication No. 2004/050934 特開2008−223045号公報Japanese Unexamined Patent Publication No. 2008-22304 特開2010−24509号公報Japanese Unexamined Patent Publication No. 2010-24509 国際公開第2013/024899号International Publication No. 2013/024899 国際公開第2013/146886号International Publication No. 2013/146886

Cuを微細析出させる技術は、低い鉄損と高い機械強度を得ることができるが、含まれるCuが多いほど、熱間圧延の際に鋼板の表面に疵が発生しやすいという問題がある。本発明は、Cuを微細析出させた高強度の無方向性電磁鋼板を提供するにあたって、製造過程において、疵の発生を抑制し、生産性を向上させることを目的とする。 The technique of finely depositing Cu can obtain low iron loss and high mechanical strength, but there is a problem that the more Cu contained, the more easily the surface of the steel sheet is flawed during hot rolling. An object of the present invention is to provide a high-strength non-oriented electrical steel sheet in which Cu is finely deposited, and to suppress the occurrence of flaws and improve productivity in the manufacturing process.

本発明者らは、Cu起因の熱延板の疵を抑えるためには、スラブ加熱時の鋼の酸化を抑えることが有効であると考え、各種含有元素と酸化の関係について調査した。その結果、Siを含む電磁鋼板においては、Alの含有は疵の増加に繋がるが、Crを添加することで、疵を抑制することができることを見出した。具体的には、下記のとおりである。 The present inventors considered that it is effective to suppress the oxidation of steel during slab heating in order to suppress the defects of the hot-rolled plate caused by Cu, and investigated the relationship between various contained elements and oxidation. As a result, it was found that in the electromagnetic steel sheet containing Si, the content of Al leads to an increase in flaws, but the addition of Cr can suppress the flaws. Specifically, it is as follows.

(1)質量%で、C:0.005%以下、Si:1.0〜4.0%、Mn:0.05〜1.5%、Al:0.1〜2.0%、Cu:0.5〜2.5%、Cr:0.1〜4.0%、S:0.004%以下、N:0.004%以下を含有し、残部がFe及び不純物からなり、
Al含有量を[Al]、Cr含有量を[Cr]とした時に
[Cr]−2×[Al]≧0であり、
未再結晶組織を含まないフェライト粒からなる金属組織を有し、
前記フェライト粒の平均結晶粒径が30μm以上、180μm以下であり、
前記フェライト粒の内部に個数密度1.0×104〜1.0×107個/μm3の金属Cu粒子を含有し、前記フェライト粒の内部の前記金属Cu粒子の平均粒径が1.0nm以上、10.0nm以下であることを特徴とする無方向性電磁鋼板。
(1) In mass%, C: 0.005% or less, Si: 1.0 to 4.0%, Mn: 0.05 to 1.5%, Al: 0.1 to 2.0%, Cu: It contains 0.5 to 2.5%, Cr: 0.1 to 4.0%, S: 0.004% or less, N: 0.004% or less, and the balance consists of Fe and impurities.
When the Al content is [Al] and the Cr content is [Cr], [Cr] -2 x [Al] ≥ 0.
It has a metal structure composed of ferrite grains that does not contain an unrecrystallized structure, and has a metal structure.
The average crystal grain size of the ferrite grains is 30 μm or more and 180 μm or less.
Metal Cu particles having a number density of 1.0 × 10 4 to 1.0 × 10 7 / μm 3 are contained inside the ferrite particles, and the average particle size of the metal Cu particles inside the ferrite particles is 1. A non-oriented electrical steel sheet having a size of 0 nm or more and 10.0 nm or less.

本発明によれば、Cuを微細析出させた高強度無方向性電磁鋼板を生産性良く製造できる。 According to the present invention, a high-strength non-oriented electrical steel sheet in which Cu is finely deposited can be produced with high productivity.

代表的な合金における、酸化増量の温度変化を示す図である。It is a figure which shows the temperature change of the oxidative increase in a typical alloy. 酸化増量の温度変化に対するCr含有量の影響を示す図である。It is a figure which shows the influence of Cr content on the temperature change of the oxidation increase. 1100℃加熱時の酸化増量に対するCr添加の影響を示す図である。It is a figure which shows the influence of Cr addition on the oxidation increase at the time of heating at 1100 degreeC.

Cu起因の疵を防止するためには、熱延加熱時のスラブの酸化を抑制することが重要である。なぜならば、Cuを含有する鋼が酸化すると、Cuよりも卑であるFeが選択的に酸化し、Cuがスケールと地鉄の界面に金属状態で濃化し、これが種々の疵の原因になるからである。 In order to prevent defects caused by Cu, it is important to suppress the oxidation of slabs during hot spreading heating. This is because when the steel containing Cu is oxidized, Fe, which is more base than Cu, is selectively oxidized, and Cu is concentrated in a metallic state at the interface between the scale and the base iron, which causes various defects. Is.

<実験1>
表1に示す成分を持つ鋼を真空溶解し、できたインゴットに粗熱延を施し、粗バーから10mm×20mm×30mmの試験片を切り出し、大気中焼鈍に供した。加熱温度を1050℃〜1200℃の範囲で変化させ、均熱時間は30分とした。焼鈍前後の試料の重量を測定した。その増加分は酸化に伴う酸化増量である。加熱温度と酸化増量の関係を図1に示す。Si、Alを含まない合金a1に対して、Siを3.2%とした合金a2では、1150℃以下の酸化は効果的に抑制される。そこにAlを0.7%含有させた合金a3では、酸化増量が増え、耐酸化性は劣化する。また、合金a2、a3共、1160℃を超えると、急激に酸化増量は増加する。
<Experiment 1>
The steel having the components shown in Table 1 was melted in vacuum, the resulting ingot was subjected to crude heat spreading, and a test piece having a size of 10 mm × 20 mm × 30 mm was cut out from the coarse bar and subjected to atmospheric annealing. The heating temperature was changed in the range of 1050 ° C to 1200 ° C, and the soaking time was 30 minutes. The weight of the sample before and after annealing was measured. The amount of increase is the amount of oxidation that accompanies oxidation. The relationship between the heating temperature and the increase in oxidation is shown in FIG. Oxidation at 1150 ° C. or lower is effectively suppressed in the alloy a2 in which Si is 3.2% with respect to the alloy a1 containing no Si and Al. In the alloy a3 containing 0.7% of Al, the amount of oxidation increase increases and the oxidation resistance deteriorates. Further, when the temperature of the alloys a2 and a3 exceeds 1160 ° C., the amount of oxidation increase sharply increases.

上記の結果から、SiはCu起因の疵を防止する作用を持つが、Alが複合含有されるとその疵防止作用は低下してしまう。またスラブの加熱温度1160℃以上の高温になると、Cuの析出が顕著になり、疵の原因となる。 From the above results, Si has an action of preventing flaws caused by Cu, but when Al is compoundly contained, the flaw prevention action is lowered. Further, when the heating temperature of the slab becomes a high temperature of 1160 ° C. or higher, the precipitation of Cu becomes remarkable, which causes a defect.

Figure 0006801464
Figure 0006801464

<実験2>
Alは電磁鋼板の固有抵抗を上昇させ、鉄損を低減させるために有効な元素であるので、添加量が制限されるのは好ましくない。SiとAlを含有する鋼にCrを添加した合金について調査した。表2の成分組成の合金を真空溶解し、上記と同じように大気中焼鈍に供した。Siを3.2%、Alを0.7%含有する合金にCrを0〜3%添加した時の酸化増量の変化を図2に示す。Cr添加量の増加と共に酸化が抑制される。図3は、Alを0.3%含有する合金に、Cr添加した場合の1100℃加熱の場合酸化増量である。Al含有量が多い方が、酸化増量を抑えるためのCr添加量が増加する。表2にも、各成分における1100℃の酸化増量を記載した。
<Experiment 2>
Since Al is an element effective for increasing the intrinsic resistance of the electrical steel sheet and reducing the iron loss, it is not preferable that the amount added is limited. An alloy in which Cr was added to steel containing Si and Al was investigated. The alloys having the composition shown in Table 2 were melted in vacuum and annealed in the air in the same manner as described above. FIG. 2 shows the change in the amount of oxidation increase when 0 to 3% of Cr is added to the alloy containing 3.2% of Si and 0.7% of Al. Oxidation is suppressed as the amount of Cr added increases. FIG. 3 shows an increase in oxidation in the case of heating at 1100 ° C. when Cr is added to an alloy containing 0.3% of Al. The higher the Al content, the higher the amount of Cr added to suppress the increase in oxidation. Table 2 also shows the amount of oxidation increase at 1100 ° C. for each component.

Figure 0006801464
Figure 0006801464

<実験3>
表2の成分組成の鋼塊を供試材にして、加熱温度1100℃の粗熱延、加熱温度1150℃、仕上げ温度850℃、仕上げ厚2.5mmmの仕上げ圧延を施し、熱延板を得た。各材料における、熱延板表面のヘゲ疵の有無を表2に示す。Cr添加量が増え、1100℃の酸化増量が0.05mg/mm2以下になると、熱延板のヘゲ疵の発生がないことが分かった。図3を見ると、1100℃の酸化増量を0.05mg/mm2以下にするのに必要なCr添加量は、Alが0.3%の時は0.5%、Alが0.7%の時は1.5%で、Al量の約2倍である。
<Experiment 3>
Using the steel ingots having the composition shown in Table 2 as test materials, rough hot rolling at a heating temperature of 1100 ° C., finishing rolling at a heating temperature of 1150 ° C., a finishing temperature of 850 ° C. It was. Table 2 shows the presence or absence of scratches on the surface of the hot-rolled plate in each material. It was found that when the amount of Cr added increased and the amount of oxidation increased at 1100 ° C. was 0.05 mg / mm 2 or less, no dents on the hot-rolled plate occurred. Looking at FIG. 3, the amount of Cr added required to reduce the oxidation increase at 1100 ° C. to 0.05 mg / mm 2 or less is 0.5% when Al is 0.3% and 0.7% for Al. At the time of, it is 1.5%, which is about twice the amount of Al.

これらの知見をもとなされた本発明の構成要件を以下に述べる。
[鋼の化学組成、組織]
以下の説明において、鋼に含まれる各元素の含有量の単位である「%」は、特に断りがない限り「質量%」を意味する。
The constituent requirements of the present invention based on these findings are described below.
[Chemical composition and structure of steel]
In the following description, "%", which is a unit of the content of each element contained in steel, means "mass%" unless otherwise specified.

<C:0.005%以下>
Cは鉄損を劣化させるため、C含有量は低ければ低いほどよい。このような現象は、C含有量が0.005%超で顕著である。従って、C含有量は0.005%以下とし、好ましくは0.003%以下、より好ましくは0.002%以下とする。
<C: 0.005% or less>
Since C deteriorates iron loss, the lower the C content, the better. Such a phenomenon is remarkable when the C content exceeds 0.005%. Therefore, the C content is 0.005% or less, preferably 0.003% or less, and more preferably 0.002% or less.

<Si:1.0〜4.0%>
Siは、先の実験で示したように、スラブ加熱時の鋼の酸化を抑えて、Cuの析出を抑制する作用を持つ。更に、Siは固有抵抗を上昇させ、鉄損を低減させる作用も持つ。Si含有量が1.0%未満では、これらの作用効果が十分に得られない。従って、Si含有量は1.0%以上とし、好ましくは2.0%以上、より好ましくは2.5%以上とする。
一方、Si含有量が4.0%超では、鋼が脆化し、圧延性が低下する。従って、Si含有量は4.0%以下とし、好ましくは3.8%以下とし、より好ましくは3.5%以下とする。
<Si: 1.0 to 4.0%>
As shown in the previous experiment, Si has an effect of suppressing the oxidation of steel during slab heating and suppressing the precipitation of Cu. Further, Si also has an action of increasing the natural resistance and reducing the iron loss. If the Si content is less than 1.0%, these effects cannot be sufficiently obtained. Therefore, the Si content is 1.0% or more, preferably 2.0% or more, and more preferably 2.5% or more.
On the other hand, when the Si content exceeds 4.0%, the steel becomes brittle and the rollability deteriorates. Therefore, the Si content is 4.0% or less, preferably 3.8% or less, and more preferably 3.5% or less.

<Mn:0.05%〜1.5%>
Mnは鋼の固有抵抗を高める作用と共に、MnSの溶体化温度を高めることで、熱間圧延中の硫化物の微細析出を防止する作用を持つ。Mn含有量が0.05%未満では、これらの作用効果を十分に得られない。従って、Mn含有量は0.05%以上とし、好ましくは0.1%以上、より好ましくは0.2%以上とする。一方、Mn含有量が1.5%超では、鋼が脆化することがある。従って、Mn含有量は1.5%以下とし、好ましくは1.0%以下、より好ましくは0.5%以下とする。
<Mn: 0.05% to 1.5%>
Mn has an effect of increasing the intrinsic resistance of steel and an effect of preventing fine precipitation of sulfide during hot rolling by increasing the solution temperature of MnS. If the Mn content is less than 0.05%, these effects cannot be sufficiently obtained. Therefore, the Mn content is set to 0.05% or more, preferably 0.1% or more, and more preferably 0.2% or more. On the other hand, if the Mn content exceeds 1.5%, the steel may become embrittlement. Therefore, the Mn content is 1.5% or less, preferably 1.0% or less, and more preferably 0.5% or less.

<Al:0.1〜2.0%>
Alは鋼の固有抵抗を高め、窒素をAlNとして固定し、鉄損を低減させる機能を持つ。Al含有量が0.2%未満では、これらの作用効果が十分に得られない。従って、Al含有量は0.1%以上とし、好ましくは0.2%以上、より好ましくは0.3%以上とする。一方、Al含有量が2.0%超では、鋼が脆化し、圧延性が低下する。従って、Al含有量は2.0%以下とし、好ましくは1.5%以下とし、より好ましくは1.2%以下、更に好ましくは1.0以下とする。
<Al: 0.1 to 2.0%>
Al has the function of increasing the intrinsic resistance of steel, fixing nitrogen as AlN, and reducing iron loss. If the Al content is less than 0.2%, these effects cannot be sufficiently obtained. Therefore, the Al content is 0.1% or more, preferably 0.2% or more, and more preferably 0.3% or more. On the other hand, when the Al content exceeds 2.0%, the steel becomes brittle and the rollability deteriorates. Therefore, the Al content is 2.0% or less, preferably 1.5% or less, more preferably 1.2% or less, and further preferably 1.0 or less.

<Cu:0.5〜2.5%>
Cuは、冷延再結晶後に粒内に微細に析出させることで、鉄損の劣化なく、機械強度を上昇させる。Cu含有量が0.5%未満では、この効果を十分に得られない。従って、Cu含有量は0.5%以上とし、好ましくは0.7%以上とし、より好ましくは1.0%以上とする。一方、Cu含有量が2.5%超では、熱間圧延時の疵が生じやすく、脆化も生じやすい。従って、Cu含有量は2.5%以下とし、好ましくは2.0%以下とし、より好ましくは1.5%以下とする。
<Cu: 0.5-2.5%>
Cu is finely precipitated in the grains after cold-rolled recrystallization, so that the mechanical strength is increased without deterioration of iron loss. If the Cu content is less than 0.5%, this effect cannot be sufficiently obtained. Therefore, the Cu content is 0.5% or more, preferably 0.7% or more, and more preferably 1.0% or more. On the other hand, when the Cu content exceeds 2.5%, flaws are likely to occur during hot rolling and embrittlement is likely to occur. Therefore, the Cu content is 2.5% or less, preferably 2.0% or less, and more preferably 1.5% or less.

<Cr:0.1〜4.0%>
Crは先の実験で示した様に、Cuを含む鋼において、酸化を抑制し、熱延板の疵の発生を抑える。Crが0.1%未満では、この作用効果が十分に得られない。従ってCr含有量は0.1%以上とする。好ましくは0.2%以上であり、更に好ましくは0.5%以上である。一方で、Crが4.0%を超えると、ヒステリシス損失が劣化する。従って、Cr含有量は4.0%以下とする。好ましくは3.5%以下であり、より好ましくは3.0%以下であり、更に好ましくは2.5%であり、また更に好ましくは2.0%である。
<Cr: 0.1-4.0%>
As shown in the previous experiment, Cr suppresses oxidation and suppresses the occurrence of flaws in the hot-rolled plate in steel containing Cu. If Cr is less than 0.1%, this effect cannot be sufficiently obtained. Therefore, the Cr content is set to 0.1% or more. It is preferably 0.2% or more, and more preferably 0.5% or more. On the other hand, when Cr exceeds 4.0%, the hysteresis loss deteriorates. Therefore, the Cr content is set to 4.0% or less. It is preferably 3.5% or less, more preferably 3.0% or less, still more preferably 2.5%, and even more preferably 2.0%.

<S:0.004%以下>
Sは微細硫化物を生成し、結晶粒成長性を劣化させるため、S含有量は低ければ低いほどよい。このような現象は、S含有量が0.004%超で顕著である。従って、S含有量は0.004%以下とし、好ましくは0.003%以下、より好ましくは0.002%以下とする。
<S: 0.004% or less>
Since S produces fine sulfides and deteriorates the grain growth property, the lower the S content, the better. Such a phenomenon is remarkable when the S content exceeds 0.004%. Therefore, the S content is 0.004% or less, preferably 0.003% or less, and more preferably 0.002% or less.

<N:0.004%以下>
Nは微細窒化物を生成し、結晶粒成長性を劣化させるため、N含有量は低ければ低いほどよい。このような現象は、N含有量が0.004%超で顕著である。従って、N含有量は0.004%以下とし、好ましくは0.003%以下、より好ましくは0.002%以下とする。
<N: 0.004% or less>
Since N produces fine nitrides and deteriorates grain growth, the lower the N content, the better. Such a phenomenon is remarkable when the N content exceeds 0.004%. Therefore, the N content is 0.004% or less, preferably 0.003% or less, and more preferably 0.002% or less.

<[Cr]−2×[Al]≧0>
図3で見られたように、Al含有量によって、酸化を抑制するのに必要なCr添加量が異なる。この図において、1100℃の酸化増量を0.05mg/mm2以下にするのに必要なCr添加量は、Alが0.3%の時は0.5%、Alが0.7%の時は1.5%であった。従って本発明では、[Al]、Cr含有量を[Cr]とした時に
[Cr]−2×[Al]≧0とする。
<[Cr] -2 x [Al] ≧ 0>
As seen in FIG. 3, the amount of Cr added to suppress oxidation differs depending on the Al content. In this figure, the amount of Cr added to reduce the oxidation increase at 1100 ° C to 0.05 mg / mm 2 or less is 0.5% when Al is 0.3% and 0.7% when Al is 0.7%. Was 1.5%. Therefore, in the present invention, when the contents of [Al] and Cr are [Cr], [Cr] -2 x [Al] ≥ 0.

<その他の元素>
粗大な硫酸化物や硫化物を形成することでSを固定し、微細な硫化物の生成を抑制させるために、REMを0.03%以下の範囲で添加してもよい。REMとは、原子番号が57のLaから71のLuまでの15元素に原子番号が21のScと原子番号が39のYを加えた合計17元素の総称である。Caも同様の効果を持つので、0.005%以下の範囲で含有させてもよい。
<Other elements>
In order to fix S by forming coarse sulfate or sulfide and suppress the formation of fine sulfide, REM may be added in the range of 0.03% or less. REM is a general term for a total of 17 elements, which is obtained by adding Sc with an atomic number of 21 and Y with an atomic number of 39 to 15 elements from La with an atomic number of 57 to Lu with an atomic number of 71. Since Ca also has the same effect, it may be contained in the range of 0.005% or less.

磁気特性の改善を目的として、Sn、Sbをそれぞれ0.05%以下の範囲で添加することもできる。
また、機械強度上昇や集合組織改善のため、Pを0.1%以下の範囲で添加することもできる。
For the purpose of improving the magnetic properties, Sn and Sb can be added in the range of 0.05% or less, respectively.
Further, P can be added in the range of 0.1% or less in order to increase the mechanical strength and improve the texture.

その他の有害な不純物元素は、極力低減することが好ましく、特にTi、Nb、V、0は、0.005%以下にすることが好ましい。
残部は、不可避不純物とFeである。
Other harmful impurity elements are preferably reduced as much as possible, and Ti, Nb, V, and 0 are particularly preferably 0.005% or less.
The rest are unavoidable impurities and Fe.

<未再結晶組織を含まないフェライト粒からなる組織>
鋼板内に未再結晶組織が残留すると、鋼板の鉄損が著しく増大する。従って、本発明では、未再結晶組織を含まないフェライト粒からなる組織とする。
<Structure consisting of ferrite grains that do not contain an unrecrystallized structure>
If the unrecrystallized structure remains in the steel sheet, the iron loss of the steel sheet increases remarkably. Therefore, in the present invention, the structure is composed of ferrite grains that do not contain an unrecrystallized structure.

<フェライト粒の平均結晶粒径:30〜180μm>
フェライト粒の平均結晶粒径は、鋼板のヒステリシス損失を低減させるために、30μm以上とする必要がある。ただし、フェライト粒の平均結晶粒径が大きすぎる場合、渦電流損失の増加により、鉄損が劣化する場合もある。従って、フェライト粒の平均結晶粒径は180μm以下とする。フェライト粒の平均結晶粒径の下限値は好ましくは30μm、より好ましくは50μm、更に好ましくは70μmである。フェライト粒の平均結晶粒径の上限値は、好ましくは170μm、より好ましくは160μm、更に好ましくは150μmである。なお、フェライト粒の平均結晶粒径は、JIS G 0551「鋼−結晶粒度の顕微鏡試験方法」に従って求めることができる。
<Average crystal grain size of ferrite grains: 30 to 180 μm>
The average crystal grain size of the ferrite grains needs to be 30 μm or more in order to reduce the hysteresis loss of the steel sheet. However, if the average crystal grain size of the ferrite grains is too large, the iron loss may deteriorate due to the increase in the eddy current loss. Therefore, the average crystal grain size of the ferrite grains is 180 μm or less. The lower limit of the average crystal grain size of the ferrite grains is preferably 30 μm, more preferably 50 μm, and even more preferably 70 μm. The upper limit of the average crystal grain size of the ferrite grains is preferably 170 μm, more preferably 160 μm, and even more preferably 150 μm. The average crystal grain size of the ferrite grains can be determined according to JIS G 0551 “Steel-Crystal Grain Size Microscopic Test Method”.

<金属Cu粒子の平均粒径:1.0nm以上10.0nm以下>
再結晶粒内に析出したCu粒子は、転位の移動を妨げる。粒径が小さすぎる金属Cu粒子は、転位の移動に対する抵抗力が小さい。一方、粒径が大きい金属Cu粒子は、転位の移動に対する抵抗力が大きいが、金属Cu粒子の個数密度が減少するので、粒子間距離が大きくなり、転位の移動が容易となる。更に、粒子径が磁壁厚程度の100nm以上の金属Cu粒子は、磁壁移動を妨げ、ヒステリシス損失を増加させる。それ故、金属Cu析出粒子の平均粒径は1.0nm以上、10.0nm以下とする。好ましくは2.0nm以上、5.0nm以下、より好ましくは2.0nm以上、4.0nm以下、更に好ましくは2.0nm以上、3.0nm以下である。
<Average particle size of metal Cu particles: 1.0 nm or more and 10.0 nm or less>
Cu particles precipitated in the recrystallized particles hinder the movement of dislocations. Metal Cu particles having too small a particle size have a small resistance to dislocation movement. On the other hand, metal Cu particles having a large particle size have a large resistance to the movement of dislocations, but the number density of the metal Cu particles decreases, so that the distance between the particles becomes large and the movement of dislocations becomes easy. Further, the metal Cu particles having a particle diameter of about 100 nm or more having a domain wall thickness hinder the movement of the domain wall and increase the hysteresis loss. Therefore, the average particle size of the metal Cu precipitated particles is 1.0 nm or more and 10.0 nm or less. It is preferably 2.0 nm or more and 5.0 nm or less, more preferably 2.0 nm or more and 4.0 nm or less, and further preferably 2.0 nm or more and 3.0 nm or less.

金属Cu粒子の平均粒径は、透過型電子顕微鏡(TEM)の明視野像を用いて求める。像内の個々のCu粒子の面積を求め、その面積を持つ円の直径(円相当径)を、個々の粒子の径とみなす。 The average particle size of the metal Cu particles is determined using a bright field image of a transmission electron microscope (TEM). The area of each Cu particle in the image is obtained, and the diameter of the circle having that area (circle equivalent diameter) is regarded as the diameter of each particle.

<金属Cu粒子の個数密度:1.0×104〜1.0×107/μm3
本発明では、フェライト粒内の体積1μm3当たりの金属Cu粒子の個数は1.0×104/μm3以上とする。好ましくは1.0×105/μm3以上、より好ましくは5.0×105/μm3以上である。一方、金属Cu粒子の個数密度が大きすぎる場合、鋼板の磁気特性を劣化させるおそれがある。従って、フェライト粒内の金属Cu粒子の個数密度の上限値は1.0×107/μm3とする。
<Number density of metal Cu particles: 1.0 × 10 4 to 1.0 × 10 7 / μm 3 >
In the present invention, the number of metal Cu particles per 1 μm 3 volume in the ferrite particles is 1.0 × 10 4 / μm 3 or more. It is preferably 1.0 × 10 5 / μm 3 or more, and more preferably 5.0 × 10 5 / μm 3 or more. On the other hand, if the number density of the metal Cu particles is too large, the magnetic properties of the steel sheet may be deteriorated. Therefore, the upper limit of the number density of metal Cu particles in the ferrite grains and 1.0 × 10 7 / μm 3.

金属Cu粒子の個数密度とは、全てのフェライト粒内の粒径1.0nm以上の金属Cu粒子の個数密度である。粒径1.0nm未満の金属Cu粒子は、検出が困難であり、また、本実施形態に係る鋼板の特性にほぼ影響を与えないと考えられるので、計測対象とされない。本実施形態に係る鋼板のフェライト粒内の金属Cu粒子の個数密度Nは、電子顕微鏡観察像の面積をA、そこに観察されるCu粒子の数をn、その平均粒径(円相当径の算術平均)をdとしたとき、以下の数式に基づいて求められる。
N=n/(A×d)
The number density of metal Cu particles is the number density of metal Cu particles having a particle size of 1.0 nm or more in all ferrite particles. Metal Cu particles having a particle size of less than 1.0 nm are not included in the measurement because they are difficult to detect and are considered to have almost no effect on the characteristics of the steel sheet according to the present embodiment. The number density N of metal Cu particles in the ferrite particles of the steel plate according to the present embodiment is such that the area of the electron microscope observation image is A, the number of Cu particles observed therein is n, and the average particle size (circle equivalent diameter) thereof. When d is the arithmetic mean), it is calculated based on the following formula.
N = n / (A × d)

[製造方法]
本発明の無方向性電磁鋼板は、例えば以下の様な方法により製造できる。即ち、前記成分組成の鋼を溶製した後、連続鋳造などによりスラブとし、前記スラブを1180℃以下に加熱して熱間圧延を施して熱間圧延鋼板とし、必要に応じて熱延板焼鈍を施して熱延焼鈍鋼板とし、前記熱間圧延鋼板あるいは熱延焼鈍鋼板に冷間圧延を施して冷間圧延鋼板とし、前記冷間圧延鋼板に再結晶焼鈍を施し、その後Cuを析出させて無方向性電磁鋼板製品とする無方向性電磁鋼板を製造する方法である。
[Production method]
The non-oriented electrical steel sheet of the present invention can be manufactured by, for example, the following method. That is, after the steel having the component composition is melted, it is made into a slab by continuous casting or the like, and the slab is heated to 1180 ° C. or lower and hot-rolled to obtain a hot-rolled steel sheet, and if necessary, hot-rolled sheet is annealed. The hot-rolled steel sheet or the hot-rolled fired steel sheet was cold-rolled to obtain a cold-rolled steel sheet, and the cold-rolled steel sheet was recrystallized and annealed, and then Cu was precipitated. This is a method for manufacturing a non-directional electromagnetic steel sheet as a non-directional electromagnetic steel sheet product.

前記熱間圧延工程のスラブ加熱時には、前記スラブの表面の温度が1180℃を超えない様に制御することが好ましい。図2に示すように、どの鋼成分であっても、ある温度を超えると、鋼は急激に酸化し易くなる。その温度は、本発明の成分範囲であれば、1180℃以上であった。従って加熱時に表面の温度が1180℃を超えないように制御することが好ましい。 When heating the slab in the hot rolling step, it is preferable to control the temperature of the surface of the slab so that it does not exceed 1180 ° C. As shown in FIG. 2, for any steel component, when a certain temperature is exceeded, the steel tends to be rapidly oxidized. The temperature was 1180 ° C. or higher within the component range of the present invention. Therefore, it is preferable to control the surface temperature so that it does not exceed 1180 ° C. during heating.

その他の製造条件は特に限定しないが、下記の様な条件で製造できる。
熱延時のスラブ加熱温度は1000℃以上が好ましい。スラブ加熱温度が1000℃未満であると、熱間圧延が困難になる。スラブの表面温度は先の通り、1180℃を超えないように制御する。熱延仕上げ温度FTは900℃以下が好ましい。熱延鋼板の巻取温度CTは、高いと、巻取り後のコイル内でCuが析出し、熱延鋼板の靭性が低下するので、500℃以下が好ましい。熱延の仕上げ板厚は、冷間圧延時の高い圧下率によって、集合組織が劣化することを防ぐため、2.7mm以下が好ましい。ただし、あまり薄いと、熱延が困難となり、生産性が低下するので、熱延の仕上げ板厚は1.6mm以上が好ましい。
Other manufacturing conditions are not particularly limited, but it can be manufactured under the following conditions.
The slab heating temperature during hot spreading is preferably 1000 ° C. or higher. If the slab heating temperature is less than 1000 ° C., hot rolling becomes difficult. As mentioned above, the surface temperature of the slab is controlled so as not to exceed 1180 ° C. The hot-rolled finishing temperature FT is preferably 900 ° C. or lower. If the winding temperature CT of the hot-rolled steel sheet is high, Cu is deposited in the coil after winding and the toughness of the hot-rolled steel sheet is lowered, so that the temperature is preferably 500 ° C. or lower. The thickness of the hot-rolled finished plate is preferably 2.7 mm or less in order to prevent the texture from deteriorating due to the high reduction rate during cold rolling. However, if it is too thin, hot spreading becomes difficult and productivity decreases. Therefore, the finished hot-rolled plate thickness is preferably 1.6 mm or more.

最終製品の集合組織を改善し、高い磁束密度を得るため、熱延鋼板に熱延板焼鈍を施してもよい。好ましい均熱温度は750〜1100℃、均熱時間は10秒〜5分である。均熱温度が750℃未満、又は、均熱時間が10秒未満であると、集合組織を改善する効果が小さい。均熱温度が1100℃を超えると、又は、均熱時間が5分を超えると、消費エネルギーの上昇、付帯設備の劣化などで製造コストの上昇を招く。冷延後、再結晶前の鋼板内のCuを微細にし、冷延後の再結晶焼鈍時にCuを再固溶させるため、800〜400℃の冷却区間は、平均冷却速度10℃/秒以上で冷却する。平均冷却速度は20℃/以上が好ましく、40℃/秒以上がより好ましい。平均冷却速度が速いことは、熱延焼鈍板の靭性の確保にもつながる。 In order to improve the texture of the final product and obtain a high magnetic flux density, the hot-rolled steel sheet may be annealed. The preferred soaking temperature is 750 to 1100 ° C., and the soaking time is 10 seconds to 5 minutes. When the soaking temperature is less than 750 ° C. or the soaking time is less than 10 seconds, the effect of improving the texture is small. If the soaking temperature exceeds 1100 ° C., or if the soaking time exceeds 5 minutes, the manufacturing cost will increase due to an increase in energy consumption and deterioration of ancillary equipment. After cold spreading, the Cu in the steel sheet before recrystallization is made fine, and Cu is resolidified during recrystallization annealing after cold spreading. Therefore, in the cooling section of 800 to 400 ° C, the average cooling rate is 10 ° C / sec or more. Cooling. The average cooling rate is preferably 20 ° C./or or higher, more preferably 40 ° C./sec or higher. The high average cooling rate also helps to ensure the toughness of the hot-spread annealed plate.

更に、本発明製造方法は、熱延鋼板に冷間圧延を施して冷延鋼板とする。冷間圧延は1回で行ってもよいし、中間焼鈍を含む2回以上を行ってもよい。最終の圧下率は60〜90%の範囲が好ましい。これにより、高磁束密度と低鉄損が得られる。中間焼鈍の温度は900〜1100℃が好ましい。この場合も、800〜400℃の冷却区間は、10℃/秒以上の平均冷却速度で冷却することが望ましい。 Further, in the manufacturing method of the present invention, a hot-rolled steel sheet is cold-rolled to obtain a cold-rolled steel sheet. Cold rolling may be performed once, or may be performed twice or more including intermediate annealing. The final reduction rate is preferably in the range of 60 to 90%. As a result, high magnetic flux density and low iron loss can be obtained. The intermediate annealing temperature is preferably 900 to 1100 ° C. In this case as well, it is desirable to cool the cooling section of 800 to 400 ° C. at an average cooling rate of 10 ° C./sec or more.

再結晶工程では、鋼板の金属組織を再結晶させるとともに、Cuを溶体化する。前述した要件の一つであるフェライト粒の平均結晶粒径を30μm以上とするために、また、Cuを固溶させるために、均熱温度は850℃以上が好ましい。一方、均熱温度が高すぎると、フェライト粒の平均結晶粒径が規定の180μm超になり易くなると共に、エネルギー消費が大きくなり、また、ハースロールなどの付帯設備が傷み易くなるので、均熱温度は1100℃以下が好ましい。均熱時間は10秒以上2分以下が好ましい。一旦固溶したCuを冷却過程で析出させないため、冷却過程における800℃から400℃までの平均冷却速度は10℃/秒以上が好ましい。 In the recrystallization step, the metal structure of the steel sheet is recrystallized and Cu is dissolved. The soaking temperature is preferably 850 ° C. or higher in order to make the average crystal grain size of the ferrite grains, which is one of the above-mentioned requirements, 30 μm or more, and to dissolve Cu in a solid solution. On the other hand, if the soaking temperature is too high, the average crystal grain size of the ferrite grains tends to exceed the specified 180 μm, energy consumption increases, and ancillary equipment such as hearth rolls are easily damaged. The temperature is preferably 1100 ° C. or lower. The soaking time is preferably 10 seconds or more and 2 minutes or less. The average cooling rate from 800 ° C. to 400 ° C. in the cooling process is preferably 10 ° C./sec or more so that the Cu once solid-solved does not precipitate in the cooling process.

次に、再結晶工程で得られる再結晶鋼板を焼鈍して、結晶粒内にCuを析出させる。フェライト粒内に析出するCu粒子の個数密度を1.0×104〜1.0×107個/μm3とし、平均サイズを1.0nm以上、10.0nm以下とするため、均熱温度は450℃以上、650℃以下にすることが好ましい。 Next, the recrystallized steel sheet obtained in the recrystallization step is annealed to precipitate Cu in the crystal grains. The number density of Cu particles precipitated in the ferrite particles is 1.0 × 10 4 to 1.0 × 10 7 / μm 3 , and the average size is 1.0 nm or more and 10.0 nm or less. Is preferably 450 ° C. or higher and 650 ° C. or lower.

また、均熱時間は10秒以上必要である。好ましくは30秒以上、より好ましくは40秒以上である。上記温度範囲であれば、バッチ焼鈍で数時間の均熱時間で焼鈍を行うことも可能である。均熱温度及び均熱時間の最適条件は、鋼板の成分組成、特にCu量によって多少変化するが、概ね上記範囲に含まれる。 Moreover, the soaking time needs to be 10 seconds or more. It is preferably 30 seconds or longer, more preferably 40 seconds or longer. Within the above temperature range, it is possible to perform annealing in batch annealing with a soaking time of several hours. The optimum conditions for the soaking temperature and the soaking time vary slightly depending on the composition of the steel sheet, particularly the amount of Cu, but are generally included in the above range.

再結晶焼鈍とCu析出焼鈍を一つの連続焼鈍ラインで同時に行う場合は、均熱温度を850℃以上、1050℃以下、均熱時間を10秒以上とし、冷却過程の600℃〜450℃の温度域に鋼板が滞留する時間を10秒以上とする。 When recrystallization annealing and Cu precipitation annealing are performed simultaneously on one continuous annealing line, the soaking temperature is 850 ° C or higher and 1050 ° C or lower, the soaking time is 10 seconds or longer, and the temperature of 600 ° C to 450 ° C during the cooling process. The time for the steel plate to stay in the region is 10 seconds or more.

本発明製造方法で得られた鋼板には、必要に応じて、絶縁皮膜を施し、高強度で低鉄損の無方向性電磁鋼板を得ることができる。 If necessary, the steel sheet obtained by the production method of the present invention is coated with an insulating film to obtain a non-oriented electrical steel sheet having high strength and low iron loss.

<実施例1>
表3に示す成分組成の鋼を真空溶解し、得られたインゴットに加熱温度1150℃、仕上げ温度850℃、巻き取り温度400℃、仕上げ厚2.3mmの熱延を実施した。熱延板のへげ疵の有無を目視で確認して、結果を表3に示した。得られた熱延板に、均熱温度1000℃、保持時間30秒の熱延板焼鈍を施してから、冷間圧延に供し、板厚0.35mmの冷延板を得た。その冷延板に均熱温度1000℃、保持時間30秒、800℃から400℃までの平均冷却速度20℃/secの再結晶焼鈍を施し、その後、均熱温度550℃、保持時間60秒のCu析出焼鈍を施し、無方向性電磁鋼板の製品板とした。得られた製品板の、平均のフェライト結晶粒径、析出Cuの個数密度と平均粒子径、機械特性と磁気特性を調査し、それぞれを表3に示した。製品特性として、W10/400は20W/kg以下、B50は1.60T以上、YP、TSはそれぞれ400MPa以上、500MPa以上を良好な特性とした。本発明によって、熱延板の疵なしに、良好な機械特性と良好な鉄損を両立することができる。
<Example 1>
The steel having the composition shown in Table 3 was melted in vacuum, and the obtained ingot was hot-rolled at a heating temperature of 1150 ° C., a finishing temperature of 850 ° C., a winding temperature of 400 ° C., and a finishing thickness of 2.3 mm. The presence or absence of dents on the hot-rolled plate was visually confirmed, and the results are shown in Table 3. The obtained hot-rolled plate was annealed with a hot-rolled plate having a soaking temperature of 1000 ° C. and a holding time of 30 seconds, and then subjected to cold rolling to obtain a cold-rolled plate having a plate thickness of 0.35 mm. The cold-rolled plate was subjected to recrystallization annealing at a soaking temperature of 1000 ° C., a holding time of 30 seconds, and an average cooling rate of 20 ° C./sec from 800 ° C. to 400 ° C., followed by a soaking temperature of 550 ° C. and a holding time of 60 seconds. Cu precipitation annealing was performed to obtain a product plate of a non-directional electromagnetic steel plate. The average ferrite crystal grain size, the number density and average particle size of precipitated Cu, the mechanical properties and the magnetic properties of the obtained product board were investigated, and each is shown in Table 3. Good product characteristics were W10 / 400 of 20 W / kg or less, B50 of 1.60 T or more, and YP and TS of 400 MPa or more and 500 MPa or more, respectively. According to the present invention, both good mechanical properties and good iron loss can be achieved without flaws in the hot-rolled plate.

Figure 0006801464
Figure 0006801464

<実施例2>
表3の合金c15の冷延板を供試材にして、均熱温度950〜1050℃、均熱時間30〜90秒の仕上げ焼鈍を施し、更に、均熱温度550〜650℃、均熱時間30秒のCu析出焼鈍を施して、無方向性電磁鋼板を得た。実施例1と同様に、平均のフェライト結晶粒径、析出Cuの個数密度と平均粒子径、機械特性と磁気特性を調査した。それぞれを表4に示した。本発明によって、良好な機械特性と良好な鉄損を両立することができる。
<Example 2>
Using the cold-rolled plate of alloy c15 in Table 3 as a test material, finish annealing was performed at a soaking temperature of 950 to 1050 ° C. and a soaking time of 30 to 90 seconds, and further, a soaking temperature of 550 to 650 ° C. and a soaking time. Cu precipitation annealing was performed for 30 seconds to obtain a non-directional electromagnetic steel plate. In the same manner as in Example 1, the average ferrite crystal particle size, the number density and average particle size of precipitated Cu, and the mechanical and magnetic characteristics were investigated. Each is shown in Table 4. According to the present invention, both good mechanical properties and good iron loss can be achieved at the same time.

Figure 0006801464
Figure 0006801464

Claims (1)

質量%で、
C:0.005%以下
Si:1.0〜4.0%、
Mn:0.05〜1.5%、
Al:0.1〜2.0%、
Cu:0.5〜2.5%、
Cr:0.1〜4.0%、
S:0.004%以下、
N:0.004%以下、
を含有し、残部がFe及び不純物からなり、
Al含有量を[Al]、Cr含有量を[Cr]とした時に
[Cr]−2×[Al]≧0であり、
未再結晶組織を含まないフェライト粒からなる金属組織を有し、
前記フェライト粒の平均結晶粒径が30μm以上、180μm以下であり、
前記フェライト粒の内部に個数密度1.0×104〜1.0×107個/μm3の金属Cu粒子を含有し、前記フェライト粒の内部の前記金属Cu粒子の平均粒径が1.0nm以上、10.0nm以下である
ことを特徴とする無方向性電磁鋼板。
By mass%
C: 0.005% or less Si: 1.0 to 4.0%,
Mn: 0.05-1.5%,
Al: 0.1 to 2.0%,
Cu: 0.5-2.5%,
Cr: 0.1-4.0%,
S: 0.004% or less,
N: 0.004% or less,
Containing, the balance consists of Fe and impurities,
When the Al content is [Al] and the Cr content is [Cr], [Cr] -2 x [Al] ≥ 0.
It has a metal structure composed of ferrite grains that does not contain an unrecrystallized structure, and has a metal structure.
The average crystal grain size of the ferrite grains is 30 μm or more and 180 μm or less.
Metal Cu particles having a number density of 1.0 × 10 4 to 1.0 × 10 7 / μm 3 are contained inside the ferrite particles, and the average particle size of the metal Cu particles inside the ferrite particles is 1. A non-oriented electrical steel sheet having a size of 0 nm or more and 10.0 nm or less.
JP2017003439A 2017-01-12 2017-01-12 Non-oriented electrical steel sheet Active JP6801464B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017003439A JP6801464B2 (en) 2017-01-12 2017-01-12 Non-oriented electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017003439A JP6801464B2 (en) 2017-01-12 2017-01-12 Non-oriented electrical steel sheet

Publications (2)

Publication Number Publication Date
JP2018111865A JP2018111865A (en) 2018-07-19
JP6801464B2 true JP6801464B2 (en) 2020-12-16

Family

ID=62910959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017003439A Active JP6801464B2 (en) 2017-01-12 2017-01-12 Non-oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JP6801464B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7256361B2 (en) * 2018-12-14 2023-04-12 日本製鉄株式会社 Non-oriented electrical steel sheet and manufacturing method thereof, rotor core core of IPM motor
JP7256362B2 (en) * 2018-12-14 2023-04-12 日本製鉄株式会社 Non-oriented electrical steel sheet and manufacturing method thereof, rotor core core of IPM motor
JP7323762B2 (en) * 2018-12-14 2023-08-09 日本製鉄株式会社 High-strength non-oriented electrical steel sheet with excellent caulking properties

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004084053A (en) * 2002-06-26 2004-03-18 Nippon Steel Corp Electromagnetic steel sheet having remarkably superior magnetic property, and manufacturing method therefor
JP4265400B2 (en) * 2003-04-25 2009-05-20 Jfeスチール株式会社 Non-oriented electrical steel sheet and manufacturing method thereof
KR100772243B1 (en) * 2003-10-06 2007-11-01 신닛뽄세이테쯔 카부시키카이샤 High-strength magnetic steel sheet and process for producing them
JP5397252B2 (en) * 2004-02-17 2014-01-22 新日鐵住金株式会社 Electrical steel sheet and manufacturing method thereof
JP6497145B2 (en) * 2015-03-16 2019-04-10 新日鐵住金株式会社 Electrical steel sheet with high strength and excellent magnetic properties
CN106282781B (en) * 2016-10-11 2018-03-13 东北大学 A kind of method that high intensity non-orientation silicon steel is prepared based on nanometer Cu precipitation strengths

Also Published As

Publication number Publication date
JP2018111865A (en) 2018-07-19

Similar Documents

Publication Publication Date Title
JP6500980B2 (en) Non-oriented electrical steel sheet
KR101598312B1 (en) Anisotropic electromagnetic steel sheet and method for producing same
TWI531663B (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP5263363B2 (en) Method for producing non-oriented electrical steel sheet
TWI484043B (en) Manufacturing method of electromagnetic steel plate
JP7028313B2 (en) Non-oriented electrical steel sheet
JP2016156044A (en) Nonoriented silicon steel sheet and method for producing the same
JP6801464B2 (en) Non-oriented electrical steel sheet
WO2020166718A1 (en) Non-oriented electromagnetic steel sheet
JP2020169369A (en) Nonoriented electromagnetic steel sheet
JP6816516B2 (en) Non-oriented electrical steel sheet
JP2019014927A (en) Non-oriented electromagnetic steel sheet and manufacturing method therefor
JP6515323B2 (en) Non-oriented electrical steel sheet
JP6969473B2 (en) Non-oriented electrical steel sheet
JP4740400B2 (en) Non-oriented electrical steel sheet
JP2019035116A (en) Nonoriented electromagnetic steel sheet and method of producing the same
JP7256361B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof, rotor core core of IPM motor
JP7268803B1 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP7222444B1 (en) Non-oriented electrical steel sheet and manufacturing method thereof
WO2024080140A1 (en) Nonoriented electromagnetic steel sheet and method for manufacturing same
JP2017128759A (en) Non-oriented magnetic steel sheet and production method therefor
JP6852965B2 (en) Electrical steel sheet and its manufacturing method
JP3084571B2 (en) High Si content steel plate with good workability
JP3263815B2 (en) Method of manufacturing thin sheet and ultra-high silicon electrical steel sheet by cold rolling
KR20240027787A (en) Non-oriented electrical steel sheet and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201027

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201109

R151 Written notification of patent or utility model registration

Ref document number: 6801464

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151