JP6852966B2 - High-strength members for motors using non-oriented electrical steel sheets and their manufacturing methods - Google Patents

High-strength members for motors using non-oriented electrical steel sheets and their manufacturing methods Download PDF

Info

Publication number
JP6852966B2
JP6852966B2 JP2015182872A JP2015182872A JP6852966B2 JP 6852966 B2 JP6852966 B2 JP 6852966B2 JP 2015182872 A JP2015182872 A JP 2015182872A JP 2015182872 A JP2015182872 A JP 2015182872A JP 6852966 B2 JP6852966 B2 JP 6852966B2
Authority
JP
Japan
Prior art keywords
motor
strength member
strength
electrical steel
oriented electrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015182872A
Other languages
Japanese (ja)
Other versions
JP2017057456A (en
Inventor
脇坂 岳顕
岳顕 脇坂
俊介 谷口
俊介 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2015182872A priority Critical patent/JP6852966B2/en
Publication of JP2017057456A publication Critical patent/JP2017057456A/en
Application granted granted Critical
Publication of JP6852966B2 publication Critical patent/JP6852966B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Heat Treatment Of Articles (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Description

本発明は、無方向性電磁鋼板を使用したモータ用高強度部材に関する。 The present invention relates to a high-strength member for a motor using a non-oriented electrical steel sheet.

近年、ハイブリッド電気自動車(HEV)や電気自動車(EV)に使用される駆動モータの小型化や高速回転化が著しく、それらの駆動モータのロータコアなどのモータ用部材に対し、低鉄損などの電磁特性に加えて高強度化の要求が高くなっている。モータ用部材を高強度化させるには、素材に使用される無方向性電磁鋼板の固溶強化、析出強化、結晶粒微細化強化、転位強化、変態強化等が考えられるが、固溶強化以外は磁気特性を劣化させるため、電磁鋼板には好ましくない。また、固溶強化は磁気特性劣化を回避した高強度化には大きな効果があるが、同時に圧延荷重増大や脆性破断の課題もあり、生産性の観点から添加量に上限がある。 In recent years, drive motors used in hybrid electric vehicles (HEVs) and electric vehicles (EVs) have been remarkably miniaturized and rotated at high speeds. In addition to the characteristics, there is an increasing demand for higher strength. In order to increase the strength of motor members, solid solution strengthening, precipitation strengthening, grain refinement strengthening, dislocation strengthening, transformation strengthening, etc. of non-oriented electrical steel sheets used as materials can be considered, but other than solid solution strengthening. Is not preferable for electrical steel sheets because it deteriorates magnetic properties. In addition, solid solution strengthening has a great effect on increasing strength while avoiding deterioration of magnetic properties, but at the same time, there are problems of increasing rolling load and brittle fracture, and there is an upper limit to the amount of addition from the viewpoint of productivity.

従来、モータ用部材の強度向上を図るものとして、特許文献1に示すように、ロータコアのブリッジ部を加工硬化させて熱処理し、鋼中に含まれるCやNで転位を固着させることで強化する方法が開示されている。また特許文献2には、プレスなどで加工硬化させたロータを接着剤を用いて積層させて剛性を高める技術が開示されている。また特許文献3には、プレスなどで加工硬化させたロータをさらに窒化処理して耐摩耗性や疲労特性を向上させる技術が開示されている。 Conventionally, as shown in Patent Document 1, the bridge portion of the rotor core is work-hardened and heat-treated, and dislocations are fixed by C and N contained in the steel to strengthen the strength of the motor member. The method is disclosed. Further, Patent Document 2 discloses a technique for increasing rigidity by laminating rotors that have been work-hardened by a press or the like using an adhesive. Further, Patent Document 3 discloses a technique of further nitriding a rotor that has been work-hardened by a press or the like to improve wear resistance and fatigue characteristics.

特開2005−39963号公報Japanese Unexamined Patent Publication No. 2005-39963 特開2005−94940号公報Japanese Unexamined Patent Publication No. 2005-94940 特開2005−94941号公報Japanese Unexamined Patent Publication No. 2005-94941

しかしながら、特許文献1〜3の技術で強化した場合、磁気特性が劣化するためモータ用部材として好ましくない。上述のように近年の高速回転化に伴い、ロータコアなどのモータ用部材に対して、磁気特性を劣化させずに高強度化をはかる技術の出現が望まれている。 However, when it is strengthened by the techniques of Patent Documents 1 to 3, it is not preferable as a member for a motor because the magnetic characteristics deteriorate. As described above, with the recent increase in high-speed rotation, it is desired to develop a technique for increasing the strength of motor members such as rotor cores without deteriorating the magnetic characteristics.

本発明は電磁特性を劣化させずに強度を向上させたモータ用高強度部材とその製造方法を提供することを目的とする。 An object of the present invention is to provide a high-strength member for a motor having improved strength without deteriorating electromagnetic characteristics and a method for manufacturing the same.

本発明者らは上記課題を解決するために、ロータコアなどのモータ用部材における強化が必要な箇所に、主としてAl、Niからなる微細な金属間化合物を部分的に析出させることで、電磁特性を劣化させずにモータ用部材の強度を向上できることを知見した。本発明の技術の要点は、モータ用部材において強化が必要な箇所に転位を部分的に生じさせ、その転位を析出サイトとして大きさがなるべく均一なAl−Niの金属間化合物を析出させることで、電磁特性を劣化させずにモータ用部材の強度を向上させることにある。本発明によれば以下のモータ用高強度部材とその製造方法が提供される。 In order to solve the above problems, the present inventors partially precipitate fine intermetallic compounds mainly composed of Al and Ni in places where reinforcement is required in motor members such as rotor cores to improve electromagnetic characteristics. It was found that the strength of the motor member can be improved without deterioration. The main point of the technique of the present invention is to partially generate dislocations in a part of a motor member that needs to be strengthened, and to use the dislocations as precipitation sites to precipitate an intermetallic compound of Al—Ni having a size as uniform as possible. The purpose is to improve the strength of the motor member without deteriorating the electromagnetic characteristics. According to the present invention, the following high-strength members for motors and methods for manufacturing the same are provided.

(1)
質量%で、Si:2〜4%、Al:1〜3%、Ni:1.5〜4%を含有し、さらに、Cr:0.01〜4%、Cu:0.01〜4%、Sn:0.01〜0.2%の1または2以上を含有し、残部Feおよび不可避的不純物からなる無方向性電磁鋼板を素材とするモータ用高強度部材であって、
強化が必要な箇所に部分的に、面積基準で求められる円相当径の平均値が1〜10nmで、標準偏差が1以下であるAl−Niの金属間化合物が、30000個/μm以上析出している、モータ用高強度部材。
(1)
By mass%, Si: 2-4%, Al: 1-3%, Ni : 1.5-4%, Cr: 0.01-4%, Cu: 0.01-4%, A high-strength member for a motor made of a non-oriented electrical steel sheet containing Sn: 0.01 to 0.2% of 1 or 2 or more and composed of the balance Fe and unavoidable impurities.
30,000 pieces / μm 3 or more of Al—Ni intermetallic compounds having an average circle-equivalent diameter of 1 to 10 nm and a standard deviation of 1 or less, which are obtained on an area basis, are partially deposited in places where reinforcement is required. High-strength member for motors.

(2)
前記モータ用高強度部材はロータコアであり、前記強化が必要な箇所はアウターブリッジ部である、(1)に記載のモータ用高強度部材。
(2)
The high-strength member for a motor according to (1), wherein the high-strength member for a motor is a rotor core, and the portion requiring strengthening is an outer bridge portion.


(1)または(2)のいずれかに記載のモータ用高強度部材を製造する方法であって、
質量%で、Si:2〜4%、Al:1〜3%、Ni:1.5〜4%を含有し、さらに、Cr:0.01〜4%、Cu:0.01〜4%、Sn:0.01〜0.2%の1または2以上を含有し、残部Feおよび不可避的不純物からなる無方向性電磁鋼板を素材として所定の形状とした後、強化が必要な箇所に転位密度を1×1014/m以上とする塑性変形を加え、さらに400〜600℃で時効処理を行う、モータ用高強度部材の製造方法。
( 3 )
The method for manufacturing a high-strength member for a motor according to any one of (1) and (2).
By mass%, Si: 2-4%, Al: 1-3%, Ni : 1.5-4%, Cr: 0.01-4%, Cu: 0.01-4%, After using a non-oriented electrical steel sheet containing 1 or 2 or more of Sn: 0.01 to 0.2% and consisting of the balance Fe and unavoidable impurities as a material to form a predetermined shape, the dislocation density is located where reinforcement is required. A method for manufacturing a high-strength member for a motor, which is subjected to plastic deformation having a value of 1 × 10 14 / m 2 or more and further subjected to aging treatment at 400 to 600 ° C.


前記モータ用高強度部材はロータコアであり、前記強化が必要な箇所はアウターブリッジ部である、()に記載のモータ用高強度部材の製造方法。
( 4 )
The method for manufacturing a high-strength member for a motor according to (3 ), wherein the high-strength member for a motor is a rotor core, and the portion requiring strengthening is an outer bridge portion.

本発明によれば、電磁特性を劣化させずにモータ用高強度部材の強度を向上させることが可能となる。これにより、近年のハイブリッド電気自動車(HEV)や電気自動車(EV)などで求められている特性を満足する高速回転モータやロータに磁石を組み込んだモータが得られる。 According to the present invention, it is possible to improve the strength of a high-strength member for a motor without deteriorating the electromagnetic characteristics. As a result, a high-speed rotary motor or a motor in which a magnet is incorporated in a rotor that satisfies the characteristics required for a hybrid electric vehicle (HEV) or an electric vehicle (EV) in recent years can be obtained.

モータの構造の説明図である。It is explanatory drawing of the structure of a motor. ロータコアの説明図である。It is explanatory drawing of a rotor core. 高速回転時のロータコアの応力分布の説明図である。It is explanatory drawing of the stress distribution of a rotor core at the time of high-speed rotation.

以下、本発明の実施の形態について説明する。なお、モータ用高強度部材の一例として、電気自動車やハイブリッド電気自動車、燃料電池自動車などの駆動モータとして用いられている永久磁石内蔵モータ(IPMモータ)のロータコアについて本発明を適用した形態を説明する。 Hereinafter, embodiments of the present invention will be described. As an example of a high-strength member for a motor, a mode in which the present invention is applied to a rotor core of a permanent magnet built-in motor (IPM motor) used as a drive motor for an electric vehicle, a hybrid electric vehicle, a fuel cell vehicle, etc. will be described. ..

図1は、永久磁石内蔵モータ1の構造の説明図である。円筒形状の固定子10の内側に、回転子であるロータコア11が挿入されている。固定子10には、内側にあるロータコア11に向かって突出する複数のティース15が設けられており、各ティース15は、ロータコア11の回転中心軸Oに対して点対称に、放射状に配置される。各ティース15には、巻線16が集中巻き方式で巻き付けられてコイルが形成される。 FIG. 1 is an explanatory diagram of the structure of a motor 1 with a built-in permanent magnet. A rotor core 11 which is a rotor is inserted inside the cylindrical stator 10. The stator 10 is provided with a plurality of teeth 15 projecting toward the rotor core 11 inside, and the teeth 15 are arranged radially symmetrically with respect to the rotation center axis O of the rotor core 11. .. A winding 16 is wound around each tooth 15 in a centralized winding manner to form a coil.

図2に示すように、この形態のロータコア11は、磁石を挿入する開口部20が8か所に設けられた8極ロータを例示している。各開口部20の外側の部分がアウターブリッジ部21である。近年、ハイブリッド電気自動車(HEV)や電気自動車(EV)に使用される駆動モータの高速回転化が著しくなっているが、高速回転時には、このブリッジ部21に強い遠心力が作用する。 As shown in FIG. 2, the rotor core 11 of this form exemplifies an 8-pole rotor in which openings 20 for inserting magnets are provided at eight places. The outer portion of each opening 20 is the outer bridge portion 21. In recent years, drive motors used in hybrid electric vehicles (HEVs) and electric vehicles (EVs) have been remarkably rotated at high speeds, and a strong centrifugal force acts on the bridge portion 21 during high-speed rotations.

ここで、本発明者らのシミュレーションによれば、高速回転時のロータコア11に作用する遠心力の応力分布は図3のような結果となった。すなわち、高速回転時のロータコア11では、アウターブリッジ部21に強い応力が作用し(図3中の点線21’よりも外側の部分)、各開口部20の外側の隅角部近傍の部分(図3中の斜線を付した領域)22には特に応力集中が発生し、ロータコア11の変形や疲労破壊が発生しやすいことが判明した。 Here, according to the simulations of the present inventors, the stress distribution of the centrifugal force acting on the rotor core 11 at the time of high-speed rotation is as shown in FIG. That is, in the rotor core 11 during high-speed rotation, a strong stress acts on the outer bridge portion 21 (a portion outside the dotted line 21'in FIG. 3), and a portion near the outer corner portion of each opening 20 (FIG. 3). It was found that stress concentration was particularly generated in the shaded area 22 in 3), and deformation and fatigue fracture of the rotor core 11 were likely to occur.

本発明は、このようなモータ用部材における応力集中が発生しやすい箇所にAl−Niの金属間化合物を析出させることによって部分的に強化するものである。 The present invention partially strengthens the motor member by precipitating an intermetallic compound of Al—Ni at a location where stress concentration is likely to occur.

本発明のモータ用高強度部材の製造に使用する無方向性電磁鋼板(素材)は、質量%で、Si:2〜4%、Al:1〜3%、Ni:1.5〜4%を含有し、残部Feおよび不可避的不純物からなることを基本とする。 The non-oriented electrical steel sheet (material) used for manufacturing the high-strength member for a motor of the present invention contains Si: 2 to 4%, Al: 1 to 3%, and Ni: 1.5 to 4% in mass%. It is basically composed of the balance Fe and unavoidable impurities.

Si:2〜4%
Siは鋼の固有抵抗を高めて渦電流を減らし、鉄損を低下せしめるとともに、抗張力を高めるが、添加量が2.0%未満ではその効果が小さい。また、添加により加工硬化能が高まるため、時効熱処理前に実施する加工による転位密度を効果的に増加させる効果もある。一方、Siが4%を超えると鋼を脆化させ、さらに製品の磁束密度を低下させるため4%以下とする。
Si: 2-4%
Si increases the intrinsic resistance of steel, reduces eddy currents, reduces iron loss, and increases tensile strength, but the effect is small when the amount added is less than 2.0%. Further, since the work hardening ability is enhanced by the addition, there is also an effect of effectively increasing the dislocation density by the processing performed before the aging heat treatment. On the other hand, if Si exceeds 4%, the steel is embrittled and the magnetic flux density of the product is further reduced, so the content is set to 4% or less.

Al:1〜3%
本発明ではAlは金属間化合物の構成元素として積極的に添加される重要な元素であるが、3%を超えると脆化が問題になるため、上限を3%とする。Alは通常、脱酸剤として添加されるが、Alの添加を抑えSiにより脱酸を図ることも可能である。一方、金属間化合物の析出強化の効果を得るためには少なくとも1%は含有する。また、固溶Alは電気抵抗を高め鉄損を改善する効果が知られており、この目的でAl−Ni析出物を形成する以上のAlを含有させることは有効である。
Al: 1-3%
In the present invention, Al is an important element positively added as a constituent element of an intermetallic compound, but if it exceeds 3%, embrittlement becomes a problem, so the upper limit is set to 3%. Al is usually added as a deoxidizing agent, but it is also possible to suppress the addition of Al and deoxidize with Si. On the other hand, in order to obtain the effect of strengthening the precipitation of the intermetallic compound, it is contained at least 1%. Further, the solid solution Al is known to have the effect of increasing the electric resistance and improving the iron loss, and for this purpose, it is effective to contain more Al than the Al—Ni precipitate is formed.

Ni:1.5〜4%
従来一般的にはNiは主として固溶体強化元素または炭化物、窒化物等による析出強化元素として利用されていた。本発明ではNiはAlとの金属間化合物を形成し、Al−Niの金属間化合物による析出強化を発現させるために含有させられる。Al−Niの金属間化合物による析出強化を発現させるためには、1.5%以上のNiが必要である。一方、過剰な添加は鋼板の延性を劣化させ通板性が低下する他、磁束密度を低下させるとともに製造工程での金属間化合物の好ましい形成抑制が困難となる場合がある。また、添加コストも考え上限を4%とする。
Ni: 1.5-4%
Conventionally, in general, Ni has been mainly used as a solid solution strengthening element or a precipitation strengthening element due to carbides, nitrides and the like. In the present invention, Ni is contained to form an intermetallic compound with Al and to develop precipitation strengthening due to the intermetallic compound of Al—Ni. In order to develop precipitation strengthening due to the intermetallic compound of Al—Ni, 1.5% or more of Ni is required. On the other hand, excessive addition may deteriorate the ductility of the steel sheet and reduce the passability, reduce the magnetic flux density, and make it difficult to suppress the preferable formation of the intermetallic compound in the manufacturing process. In addition, considering the addition cost, the upper limit is set to 4%.

また本発明のモータ用高強度部材の製造に使用する無方向性電磁鋼板(素材)は、任意含有成分として、さらに質量%で、Cr:0.01〜4%、Cu:0.01〜4%、Sn:0.01〜0.2%の1または2以上を含有しても良い。これらの元素は金属間化合物を形成する元素として知られており、必要に応じて1または2以上を含有することができる。しかし、過剰な含有は鋼板の延性を劣化させ通板性が低下する他、製造工程での金属間化合物の好ましい形成抑制が困難になる場合がある。また、添加コストを考え、Crについては0.01〜4%、Cuについては0.01〜4%、Snについては0.01〜0.2%とする。 Further, the non-oriented electrical steel sheet (material) used for manufacturing the high-strength member for a motor of the present invention has Cr: 0.01 to 4% and Cu: 0.01 to 4 in mass% as optional components. %, Sn: 0.01 to 0.2% may contain 1 or 2 or more. These elements are known as elements forming an intermetallic compound, and can contain 1 or 2 or more as required. However, if it is excessively contained, the ductility of the steel sheet is deteriorated and the sheet-passability is lowered, and it may be difficult to suppress the preferable formation of the intermetallic compound in the manufacturing process. Further, considering the addition cost, Cr is 0.01 to 4%, Cu is 0.01 to 4%, and Sn is 0.01 to 0.2%.

本発明のモータ用高強度部材の製造に使用する無方向性電磁鋼板(素材)は以上の成分組成を基本とし、残部Feおよび不可避的不純物からなる。 The non-oriented electrical steel sheet (material) used for manufacturing the high-strength member for a motor of the present invention is based on the above component composition, and is composed of the balance Fe and unavoidable impurities.

Cは磁気特性を劣化させる場合があるので0.0400%以下とすることが好ましい。一方、加工硬化能を高め、時効熱処理前に実施する加工による転位密度を効果的に増加させる効果もある。製造コストの観点からは溶鋼段階で脱ガス設備によりC量を低減しておくことが有利で、0.0030%以下とすれば磁気時効抑制の効果が著しく、高強度化の主たる手段として炭化物等の非金属析出物を用いない本発明においては0.0020%以下とすることがさらに好ましく、0.0015%以下がさらに好ましい。0%であっても構わない。 Since C may deteriorate the magnetic characteristics, it is preferably 0.0400% or less. On the other hand, it also has the effect of increasing the work hardening ability and effectively increasing the dislocation density due to the processing performed before the aging heat treatment. From the viewpoint of manufacturing cost, it is advantageous to reduce the amount of C by degassing equipment at the molten steel stage. If it is 0.0030% or less, the effect of suppressing magnetic aging is remarkable, and carbides, etc. are the main means of increasing the strength. In the present invention in which the non-metal precipitate of No. 1 is not used, the content is more preferably 0.0020% or less, further preferably 0.0015% or less. It may be 0%.

Mnは、固溶による高強度化や電気抵抗を高め鉄損を改善する元素としても有効であり、本実施形態でも公知技術に準じた使用が可能である。また、加工硬化能を高め、時効熱処理前に実施する加工による転位密度を効果的に増加させる効果もある。高強度化の観点では、微細金属間化合物を活用する本発明では特に必要としない。0%でも構わないが、鉄鉱石を原料とする工業的製法では、0.01%程度は不可避的に含有される。 Mn is also effective as an element for increasing the strength by solid solution, increasing the electric resistance, and improving the iron loss, and can be used according to the known technique in this embodiment as well. It also has the effect of increasing the work hardening ability and effectively increasing the dislocation density due to the processing performed before the aging heat treatment. From the viewpoint of increasing the strength, it is not particularly required in the present invention utilizing the fine intermetallic compound. 0% may be used, but in an industrial manufacturing method using iron ore as a raw material, about 0.01% is inevitably contained.

NはCと同様に磁気特性を劣化させるので0.0400%以下とすることが好ましい。含有により加工硬化能を高め、時効熱処理前に実施する加工による転位密度を効果的に増加させる効果もある。特に本発明ではAlとの強い窒化物の生成を避けるためNは低い方が好ましく、0.0027%以下とすれば磁気時効や微細な窒化物形成による特性劣化の抑制効果は顕著で、さらに好ましくは0.0022%、さらに好ましくは0.0015%以下、0%であっても構わない。 Since N deteriorates the magnetic characteristics like C, it is preferably 0.0400% or less. The content also has the effect of increasing the work hardening ability and effectively increasing the dislocation density due to the processing performed before the aging heat treatment. In particular, in the present invention, it is preferable that N is low in order to avoid the formation of a strong nitride with Al, and if it is 0.0027% or less, the effect of suppressing the deterioration of characteristics due to magnetic aging and the formation of fine nitrides is remarkable, which is more preferable. May be 0.0022%, more preferably 0.0015% or less, or 0%.

Cuは鉄の飽和磁束密度Bsを大幅に低下させ、B50(磁化力が5000[A/m]における磁束密度[T])も大幅に低下させる。BsやB50の低下はモータトルクの低下につながるため、本発明ではCuの含有を必須とすることなく、BsやB50の低下を伴わずに、高強度かつ低鉄損な無方向性電磁鋼板及びその製造方法を実現できる。一方でCu析出による高強度化なども知られており、本実施形態でも公知技術に準じた使用が可能である。 Cu significantly lowers the saturation magnetic flux density Bs of iron, and also significantly lowers B50 (magnetic flux density [T] when the magnetization force is 5000 [A / m]). Since a decrease in Bs and B50 leads to a decrease in motor torque, in the present invention, the inclusion of Cu is not essential, and the non-oriented electrical steel sheet having high strength and low iron loss is not accompanied by a decrease in Bs and B50. The manufacturing method can be realized. On the other hand, it is also known that the strength is increased by Cu precipitation, and this embodiment can also be used according to a known technique.

Nbは、NbCなどの析出物は高強度化には有効であるが、これら析出物が磁壁移動を阻害し、鉄損を大幅に劣化させるため、この目的であえて添加する必要はない。一方で、固溶Nbは固溶強化のみならず結晶粒微細化による高強度化や高周波特性改善にも有効であり、本実施形態でも公知技術に準じた使用が可能である。 Nb is not necessary to be added for this purpose because precipitates such as NbC are effective for increasing the strength, but these precipitates hinder the movement of the domain wall and significantly deteriorate the iron loss. On the other hand, the solid solution Nb is effective not only for strengthening the solid solution but also for increasing the strength and improving the high frequency characteristics by refining the crystal grains, and can be used according to the known technique in this embodiment as well.

Pは固溶体強化により抗張力を高める効果の著しい元素であるが、この目的ではあえて添加する必要はない。0%であっても構わない。一方、添加により加工硬化能を高め、時効熱処理前に実施する加工による転位密度を効果的に増加させる効果もある。0.3%を超えると脆化が激しく、工業的規模での熱延、冷延等の処理が困難になるため、上限を0.30%とすることが好ましく、さらに好ましくは0.10%以下である。 P is an element having a remarkable effect of increasing the tensile strength by strengthening the solid solution, but it is not necessary to add it for this purpose. It may be 0%. On the other hand, the addition also has the effect of increasing the work hardening ability and effectively increasing the dislocation density due to the processing performed before the aging heat treatment. If it exceeds 0.3%, embrittlement becomes severe and processing such as hot spreading and cold spreading on an industrial scale becomes difficult. Therefore, the upper limit is preferably 0.30%, more preferably 0.10%. It is as follows.

Sは硫化物を形成し磁気特性、特に鉄損を劣化させる場合があるので、Sの含有量はできるだけ低いことが好ましく0%であっても構わない。本発明では0.020%以下が好ましく、さらに好ましくは0.0040%以下、さらに好ましくは0.0020%以下、さらに好ましくは0.0010%以下である。 Since S may form sulfides and deteriorate magnetic properties, particularly iron loss, the content of S is preferably as low as possible and may be 0%. In the present invention, it is preferably 0.020% or less, more preferably 0.0040% or less, still more preferably 0.0020% or less, still more preferably 0.0010% or less.

また、モータ用高強度部材の製造に使用する無方向性電磁鋼板(素材)は、例えば、前記成分を含む鋼を溶製し、連続鋳造で鋼スラブとし、ついで熱間圧延、冷間圧延および焼鈍をすることによって得られる。また、これらの工程に加え絶縁皮膜の形成や脱炭工程など行っても構わない。なお冷間圧延後の焼鈍では、Al−Niの金属間化合物の析出を抑制するために、特に400〜600℃の温度域を急冷することが望ましい。 For non-oriented electrical steel sheets (materials) used in the manufacture of high-strength members for motors, for example, steel containing the above components is melted and continuously cast to form steel slabs, which are then hot-rolled, cold-rolled and Obtained by annealing. Further, in addition to these steps, an insulating film forming step or a decarburization step may be performed. In the annealing after cold rolling, it is particularly desirable to rapidly cool the temperature range of 400 to 600 ° C. in order to suppress the precipitation of the intermetallic compound of Al—Ni.

こうして得られた無方向性電磁鋼板(素材)を、例えば打ち抜き加工等の方法によってモータ用部材として必要な所定の形状にする。この場合、まだ素材の段階では無方向性電磁鋼板は軟質であり、容易にモータ用部材の形状に加工することができる。 The non-oriented electrical steel sheet (material) thus obtained is formed into a predetermined shape required as a motor member by, for example, punching. In this case, the non-oriented electrical steel sheet is still soft at the material stage, and can be easily processed into the shape of a motor member.

次に、強化が必要な箇所に転位密度を1×1014/m以上とする塑性変形を加える。塑性変形は、例えばプレス、ショットブラスト等によって、強化が必要な箇所のみに転位を生じさせることができる。このように強化が必要な箇所のみに塑性変形を加えればよいので、短時間の処理が可能である。また、例えばプレス、ショットブラスト等の方法によれば、必要な箇所のみを選択して塑性変形させることが可能である。 Next, plastic deformation with a dislocation density of 1 × 10 14 / m 2 or more is applied to the portion requiring strengthening. The plastic deformation can cause dislocations only in the parts that need to be strengthened by, for example, pressing or shot blasting. Since plastic deformation only needs to be applied to the parts that need to be strengthened in this way, processing in a short time is possible. Further, for example, by a method such as pressing or shot blasting, it is possible to select and plastically deform only necessary parts.

次に、塑性変形を加えた後に、400〜600℃で時効処理を行う。この場合、モータ用部材全体を熱処理しても良いが、例えばレーザ加熱や赤外線加熱、高周波加熱等によって、強化が必要な箇所のみを加熱しても良い。このように強化が必要な箇所のみを加熱すれば足りるので、短時間の処理が可能であり、加熱エネルギーも軽減できて経済的である。また、例えばレーザ加熱や赤外線加熱、高周波加熱等の方法によれば、必要な箇所のみを選択して加熱処理することが可能である。 Next, after applying plastic deformation, aging treatment is performed at 400 to 600 ° C. In this case, the entire motor member may be heat-treated, but only the parts that need to be strengthened may be heated by, for example, laser heating, infrared heating, high-frequency heating, or the like. Since it is sufficient to heat only the part that needs to be strengthened in this way, it is possible to process in a short time, and the heating energy can be reduced, which is economical. Further, for example, according to a method such as laser heating, infrared heating, high frequency heating, etc., it is possible to select and heat-treat only necessary parts.

塑性変形によって強化が必要な箇所の転位密度を1×1014/m以上とするのは、時効処理前に部材中の必要箇所に転位を十分に生じさせ、その転位を析出サイトとして、強化が必要な箇所に大きさがなるべく均一なAl−Niの金属間化合物を分散させて析出させるためである。転位密度が1×1014/m未満では、金属間化合物の析出サイトが不十分であり、時効後において個数密度が30000個/μm以上のAl−Niの金属間化合物が得られなくなってしまう。また、Al−Niの金属間化合物の個数密度が少ないと、金属間化合物の円相当径の平均値が10nmよりも大きくなり、さらに個々の金属間化合物の大きさのばらつきも大きくなり、標準偏差が1を超えてしまう。なお、時効処理前における転位密度が3×1016/mを超えてしまうと却って電磁特性が劣化し、さらに時効後においてAl−Niの金属間化合物の大きさや標準偏差、個数密度が本発明の範囲内から外れる恐れがある。そのため、時効処理前の転位密度は3×1016/m以下であることが望ましい。 To set the dislocation density of the parts that need to be strengthened by plastic deformation to 1 × 10 14 / m 2 or more, the dislocations are sufficiently generated at the necessary parts in the member before the aging treatment, and the dislocations are used as precipitation sites for strengthening. This is because the intermetallic compound of Al—Ni having a uniform size as much as possible is dispersed and precipitated at the required location. If the dislocation density is less than 1 × 10 14 / m 2 , the precipitation sites of the intermetallic compounds are insufficient, and after aging, an intermetallic compound of Al—Ni having a number density of 30,000 / μm 3 or more cannot be obtained. It ends up. Further, when the number density of the intermetallic compounds of Al-Ni is small, the average value of the equivalent circle diameters of the intermetallic compounds becomes larger than 10 nm, and the size variation of each intermetallic compound becomes large, and the standard deviation becomes large. Exceeds 1. If the dislocation density before the aging treatment exceeds 3 × 10 16 / m 2 , the electromagnetic characteristics deteriorate, and after the aging, the size, standard deviation, and number density of the Al—Ni intermetallic compound are determined by the present invention. There is a risk of going out of the range of. Therefore, it is desirable that the dislocation density before the aging treatment is 3 × 10 16 / m 2 or less.

また時効処理は、400〜600℃で行う。400℃未満では、十分な金属間化合物が得られず、一方、600℃を超えると形成される金属間化合物が粗大となってしまう。この際の保持時間は1〜120分とすることが好ましい。短過ぎると十分な金属間化合物が得られず、一方、長過ぎると形成される金属間化合物が粗大となってしまう。この他、加熱速度や冷却速度なども、本発明の特徴である析出物の状態に影響を及ぼす可能性がある。これらの熱処理条件は目的とする特性に応じて成分や生産性なども考慮して決定される。当業者であれば、本発明の技術思想に従い、数度の試行により適切な条件を決定することは容易である。 The aging treatment is performed at 400 to 600 ° C. If the temperature is lower than 400 ° C, a sufficient intermetallic compound cannot be obtained, while if the temperature exceeds 600 ° C, the formed intermetallic compound becomes coarse. The holding time at this time is preferably 1 to 120 minutes. If it is too short, a sufficient intermetallic compound cannot be obtained, while if it is too long, the formed intermetallic compound becomes coarse. In addition, the heating rate, cooling rate, and the like may also affect the state of the precipitate, which is a feature of the present invention. These heat treatment conditions are determined in consideration of components, productivity, etc. according to the desired characteristics. It is easy for a person skilled in the art to determine appropriate conditions by several trials according to the technical idea of the present invention.

以上のような製造工程を経ることで、強化が必要な箇所において、面積基準で求められる円相当径の平均値が1〜10nmで、標準偏差が1以下であるAl−Niの金属間化合物が、30000個/μm以上析出した状態とすることができる。その結果、電磁特性を劣化させずにモータ用高強度部材の強度を向上させることが可能となる。 Through the above manufacturing process, the intermetallic compound of Al—Ni having an average value of the equivalent circle diameter of 1 to 10 nm and a standard deviation of 1 or less, which is obtained on an area basis, can be obtained in places where strengthening is required. , 30,000 pieces / μm 3 or more can be precipitated. As a result, it is possible to improve the strength of the high-strength member for the motor without deteriorating the electromagnetic characteristics.

なお、金属間化合物の円相当径の平均値が10nmを超える粗大な化合物が多量に生成すると高強度化の効率が低下し、磁気特性も劣化させる恐れがある。本発明では、部材中の強化が必要な箇所に、サイズの細かい金属間化合物を高密度に生成させることで、優れた磁気特性と熱伝導性を維持しつつ、電磁鋼板の強度を向上させる。一方、金属間化合物の円相当径の平均値が1nm未満と微細では強化能が小さくなる。さらに高強度化を確実に達成するためには、円相当径の標準偏差が1以下となるように個々の金属間化合物の大きさが揃っていることが必要である。この標準偏差が1を超えると、金属間化合物の大きさが不均一となり、特に熱伝導性が低下する恐れがある。なお、鉄鋼材料中に形成するAl−Niの金属間化合物としては、NiAl、Ni3Alなどが通常知られている。また、これらの化合物の元素比は相当に変動することは知られており、また何らかの不純物元素を含んだものも本発明に相当する。 If a large amount of coarse compounds having an average value of the equivalent circle diameter of the intermetallic compound exceeding 10 nm are produced, the efficiency of increasing the strength may decrease and the magnetic characteristics may also deteriorate. In the present invention, the strength of the electrical steel sheet is improved while maintaining excellent magnetic properties and thermal conductivity by generating a fine-sized intermetallic compound at a high density in a portion of the member that needs to be strengthened. On the other hand, if the average value of the equivalent circle diameters of the intermetallic compounds is less than 1 nm, the reinforcing ability becomes small. In order to further increase the strength reliably, it is necessary that the sizes of the individual intermetallic compounds are uniform so that the standard deviation of the equivalent circle diameter is 1 or less. If this standard deviation exceeds 1, the size of the intermetallic compound becomes non-uniform, and there is a risk that the thermal conductivity in particular may decrease. As the intermetallic compounds of Al-Ni to form in the steel material, NiAl, such as Ni 3 Al is commonly known. Further, it is known that the elemental ratios of these compounds fluctuate considerably, and those containing some impurity elements also correspond to the present invention.

高強度化の観点から、部材中の強化が必要な箇所に析出させる金属間化合物の数密度は30000個/μm以上が必要である。金属間化合物サイズと数密度の制御は、優れた高強度化と磁気特性を両立する観点から重要である。本発明では高強度化の主要な手段として結晶組織の微細化を利用しないため、結晶粒径は磁気特性の観点から最適な範囲に調整が可能である。高強度化に寄与する金属間化合物のサイズや密度は成分のみならず、最終的な熱処理により制御が可能であるため結晶粒径はこの熱処理以前の、例えば再結晶焼鈍の最高到達温度およびその温度域での保持時間等により金属間化合物の制御とは独立に制御が可能となる。結晶粒径は通常は300μm以下であり、好ましくは30〜250μmに制御される。さらに好ましくは60〜200μmである。一般的にはモータ用部材を使用する際の励磁電流の周波数が高い場合には結晶粒は微細にしておくことが好ましい。また、方向性電磁鋼板のように二次再結晶等を利用して数cmにまで結晶粒径を粗大化させても本発明の効果は何ら損なわれるものではない。 From the viewpoint of increasing the strength, the number density of the intermetallic compound to be deposited at the portion of the member that needs to be strengthened needs to be 30,000 / μm 3 or more. Controlling the intermetallic compound size and number density is important from the viewpoint of achieving both excellent strength and magnetic properties. Since the present invention does not utilize the miniaturization of the crystal structure as the main means for increasing the strength, the crystal grain size can be adjusted to the optimum range from the viewpoint of magnetic properties. Since the size and density of the intermetallic compound that contributes to high strength can be controlled not only by the components but also by the final heat treatment, the crystal grain size is the maximum reached temperature of recrystallization annealing and its temperature before this heat treatment, for example. It is possible to control the intermetallic compound independently of the control of the intermetallic compound depending on the retention time in the region and the like. The crystal grain size is usually 300 μm or less, and is preferably controlled to 30 to 250 μm. More preferably, it is 60 to 200 μm. Generally, when the frequency of the exciting current when using the motor member is high, it is preferable to keep the crystal grains fine. Further, even if the grain size is coarsened to several cm by using secondary recrystallization or the like as in the grain-oriented electrical steel sheet, the effect of the present invention is not impaired at all.

なお、一例として、永久磁石内蔵モータ(IPMモータ)のロータコアについて本発明を適用した形態を説明したが、本発明はかかる形態に限定されない。例えば誘導モータ(IMモータ)のスロット外周部等、強度と磁気特性の両立が求められる他のモータ用部材についても本発明を適用できる。 As an example, a mode in which the present invention is applied to a rotor core of a motor with a built-in permanent magnet (IPM motor) has been described, but the present invention is not limited to such a mode. The present invention can also be applied to other motor members that are required to have both strength and magnetic characteristics, such as the outer peripheral portion of an induction motor (IM motor) slot.

表1に示す真空溶解した熱延鋼板を、酸洗後、0.20mm厚に冷延し、焼鈍した。その焼鈍板から外径112mm、内径56mm、スロット数24のステータコアと、外径55mm、4極のIMPロータを試作した。ロータコアは積層後、ブリッジ部に金型で板厚方向に圧縮変形を加え、圧縮量を変化させることで、本発明例は転位密度が1×1014/m以上となるように調整した。その後、550℃×2時間の時効処理を行った。各材料で試作したモータの最大効率と、ロータ回転数を変えながらロータの外径を計測し外周が変形を開始した回転数を表1に示す。今回試作したモータの最大効率は87%以上であり、89%を超えるものを合格とした。なお、表1において、本発明の範囲外の数値には下線を付した。 The vacuum-melted hot-rolled steel sheet shown in Table 1 was pickled, cold-rolled to a thickness of 0.20 mm, and annealed. From the annealed plate, a stator core with an outer diameter of 112 mm, an inner diameter of 56 mm, and 24 slots, and a 4-pole IMP rotor with an outer diameter of 55 mm were prototyped. After laminating the rotor core, the bridge portion was compression-deformed in the plate thickness direction with a mold to change the amount of compression, so that the dislocation density in the example of the present invention was adjusted to 1 × 10 14 / m 2 or more. Then, the aging treatment was carried out at 550 ° C. × 2 hours. Table 1 shows the maximum efficiency of the motor prototyped for each material and the rotation speed at which the outer diameter of the rotor was measured while changing the rotor rotation speed and the outer circumference started to deform. The maximum efficiency of the motor prototyped this time was 87% or more, and those exceeding 89% were accepted. In Table 1, the numerical values outside the scope of the present invention are underlined.

時効処理を行わなかったロータは15,000〜22,000回転でロータ外周が変形を開始したが、時効処理を行ったものでは、25,000回転以上まで変形の見られないものも得られた。 In the rotor without aging treatment, the outer circumference of the rotor started to deform at 15,000 to 22,000 rotations, but in the rotor with aging treatment, no deformation was observed up to 25,000 rotations or more. ..

さらに、Cr、Snを添加したものでは最大効率92%が得られ、またCuを添加したものでは時効処理後35,000回転程度まで変形が見られなかった。 Further, the maximum efficiency of 92% was obtained with the addition of Cr and Sn, and no deformation was observed up to about 35,000 rotations after the aging treatment with the addition of Cu.

Figure 0006852966
Figure 0006852966

Claims (4)

質量%で、Si:2〜4%、Al:1〜3%、Ni:1.5〜4%を含有し、さらに、Cr:0.01〜4%、Cu:0.01〜4%、Sn:0.01〜0.2%の1または2以上を含有し、残部Feおよび不可避的不純物からなる無方向性電磁鋼板を素材とするモータ用高強度部材であって、
強化が必要な箇所に部分的に、面積基準で求められる円相当径の平均値が1〜10nmで、標準偏差が1以下であるAl−Niの金属間化合物が、30000個/μm以上析出している、モータ用高強度部材。
By mass%, Si: 2-4%, Al: 1-3%, Ni : 1.5-4%, Cr: 0.01-4%, Cu: 0.01-4%, A high-strength member for a motor made of a non-oriented electrical steel sheet containing Sn: 0.01 to 0.2% of 1 or 2 or more and composed of the balance Fe and unavoidable impurities.
30,000 pieces / μm 3 or more of Al—Ni intermetallic compounds having an average circle-equivalent diameter of 1 to 10 nm and a standard deviation of 1 or less, which are obtained on an area basis, are partially deposited in places where reinforcement is required. High-strength member for motors.
前記モータ用高強度部材はロータコアであり、前記強化が必要な箇所はアウターブリッジ部である、請求項1に記載のモータ用高強度部材。 The high-strength member for a motor according to claim 1, wherein the high-strength member for a motor is a rotor core, and the portion requiring strengthening is an outer bridge portion. 請求項1または2のいずれか一項に記載のモータ用高強度部材を製造する方法であって、The method for manufacturing a high-strength member for a motor according to any one of claims 1 or 2.
質量%で、Si:2〜4%、Al:1〜3%、Ni:1.5〜4%を含有し、さらに、Cr:0.01〜4%、Cu:0.01〜4%、Sn:0.01〜0.2%の1または2以上を含有し、残部Feおよび不可避的不純物からなる無方向性電磁鋼板を素材として所定の形状とした後、強化が必要な箇所に転位密度を1×10 By mass%, Si: 2-4%, Al: 1-3%, Ni: 1.5-4%, Cr: 0.01-4%, Cu: 0.01-4%, After using a non-oriented electrical steel sheet containing 1 or 2 or more of Sn: 0.01 to 0.2% and consisting of the balance Fe and unavoidable impurities as a material to form a predetermined shape, the dislocation density is located where reinforcement is required. 1x10 1414 /m/ M 2 以上とする塑性変形を加え、さらに400〜600℃で時効処理を行う、モータ用高強度部材の製造方法。A method for manufacturing a high-strength member for a motor, which is subjected to the above plastic deformation and further subjected to an aging treatment at 400 to 600 ° C.
前記モータ用高強度部材はロータコアであり、前記強化が必要な箇所はアウターブリッジ部である、請求項3に記載のモータ用高強度部材の製造方法。
The method for manufacturing a high-strength member for a motor according to claim 3, wherein the high-strength member for a motor is a rotor core, and the portion requiring strengthening is an outer bridge portion.
JP2015182872A 2015-09-16 2015-09-16 High-strength members for motors using non-oriented electrical steel sheets and their manufacturing methods Active JP6852966B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015182872A JP6852966B2 (en) 2015-09-16 2015-09-16 High-strength members for motors using non-oriented electrical steel sheets and their manufacturing methods

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015182872A JP6852966B2 (en) 2015-09-16 2015-09-16 High-strength members for motors using non-oriented electrical steel sheets and their manufacturing methods

Publications (2)

Publication Number Publication Date
JP2017057456A JP2017057456A (en) 2017-03-23
JP6852966B2 true JP6852966B2 (en) 2021-03-31

Family

ID=58391172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015182872A Active JP6852966B2 (en) 2015-09-16 2015-09-16 High-strength members for motors using non-oriented electrical steel sheets and their manufacturing methods

Country Status (1)

Country Link
JP (1) JP6852966B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7273282B2 (en) * 2018-07-31 2023-05-15 日本製鉄株式会社 Non-oriented electrical steel sheet and manufacturing method thereof
CN110586659B (en) * 2019-09-12 2021-03-09 北京首钢股份有限公司 Method and device for controlling asymmetric flatness of oriented silicon steel
CN116057819A (en) * 2020-08-07 2023-05-02 株式会社爱信 Method for manufacturing rotor for rotating electrical machine and method for manufacturing rotating electrical machine

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4265400B2 (en) * 2003-04-25 2009-05-20 Jfeスチール株式会社 Non-oriented electrical steel sheet and manufacturing method thereof
JP4313127B2 (en) * 2003-09-18 2009-08-12 新日本製鐵株式会社 Manufacturing method of electromagnetic steel sheet rotor
JP4546713B2 (en) * 2003-10-06 2010-09-15 新日本製鐵株式会社 Final product of high-strength electrical steel sheet with excellent magnetic properties, its use and manufacturing method
KR100772243B1 (en) * 2003-10-06 2007-11-01 신닛뽄세이테쯔 카부시키카이샤 High-strength magnetic steel sheet and process for producing them
JP4833523B2 (en) * 2004-02-17 2011-12-07 新日本製鐵株式会社 Electrical steel sheet and manufacturing method thereof
WO2012087045A2 (en) * 2010-12-23 2012-06-28 주식회사 포스코 Low iron loss high strength non-oriented electromagnetic steel sheet and method for manufacturing same
JP6497180B2 (en) * 2015-04-01 2019-04-10 新日鐵住金株式会社 Induction heating method and induction heating apparatus for rotor of IPM motor

Also Published As

Publication number Publication date
JP2017057456A (en) 2017-03-23

Similar Documents

Publication Publication Date Title
US11124854B2 (en) Non-oriented electrical steel sheet and method for manufacturing non-oriented electrical steel sheet
JP5228379B2 (en) Non-oriented electrical steel sheet with excellent strength and magnetic properties and manufacturing method thereof
JP5000136B2 (en) High-strength electrical steel sheet, shape processed parts thereof, and manufacturing method thereof
WO2018147044A1 (en) Method for producing non-oriented electromagnetic steel sheet, method for producing motor core, and motor core
WO2012114383A1 (en) Non-oriented electromagnetic steel sheet and method for manufacturing same
JP5028992B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP2007016278A (en) Non-oriented electromagnetic steel sheet for rotor, and its manufacturing method
JP6497180B2 (en) Induction heating method and induction heating apparatus for rotor of IPM motor
JPWO2020262063A1 (en) Manufacturing method of non-oriented electrical steel sheet, manufacturing method of motor core and motor core
JP2016138316A (en) Nonoriented magnetic steel sheet
JPWO2021006280A1 (en) Non-oriented electrical steel sheet, its manufacturing method and motor core
JP4352691B2 (en) Age-hardening non-oriented electrical steel sheet excellent in punchability and iron loss, method for producing the same, and method for producing a rotor using the same
JP6852966B2 (en) High-strength members for motors using non-oriented electrical steel sheets and their manufacturing methods
JP4696750B2 (en) Method for producing non-oriented electrical steel sheet for aging heat treatment
JPS62256917A (en) High-tensile non-oriented electrical steel sheet for rotating machine and its production
JP7119519B2 (en) Non-oriented electrical steel sheet, stator core, rotor core and manufacturing method thereof
JP5333415B2 (en) Non-oriented electrical steel sheet for rotor and manufacturing method thereof
JP5418469B2 (en) Method for producing non-oriented electrical steel sheet for aging heat treatment
JP4424075B2 (en) Non-oriented electrical steel sheet, non-oriented electrical steel sheet for aging heat treatment, and production method thereof
JP4670230B2 (en) Non-oriented electrical steel sheet
JP4929484B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP5186781B2 (en) Non-oriented electrical steel sheet for aging heat treatment, non-oriented electrical steel sheet and method for producing the same
JP6725209B2 (en) High strength member for motor and method of manufacturing high strength member for motor
JP5648661B2 (en) Non-oriented electrical steel sheet for aging heat treatment, non-oriented electrical steel sheet and method for producing the same
JP6852965B2 (en) Electrical steel sheet and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190320

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20190326

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190522

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190605

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190903

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191125

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20191125

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20191202

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20191203

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20191227

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20200107

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20200818

C141 Inquiry by the administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C141

Effective date: 20201201

C54 Written response to inquiry

Free format text: JAPANESE INTERMEDIATE CODE: C54

Effective date: 20210113

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20210209

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20210309

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20210309

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210311

R150 Certificate of patent or registration of utility model

Ref document number: 6852966

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150