JP4265400B2 - Non-oriented electrical steel sheet and manufacturing method thereof - Google Patents

Non-oriented electrical steel sheet and manufacturing method thereof Download PDF

Info

Publication number
JP4265400B2
JP4265400B2 JP2003433858A JP2003433858A JP4265400B2 JP 4265400 B2 JP4265400 B2 JP 4265400B2 JP 2003433858 A JP2003433858 A JP 2003433858A JP 2003433858 A JP2003433858 A JP 2003433858A JP 4265400 B2 JP4265400 B2 JP 4265400B2
Authority
JP
Japan
Prior art keywords
mass
less
steel sheet
strength
oriented electrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003433858A
Other languages
Japanese (ja)
Other versions
JP2004339603A (en
Inventor
健 大村
雅昭 河野
稔 高島
正樹 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2003433858A priority Critical patent/JP4265400B2/en
Publication of JP2004339603A publication Critical patent/JP2004339603A/en
Application granted granted Critical
Publication of JP4265400B2 publication Critical patent/JP4265400B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Description

本発明は、無方向性電磁鋼板、特に高速回転モータのロータを典型例とする、大きな応力がかかる部品に用いて好適な、高強度でかつ高周波鉄損が優れる無方向性電磁鋼板およびその製造方法に関するものである。   The present invention relates to a non-oriented electrical steel sheet, particularly a non-oriented electrical steel sheet having high strength and excellent high-frequency iron loss, suitable for use in parts subjected to large stress, such as a rotor of a high-speed rotary motor, as a typical example. It is about the method.

近年、モータの駆動システムの発達により、駆動電源の周波数制御が可能となり、可変速運転や商用周波数以上で高速回転を行うモータが増加している。このような高速回転を行うモータでは、高速回転に耐え得るロータが必要になる。すなわち、回転体に作用する遠心力は回転半径に比例し、回転速度の2乗に比例して大きくなるため、中・大型の高速モータではロータに作用する応力が600MPaを超える場合もある。従って、こうした高速回転モータでは、ロータの強度が高いことが必要となる。   In recent years, with the development of motor drive systems, it is possible to control the frequency of the drive power supply, and the number of motors that perform variable speed operation and high-speed rotation above the commercial frequency is increasing. In such a motor that performs high-speed rotation, a rotor that can withstand high-speed rotation is required. That is, since the centrifugal force acting on the rotating body is proportional to the radius of rotation and increases in proportion to the square of the rotational speed, the stress acting on the rotor may exceed 600 MPa in medium and large high-speed motors. Therefore, in such a high-speed rotary motor, it is necessary that the strength of the rotor is high.

また、近年のモータ効率向上の観点から、その使用が増加した、ロータに永久磁石を埋め込んだ磁石埋設型DCインバータ制御モータでは、遠心力でロータから磁石が飛び出そうとするが、これを抑える際に、ロータに使用された電磁鋼板には大きな力が掛かる。このためにも、モータ、特にロータに使用される電磁鋼板には、高強度が必要とされている。   In addition, in recent years, the use of magnet-embedded DC inverter control motors with permanent magnets embedded in the rotor has been increasing from the viewpoint of improving motor efficiency. In addition, a large force is applied to the electromagnetic steel sheet used in the rotor. For this reason, high strength is required for electromagnetic steel sheets used in motors, particularly rotors.

モータ、発電機などの回転機器は、電磁気現象を利用するため、その素材には磁気特性、すなわち低鉄損、高磁束密度であることが望ましい。通常、ロータコアはプレス打ち抜きした無方向性電磁鋼板を積層して使用するが、高速回転モータにおいてロータ素材が上述の機械強度を満足できない場合は、より高強度の鋳鋼製ロー夕などを使用せざるを得ないのが現状である。しかしながら、鋳物製ロー夕は一体物であるため、ロータに作用するリップル損と呼ばれる高周波磁束による渦電流損が電磁鋼板を積層したロータより大きく、モータ効率が低下してしまう要因となっている。従って、磁気特性に優れ、かつ高強度の電磁鋼板がロータ用素材として要望されているのである。   Since rotating devices such as motors and generators use electromagnetic phenomena, it is desirable that the material has magnetic properties, that is, low iron loss and high magnetic flux density. Normally, the rotor core is used by laminating non-oriented electrical steel sheets that have been stamped out of the stamp. However, if the rotor material does not satisfy the above-mentioned mechanical strength in a high-speed rotary motor, it is necessary to use a caster made of higher-strength cast steel. It is the present condition that we do not get. However, since the casting made of cast iron is an integral object, the eddy current loss due to the high-frequency magnetic flux called ripple loss acting on the rotor is larger than that of the rotor laminated with electromagnetic steel sheets, which causes a reduction in motor efficiency. Therefore, there is a demand for a magnetic steel sheet having excellent magnetic properties and high strength as a rotor material.

金属学的には、高強度化の手段として、固溶強化、析出強化および結晶粒微細化の3つの方法が知られており、電磁鋼板に適用した例も見られる。例えば、固溶強化を利用したものとしては、特許文献1には、Si含有量を3.5〜7.0mass%に高めたうえに固溶強化能の大きい元素を添加する方法が開示されている。また、特許文献2には、Si含有量を2.0〜3.5mass%とし、NiあるいはNiとMnの両方の含有量を高め、650〜850℃という低温焼鈍により製造することで再結晶粒径を制御する方法が開示されている。さらに、析出強化を利用する方法としては、特許文献3に、Si含有量を2.0〜4.0mass%とし、Nb,Zr,Ti,Vの微細な炭化物、窒化物を析出させる方法が開示されている。   In metallurgy, three methods of solid solution strengthening, precipitation strengthening, and crystal grain refinement are known as means for increasing strength, and examples applied to electrical steel sheets are also seen. For example, as a method utilizing solid solution strengthening, Patent Document 1 discloses a method of adding an element having a large solid solution strengthening capability after increasing the Si content to 3.5 to 7.0 mass%. In Patent Document 2, the Si content is set to 2.0 to 3.5 mass%, the content of both Ni and Ni and Mn is increased, and the recrystallized grain size is controlled by manufacturing at a low temperature annealing of 650 to 850 ° C. A method is disclosed. Furthermore, as a method of utilizing precipitation strengthening, Patent Document 3 discloses a method in which the Si content is set to 2.0 to 4.0 mass% and fine carbides and nitrides of Nb, Zr, Ti, and V are precipitated. .

これらの方法により、ある程度の高強度を有する電磁鋼板が得られる。しかしながら、特許文献1に記載されるようなSi量が多い鋼では、冷間圧延性が著しく低下し、安定的な工業生産が困難となる不利がある。さらに、この技術により得られる鋼板は磁束密度B50が1.56〜1.60Tと大幅に低下してしまうという問題もあった。 By these methods, an electrical steel sheet having a certain degree of strength can be obtained. However, the steel having a large amount of Si as described in Patent Document 1 has a disadvantage that the cold rolling property is remarkably lowered and stable industrial production becomes difficult. Furthermore, the steel plate obtained by this technique has a problem that the magnetic flux density B 50 is significantly reduced to 1.56 to 1.60 T.

特許文献2における方法では、機械強度を高めるため低温焼鈍による再結晶粒成長の抑制が必要となるため、磁気特性、特に比較的周波数の低い1kHz以下での鉄損が低下するという問題があった。また、Si添加量も従来のそれを越えたものではなく、1kHz以上の鉄損もまだ不十分であった。   In the method in Patent Document 2, since it is necessary to suppress recrystallization grain growth by low-temperature annealing in order to increase mechanical strength, there is a problem in that magnetic characteristics, particularly iron loss at a relatively low frequency of 1 kHz or less is reduced. . Also, the amount of Si added was not over that of the conventional one, and the iron loss of 1 kHz or more was still insufficient.

一方、特許文献3に記載の方法では、炭、窒化物自体が磁壁移動の障壁となるため、また炭、窒化物が電磁鋼板の結晶粒成長を妨げるため、鉄損に劣るという問題がある。   On the other hand, the method described in Patent Document 3 has a problem that iron loss is inferior because charcoal and nitride itself serve as a barrier for domain wall movement and charcoal and nitride hinder crystal grain growth of the electromagnetic steel sheet.

また、数百Hz〜数十kHzの高周波域で使用される高速回転モータにおいて、従来のSi量が3.5mass%以下の無方向性電磁鋼板を使用すると、鉄損が大きくなりモータ効率の低下要因となる。従って、高速回転モータのロータコア材には、高強度だけでなく、優れた高周波鉄損特性も併せて要求される。   In addition, if a conventional non-oriented electrical steel sheet with a Si content of 3.5 mass% or less is used in a high-speed rotating motor used in the high frequency range of several hundreds of Hz to several tens of kHz, the iron loss increases and the motor efficiency decreases. It becomes. Therefore, the rotor core material of the high-speed rotary motor is required to have not only high strength but also excellent high-frequency iron loss characteristics.

この高周波域での鉄損特性を改善するには、鋼の電気抵抗を高めることが重要であり、一般にSiやAlの含有量を増す手法が採られていた。しかし、Si量が3.5mass%を超えると、鋼が極めて硬くそして脆くなり、加工性が劣化するために、通常の圧延による製造および加工が困難になる。特に、Si量が5.0mass%を超える場合には、冷間加工は勿論のこと、温間加工も不可能になってしまう。   In order to improve the iron loss characteristics in this high frequency range, it is important to increase the electrical resistance of the steel, and generally a method of increasing the content of Si and Al has been adopted. However, if the amount of Si exceeds 3.5 mass%, the steel becomes extremely hard and brittle, and the workability deteriorates, so that it is difficult to manufacture and process by ordinary rolling. In particular, when the Si content exceeds 5.0 mass%, not only cold working but also warm working becomes impossible.

これに対して、出願人は、高Si鋼にCrを添加することにより、高Si鋼の脆性が改善し、高い電気抵抗と加工性とを両立させ得ることを見出し、特許文献4において、高周波磁気特性に優れたFe−Cr−Si系電磁鋼板について提案した。このCrの添加技術により、高合金化が可能となったことから、優れた高周波鉄損特性のみならず、固溶強化により、ある程度の高強度を得るに到ったが、上記した現在の高速回転モータに要求される強度特性としては未だ不十分であった。
特開昭60−238421号公報 特開昭62−256917号公報 特開平6−330255号公報 特開平11−343544号公報
On the other hand, the applicant has found that by adding Cr to high-Si steel, the brittleness of high-Si steel can be improved and both high electrical resistance and workability can be achieved. A Fe-Cr-Si electrical steel sheet with excellent magnetic properties was proposed. This addition technology of Cr has made it possible to make a high alloy, so that not only excellent high-frequency iron loss characteristics but also solid solution strengthening resulted in a certain level of strength. The strength characteristics required for a rotary motor are still insufficient.
JP-A-60-238421 JP 62-256917 A JP-A-6-330255 Japanese Patent Laid-Open No. 11-343544

以上のように、従来の方法は、安定的に工業生産可能な電磁鋼板において、高強度と高周波域での低鉄損とを両立するという観点からは、いずれも満足できるものでは無かった。   As described above, none of the conventional methods is satisfactory from the viewpoint of achieving both high strength and low iron loss in a high frequency range in an electromagnetic steel sheet that can be stably industrially produced.

本発明は、良好な磁気特性、特に高周波域での低鉄損と高強度とを両立した無方向性電磁鋼板およびこの鋼板を工業的に安定して生産することを可能とする製造方法について提案することを目的とする。   The present invention proposes a non-oriented electrical steel sheet that has both good magnetic properties, particularly low iron loss and high strength in a high frequency range, and a manufacturing method that makes it possible to industrially produce this steel sheet. The purpose is to do.

発明者らは、上記課題を解決するために、Cuを含んだ鋼の時効硬化現象に着目して種々の検討を行った。すなわち、表1に示す成分を有する鋼に、熱間圧延、次いで冷間圧延を施して0.25mm厚とし、その後、表2に示す条件に従って、仕上げ焼鈍そして時効処理を行って得た鋼板について、強度および履歴損を調査した。その結果を、表2に併記する。   In order to solve the above-mentioned problems, the inventors have made various studies focusing on the age hardening phenomenon of steel containing Cu. That is, the steel having the components shown in Table 1 is hot rolled, then cold rolled to a thickness of 0.25 mm, and then subjected to finish annealing and aging treatment according to the conditions shown in Table 2, Strength and history loss were investigated. The results are also shown in Table 2.

また、鋼板におけるCu系析出物の径についても調査し、このCu系析出物の径と履歴損との関係を図1に示す。ここで、Cu系析出物の径は、鋼板を走査透過型電子顕微鏡(STEM)を用いて観察(暗視野像)する際、108nm2の範囲に存在するCu系析出物の径を円相当径として求め、それらの求めた値を平均したものである。なお、観察された析出物がCu系析出物かどうかはEDX分析によって識別した。 Further, the diameter of the Cu-based precipitate in the steel sheet was also investigated, and the relationship between the diameter of the Cu-based precipitate and the hysteresis loss is shown in FIG. Here, the diameter of the Cu-based precipitate is the same as the diameter of the Cu-based precipitate existing in the range of 10 8 nm 2 when the steel sheet is observed (dark field image) using a scanning transmission electron microscope (STEM). It is obtained as an equivalent diameter, and the obtained values are averaged. Whether the observed precipitate was a Cu-based precipitate was identified by EDX analysis.

Figure 0004265400
Figure 0004265400

Figure 0004265400
Figure 0004265400

表2、そして図1に示す結果から、次の知見が得られた。すなわち、鋼板中の析出物は高強度化に寄与するものの磁壁移動を抑制するため履歴損を劣化させるという、従来知見に反して、時効処理により15nm以下のサイズの極微細に析出したCuは、高強度化に寄与しつつ、履歴損はほとんど劣化させないという、新たな知見を得た。   The following findings were obtained from the results shown in Table 2 and FIG. In other words, despite the fact that precipitates in the steel sheet contribute to higher strength but deteriorate the hysteresis loss in order to suppress domain wall movement, contrary to the conventional knowledge, Cu deposited in an extremely fine size of 15 nm or less by aging treatment, The new knowledge that hysteresis loss hardly deteriorates while contributing to high strength was obtained.

この新規知見に基づき、Cr添加による高電気抵抗化技術と、Cuの極微細析出による高強度化技術とを組み合わせることによって、安定した工業生産が可能である、良好な高周波磁気特性を有する高強度の無方向性電磁鋼板を開発するに到ったのである。   Based on this new knowledge, the combination of high electrical resistance technology by adding Cr and high strength technology by ultra-fine precipitation of Cu enables high-strength and good high-frequency magnetic properties that enable stable industrial production. This led to the development of a non-oriented electrical steel sheet.

本発明の要旨構成は、以下の通りである。
(1)Si:1.0〜7.0mass%、Cr:1.0〜8.0mass%、Cu:0.35〜3.0mass%、Mn:3.0mass%以下(0mass%を含む)、Al:3.0mass%以下(0mass%を含む)、P:1.0mass%以下(0mass%を含む)およびNi:5.0mass%以下(0mass%を含む)を含有し、残部がFeおよび不可避的不純物の成分組成を有し、さらにCu系析出物の平均粒径が15nm以下、かつCu系析出物の存在頻度が106個/mm2以上であることを特徴とする無方向性電磁鋼板。
The gist of the present invention is as follows.
(1) Si: 1.0 to 7.0 mass%, Cr: 1.0 to 8.0 mass%, Cu: 0.35 to 3.0 mass%, Mn: 3.0 mass% or less (including 0 mass%), Al: 3.0 mass% or less (0 mass% Containing), P: 1.0 mass% or less (including 0 mass%) and Ni: 5.0 mass% or less (including 0 mass%), the balance having a component composition of Fe and inevitable impurities, and Cu-based precipitation non-oriented electrical steel sheet you wherein the average particle size of the object is 15nm or less and the frequency of presence of Cu-based precipitates is 10 6 / mm 2 or more.

本発明でのCu系析出物は、ほぼCu単体よりなるが、析出物が極微細になると、CuにFeの固溶体が含まれる場合もあり、このような場合も含めてCu系析出物という。なお、製造条件によっては粒界上に粗大なCu系析出物が認められることがあるが、析出物径および存在頻度に関しては実質的に強化に寄与する粒内析出物のみを対象とする。   The Cu-based precipitate in the present invention is substantially composed of simple Cu. However, when the precipitate is extremely fine, Cu may contain a solid solution of Fe, and such a case is also referred to as a Cu-based precipitate. Although coarse Cu-based precipitates may be observed on the grain boundaries depending on the production conditions, only the intragranular precipitates that substantially contribute to strengthening are targeted with respect to the precipitate diameter and existence frequency.

(2)上記(1)において、成分組成として、さらにSb:0.002〜0.5mass%およびSn:0.002〜0.5mass%のいずれか1種または2種を含有することを特徴とする無方向性電磁鋼板。 In (2) above (1), as the component composition further Sb: 0.002~0.5mass% and Sn: non-oriented electrical characterized in that it contains 0.002~0.5Mass% of either one or two steel sheet.

(3)Si:1.0〜7.0mass%、Cr:1.0〜8.0mass%、Cu:0.35〜3.0mass%、Mn:3.0mass%以下(0mass%を含む)、Al:3.0mass%以下(0mass%を含む)、P:1.0mass%以下(0mass%を含む)およびNi:5.0mass%以下(0mass%を含む)を含有し、残部がFeおよび不可避的不純物の成分組成を有するスラブに、熱間圧延を施し、そのままあるいは焼鈍した後、冷間圧延および/または温間圧延を施して最終板厚とし、次いで仕上げ焼鈍 を、最終到達温度が650〜1150℃および引き続く冷却過程の900〜400℃に おける冷却速度が10℃/s以上の条件下に施し、その後400〜650℃の温度にて時効処理を施すことを特徴とする無方向性電磁鋼板の製造方法。 (3) Si: 1.0 to 7.0 mass%, Cr: 1.0 to 8.0 mass%, Cu: 0.35 to 3.0 mass%, Mn: 3.0 mass% or less (including 0 mass%), Al: 3.0 mass% or less (0 mass% P: 1.0 mass% or less (including 0 mass%) and Ni: 5.0 mass% or less (including 0 mass%), the remainder being hot-rolled into a slab having a component composition of Fe and inevitable impurities After annealing or annealing, cold rolling and / or warm rolling is performed to obtain the final thickness, and then final annealing is performed at a final temperature of 650 to 1150 ° C and a subsequent cooling process of 900 to 400 ° C. cooling rate applied under the conditions of more than 10 ° C. / s, then 400-650 manufacturing method of a non-oriented electrical steel sheet you characterized by applying aging treatment at a temperature of ° C..

(4)上記(3)において、スラブの成分組成として、さらにSb:0.002〜0.5mass%およびSn:0.002〜0.5mass%のいずれか1種または2種を含有することを特徴とする高周波磁気特性に優れた高強度無方向性電磁鋼板の製造方法。 (4) In the above (3), the component composition of the slab further contains any one or two of Sb: 0.002 to 0.5 mass% and Sn: 0.002 to 0.5 mass%. For producing high-strength non-oriented electrical steel sheets with excellent resistance.

本発明によれば、磁気特性、とくに高周波磁気特性に優れ、しかも高い強度を有する電磁鋼板を安定して提供することできる。   ADVANTAGE OF THE INVENTION According to this invention, the magnetic steel sheet which is excellent in a magnetic characteristic, especially a high frequency magnetic characteristic, and also has high intensity | strength can be provided stably.

次に、本発明について、その構成要件毎に詳述する。
まず、成分組成範囲およびその限定理由を説明する。
Si:1.0〜7.0mass%
Siは、鋼板の電気抵抗を上昇させる主要元素である。さらに、Crとの相乗効果によって、電気抵抗を大幅に上昇させ、特に高周波域での磁気特性を改善するのに有効な成分である。しかし、Si量が1.0mass%未満では、SiおよびCrを併用したとしても、従来の電磁鋼板と同程度の電気抵抗しか得られないため、良好な高周波磁気特性を得ることができない。一方、Si量が7.0mass%を超えると、Crを併用しても、通常圧延が可能なレベルの靱性を確保できない。従って、Si量は、1.0〜7.0mass%の範囲に限定する。
Next, the present invention will be described in detail for each constituent requirement.
First, the component composition range and the reason for limitation will be described.
Si: 1.0-7.0mass%
Si is a main element that increases the electrical resistance of the steel sheet. In addition, it is a component effective for significantly increasing electrical resistance and improving magnetic properties particularly in the high frequency range due to a synergistic effect with Cr. However, if the Si content is less than 1.0 mass%, even if Si and Cr are used in combination, only the same electrical resistance as that of a conventional electromagnetic steel sheet can be obtained, so that good high-frequency magnetic characteristics cannot be obtained. On the other hand, when the Si content exceeds 7.0 mass%, even if Cr is used in combination, it is not possible to ensure the toughness at which normal rolling is possible. Therefore, the amount of Si is limited to the range of 1.0 to 7.0 mass%.

Cr:1.0〜8.0mass%
Crは、本発明の鋼板において、最も重要な成分の1つである。すなわち、CrはSiとの相乗効果によって鋼の固有抵抗を大幅に向上させ、さらには耐食性を向上させる基本的な合金成分である。しかも、Si+Al>3.5mass%以上の場合にあっても、通常圧延が可能なレベルの靱性を得るために極めて有効な元素であり、その観点からは2.0mass%以上で含有させることが好ましい。なお、Si量やAl量が上記の場合よりも少ない場合は、Cr量をさらに減少しても加工性は確保できるが、Crの含有による脆性の改善効果および高電気抵抗化を実現するためには、1.0mass%以上のCrが必要である。一方、Cr量が8.0mass%を超えると、靱性向上効果が飽和する上、コストの上昇を招くことから、Cr含有量は1.0〜8.0mass%の範囲に限定する。
Cr: 1.0-8.0mass%
Cr is one of the most important components in the steel sheet of the present invention. In other words, Cr is a basic alloy component that greatly improves the specific resistance of steel by a synergistic effect with Si, and further improves the corrosion resistance. And even if it is Si + Al> 3.5 mass% or more, it is an extremely effective element for obtaining the toughness of the level which can be normally rolled, and it is preferable to make it contain at 2.0 mass% or more from that viewpoint. In addition, when the amount of Si or Al is less than the above case, workability can be secured even if the Cr amount is further reduced, but in order to realize the brittle improvement effect and high electrical resistance due to the Cr content. Requires 1.0 mass% or more of Cr. On the other hand, if the Cr content exceeds 8.0 mass%, the effect of improving toughness is saturated and the cost is increased, so the Cr content is limited to a range of 1.0 to 8.0 mass%.

Cu:0.35〜3.0mass%
Cuも、本発明の鋼板において、最も重要な成分である。すなわち、時効処理によって微細なCu系析出物を形成させることによって、鉄損(履歴損)の劣化をほとんど伴わずに、大幅な強度上昇が可能となる。その効果を得るには、0.35mass%以上のCuが必要である。一方、3.0mass%を超えると粗大な析出物が形成されるため、鉄損の劣化が大きくなるとともに、強度上昇代も低下する。従って、Cuの添加量は0.35〜3.0mass%の範囲に規制する。
Cu: 0.35-3.0 mass%
Cu is also the most important component in the steel sheet of the present invention. That is, by forming fine Cu-based precipitates by an aging treatment, a significant increase in strength can be achieved with almost no deterioration of iron loss (history loss). In order to obtain the effect, 0.35 mass% or more of Cu is necessary. On the other hand, if it exceeds 3.0 mass%, coarse precipitates are formed, so that the deterioration of iron loss increases and the strength increase margin also decreases. Therefore, the addition amount of Cu is regulated within the range of 0.35 to 3.0 mass%.

Mn:3.0mass%以下(0mass%を含む)
Mnは、さらに電気抵抗を高めるのに有効であり、本発明の要旨を損なうことなく、さらなる磁気特性の改善が達成できる。従って、好ましくは0.10mass%以上で含有させる。しかし、大量に添加すると加工性が劣化するため、含有させる場合はその含有量を3.0mass%以下に制限することが好ましい。
Mn: 3.0 mass% or less (including 0 mass%)
Mn is effective for further increasing the electric resistance, and further improvement in magnetic properties can be achieved without impairing the gist of the present invention. Therefore, it is preferably contained at 0.10 mass% or more. However, since the workability deteriorates when added in a large amount, the content is preferably limited to 3.0 mass% or less.

Al:3.0mass%以下(0mass%を含む)
Alは、Crよりも強力な窒化物生成元素であり、焼鈍中に鋼板表層より侵入する窒素と最表層で結びつき、鋼板最表層にAlN層の形成、その内側にAlNを析出する。これにより鋼板内部への浸窒が防止される結果、Cr系窒化物の析出が抑制される。従来の電磁鋼板では、最表層のAlN析出は磁気特性を劣化させるため、抑制する必要があった。しかしながら、Fe−Cr−Si系電磁鋼板では、このAlN析出は磁気特性の改善に非常に有効なものである。また、Alは鋼溶製時からの含有窒素とともに粗大AlNを形成し、鋼溶製時からの含有窒素によるCr系窒化物の析出を抑制する効果もある。かような効果を得るには、0.10mass%以上で含有させることが好ましい。しかし、多量のAlを添加すると電気抵抗を高めることができるという、有利な面もあるが、3.0mass%を超えると、Crを含有させても通常圧延が可能な靭性を確保できなくなるため、含有させる場合はAl含有量は3.0mass%以下に規制することが好ましい。
Al: 3.0 mass% or less (including 0 mass%)
Al is a nitride-forming element stronger than Cr, and is combined with nitrogen that penetrates from the steel sheet surface layer during annealing at the outermost layer, forming an AlN layer on the steel sheet outermost layer, and depositing AlN on the inner side. As a result, nitriding inside the steel sheet is prevented, and precipitation of Cr-based nitride is suppressed. In conventional electromagnetic steel sheets, AlN precipitation on the outermost layer deteriorates magnetic properties, so it has to be suppressed. However, in Fe—Cr—Si based electrical steel sheet, this AlN precipitation is very effective for improving magnetic properties. Further, Al forms coarse AlN together with the nitrogen contained from the time of steel melting, and has the effect of suppressing the precipitation of Cr-based nitrides by the nitrogen contained from the time of steel melting. In order to acquire such an effect, it is preferable to make it contain at 0.10 mass% or more. However, adding a large amount of Al also has the advantage of being able to increase electrical resistance, but if it exceeds 3.0 mass%, it will not be possible to ensure toughness that can be normally rolled even if Cr is contained, so When making it, it is preferable to regulate Al content to 3.0 mass% or less.

P:1.0mass%以下(0mass%を含む)
Pは、比較的少量の添加でも大幅な固溶強化能が得られるため高強度化に極めて有効であり、好ましくは0.01mass%以上で含有させる。一方、過剰な含有は偏析による脆化を引き起し、粒界割れや圧延性の低下をもたらすため、含有させる場合はその含有量は1.0mass%以下に制限することが好ましい。
P: 1.0 mass% or less (including 0 mass%)
P is extremely effective for increasing the strength because a significant solid solution strengthening ability can be obtained even when added in a relatively small amount, and is preferably contained at 0.01 mass% or more. On the other hand, excessive inclusion causes embrittlement due to segregation, and causes intergranular cracking and lowering of rollability. Therefore, when contained, the content is preferably limited to 1.0 mass% or less.

Ni:5.0mass%以下(0mass%を含む)
Niは、固溶強化による高強度化に有効な元素であり、好ましくは0.50mass%以上で含有させる。しかし、5.0mass%を超えると、その効果は飽和しコスト高をまねくだけになるため、含有させる場合はその上限を5.0mass%とすることが好ましい。
Ni: 5.0 mass% or less (including 0 mass%)
Ni is an element effective for increasing the strength by solid solution strengthening, and is preferably contained at 0.50 mass% or more. However, if it exceeds 5.0 mass%, the effect is saturated and only increases the cost. Therefore, when it is contained, the upper limit is preferably 5.0 mass%.

さらに、Sb:0.002〜0.5mass%およびSn:0.002〜0.5mass%のいずれか1種または2種を含有することができる。
Sbおよび/またはSnの添加は、いずれも窒化を抑制する効果がある。これにより鋼板内部への浸窒が防止され、その結果Cr系窒化物の析出を抑制することができる。Cr系窒化物は磁気特性を大幅に劣化させるため、Fe−Cr−Si系電磁鋼板へのSb,Snの添加は、従来の電磁鋼板の場合よりも磁気特性改善効果は大きい。SbおよびSnがともに0.002mass%以下になると、窒化抑制効果が不十分になる。また、SbおよびSnは、窒化抑制効果に加えて集合組織の改善効果もあり、鋼板の磁気特性向上にさらに寄与する。
一方、0.50mass%を超えると、窒化抑制効果が飽和する上、コストの上昇を招いてしまう。従って、SbおよびSnの含有量は、それぞれSb:0.002〜0.5mass%およびSn:0.002〜0.5mass%の範囲とする。
Furthermore, any 1 type or 2 types of Sb: 0.002-0.5mass% and Sn: 0.002-0.5mass% can be contained.
Addition of Sb and / or Sn has an effect of suppressing nitriding. As a result, nitriding inside the steel plate is prevented, and as a result, precipitation of Cr-based nitrides can be suppressed. Since Cr-based nitride significantly deteriorates the magnetic properties, the addition of Sb and Sn to the Fe-Cr-Si-based electrical steel plate has a greater effect on improving the magnetic properties than in the case of conventional magnetic steel plates. When both Sb and Sn are 0.002 mass% or less, the nitriding suppression effect becomes insufficient. Further, Sb and Sn have an effect of improving the texture in addition to the effect of suppressing nitriding, and further contribute to the improvement of the magnetic properties of the steel sheet.
On the other hand, if it exceeds 0.50 mass%, the nitriding suppression effect is saturated and the cost is increased. Accordingly, the contents of Sb and Sn are in the ranges of Sb: 0.002 to 0.5 mass% and Sn: 0.002 to 0.5 mass%, respectively.

また、本発明においては、不可避的不純物のうち、C、N、S、TiおよびNbにつき、C:0.010mass%以下、N:0.0050mass%以下、S:0.0050mass%以下、Ti:0.0050mass%以下およびNb:0.0050mass%以下に抑制することが好ましい。   Moreover, in this invention, about C, N, S, Ti, and Nb among unavoidable impurities, C: 0.010 mass% or less, N: 0.0050 mass% or less, S: 0.0050 mass% or less, Ti: 0.0050 mass% It is preferable to suppress below or below Nb: 0.0050 mass%.

C:0.010mass%以下
Cは、Fe−Cr−Si系電磁鋼板の靱性を劣化させるため、できる限り低減することが望ましく、上記した成分範囲において、C量を0.010mass%以下に抑えることが好ましい。また、Cr系炭化物などの析出物による履歴損を防止する観点からも、C量は0.010mass%以下に抑えることが好ましい。
C: 0.010 mass% or less Since C deteriorates the toughness of the Fe—Cr—Si based electromagnetic steel sheet, it is desirable to reduce it as much as possible. In the above component range, it is preferable to suppress the C content to 0.010 mass% or less. . Also, from the viewpoint of preventing hysteresis loss due to precipitates such as Cr-based carbides, the C content is preferably suppressed to 0.010 mass% or less.

N:0.0050mass%以下
Nは、Crと非常に結びつきやすくCr系窒化物を析出させる。よって、履歴損劣化の観点から、N量は0.0050mass%以下に低減することが好ましい。また、N量が多くなると靱性劣化を招くため、できるだけ低減することが好ましく、靭性劣化の観点からも、N量は0.0050mass%以下に抑えることが好ましい。
N: 0.0050 mass% or less N is very easily combined with Cr and precipitates Cr-based nitride. Therefore, from the viewpoint of history loss deterioration, the N amount is preferably reduced to 0.0050 mass% or less. Moreover, since the toughness deterioration is caused when the N amount increases, it is preferably reduced as much as possible. From the viewpoint of toughness deterioration, the N amount is preferably suppressed to 0.0050 mass% or less.

S:0.0050mass%以下
Sは、MnSやCuSといった析出物を生成し、履歴損を劣化させるため、履歴損改善の観点からS量を0.0050mass%以下に抑えることが好ましい。
S: 0.0050 mass% or less Since S produces precipitates such as MnS and CuS and deteriorates the hysteresis loss, the amount of S is preferably suppressed to 0.0050 mass% or less from the viewpoint of improving the hysteresis loss.

Ti:0.0050mass%以下およびNb:0.0050mass%以下
TiおよびNbは、通常のCr含有鋼における加工性改善成分である反面、磁気特性を劣化させる成分である。この発明における加工性の改善は、Cr添加とCおよびNを低減させることで達成するため、TiおよびNbが有する加工性改善作用は必要としない.このために、TiおよびNbは磁気特性の観点からできるだけ低減することが望ましく、その許容量はTiおよびNb共に0.0050mass%以下に抑えることが好ましい。
Ti: 0.0050 mass% or less and Nb: 0.0050 mass% or less
Ti and Nb are components for improving workability in ordinary Cr-containing steels, but are components that deteriorate magnetic properties. Since the improvement of workability in this invention is achieved by adding Cr and reducing C and N, the workability improvement action of Ti and Nb is not required. For this reason, it is desirable to reduce Ti and Nb as much as possible from the viewpoint of magnetic properties, and it is preferable that the allowable amount is 0.0050 mass% or less for both Ti and Nb.

C、N、S、TiおよびNb以外の不純物の量は特に制限されないが、良好な破気特性と加工性とを保つためには、従来の電磁鋼板と同様の不純物量に制限する必要がある。なお、C、N、S、TiおよびNbを含む全ての不純物について、磁気特性および加工性両方の観点から、できる限り低減することがより好ましい。   The amount of impurities other than C, N, S, Ti and Nb is not particularly limited, but in order to maintain good rupture characteristics and workability, it is necessary to limit to the same amount of impurities as conventional electromagnetic steel sheets. . In addition, it is more preferable to reduce all impurities including C, N, S, Ti, and Nb as much as possible from the viewpoints of both magnetic properties and workability.

さらに、本発明の電磁鋼板においては、鋼板中のCuを微細に析出させる必要がある。なぜなら、Cuが固溶状態(未析出状態)で存在しても、高強度化されないからである。
そして、Cuを析出させるに際し、このCu系析出物の平均粒径を15nm以下とする必要がある。すなわち、径が15nmを超えるCu系析出物は、鉄損を劣化させるだけでなく、高強度化に寄与しないため、鉄損を劣化させずに高強度化に寄与する15nm以下の微細析出物として、Cuを存在させることが重要である。
Furthermore, in the electrical steel sheet of the present invention, it is necessary to finely precipitate Cu in the steel sheet. This is because even if Cu exists in a solid solution state (unprecipitated state), the strength is not increased.
And when precipitating Cu, it is necessary to make the average particle diameter of this Cu type precipitate into 15 nm or less. In other words, Cu-based precipitates whose diameter exceeds 15 nm not only deteriorates iron loss, but also does not contribute to high strength, so as fine precipitates of 15 nm or less that contribute to high strength without degrading iron loss. It is important to have Cu present.

ここで、Cu系析出物の径は、鋼板を走査透過型電子顕微鏡(STEM)を用いて観察(暗視野像)する際、108nmの範囲に存在するCu系析出物の径を円相当径として求め、求めた値を平均したものである。 Here, the diameter of the Cu-based precipitate is the same as the diameter of the Cu-based precipitate existing in the range of 10 8 nm 2 when the steel sheet is observed (dark field image) using a scanning transmission electron microscope (STEM). It is obtained as an equivalent diameter, and the obtained values are averaged.

また、このCu系析出物は、鋼板中に、106個/mm以上で存在することも重要である。すなわち、Cu系析出物の量が不十分であるとCu系析出物はほとんど高強度化に寄与しない。 It is also important that this Cu-based precipitate is present at 10 6 pieces / mm 2 or more in the steel sheet. That is, if the amount of the Cu-based precipitate is insufficient, the Cu-based precipitate hardly contributes to increasing the strength.

次に、本発明の鋼板を製造する手順について、詳しく説明する。
本発明に係わる鉄損に優れた高強度無方向性電磁鋼板を製造するためには、まず、転炉あるいは電気炉などにて、前記した所定成分に溶製された鋼を、連続鋳造あるいは造塊後の分塊圧延により鋼スラブとする。次いで、得られたスラブを熱間圧延し、必要に応じて熱延板焼鈍を施し、一回あるいは中間焼鈍を挟む二回以上の冷間圧延あるいは温間圧延を施して製品板厚とし、仕上げ焼鈍を施し、その後時効処理を施す。さらに、仕上げ焼鈍後のいずれかの段階において、必要に応じて絶縁被膜の塗布および焼き付け処理を行う。
Next, the procedure for producing the steel plate of the present invention will be described in detail.
In order to produce a high-strength non-oriented electrical steel sheet having excellent iron loss according to the present invention, first, a steel melted in the above-mentioned predetermined components is continuously cast or manufactured in a converter or an electric furnace. A steel slab is formed by rolling after ingot. Next, the obtained slab is hot-rolled, subjected to hot-rolled sheet annealing as necessary, and subjected to cold rolling or warm rolling at least twice with one or intermediate annealing in between to obtain a product thickness. Annealing and then aging treatment. Furthermore, at any stage after finish annealing, an insulating coating is applied and baked as necessary.

最終仕上げ焼鈍は、圧延による歪を除去するとともに必要な鉄損特性を得るために、再結晶により適切な結晶粒径を得ることを目的として行う。ここでの適性な結晶粒径は、求められる鉄損レベルにもよるが、一般に20〜200μmであり、そのためには仕上げ焼鈍における最終到達温度を650℃以上とする必要がある。一方、1150℃を超える焼鈍を行うと、粗大粒となり粒界割れを起こしやすくなるとともに、鋼板表面の耐窒化に伴う鉄損劣化が大きくなるため、その上限は1150℃とする。 The final finish annealing is performed for the purpose of obtaining an appropriate crystal grain size by recrystallization in order to remove the distortion caused by rolling and to obtain necessary iron loss characteristics. The suitable crystal grain size here is generally 20 to 200 μm, although it depends on the required iron loss level, and for that purpose, the final ultimate temperature in finish annealing needs to be 650 ° C. or higher. On the other hand, if annealing exceeding 1150 ° C. is performed, the grains become coarse and easily cause intergranular cracking, and the iron loss deterioration accompanying nitriding resistance on the steel sheet surface increases, so the upper limit is set to 1150 ° C.

この最終仕上げ焼鈍プロセスにおいて、無方向性電磁鋼板の製造では窒素+水素の還元性雰囲気が一般に用いられており、この雰囲気で焼鈍するのがコスト的に有利である。ところが、Fe−Cr−Si系電磁鋼板においては、この最終仕上げ焼鈍時の窒化によってCr系窒化物が形成され、磁気特性の劣化を招くのである。従って、Cr系窒化物の析出を抑制する必要があり、そのためには、窒化抑制元素であるSn,Sbや、窒化促進元素であるAlの添加だけでなく、窒素分圧を低減したり、窒素を全く使用しないなど、焼鈍雰囲気中の窒素分圧を制御することも有効である。   In this final finish annealing process, a reducing atmosphere of nitrogen + hydrogen is generally used in the production of non-oriented electrical steel sheets, and annealing in this atmosphere is advantageous in terms of cost. However, in the Fe—Cr—Si based electromagnetic steel sheet, Cr based nitride is formed by nitriding during the final finish annealing, which causes deterioration of magnetic properties. Therefore, it is necessary to suppress the precipitation of Cr-based nitrides. To that end, not only the addition of Sn, Sb, which is a nitriding inhibitor, and Al, which is a nitriding promoting element, but also the nitrogen partial pressure is reduced, It is also effective to control the nitrogen partial pressure in the annealing atmosphere, such as not using at all.

ここに、発明者らは、Cuの微細析出を活用する場合、仕上げ焼鈍の冷却条件が重要であることを新たに見出した。すなわち、仕上げ焼鈍の冷却過程において、Cuの固溶温度から600℃までの冷却速度が十分に速くないと、一部のCuが冷却中に粗大に析出するため、鉄損の劣化要因となり、またその後の時効焼鈍によっても粗大な析出物の量が増加し十分な強度が得られない場合があるのである。かような点を考慮したとき、Cu系析出物を微細に析出させるためには、仕上げ焼鈍の冷却速度を900℃〜400℃の温度域で10℃/s以上とすることが必要であった。   Here, the inventors have newly found that the cooling conditions for finish annealing are important when utilizing the fine precipitation of Cu. That is, in the cooling process of finish annealing, if the cooling rate from the solid solution temperature of Cu to 600 ° C is not fast enough, some Cu precipitates coarsely during cooling, which causes deterioration of iron loss. Subsequent aging annealing may increase the amount of coarse precipitates and may not provide sufficient strength. Considering such points, it was necessary to set the cooling rate of the finish annealing to 10 ° C / s or more in the temperature range of 900 ° C to 400 ° C in order to precipitate Cu-based precipitates finely. .

次に、時効処理は400℃以上650℃以下の温度で行う。すなわち、400℃未満の場合には、微細Cuの析出が不十分となり、高強度が得られない。一方、650℃を超えると、Cu系析出物が粗大化して鉄損が劣化し、強度上昇量も減少するため、良好な強度−鉄損バランスを有する電磁鋼板が得られない。なお、適切な時効時間は処理温度にも依存するが、10min〜1000hが好適である。この時効処理の実施時期は、絶縁被膜の塗布焼付け前、焼付け後、またはプレス打ち抜きなどの加工後、などのいずれの時期で実施してもよい。   Next, the aging treatment is performed at a temperature of 400 ° C. or higher and 650 ° C. or lower. That is, when the temperature is lower than 400 ° C., the precipitation of fine Cu becomes insufficient and high strength cannot be obtained. On the other hand, when the temperature exceeds 650 ° C., the Cu-based precipitates are coarsened, the iron loss is deteriorated, and the amount of increase in strength is also reduced, so that an electrical steel sheet having a good strength-iron loss balance cannot be obtained. An appropriate aging time depends on the processing temperature, but is preferably 10 min to 1000 h. The aging treatment may be carried out at any time before the insulating film is applied and baked, after baking, or after processing such as press punching.

なお、本発明において、鋼板の板厚は特に限定するものではないが、板厚を減じれば高周波磁気特性改善の効果が促進されるため、数百Hz以上の周波数域で、この減厚の効果を格段に得るためには、板厚を0.4mm以下にすることが望ましい。ただし、板厚を0.01mmより薄くすると、製造コストが増加するため、板厚は0.01〜0.4mmの範囲とすることが好ましい。   In the present invention, the plate thickness of the steel plate is not particularly limited, but if the plate thickness is reduced, the effect of improving high-frequency magnetic properties is promoted. In order to obtain the effect remarkably, it is desirable that the plate thickness is 0.4 mm or less. However, if the plate thickness is made thinner than 0.01 mm, the manufacturing cost increases, so the plate thickness is preferably in the range of 0.01 to 0.4 mm.

表3に示す成分を有し、残部がFeと不可避的不純物の組成に成る鋼を溶製し、熱間圧延により板厚2.0mmの熱延板とした。この熱延板に、冷間圧延により最終板厚0.25mmまたは0.15mmの冷延板とし、表4に示す焼鈍条件にて最終仕上焼鈍した。その際、冷却過程は、900℃から400℃までの温度域で20℃/sとした。その後、仕上焼鈍板に500℃および10hの時効処理を施した。なお、製品の組成は表3に示す鋼組成と同じであった。   Steel having the components shown in Table 3 with the balance being Fe and an inevitable impurity composition was melted and hot rolled into a hot-rolled sheet having a thickness of 2.0 mm. This hot-rolled sheet was cold-rolled to obtain a cold-rolled sheet having a final thickness of 0.25 mm or 0.15 mm, and was subjected to final finish annealing under the annealing conditions shown in Table 4. At that time, the cooling process was set to 20 ° C./s in the temperature range from 900 ° C. to 400 ° C. Thereafter, the finish annealed plate was subjected to aging treatment at 500 ° C. and 10 hours. The product composition was the same as the steel composition shown in Table 3.

かくして得られた製品板について、Cu系析出物の存在頻度とその径を測定するとともに、高周波鉄損特性および降伏強度を評価した。なお、Cu系析出物の存在頻度とその径の測定は、STEMを用いて観察した暗視野像の約108nm2の範囲で実施し、析出物径はその範囲に存在するCu系析出物の径を円相当径として求めた平均値である。 For the product plate thus obtained, the presence frequency and diameter of Cu-based precipitates were measured, and the high-frequency iron loss characteristics and yield strength were evaluated. In addition, the measurement of the presence frequency and the diameter of Cu-based precipitates was carried out in the range of about 10 8 nm 2 of the dark field image observed using STEM, and the precipitate diameter was the Cu-based precipitates existing in that range. Is the average value obtained as the equivalent circle diameter.

また、鉄損W10/1k(W/kg)はエプスタイン試験法により測定した。降伏強度は、製品板の圧延方向とその直角方向について測定し、その値を平均して求めた。
これらの評価結果を表4に示す。
The iron loss W 10 / 1k (W / kg) was measured by the Epstein test method. The yield strength was determined by measuring the rolling direction of the product plate and the direction perpendicular thereto, and averaging the values.
These evaluation results are shown in Table 4.

Figure 0004265400
Figure 0004265400

Figure 0004265400
Figure 0004265400

表4に示すように、成分組成を本発明の範囲内に制御したものは、いずれもCu系析出物の平均粒径が15nm以下、かつCu系析出物の存在頻度が106個/mm2以上であり、高強度を有し、かつ高周波鉄損に優れたものとなった。 As shown in Table 4, in all cases where the component composition was controlled within the range of the present invention, the average particle size of the Cu-based precipitates was 15 nm or less, and the presence frequency of the Cu-based precipitates was 10 6 particles / mm 2. As described above, it has high strength and excellent high-frequency iron loss.

これに対し、Cu添加量が本発明範囲の下限より少ない鋼A,H,Q,Yによる鋼板は、良好な高周波鉄損特性を示すが、Cu系析出物の存在頻度が本発明の範囲外であるため強度が不十分である。Cu添加量が本発明範囲の上限を超える鋼F,Wによる鋼板では、Cu系析出物の平均粒径が15nmを超えるため、高周波鉄損特性および強度とも不十分である。Si、Crの添加量が本発明範囲外の鋼K,L,M,Nについて、Cuを添加している鋼L,Nによる鋼板は高強度を示すが、全ての鋼板で電気抵抗が低く、高周波鉄損特性が不十分である。   On the other hand, steel sheets made of steels A, H, Q, and Y with less Cu addition than the lower limit of the present invention show good high-frequency iron loss characteristics, but the presence frequency of Cu-based precipitates is outside the scope of the present invention. Therefore, the strength is insufficient. In steel sheets of steels F and W in which the Cu addition amount exceeds the upper limit of the range of the present invention, since the average grain size of the Cu-based precipitate exceeds 15 nm, both the high-frequency iron loss characteristics and strength are insufficient. For steels K, L, M, and N where the addition amount of Si and Cr is outside the range of the present invention, steel plates made of steel L and N to which Cu is added show high strength, but all the steel plates have low electrical resistance, Insufficient high-frequency iron loss characteristics.

表3に示す鋼V,W,X,Y,Zに関しては、実施例1と同様の方法で最終仕上げ厚さ0.15mmとした後に、表5に示す焼鈍条件で最終仕上げ焼鈍を行った。なお、最終仕上焼鈍における冷却過程は、900℃から400℃までの温度域で20℃/sとした。その後、仕上焼鈍板に500℃および10hの時効処理を施した。
かくして得られた鋼板について、実施例1と同様に評価を行い、鉄損についてはより高周波域での鉄損W0.5/20k(W/kg)について調査した。
Regarding the steels V, W, X, Y, and Z shown in Table 3, the final finish thickness was set to 0.15 mm in the same manner as in Example 1, and then final finish annealing was performed under the annealing conditions shown in Table 5. The cooling process in the final finish annealing was set to 20 ° C./s in the temperature range from 900 ° C. to 400 ° C. Thereafter, the finish annealed plate was subjected to aging treatment at 500 ° C. and 10 hours.
The steel sheet thus obtained was evaluated in the same manner as in Example 1, and the iron loss W 0.5 / 20k (W / kg) in a higher frequency range was investigated for the iron loss.

Figure 0004265400
Figure 0004265400

表5に示すように、Cu添加量が本発明範囲の下限より少ない鋼Yによる鋼板は、良好な高周波鉄損特性を示すが、Cu系析出物の存在頻度が本発明の範囲外であるため強度が不十分である。Cu添加量が本発明範囲の上限を超える鋼Wによる鋼板では、Cu系析出物の平均粒径が15nmを超えるため、高周波鉄損特性および強度とも不十分である。なお、組成を本発明範囲に制御した鋼V,X,Zによる鋼板は、Cu系析出物の平均粒径が15nm以下、かつCu系析出物の存在頻度が106個/mm2以上であり、高強度を有し、かつ高周波鉄損に優れたものとなった。 As shown in Table 5, the steel sheet made of steel Y with less Cu addition than the lower limit of the present invention shows good high-frequency iron loss characteristics, but the presence frequency of Cu-based precipitates is outside the scope of the present invention. Insufficient strength. In the steel sheet made of steel W in which the Cu addition amount exceeds the upper limit of the range of the present invention, the average grain size of the Cu-based precipitate exceeds 15 nm, and thus the high-frequency iron loss characteristics and strength are insufficient. In addition, the steel V, X, and Z steel plates whose compositions are controlled within the scope of the present invention have an average grain size of Cu-based precipitates of 15 nm or less and an existence frequency of Cu-based precipitates of 10 6 pieces / mm 2 or more. It has high strength and is excellent in high-frequency iron loss.

表6に示す成分を有し、残部がFeと不可避的不純物の組成に成る鋼を溶製し、熱間圧延により板厚2.0mmの熱延板とした。この熱延板に、温度900℃で、熱延板焼鈍を施し、その後800℃の中間焼鈍を挟む2回冷延法により最終板厚0.25mmまたは0.15mmの冷延板とし、表7に示す焼鈍条件にて最終仕上焼鈍した。その後、表7に示す条件にて仕上焼鈍板に時効処理を施した。なお、製品の組成は表6に示す鋼組成と同じであった。   Steel having the components shown in Table 6 with the balance being Fe and inevitable impurities was melted and hot rolled into a hot-rolled sheet having a thickness of 2.0 mm. This hot-rolled sheet is subjected to hot-rolled sheet annealing at a temperature of 900 ° C., and then a cold-rolled sheet having a final sheet thickness of 0.25 mm or 0.15 mm by a double cold-rolling method sandwiching intermediate annealing at 800 ° C. Final finish annealing was performed under annealing conditions. Thereafter, the finish annealed plate was subjected to an aging treatment under the conditions shown in Table 7. The product composition was the same as the steel composition shown in Table 6.

かくして得られた製品板について、実施例1の場合と同様の評価を行った。その評価結果を表7に併記するように、仕上げ焼鈍条件および時効処理条件を本発明範囲内に制御したものは、製品板において優れた鉄損と高強度とを得ることができた。   The product plate thus obtained was evaluated in the same manner as in Example 1. As the evaluation results are also shown in Table 7, when the finish annealing condition and the aging treatment condition were controlled within the range of the present invention, excellent iron loss and high strength could be obtained in the product plate.

一方、仕上げ焼鈍過程における冷却速度が遅い場合や、時効温度が高すぎる場合は、Cu系析出物が粗大化し、高周波鉄損特性を劣化するばかりでなく、高強度も得ることができなかった。また、時効温度が低すぎる場合は、Cu系析出物の存在頻度が本発明の範囲外であるため、優れた高周波鉄損特性は示すが、高強度を得ることができなかった。   On the other hand, when the cooling rate in the final annealing process was slow or the aging temperature was too high, the Cu-based precipitates became coarse, not only deteriorated the high-frequency iron loss characteristics, but also high strength could not be obtained. In addition, when the aging temperature is too low, the presence frequency of the Cu-based precipitate is outside the range of the present invention, and thus excellent high-frequency iron loss characteristics are shown, but high strength cannot be obtained.

Figure 0004265400
Figure 0004265400

Figure 0004265400
Figure 0004265400

Cu系析出物の径と履歴損との関係を示す図である。It is a figure which shows the relationship between the diameter of Cu type precipitate, and a hysteresis loss.

Claims (4)

Si:1.0〜7.0mass%、
Cr:1.0〜8.0mass%、
Cu:0.35〜3.0mass%、
Mn:3.0mass%以下(0mass%を含む)、
Al:3.0mass%以下(0mass%を含む)、
P:1.0mass%以下(0mass%を含む)および
Ni:5.0mass%以下(0mass%を含む)
を含有し、残部がFeおよび不可避的不純物の成分組成を有し、さらにCu系析出物の平均粒径が15nm以下、かつCu系析出物の存在頻度が106個/mm2以上であることを特徴とする無方向性電磁鋼板。
Si: 1.0-7.0mass%,
Cr: 1.0-8.0mass%,
Cu: 0.35-3.0 mass%,
Mn: 3.0 mass% or less (including 0 mass%),
Al: 3.0 mass% or less (including 0 mass%),
P: 1.0 mass% or less (including 0 mass%) and
Ni: 5.0 mass% or less (including 0 mass%)
And the balance has a component composition of Fe and inevitable impurities, the average particle size of the Cu-based precipitates is 15 nm or less, and the frequency of Cu-based precipitates is 10 6 pieces / mm 2 or more non-oriented electrical steel sheet characterized.
請求項1において、成分組成として、さらに
Sb:0.002〜0.5mass%および
Sn:0.002〜0.5mass%
のいずれか1種または2種を含有することを特徴とする無方向性電磁鋼板。
In Claim 1, as a component composition, it is further
Sb: 0.002 to 0.5 mass% and
Sn: 0.002-0.5mass%
Non-oriented electrical steel sheet you characterized by containing one or two of.
Si:1.0〜7.0mass%、
Cr:1.0〜8.0mass%、
Cu:0.35〜3.0mass%、
Mn:3.0mass%以下(0mass%を含む)、
Al:3.0mass%以下(0mass%を含む)、
P:1.0mass%以下(0mass%を含む)および
Ni:5.0mass%以下(0mass%を含む)
を含有し、残部がFeおよび不可避的不純物の成分組成を有するスラブに、熱間圧延を施し、そのままあるいは焼鈍した後、冷間圧延および/または 温間圧延を施して最終板厚とし、次いで仕上げ焼鈍を、最終到達温度が650〜1150℃および引き続く冷却過程の900〜400℃における冷却速度が10℃ /s以上の条件下に施し、その後400〜650℃の温度にて時効処理を施すことを特徴とする無方向性電磁鋼板の製造方法。
Si: 1.0-7.0mass%,
Cr: 1.0-8.0mass%,
Cu: 0.35-3.0 mass%,
Mn: 3.0 mass% or less (including 0 mass%),
Al: 3.0 mass% or less (including 0 mass%),
P: 1.0 mass% or less (including 0 mass%) and
Ni: 5.0 mass% or less (including 0 mass%)
Slab containing Fe and the inevitable impurities component composition, hot-rolled and left or annealed, and then cold-rolled and / or warm-rolled to the final thickness, then finished Annealing is performed under the condition that the final reached temperature is 650 to 1150 ° C. and the cooling rate at 900 to 400 ° C. in the subsequent cooling process is 10 ° C./s or more, and then an aging treatment is performed at a temperature of 400 to 650 ° C. method for producing a non-oriented electrical steel sheet shall be the features.
請求項3において、スラブの成分組成として、さらに
Sb:0.002〜0.5mass%および
Sn:0.002〜0.5mass%
のいずれか1種または2種を含有することを特徴とする無方向性電磁鋼板の製造方法。
In Claim 3, as a component composition of a slab,
Sb: 0.002 to 0.5 mass% and
Sn: 0.002-0.5mass%
Any one or the manufacturing method of the non-oriented electrical steel sheet you characterized by containing two.
JP2003433858A 2003-04-25 2003-12-26 Non-oriented electrical steel sheet and manufacturing method thereof Expired - Fee Related JP4265400B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003433858A JP4265400B2 (en) 2003-04-25 2003-12-26 Non-oriented electrical steel sheet and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003122745 2003-04-25
JP2003433858A JP4265400B2 (en) 2003-04-25 2003-12-26 Non-oriented electrical steel sheet and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2004339603A JP2004339603A (en) 2004-12-02
JP4265400B2 true JP4265400B2 (en) 2009-05-20

Family

ID=33543314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003433858A Expired - Fee Related JP4265400B2 (en) 2003-04-25 2003-12-26 Non-oriented electrical steel sheet and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4265400B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL1679386T3 (en) * 2003-10-06 2020-06-01 Nippon Steel Corporation High-strength magnetic steel sheet and worked part therefrom, and process for producing them
JP5159751B2 (en) * 2009-11-30 2013-03-13 株式会社神戸製鋼所 Manufacturing method of dust core and dust core obtained by this manufacturing method
CN102443736B (en) * 2010-09-30 2013-09-04 宝山钢铁股份有限公司 Method for producing high magnetic flux-density oriented silicon steel product
CN102453838A (en) * 2010-10-25 2012-05-16 宝山钢铁股份有限公司 High-strength non-oriented electrical steel with high magnetic induction and manufacturing method thereof
JP6852966B2 (en) * 2015-09-16 2021-03-31 日本製鉄株式会社 High-strength members for motors using non-oriented electrical steel sheets and their manufacturing methods
JP6852965B2 (en) * 2015-09-16 2021-03-31 日本製鉄株式会社 Electrical steel sheet and its manufacturing method
JP6593097B2 (en) * 2015-10-27 2019-10-23 日本製鉄株式会社 Non-oriented electrical steel sheet and manufacturing method thereof
JP6816516B2 (en) * 2017-01-10 2021-01-20 日本製鉄株式会社 Non-oriented electrical steel sheet
JP6801464B2 (en) * 2017-01-12 2020-12-16 日本製鉄株式会社 Non-oriented electrical steel sheet
WO2024166942A1 (en) * 2023-02-09 2024-08-15 日本製鉄株式会社 Non-oriented electromagnetic steel sheet, method for producing same, and rotary electric machine containing same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004084053A (en) * 2002-06-26 2004-03-18 Nippon Steel Corp Electromagnetic steel sheet having remarkably superior magnetic property, and manufacturing method therefor

Also Published As

Publication number Publication date
JP2004339603A (en) 2004-12-02

Similar Documents

Publication Publication Date Title
JP4855222B2 (en) Non-oriented electrical steel sheet for split core
JP5724824B2 (en) Method for producing non-oriented electrical steel sheet with good magnetic properties in rolling direction
JP5028992B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP6269971B2 (en) Non-oriented electrical steel sheet and motor core
WO2004050934A1 (en) Non-oriented magnetic steel sheet and method for production thereof
JP2020509184A (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP4380199B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP2013112853A (en) Method for manufacturing non-oriented electrical steel sheet
TW202104613A (en) Method for producing non-oriented electromagnetic steel sheet, method for producing motor core, and motor core
KR20220089734A (en) Non-oriented electrical steel sheet and method for manufacturing the same
JP4265400B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
WO2004059022A1 (en) Fe-Cr-Si NON-ORIENTED ELECTROMAGNETIC STEEL SHEET AND PROCESS FOR PRODUCING THE SAME
JP4360349B2 (en) Soft magnetic steel bar
JP7253054B2 (en) Non-oriented electrical steel sheet with excellent magnetism and its manufacturing method
JP5130637B2 (en) High strength non-oriented electrical steel sheet and manufacturing method thereof
JP4341386B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP4341476B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP2006328462A (en) Soft magnetic steel
JP2021532257A (en) Non-oriented electrical steel sheet and its manufacturing method
JP4306445B2 (en) Fe-Cr-Si non-oriented electrical steel sheet excellent in high frequency magnetic characteristics and method for producing the same
JP4306490B2 (en) Method for producing high strength non-oriented electrical steel sheet with low iron loss
JP2005126748A (en) High fatigue strength non-oriented magnetic steel sheet superior in magnetic properties, and manufacturing method therefor
JP7328597B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP2004353037A (en) High-strength non-oriented electromagnetic steel sheet superior in magnetic property, and manufacturing method therefor
JP4852804B2 (en) Non-oriented electrical steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080825

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090127

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090209

R150 Certificate of patent or registration of utility model

Ref document number: 4265400

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees