JP4696750B2 - Method for producing non-oriented electrical steel sheet for aging heat treatment - Google Patents

Method for producing non-oriented electrical steel sheet for aging heat treatment Download PDF

Info

Publication number
JP4696750B2
JP4696750B2 JP2005214568A JP2005214568A JP4696750B2 JP 4696750 B2 JP4696750 B2 JP 4696750B2 JP 2005214568 A JP2005214568 A JP 2005214568A JP 2005214568 A JP2005214568 A JP 2005214568A JP 4696750 B2 JP4696750 B2 JP 4696750B2
Authority
JP
Japan
Prior art keywords
less
steel sheet
hot
oriented electrical
rolled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005214568A
Other languages
Japanese (ja)
Other versions
JP2007031754A (en
Inventor
浩志 藤村
諭 岡村
裕義 屋鋪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Industries Ltd
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2005214568A priority Critical patent/JP4696750B2/en
Publication of JP2007031754A publication Critical patent/JP2007031754A/en
Application granted granted Critical
Publication of JP4696750B2 publication Critical patent/JP4696750B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、高速で回転するモータのロータ用鉄心の素材として好適な無方向性電磁鋼板の製造方法に関する。特に、本発明は、回転時の応力あるいは加減速時の応力変動に耐え、優れた強度特性および磁気特性が要求される、磁石埋め込み型モータ(IPMモータ)や突極型表面磁石モータ(突極型SRMモータ)のロータ用鉄心の素材として好適な無方向性電磁鋼板の製造方法に関するものである。   The present invention relates to a method for producing a non-oriented electrical steel sheet suitable as a material for a rotor core of a motor rotating at high speed. In particular, the present invention is suitable for an embedded magnet motor (IPM motor) or salient pole type surface magnet motor (saliency pole) that can withstand stress during rotation or stress fluctuation during acceleration / deceleration and requires excellent strength characteristics and magnetic characteristics. The present invention relates to a method for producing a non-oriented electrical steel sheet suitable as a material for a rotor core of a type SRM motor.

地球温暖化ガスを削減するため、自動車や家電製品などの分野では消費エネルギーの少ない新製品開発が必要である。例えば、自動車分野では低燃費化するためガソリンエンジンとモータとのハイブリッド駆動自動車(HEV)あるいはモータ駆動の電気自動車がある。家電製品分野では年間電気消費量の少ない高効率エアコンや冷蔵庫などがある。それらの共通した技術はモータであり、モータの高効率化が重要な技術となっている。モータ高効率化の過程において、モータの駆動システムは高度化し、さまざまな回転駆動制御が可能になっている。すなわち、駆動電源の周波数制御により、可変速運転、商用周波数以上での高速運転を可能としたモータが増加してきている。   In order to reduce greenhouse gases, new products that consume less energy are required in the fields of automobiles and home appliances. For example, in the automobile field, there is a hybrid drive vehicle (HEV) of a gasoline engine and a motor or an electric vehicle driven by a motor in order to reduce fuel consumption. In the home appliance field, there are high-efficiency air conditioners and refrigerators with low annual electricity consumption. These common technologies are motors, and high efficiency of the motors is an important technology. In the process of increasing motor efficiency, motor drive systems have become more sophisticated and various rotational drive controls have become possible. That is, the number of motors capable of variable speed operation and high speed operation at commercial frequency or higher has been increased by frequency control of the drive power source.

このような高速回転機の実現には、高速回転に耐え得る構造のロータを開発する必要がある。一般に、ロータに作用する遠心力は回転半径に比例し、回転速度の二乗に比例する。このため高速回転で運転する際には、そのロータに作用する力が例えば500MPaを超える場合もある。したがって、ロータには降伏強度の高い材料が必要となる。さらに、ロータ高速回転運転中には、外部からの振動や頻繁な加減速といった繰り返し応力が発生する場合も想定されるので、ロータ材料には、単に降伏強度が高いだけでなく疲労強度が高いことも必要とされる。疲労強度を高める手段としては引張強度を高めることが最も有効であることから、高速回転するロータの材料には高い降伏強度と高い引張強度とが必要であると言い換えることができる。   In order to realize such a high-speed rotating machine, it is necessary to develop a rotor that can withstand high-speed rotation. In general, the centrifugal force acting on the rotor is proportional to the rotational radius and proportional to the square of the rotational speed. For this reason, when operating at high speed rotation, the force acting on the rotor may exceed 500 MPa, for example. Therefore, a material with high yield strength is required for the rotor. Furthermore, during rotor high-speed rotation operation, repeated stresses such as external vibration and frequent acceleration / deceleration may occur, so the rotor material must not only have high yield strength but also high fatigue strength. Is also needed. Since it is most effective to increase the tensile strength as a means for increasing the fatigue strength, it can be said that a high yield strength and a high tensile strength are necessary for the material of the rotor rotating at high speed.

通常、モータロータには、積層した無方向性電磁鋼板が使用されるが、上記のような高速回転するモータでは所要の強度を満足できない場合がある。その際にはロータ材料として高強度の鋳鋼などが用いられている。しかしながら、モータロータは、回転時に磁気的性質を利用するものであるから、その材料としては、上述のように、機械特性とともに磁気特性に優れていることが要求される。すなわち、一体物の鋳鋼製ロータでは、渦電流損が非常に大きくなるのでモータの効率が低下してしまうという問題があるのである。また、IPMモータの場合はそのロータでの損失による発熱で磁石特性が劣化するという問題も生じる。   Usually, a laminated non-oriented electrical steel sheet is used for the motor rotor, but the motor that rotates at high speed as described above may not satisfy the required strength. In that case, high strength cast steel or the like is used as a rotor material. However, since the motor rotor uses magnetic properties at the time of rotation, the material is required to have excellent magnetic properties as well as mechanical properties as described above. In other words, an integral cast steel rotor has a problem that the eddy current loss becomes very large and the efficiency of the motor decreases. Further, in the case of an IPM motor, there arises a problem that magnet characteristics deteriorate due to heat generated by loss in the rotor.

このように、上記のような高速回転するモータのロータ鉄心材料としては、機械的には高い強度を有し、かつ磁気的には高周波低鉄損を有するものでなければならない。鋼板の強度を高める手段として、冷延鋼板の分野では一般に、固溶強化、析出強化、細粒化強化、変態強化などの方法が用いられるが、高い強度および高周波低鉄損という優れた磁気特性は一般に相反する関係にあり、これらを同時に満足させることは極めて困難であった。   As described above, the rotor core material of the motor rotating at high speed as described above must have high mechanical strength and magnetically have high frequency and low iron loss. As means for increasing the strength of steel sheets, in the field of cold-rolled steel sheets, methods such as solid solution strengthening, precipitation strengthening, grain refinement strengthening, transformation strengthening are generally used, but excellent magnetic properties such as high strength and high frequency low iron loss are used. In general, there is a contradictory relationship, and it has been extremely difficult to satisfy these simultaneously.

このような問題を解決するため、最近では、高い抗張力を有する無方向性電磁鋼板についてのいくつかの提案がなされてきている。例えば特許文献1では、Si含有量を3.5〜7.0%と高め、これに固溶硬化の大きい元素を添加し、抗張力を高める方法が提案されている。また、特許文献2では、通常の無方向性電磁鋼板に2.0%以上4.0%未満のSiを含有させると同時に、Nb,Zrの1種または2種、もしくはTi,Vの1種または2種の炭窒化物を活用し、さらには熱間圧延条件および仕上げ焼鈍条件を制御することにより、機械特性および磁気特性を兼備した降伏強度の高い無方向性電磁鋼板を製造する方法が提案されている。さらに、特許文献3では、鋼材内部に直径1.0μm以下のCuからなる金属相を含有させることにより、抗張力を高める方法が提案されている。   In order to solve such a problem, several proposals have recently been made regarding non-oriented electrical steel sheets having high tensile strength. For example, Patent Document 1 proposes a method in which the Si content is increased to 3.5 to 7.0%, an element having a large solid solution hardening is added thereto, and the tensile strength is increased. Further, in Patent Document 2, at least 2.0% or more and less than 4.0% Si is contained in a normal non-oriented electrical steel sheet, and at the same time, one or two of Nb and Zr, or one of Ti and V. Alternatively, a method for producing non-oriented electrical steel sheets with high yield strength and high mechanical strength and magnetic properties by utilizing two types of carbonitrides and controlling hot rolling conditions and finish annealing conditions is proposed. Has been. Furthermore, Patent Document 3 proposes a method of increasing the tensile strength by including a metal phase made of Cu having a diameter of 1.0 μm or less in the steel material.

特開昭60−238421号公報JP 60-238421 A 特開平6−330255号公報JP-A-6-330255 特開2004−84053公報JP 2004-84053 A

しかしながら、上記特許文献1に記載された発明により得られる鋼板は非常に脆いため、冷間圧延時に破断しやすく歩留まりが非常に低いという問題がある。
また、上記特許文献2に記載された発明では仕上げ焼鈍温度が低いために、鋼板の結晶粒径が非常に小さく、鉄損が非常に劣るという問題がある。
またさらに、上記特許文献3に記載された発明では、仕上げ焼鈍条件を適正化していないために、さらに強度を向上させる余地がある。さらに熱間圧延鋼板に焼鈍を実施しないか、あるいは980℃の高温で焼鈍するため、熱間圧延鋼板内部にCuが微細分散し、熱間圧延鋼板が非常に硬質となる。そのため、その後の冷間圧延が困難となり、生産性に劣る問題があった。
However, since the steel sheet obtained by the invention described in Patent Document 1 is very brittle, there is a problem that it is easily broken during cold rolling and the yield is very low.
Moreover, in the invention described in Patent Document 2, since the finish annealing temperature is low, there is a problem that the crystal grain size of the steel sheet is very small and the iron loss is very inferior.
Furthermore, in the invention described in Patent Document 3, there is room for further improving the strength because the finish annealing conditions are not optimized. Further, since the hot rolled steel sheet is not annealed or annealed at a high temperature of 980 ° C., Cu is finely dispersed inside the hot rolled steel sheet, and the hot rolled steel sheet becomes very hard. Therefore, subsequent cold rolling becomes difficult and there is a problem inferior in productivity.

本発明は、上記問題点に鑑みてなされたものであり、強度が高く高周波での鉄損の低い無方向性電磁鋼板の製造方法を提供することを主目的とする。   This invention is made | formed in view of the said problem, and it aims at providing the manufacturing method of a non-oriented electrical steel sheet with high intensity | strength and low iron loss in a high frequency.

本発明者らは、時効熱処理による析出強化で強度を高め、かつ優れた磁気特性を有する鋼板ができないかとの観点から鋭意研究を積み重ねた結果、磁気特性および強度特性の両方に有利なSi、Al含有の鋼をベースに、析出強化元素としてCuを活用し、必要に応じてTi,Nb,V,Zrの炭化物をも活用し、さらに仕上げ焼鈍条件を適正化することにより、強度特性および磁気特性を兼ね備えた無方向性電磁鋼板が得られることを見出し、本発明を完成させた。
なお、本発明において「炭化物」には、炭窒化物が含まれるものとする。
As a result of intensive research from the viewpoint of whether a steel sheet having excellent magnetic properties can be obtained by increasing the strength by precipitation strengthening by aging heat treatment, the present inventors have obtained Si, Al advantageous in both magnetic properties and strength properties. Based on the contained steel, Cu is used as a precipitation strengthening element, Ti, Nb, V, and Zr carbides are also used as required, and the final annealing conditions are optimized to improve strength and magnetic properties. The present inventors have found that a non-oriented electrical steel sheet having both of the above can be obtained and completed the present invention.
In the present invention, “carbide” includes carbonitride.

すなわち、本発明は、質量%で、C:0.02%以下、Si:1.6%以上3%以下、Mn:1%以下、P:0.2%以下、S:0.03%以下、Al:0.1%以上3%以下、Ni:2%以下およびCu:1%超3%以下を含有し、残部がFeおよび不可避的不純物からなる冷間圧延鋼板に、2MPa以上6MPa以下の張力を付加した状態で900℃以上1100℃以下の温度で仕上げ焼鈍を施す仕上げ焼鈍工程を有することを特徴とする時効熱処理用無方向性電磁鋼板の製造方法を提供する。 That is, the present invention is mass%, C: 0.02% or less, Si: 1.6% or more and 3% or less, Mn: 1% or less, P: 0.2% or less, S: 0.03% or less , Al: 0.1% or more and 3% or less, Ni: 2% or less, and Cu: more than 1%, 3% or less, and the balance is 2 MPa or more and 6 MPa or less in the cold-rolled steel sheet made of Fe and inevitable impurities The manufacturing method of the non-oriented electrical steel sheet for aging heat processing characterized by having the finish annealing process which performs finish annealing at the temperature of 900 degreeC or more and 1100 degrees C or less in the state which added tension | tensile_strength.

本発明によれば、冷間圧延鋼板の鋼組成と、仕上げ焼鈍工程での張力および温度とを適正に制御することにより、磁気特性が良好な時効熱処理用無方向性電磁鋼板を製造することができる。また、本発明により得られた時効熱処理用無方向性電磁鋼板に時効熱処理を施すことにより、強度特性も改善された無方向性電磁鋼板を製造することができる。このように本発明は、運転中に変形や破壊が生じることなく安定して使用可能なモータロータに好適な無方向性電磁鋼板を提供することが可能である。   According to the present invention, it is possible to produce a non-oriented electrical steel sheet for aging heat treatment with good magnetic properties by appropriately controlling the steel composition of the cold rolled steel sheet and the tension and temperature in the finish annealing process. it can. Moreover, the non-oriented electrical steel sheet with improved strength characteristics can be produced by subjecting the non-oriented electrical steel sheet for aging heat treatment obtained by the present invention to aging heat treatment. As described above, the present invention can provide a non-oriented electrical steel sheet suitable for a motor rotor that can be used stably without deformation or destruction during operation.

また本発明においては、上記冷間圧延鋼板が、上記Feの一部に代えて、質量%で、B:0.010%以下を含有することが好ましい。Bを含有することにより、上記冷間圧延鋼板の素材である熱間圧延鋼板の靭性が向上し冷間圧延工程での破断が抑制できるからである。   Moreover, in this invention, it replaces with a part of said Fe, and it is preferable that the said cold-rolled steel plate contains B: 0.010% or less by the mass%. This is because by containing B, the toughness of the hot-rolled steel sheet, which is the material of the cold-rolled steel sheet, is improved, and breakage in the cold-rolling process can be suppressed.

さらに本発明においては、上記冷間圧延鋼板が、上記Feの一部に代えて、質量%で、Ti、Nb、VおよびZrからなる群から選択される少なくとも1種の元素を合計で0.01%以上0.1%以下の範囲内で含有することが好ましい。これらの元素を所定量含有することにより、強度特性を効果的に向上させることができるからである。   Furthermore, in the present invention, the cold-rolled steel sheet is replaced with a part of the Fe, and the total amount of at least one element selected from the group consisting of Ti, Nb, V, and Zr is 0. It is preferable to contain within the range of 01% or more and 0.1% or less. This is because the strength characteristics can be effectively improved by containing a predetermined amount of these elements.

また本発明においては、上記仕上げ焼鈍工程前に、上記冷間圧延鋼板の素材である熱間圧延鋼板に600℃以上900℃以下の温度で2時間以上保持する熱延板焼鈍を施す熱延板焼鈍工程と、熱延板焼鈍が施された上記熱間圧延鋼板に冷間圧延を施す冷間圧延工程とを行ってもよい。所定の条件で熱延板焼鈍を施すことにより、鋼板の延性が向上し冷間圧延工程での破断を抑制できるからである。   Moreover, in this invention, the hot-rolled sheet | seat which performs the hot-rolled sheet annealing which hold | maintains at the temperature of 600 degreeC or more and 900 degrees C or less for 2 hours or more to the hot-rolled steel sheet which is the raw material of the said cold-rolled steel sheet before the said finish annealing process. You may perform an annealing process and the cold rolling process which cold-rolls the said hot-rolled steel plate in which the hot-rolled sheet annealing was given. This is because by performing hot-rolled sheet annealing under predetermined conditions, the ductility of the steel sheet is improved, and breakage in the cold rolling process can be suppressed.

本発明によれば、高周波での鉄損の低い時効熱処理用無方向性電磁鋼板を得ることができ、この時効熱処理用無方向性電磁鋼板に時効熱処理を施した場合には、鉄損が低いだけでなく強度が高い無方向性電磁鋼板を効率よく製造することが可能である。このような無方向性電磁鋼板を用いて製造した鉄心が高速回転するモータロータに組み込まれれば、モータ効率が高くなることはもちろん、運転中に変形や破壊することなく長期間にわたり安定して使用可能となる。このような省エネルギー効果により地球環境に負荷の少ない未来社会創造に貢献できる。   According to the present invention, a non-oriented electrical steel sheet for aging heat treatment with low iron loss at high frequencies can be obtained, and when the aging heat treatment is applied to the non-oriented electrical steel sheet for aging heat treatment, the iron loss is low. In addition, it is possible to efficiently produce a non-oriented electrical steel sheet having high strength. If an iron core manufactured using such a non-oriented electrical steel sheet is incorporated into a motor rotor that rotates at high speed, the motor efficiency will not only increase, but it can be used stably for a long time without being deformed or broken during operation. It becomes. Such energy-saving effects can contribute to the creation of a future society with less impact on the global environment.

本発明者らは、強度が高く、かつ磁気特性に優れた無方向性電磁鋼板を得るために、時効熱処理を用いた析出強化により無方向性電磁鋼板を高強度化する場合について、時効熱処理後の鋼板の強度特性および磁気特性へ及ぼす製造条件の影響を調査した。その結果、磁気特性および強度特性の両方に有利なSi、Al含有の鋼をベースに、析出強化元素としてCuを活用し、必要に応じてTi,Nb,V,Zrの炭化物をも活用し、さらに仕上げ焼鈍条件を適正化することにより、強度特性および磁気特性を兼ね備えた無方向性電磁鋼板が得られることを見出した。以下、本発明をなすに至った知見およびそれに至る実験結果について説明する。   In order to obtain a non-oriented electrical steel sheet having high strength and excellent magnetic properties, the present inventors have made a non-oriented electrical steel sheet high in strength by precipitation strengthening using an aging heat treatment. The effects of manufacturing conditions on the strength and magnetic properties of steel sheets were investigated. As a result, based on Si and Al-containing steels advantageous for both magnetic properties and strength properties, Cu is used as a precipitation strengthening element, and Ti, Nb, V, Zr carbides are also used as required. Furthermore, it has been found that a non-oriented electrical steel sheet having both strength characteristics and magnetic characteristics can be obtained by optimizing the finish annealing conditions. Hereinafter, the knowledge that has led to the present invention and the experimental results leading to it will be described.

真空溶解炉にて、主要成分が質量%で、C:0.005%、Si:2%、Mn:0.2%、P:0.09%、S:0.002%、Al:0.7%、N:0.002%、Cu:2.0%、Nb:0.03%である鋳片を作製し、1150℃で加熱した後、仕上げ温度を850℃として熱間圧延を施し、厚さ2.5mmの熱間圧延鋼板を作製した。この熱間圧延鋼板を厚さ2.0mmまで研削加工し、さらに厚さ0.35mmまで冷間圧延を施した。この冷間圧延により得られた冷間圧延鋼板に0〜8MPaの張力を付与しながら950℃で5秒間の仕上げ焼鈍を施し、次いで20℃/sの平均冷却速度で室温まで冷却し、幅55mm、長さ55mmの単板試験片を作製した。そして、この単板試験片に500℃で0.5時間の時効熱処理を施した。このようにして得られた鋼板について、降伏強度、引張強度、および鉄損W10/400を測定した。 In a vacuum melting furnace, the main components are mass%, C: 0.005%, Si: 2%, Mn: 0.2%, P: 0.09%, S: 0.002%, Al: 0.00. 7%, N: 0.002%, Cu: 2.0%, Nb: 0.03% After producing a slab that was heated at 1150 ° C, hot-rolled at a finishing temperature of 850 ° C, A hot-rolled steel sheet having a thickness of 2.5 mm was produced. This hot-rolled steel sheet was ground to a thickness of 2.0 mm, and further cold-rolled to a thickness of 0.35 mm. The cold-rolled steel sheet obtained by this cold rolling was subjected to finish annealing at 950 ° C. for 5 seconds while applying a tension of 0 to 8 MPa, then cooled to room temperature at an average cooling rate of 20 ° C./s, and a width of 55 mm. A single plate test piece having a length of 55 mm was prepared. And this aging test piece was subjected to aging heat treatment at 500 ° C. for 0.5 hour. The steel plate thus obtained was measured for yield strength, tensile strength, and iron loss W 10/400 .

図1に仕上げ焼鈍時の張力と鉄損W10/400との関係、図2に仕上げ焼鈍時の張力と降伏強度YPとの関係、図3に仕上げ焼鈍時の張力と引張強度TSとの関係をそれぞれ示す。図1〜図3より明らかなように、高い強度と高周波低鉄損とを両立するには仕上げ焼鈍時に鋼板に付与する張力を2〜6MPaとすることが有効であることが明らかになった。 Fig. 1 shows the relationship between tension during finish annealing and iron loss W 10/400 , Fig. 2 shows the relationship between tension during finish annealing and yield strength YP, and Fig. 3 shows the relationship between tension and tensile strength TS during finish annealing. Respectively. As is apparent from FIGS. 1 to 3, it has been clarified that it is effective to set the tension applied to the steel sheet during finish annealing to 2 to 6 MPa in order to achieve both high strength and high frequency and low iron loss.

その機構については明らかではないが、本発明者らは次のように推定する。
すなわち、高温で焼鈍中に張力を付加することで、鋼板がわずかに伸びて結晶粒内に転位が導入される。その転位を析出サイトとして、時効熱処理で微細なCuが均質に析出するため、鋼板の強度が高くなると推察される。また、鋼中のNbは時効熱処理によりNb炭化物となって析出する。このNb炭化物も結晶粒内の転位上に析出し微細分散するので、さらなる強度上昇に寄与したものと推察される。
Although the mechanism is not clear, the present inventors presume as follows.
That is, by applying tension during annealing at a high temperature, the steel sheet extends slightly and dislocations are introduced into the crystal grains. It is presumed that the strength of the steel sheet increases because fine Cu precipitates homogeneously by aging heat treatment using the dislocation as a precipitation site. Moreover, Nb in steel precipitates as Nb carbide by aging heat treatment. Since this Nb carbide also precipitates on the dislocations in the crystal grains and finely disperses, it is presumed that this Nb carbide contributed to further increase in strength.

以下、本発明の時効熱処理用無方向性電磁鋼板の製造方法について詳細に説明する。
本発明の時効熱処理用無方向性電磁鋼板の製造方法は、質量%で、C:0.02%以下、Si:1.6%以上3%以下、Mn:1%以下、P:0.2%以下、S:0.03%以下、Al:0.1%以上3%以下、Ni:2%以下およびCu:1%超3%以下を含有し、残部がFeおよび不可避的不純物からなる冷間圧延鋼板に、2MPa以上6MPa以下の張力を付加した状態で900℃以上1100℃以下の温度で仕上げ焼鈍を施す仕上げ焼鈍工程を有することを特徴とするものである。
Hereinafter, the manufacturing method of the non-oriented electrical steel sheet for aging heat treatment of this invention is demonstrated in detail.
The manufacturing method of the non-oriented electrical steel sheet for aging heat treatment of the present invention is, in mass%, C: 0.02% or less, Si: 1.6% or more and 3% or less, Mn: 1% or less, P: 0.2. %: S: 0.03% or less, Al: 0.1% or more and 3% or less, Ni: 2% or less and Cu: more than 1% and 3% or less, with the balance being Fe and inevitable impurities The present invention is characterized by having a finish annealing step in which a finish annealing is performed at a temperature of 900 ° C. to 1100 ° C. with a tension of 2 MPa or more and 6 MPa or less applied to the cold rolled steel sheet.

本発明においては、上記仕上げ焼鈍工程前に、通常、上述した鋼組成を有する鋼塊または鋼片(以下、スラブということもある。)を所定の温度としたのちに熱間圧延を施す熱間圧延工程と、熱間圧延工程により得られる熱間圧延鋼板に冷間圧延を施す冷間圧延工程とが行われる。また、上記熱間圧延工程後に、熱間圧延鋼板に熱延板焼鈍を施す熱延板焼鈍工程を行ってもよい。
以下、本発明における鋼組成、および本発明の時効熱処理用無方向性電磁鋼板の製造方法の各工程について説明する。
In the present invention, before the above-described finish annealing step, the steel ingot or steel slab having the above-described steel composition (hereinafter sometimes referred to as slab) is heated to a predetermined temperature and then hot-rolled. A rolling process and a cold rolling process in which cold rolling is performed on a hot rolled steel sheet obtained by the hot rolling process are performed. Moreover, you may perform the hot-rolled sheet annealing process which performs hot-rolled sheet annealing to a hot-rolled steel plate after the said hot rolling process.
Hereinafter, each process of the manufacturing method of the steel composition in this invention and the non-oriented electrical steel sheet for aging heat treatment of this invention is demonstrated.

1.鋼組成
本発明に用いられるスラブまたは冷間圧延鋼板は、質量%で、C:0.02%以下、Si:1.6%以上3%以下、Mn:1%以下、P:0.2%以下、S:0.03%以下、Al:0.1%以上3%以下、Ni:2%以下およびCu:1%超3%以下を含有し、残部がFeおよび不可避的不純物からなるものである。
なお、各元素の含有量を示す「%」は、特に断りのない限り「質量%」を意味するものである
1. Steel composition The slab or cold-rolled steel sheet used in the present invention is in mass%, C: 0.02% or less, Si: 1.6% or more and 3% or less, Mn: 1% or less, P: 0.2% S: 0.03% or less, Al: 0.1% or more and 3% or less, Ni: 2% or less, and Cu: more than 1% and 3% or less, with the balance being Fe and inevitable impurities It is.
“%” Indicating the content of each element means “mass%” unless otherwise specified .

(1)C
Cは鋼板の強度を高めるのに有効な元素である。しかしながら、C含有量が0.02%を超えるとセメンタイト、εカーバイドなどの炭化物が析出し、磁気特性劣化が顕著になる場合がある。したがって、C含有量は0.02%以下とする。また、より一層の磁気特性向上、特に鉄損を向上させるにはC含有量の上限を0.005%にするのが好ましい。一方、Ti,Nb,V,Zrなどの炭化物生成元素を0.01%以上含有させて析出強化を図る場合には、C含有量を0.005%〜0.02%に制御することが好ましい。
(1) C
C is an element effective for increasing the strength of the steel sheet. However, if the C content exceeds 0.02%, carbides such as cementite and ε-carbide precipitate, and the magnetic property deterioration may become remarkable. Therefore, the C content is 0.02% or less. In order to further improve the magnetic properties, particularly to improve the iron loss, the upper limit of the C content is preferably 0.005%. On the other hand, when the carbide strengthening element such as Ti, Nb, V, Zr or the like is contained in an amount of 0.01% or more to enhance precipitation strengthening, the C content is preferably controlled to 0.005% to 0.02%. .

(2)Si
Siは鋼の比抵抗を高め、鉄損低減に有効である。また、Siは固溶強化により鋼板の強度を高めるのにも有効である。Si含有量は必要な鉄損特性および強度特性に応じて決定すればよい。しかしながら、Si含有量が1.6%未満では必要な強度および鉄損が得られない可能性がある。一方、Si含有量が3%を超えるとCu析出物の分散状態が不均一となり強度向上効果が飽和する傾向を示す。また、冷間圧延において破断しやすくなり製造コストが著しく増大する場合がある。したがって、Si含有量は1.6%以上3%以下とする。さらに、冷間圧延時の破断による歩留まり低下を抑制するためには、Si含有量を1.6%以上2.5%以下にするのが好ましい。
(2) Si
Si increases the specific resistance of steel and is effective in reducing iron loss. Si is also effective in increasing the strength of the steel sheet by solid solution strengthening. What is necessary is just to determine Si content according to a required iron loss characteristic and intensity | strength characteristic. However, if the Si content is less than 1.6%, the required strength and iron loss may not be obtained. On the other hand, if the Si content exceeds 3%, the dispersion state of Cu precipitates becomes non-uniform and the strength improvement effect tends to be saturated. Moreover, it may become easy to break in cold rolling, and the manufacturing cost may increase significantly. Therefore, the Si content is 1.6% or more and 3% or less. Furthermore, in order to suppress the yield reduction due to breakage during cold rolling, the Si content is preferably 1.6% or more and 2.5% or less.

(3)Mn
Mnは不可避的不純物であり、添加する必要はない。しかしながら、Mnは鋼の比抵抗を高め、鉄損低減に有効である。その効果を得るには0.1%以上含有させることが好ましい。一方、Mn含有量が1%を超えると原料コストが大きくなる場合がある。したがって、Mn含有量は1%以下に限定する。
(3) Mn
Mn is an unavoidable impurity and need not be added. However, Mn increases the specific resistance of steel and is effective in reducing iron loss. In order to acquire the effect, it is preferable to make it contain 0.1% or more. On the other hand, if the Mn content exceeds 1%, the raw material cost may increase. Therefore, the Mn content is limited to 1% or less.

(4)P
Pは不可避的不純物であり、添加する必要はない。しかしながら、Pは固溶強化により鋼板の強度を高めるのに有効な元素であり、その効果を得るには0.05%以上含有させることが好ましい。一方、P含有量が0.2%を超えると鋼の靱性が劣化し、冷間圧延時に破断するおそれがある。したがって、P含有量は0.2%以下に限定する。
(4) P
P is an unavoidable impurity and need not be added. However, P is an element effective for increasing the strength of the steel sheet by solid solution strengthening, and 0.05% or more is preferably contained in order to obtain the effect. On the other hand, if the P content exceeds 0.2%, the toughness of the steel deteriorates and there is a risk of fracture during cold rolling. Therefore, the P content is limited to 0.2% or less.

(5)S
Sは不可避的不純物であり、添加する必要はない。S含有量が0.03%を超えると粗大なMn,Cu含有硫化物が形成され、鋼の靭性が劣化し、冷間圧延時に破断するおそれがある。したがって、S含有量は0.03%以下に限定する。また、硫化物分散による細粒化により強化を図るには、S含有量を0.006%以上含有させることが好ましい。
(5) S
S is an unavoidable impurity and does not need to be added. If the S content exceeds 0.03%, coarse Mn and Cu-containing sulfides are formed, the toughness of the steel deteriorates, and there is a risk of fracture during cold rolling. Therefore, the S content is limited to 0.03% or less. Moreover, in order to strengthen by the refinement | miniaturization by sulfide dispersion | distribution, it is preferable to contain S content 0.006% or more.

(6)Al
AlはSiと同様に鋼の比抵抗を高め、鉄損低減に有効である。また、脱酸に有効な元素であり、非金属介在物を低減することができる。しかしながら、Al含有量が3%を超えると飽和磁束密度が著しく低下し、鉄心性能が劣化する可能性がある。一方、溶鋼の脱酸を効率的に行うにはAlを0.1%以上含有させることが必要である。したがって、Al含有量は0.1%以上3%以下に限定する。集合組織改善により磁束密度を改善するには、Al含有量を0.6%以上とすることが好ましい。
(6) Al
Al, like Si, increases the specific resistance of steel and is effective in reducing iron loss. Moreover, it is an element effective for deoxidation and can reduce nonmetallic inclusions. However, if the Al content exceeds 3%, the saturation magnetic flux density is remarkably lowered, and the core performance may be deteriorated. On the other hand, in order to efficiently deoxidize molten steel, it is necessary to contain 0.1% or more of Al. Therefore, the Al content is limited to 0.1% or more and 3% or less. In order to improve the magnetic flux density by improving the texture, the Al content is preferably 0.6% or more.

(7)Ni
Niは不可避的不純物であり、添加する必要はない。しかしながら、Niは固溶強化により鋼板の強度を高めるのに有効な元素であり、その効果を得るには0.05%以上含有させることが好ましい。一方、Ni含有量が2%を超えると原料コストが大きくなる。したがって、Ni含有量は2%以下に限定する。
(7) Ni
Ni is an unavoidable impurity and need not be added. However, Ni is an element effective for increasing the strength of the steel sheet by solid solution strengthening, and 0.05% or more is preferably contained in order to obtain the effect. On the other hand, if the Ni content exceeds 2%, the raw material cost increases. Therefore, the Ni content is limited to 2% or less.

(8)Cu
Cuは本発明において必須の元素である。上述したように、Cu析出物が非常に微細である場合には、磁気特性をほとんど劣化させることなく、強度特性を向上させる効果がある。しかしながら、Cu含有量が1%以下ではCu析出による強度上昇が十分得られない可能性がある。一方、Cu含有量が増加するにつれて時効硬化量は大きくなるが3%を超えると仕上げ焼鈍時にCu析出物が不均一に分散して時効熱処理後の強度が低下し、また鋼板の磁束密度も低下する場合がある。したがって、Cu含有量は1%超3%以下に限定する。また、析出強化が最も顕著になるという点から、Cu含有量は1.5%以上2.5%以下であることが好ましい。
(8) Cu
Cu is an essential element in the present invention. As described above, when the Cu precipitate is very fine, there is an effect of improving the strength characteristics without substantially degrading the magnetic characteristics. However, when the Cu content is 1% or less, there is a possibility that a sufficient strength increase due to Cu precipitation cannot be obtained. On the other hand, the age hardening amount increases as the Cu content increases, but if it exceeds 3%, Cu precipitates are dispersed unevenly during finish annealing, resulting in a decrease in strength after aging heat treatment, and a decrease in the magnetic flux density of the steel sheet. There is a case. Therefore, the Cu content is limited to more than 1% and 3% or less. Moreover, it is preferable that Cu content is 1.5% or more and 2.5% or less from the point that precipitation strengthening becomes the most remarkable.

(9)B
Bは任意添加元素であり、本発明において必須の元素ではない。しかしながら、Bを0.0003%以上含有させることで熱延鋼板の靱性が向上し、冷間圧延時に破断しにくくなる。一方、B含有量が0.010%を超えると粗大なB化合物が生成し、かえって冷間圧延時に破断するおそれがある。したがって、B含有量は0.010%以下とすることが好ましい。また、鋼板製造性の観点より、B含有量は0.0003%以上0.0040%以下にすることがさらに好ましい。
(9) B
B is an optional additive element and is not an essential element in the present invention. However, by containing 0.0003% or more of B, the toughness of the hot-rolled steel sheet is improved and it is difficult to break during cold rolling. On the other hand, if the B content exceeds 0.010%, a coarse B compound is produced, which may break during cold rolling. Therefore, the B content is preferably 0.010% or less. Further, from the viewpoint of steel plate manufacturability, the B content is more preferably 0.0003% or more and 0.0040% or less.

(10)Ti,Nb,VおよびZr
Ti,Nb,VおよびZrは炭化物を形成し、磁気特性を劣化させるので、特に添加する必要はない。しかしながら、強度特性を向上させるにはTi,Nb,VおよびZrの合計含有量を0.01%以上とすることが有効である。一方、Ti,Nb,VおよびZrの合計含有量が0.1%を超えると炭化物が粗大分散して磁気特性が著しく劣化する可能性がある。したがって、Ti,Nb,VおよびZrの合計含有量は0.01%以上0.1%以下とすることが好ましい。
(10) Ti, Nb, V and Zr
Ti, Nb, V, and Zr form carbides and degrade the magnetic properties, so there is no need to add them. However, in order to improve the strength characteristics, it is effective to set the total content of Ti, Nb, V and Zr to 0.01% or more. On the other hand, if the total content of Ti, Nb, V and Zr exceeds 0.1%, carbides may be coarsely dispersed and the magnetic properties may be significantly deteriorated. Therefore, the total content of Ti, Nb, V and Zr is preferably 0.01% or more and 0.1% or less.

本発明においては、スラブまたは冷間圧延鋼板が、Ti,Nb,VおよびZrからなる群から選択される少なくとも1種の元素を含有することが好ましく、この際、上述したようにTi,Nb,VおよびZrの合計含有量が0.01%以上0.1%以下であることが好ましいのであるが、炭化物生成による析出強化を確実に図るには、Ti,Nb,VまたはZrのいずれか一つの元素の含有量を単独で0.01%以上とすることが好ましい。   In the present invention, the slab or cold-rolled steel plate preferably contains at least one element selected from the group consisting of Ti, Nb, V and Zr. At this time, as described above, Ti, Nb, The total content of V and Zr is preferably 0.01% or more and 0.1% or less. However, in order to ensure precipitation strengthening due to the formation of carbide, any one of Ti, Nb, V, and Zr is preferable. It is preferable that the content of one element is 0.01% or more.

(11)その他の不可避的不純物
製鋼プロセスにおいて鋼中に混入する不純物で0.01%以上混入する可能性のある成分としてCrおよびMo等が存在する。CrおよびMoのいずれも含有量を1%以下に低減しておけば、本発明の効果が損なわれることはない。また、上記成分以外の不純物成分は、いずれも含有量が0.05%以下に低減されていれば本発明の効果に影響はない。
(11) Other inevitable impurities Cr, Mo, and the like exist as components that may be mixed in steel by 0.01% or more in the steelmaking process. If the content of both Cr and Mo is reduced to 1% or less, the effects of the present invention will not be impaired. In addition, the impurity components other than the above components do not affect the effects of the present invention as long as the content is reduced to 0.05% or less.

2.仕上げ焼鈍工程
本発明における仕上げ焼鈍工程は、上述した鋼組成を有する冷間圧延鋼板に、2MPa以上6MPa以下の張力を付加した状態で900℃以上1100℃以下の温度で仕上げ焼鈍を施す工程である。
2. Finish annealing step The finish annealing step in the present invention is a step in which finish annealing is performed at a temperature of 900 ° C. to 1100 ° C. with a tension of 2 MPa to 6 MPa applied to the cold-rolled steel sheet having the above-described steel composition. .

本発明において、仕上げ焼鈍条件の制御は、時効熱処理後の強度特性および磁気特性を改善する上で非常に重要である。
仕上げ焼鈍温度は、900℃以上1100℃以下とする。仕上げ焼鈍温度が上記範囲未満では、再結晶粒成長が不十分となり磁気特性が著しく劣化する可能性がある。一方、仕上げ焼鈍温度が上記範囲を超えると鋼板の粒径が著しく粗大化し、時効熱処理後のCu析出物が不均一に分散し、強度が低下する場合がある。より一層の鉄損低減には仕上げ焼鈍温度が高ければ高いほどよく、950℃以上とすることが好ましい。
また、仕上げ焼鈍中に鋼板に付加する張力は2MPa以上6MPa以下の範囲とする。これは、上述した実験結果からわかるように、時効熱処理後の鋼板強度を高めるためには、仕上げ焼鈍中に鋼板に付加する張力を制御することが有効であるからである。
In the present invention, the control of the finish annealing condition is very important for improving the strength and magnetic properties after the aging heat treatment.
The final annealing temperature is 900 ° C. or higher and 1100 ° C. or lower. If the finish annealing temperature is less than the above range, recrystallization grain growth is insufficient and the magnetic properties may be significantly deteriorated. On the other hand, when the finish annealing temperature exceeds the above range, the particle size of the steel sheet becomes remarkably coarse, Cu precipitates after aging heat treatment are dispersed unevenly, and the strength may be lowered. In order to further reduce the iron loss, the higher the finish annealing temperature is, the better.
The tension applied to the steel plate during finish annealing is in the range of 2 MPa to 6 MPa. This is because, as can be seen from the above-described experimental results, it is effective to control the tension applied to the steel plate during finish annealing in order to increase the strength of the steel plate after the aging heat treatment.

3.熱間圧延工程
本発明においては、上述した鋼組成を有するスラブを所定の温度としたのちに、熱間圧延を施す熱間圧延工程を行ってもよい。
熱間圧延としては一般的な方法を用いることができる。スラブ温度、熱間圧延での仕上げ温度、巻取り温度等の条件は、スラブの鋼組成、目的とする鋼板の板厚などにより適宜選択するものとする。
熱間圧延鋼板は、通常、熱間圧延の際に鋼板表面に生成したスケールを酸洗により除去してから冷間圧延に供される。熱間圧延鋼板に後述する熱延板焼鈍を施す場合には、熱延板焼鈍前または熱延板焼鈍後のいずれかにおいて酸洗すればよい。
3. Hot Rolling Step In the present invention, a hot rolling step of performing hot rolling may be performed after the slab having the steel composition described above is set to a predetermined temperature.
A general method can be used as hot rolling. Conditions such as the slab temperature, the finishing temperature in hot rolling, and the coiling temperature are appropriately selected depending on the steel composition of the slab, the thickness of the target steel sheet, and the like.
A hot-rolled steel sheet is usually subjected to cold rolling after removing scales generated on the surface of the steel sheet during hot rolling by pickling. When hot-rolled sheet annealing, which will be described later, is performed on a hot-rolled steel sheet, it may be pickled either before hot-rolled sheet annealing or after hot-rolled sheet annealing.

4.熱延板焼鈍工程
本発明においては、上記熱間圧延工程により得られる熱間圧延鋼板に、600℃以上900℃以下の温度で2時間以上保持する熱延板焼鈍を施す熱延板焼鈍工程を行ってもよい。この熱間圧延鋼板は、上記冷間圧延鋼板の素材となるものである。熱延板焼鈍工程は必ずしも必須の工程ではないが、続いて行われる冷間圧延の能率を高めることを可能とするのに有用な工程である。
4). Hot-rolled sheet annealing step In the present invention, a hot-rolled sheet annealing step is performed in which the hot-rolled steel sheet obtained by the hot-rolling step is subjected to hot-rolled sheet annealing that is held at a temperature of 600 ° C or higher and 900 ° C or lower for 2 hours or longer. You may go. This hot-rolled steel sheet is a material for the cold-rolled steel sheet. Although the hot-rolled sheet annealing process is not necessarily an essential process, it is a useful process for increasing the efficiency of the subsequent cold rolling.

熱延板焼鈍での焼鈍温度は、600℃以上900℃以下であることが好ましい。焼鈍温度が上記範囲未満であるとかえって鋼板の強度が高くなりすぎ、冷間圧延が困難となる場合がある。一方、焼鈍温度が上記範囲を超えてもCuの固溶・再析出が起こり、鋼板の強度が高くなり、冷間圧延が困難となる可能性がある。さらに好ましい焼鈍温度は、650℃以上850℃以下である。
また、上記焼鈍温度での保持時間は2時間以上であることが好ましい。保持時間が2時間未満の場合、Cu析出物が微細化し、鋼板の強度が高くなり、冷間圧延が困難となる場合がある。保持時間は8時間以上がより好ましい。一方、保持時間の上限は特に限定されないが、経済性の観点から48時間以下にすることが望ましい。
The annealing temperature in hot-rolled sheet annealing is preferably 600 ° C. or higher and 900 ° C. or lower. On the contrary, if the annealing temperature is less than the above range, the strength of the steel sheet becomes too high, and cold rolling may be difficult. On the other hand, even when the annealing temperature exceeds the above range, solid solution / reprecipitation of Cu occurs, the strength of the steel sheet increases, and cold rolling may become difficult. A more preferable annealing temperature is 650 ° C. or higher and 850 ° C. or lower.
The holding time at the annealing temperature is preferably 2 hours or more. When the holding time is less than 2 hours, Cu precipitates are refined, the strength of the steel sheet is increased, and cold rolling may be difficult. The holding time is more preferably 8 hours or longer. On the other hand, the upper limit of the holding time is not particularly limited, but is preferably 48 hours or less from the viewpoint of economy.

5.冷間圧延工程
本発明においては、上記熱間圧延工程により得られる熱間圧延鋼板、あるいは、上記熱延板焼鈍工程にて熱延板焼鈍が施された熱間圧延鋼板に、冷間圧延を施す冷間圧延工程を行ってもよい。
5. Cold rolling process In the present invention, cold rolling is applied to the hot rolled steel sheet obtained by the hot rolling process or the hot rolled steel sheet subjected to hot rolled sheet annealing in the hot rolled sheet annealing process. You may perform the cold rolling process to give.

また、本工程は、熱間圧延鋼板に中間焼鈍をはさんだ二回以上の冷間圧延を施す工程であってもよい。中間焼鈍は、必ずしも必須ではないが、中間焼鈍を行うことにより鋼板の延性が向上し冷間圧延での破断が少なくなるという利点を有する。
中間焼鈍での焼鈍温度等の条件は、熱延板焼鈍と同様にすることが好ましい。
Further, this step may be a step of subjecting the hot-rolled steel sheet to cold rolling twice or more with intermediate annealing. Although the intermediate annealing is not necessarily essential, the intermediate annealing has the advantage that the ductility of the steel sheet is improved and the breakage in cold rolling is reduced.
The conditions such as the annealing temperature in the intermediate annealing are preferably the same as those in the hot-rolled sheet annealing.

6.その他
本発明においては、上記冷間圧延工程後に、一般的な方法にしたがって、有機成分のみ、無機成分のみ、あるいは有機無機複合体からなる絶縁皮膜を鋼板表面に塗布するコーティング工程を行ってもよい。また、コーティング工程は、加熱・加圧することにより接着能を発揮する絶縁コーティングを施す工程であってもよい。接着能を発揮するコーティング材料としては、アクリル樹脂、フェノール樹脂、エポキシ樹脂またはメラミン樹脂などを用いることができる。
6). Others In the present invention, after the cold rolling step, according to a general method, a coating step of applying an insulating film made of only an organic component, only an inorganic component, or an organic-inorganic composite to the steel sheet surface may be performed. . Further, the coating process may be a process of applying an insulating coating that exhibits adhesive ability by heating and pressurizing. As a coating material exhibiting adhesive ability, an acrylic resin, a phenol resin, an epoxy resin, a melamine resin, or the like can be used.

また、本発明により製造される時効熱処理用無方向性電磁鋼板に、時効熱処理を施すことにより無方向性電磁鋼板を製造することができる。時効熱処理は、無方向性電磁鋼板の強度を高めるのに有効である。
時効熱処理での温度、時間、雰囲気等の条件は、鋼組成、目的とする強度などにより適宜選択するものとする。
Moreover, a non-oriented electrical steel sheet can be manufactured by performing an aging heat processing on the non-oriented electrical steel sheet for aging heat processing manufactured by this invention. Aging heat treatment is effective for increasing the strength of the non-oriented electrical steel sheet.
Conditions such as temperature, time, and atmosphere in the aging heat treatment are appropriately selected depending on the steel composition, target strength, and the like.

なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。   The present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and that exhibits the same effects. Are included in the technical scope.

以下、実施例を例示して、本発明を具体的に説明する。
[実施例1]
転炉で脱炭脱硫した溶鋼230tonを取鍋内に出鋼し、取鍋をRH式真空脱ガス装置に移動した。RH式真空脱ガス装置で減圧脱炭を行い、鋼中のC含有量を0.015%以下とした後に、Si,Mn,P,S,Al,Cu,B,Ni,Ti,Nb,VおよびZrの含有量を調整し、連続鋳造機にてスラブとした。
上記スラブを加熱炉で1150℃まで加熱し、仕上げ温度800〜850℃、巻き取り温度500℃で熱間圧延し、厚さ2.0mmの熱間圧延鋼板を得た。次いで、酸洗脱スケールして、750℃で10h焼鈍後、厚さ0.35mmまで冷間圧延し、張力を2MPa〜7MPaとして900〜1050℃で仕上げ焼鈍し、鋼板表面に絶縁皮膜を塗布した。
下記の表1に製品の成分分析値、表2に仕上げ焼鈍条件をそれぞれ示す。
Hereinafter, the present invention will be described specifically by way of examples.
[Example 1]
The molten steel 230ton decarburized and desulfurized in the converter was taken out into the ladle, and the ladle was moved to the RH type vacuum degasser. After performing decarburization under reduced pressure with an RH type vacuum degassing apparatus and setting the C content in the steel to 0.015% or less, Si, Mn, P, S, Al, Cu, B, Ni, Ti, Nb, V And the content of Zr was adjusted and it was set as the slab with the continuous casting machine.
The slab was heated to 1150 ° C. in a heating furnace and hot-rolled at a finishing temperature of 800 to 850 ° C. and a winding temperature of 500 ° C. to obtain a hot-rolled steel sheet having a thickness of 2.0 mm. Next, it was pickled and descaled, annealed at 750 ° C. for 10 h, then cold-rolled to a thickness of 0.35 mm, finish annealed at 900-1050 ° C. with a tension of 2 MPa to 7 MPa, and an insulating film was applied to the steel sheet surface .
Table 1 below shows the component analysis values of the product, and Table 2 shows the finish annealing conditions.

このようにして得られた鋼板から28cmエプスタイン試験片を採取し、500℃で0.5hの時効熱処理を行った。時効熱処理後の鋼板について、JIS−C−2550規定の方法により鉄損W10/400を測定した。また、磁束密度B50も測定した。さらに、時効熱処理後の鋼板についてJIS−Z−2241に規定の引張試験を行い、降伏強度YPおよび引張強度TSを測定した。下記の表2に磁気特性および強度特性のデータを示す。 A 28 cm Epstein test piece was collected from the steel sheet thus obtained and subjected to aging heat treatment at 500 ° C. for 0.5 h. About the steel plate after an aging heat processing, the iron loss W10 / 400 was measured by the method of JIS-C-2550 regulation. The magnetic flux density B50 was also measured. Further, the steel sheet after the aging heat treatment was subjected to a tensile test specified in JIS-Z-2241 to measure the yield strength YP and the tensile strength TS. Table 2 below shows data of magnetic characteristics and strength characteristics.

Figure 0004696750
Figure 0004696750

Figure 0004696750
Figure 0004696750

鋼組成が本発明の範囲内である鋼板は、降伏強度YPが600MPa以上、引張強度TSが750MPa以上であり、かつ鉄損W10/400が25W/kg以下となり、所要の特性が得られた。また、磁束密度B50も良好であった。特に、鋼組成が本発明の範囲内である鋼板の中でもAl含有量が0.6%以上である鋼マークA5〜A13の鋼板は、Al含有量が比較的少ない鋼マークA4の鋼板よりも磁束密度B50が向上した。一方、鋼組成が本発明の範囲外である鋼板は、降伏強度YPが600MPaを下回っており、本発明例より明らかに劣っていた。中でも、鋼マークA3の鋼板は、Cu含有量が多いために磁束密度B50が低下した。 A steel sheet having a steel composition within the range of the present invention had a yield strength YP of 600 MPa or more, a tensile strength TS of 750 MPa or more, and an iron loss W 10/400 of 25 W / kg or less, and required characteristics were obtained. . Also, the magnetic flux density B50 was good. In particular, among the steel sheets having a steel composition within the scope of the present invention, the steel marks A5 to A13 having an Al content of 0.6% or more have a higher magnetic flux than the steel mark A4 having a relatively low Al content. Density B50 was improved. On the other hand, the steel plate having a steel composition outside the range of the present invention had a yield strength YP of less than 600 MPa, which was clearly inferior to the examples of the present invention. Among them, steel sheet of the steel mark A3 is the magnetic flux density B 50 was reduced to Cu content is large.

[実施例2]
実施例1にて製造した鋼マークA5およびA9の冷間圧延鋼板を用いて、温度を850℃〜1150℃、張力を3MPa〜7MPaと変化させた仕上げ焼鈍を行い、鋼板表面に絶縁皮膜を塗布した。下記の表3に仕上げ焼鈍条件を示す。
[Example 2]
Using the cold-rolled steel plates of steel marks A5 and A9 manufactured in Example 1, finish annealing was performed by changing the temperature from 850 ° C. to 1150 ° C. and the tension from 3 MPa to 7 MPa, and an insulating film was applied to the steel plate surface did. Table 3 below shows finish annealing conditions.

このようにして得られた鋼板から28cmエプスタイン試験片を採取し、500℃で0.5hの時効熱処理を行った。時効熱処理後の鋼板について、JIS−C−2550規定の方法により鉄損W10/400を測定した。また、磁束密度B50も測定した。さらに、時効熱処理後の鋼板についてJIS−Z−2241に規定の引張試験を行い、降伏強度YPおよび引張強度TSを測定した。下記の表3に磁気特性および強度特性のデータを示す。 A 28 cm Epstein test piece was collected from the steel sheet thus obtained and subjected to aging heat treatment at 500 ° C. for 0.5 h. About the steel plate after an aging heat processing, the iron loss W10 / 400 was measured by the method of JIS-C-2550 regulation. The magnetic flux density B50 was also measured. Further, the steel sheet after the aging heat treatment was subjected to a tensile test specified in JIS-Z-2241 to measure the yield strength YP and the tensile strength TS. Table 3 below shows data of magnetic characteristics and strength characteristics.

Figure 0004696750
Figure 0004696750

本発明に規定の仕上げ焼鈍条件に従って製造された鋼板は、降伏強度YPが600MPa以上、引張強度TSが750MPaであり、かつ鉄損W10/400が25W/kg以下となり、所要の特性が得られた。また、磁束密度B50も良好であった。一方、本発明規定外の条件で製造された鋼板は、降伏強度YPが600MPaを下回るか、あるいは鉄損W10/400が25W/kgを超えており、本発明例より明らかに劣っていた。中でも、仕上げ焼鈍温度が900℃未満である場合は、磁束密度B50が低下した。 The steel sheet manufactured according to the finish annealing conditions specified in the present invention has a yield strength YP of 600 MPa or more, a tensile strength TS of 750 MPa, and an iron loss W 10/400 of 25 W / kg or less, and the required characteristics are obtained. It was. Also, the magnetic flux density B50 was good. On the other hand, the steel sheet manufactured under conditions other than the provisions of the present invention had a yield strength YP of less than 600 MPa or an iron loss W 10/400 of more than 25 W / kg, which was clearly inferior to the examples of the present invention. Among these, when the finish annealing temperature was less than 900 ° C., the magnetic flux density B 50 was lowered.

[実施例3]
実施例1にて製造した鋼マークA9の厚さ2.0mmの熱間圧延鋼板を用いて、種々の熱延板焼鈍を施した後、レバース式の冷間圧延機にて厚さ0.35mmまでの冷間圧延パス数によりその操業性を評価した。結果を下記の表4に示す。
[Example 3]
Using the hot-rolled steel sheet having a thickness of 2.0 mm with the steel mark A9 manufactured in Example 1, various hot-rolled sheet annealing was performed, and then the thickness was 0.35 mm with a lever-type cold rolling mill. The operability was evaluated according to the number of cold rolling passes. The results are shown in Table 4 below.

Figure 0004696750
Figure 0004696750

熱延板焼鈍での焼鈍温度が600℃以上900℃以下である場合は、9パスで冷間圧延できたのに対し、焼鈍温度が600℃未満あるいは900℃を超える場合は、その焼鈍鋼板が非常に硬質であるため圧延回数9パスで厚さ0.35mmまで圧延することができず、操業性が劣ることが判明した。   When the annealing temperature in hot-rolled sheet annealing is 600 ° C. or more and 900 ° C. or less, it can be cold-rolled in 9 passes, whereas when the annealing temperature is less than 600 ° C. or more than 900 ° C., the annealed steel sheet is Since it was very hard, it could not be rolled to a thickness of 0.35 mm in 9 passes, and it was found that the operability was inferior.

仕上げ焼鈍時の張力と鉄損W10/400との関係を示すグラフである。It is a graph which shows the relationship between the tension | tensile_strength at the time of finish annealing, and iron loss W10 / 400 . 仕上げ焼鈍時の張力と降伏強度YPとの関係を示すグラフである。It is a graph which shows the relationship between the tension | tensile_strength at the time of finish annealing, and yield strength YP. 仕上げ焼鈍時の張力と引張強度TSとの関係を示すグラフである。It is a graph which shows the relationship between the tension | tensile_strength at the time of finish annealing, and tensile strength TS.

Claims (6)

質量%で、C:0.02%以下、Si:1.6%以上3%以下、Mn:1%以下、P:0.2%以下、S:0.03%以下、Al:0.1%以上3%以下、Ni:2%以下およびCu:1%超3%以下を含有し、残部がFeおよび不可避的不純物からなる冷間圧延鋼板に、2MPa以上3MPa以下の張力を付加した状態で900℃以上1100℃以下の温度で仕上げ焼鈍を施す仕上げ焼鈍工程を有することを特徴とする時効熱処理用無方向性電磁鋼板の製造方法。   In mass%, C: 0.02% or less, Si: 1.6% or more and 3% or less, Mn: 1% or less, P: 0.2% or less, S: 0.03% or less, Al: 0.1 % To 3% or less, Ni: 2% or less, and Cu: more than 1%, 3% or less, with a balance of 2 MPa or more and 3 MPa or less applied to a cold-rolled steel plate made of Fe and unavoidable impurities. A method for producing a non-oriented electrical steel sheet for aging heat treatment, comprising a finish annealing step of performing finish annealing at a temperature of 900 ° C or higher and 1100 ° C or lower. 前記冷間圧延鋼板が、前記Feの一部に代えて、質量%で、B:0.010%以下を含有することを特徴とする請求項に記載の時効熱処理用無方向性電磁鋼板の製造方法。 2. The non-oriented electrical steel sheet for aging heat treatment according to claim 1 , wherein the cold-rolled steel sheet contains B: 0.010% or less in mass% instead of a part of the Fe. Production method. 前記冷間圧延鋼板が、前記Feの一部に代えて、質量%で、Ti、Nb、VおよびZrからなる群から選択される少なくとも1種の元素を合計で0.01%以上0.1%以下の範囲内で含有することを特徴とする請求項または請求項に記載の時効熱処理用無方向性電磁鋼板の製造方法。 In the cold-rolled steel sheet, at least one element selected from the group consisting of Ti, Nb, V, and Zr is 0.01% or more in total by 0.1% by mass instead of a part of the Fe. The method for producing a non-oriented electrical steel sheet for aging heat treatment according to claim 1 or 2 , wherein the non-oriented electrical steel sheet for aging heat treatment is contained. 質量%で、C:0.02%以下、Si:1.6%以上3%以下、Mn:1%以下、P:0.2%以下、S:0.03%以下、Al:0.1%以上3%以下、Ni:2%以下およびCu:1%超3%以下を含有し、残部がFeおよび不可避的不純物からなる冷間圧延鋼板に、2MPa以上6MPa以下の張力を付加した状態で900℃以上1100℃以下の温度で仕上げ焼鈍を施す仕上げ焼鈍工程を有し、
前記仕上げ焼鈍工程前に、前記冷間圧延鋼板の素材である熱間圧延鋼板に600℃以上900℃以下の温度で2時間以上保持する熱延板焼鈍を施す熱延板焼鈍工程と、熱延板焼鈍が施された前記熱間圧延鋼板に冷間圧延を施す冷間圧延工程とをさらに有することを特徴とする時効熱処理用無方向性電磁鋼板の製造方法。
In mass%, C: 0.02% or less, Si: 1.6% or more and 3% or less, Mn: 1% or less, P: 0.2% or less, S: 0.03% or less, Al: 0.1 % To 3% or less, Ni: 2% or less and Cu: more than 1% and 3% or less, with a balance of 2 MPa to 6 MPa applied to a cold-rolled steel plate comprising Fe and inevitable impurities. A finish annealing step of performing finish annealing at a temperature of 900 ° C. or more and 1100 ° C. or less
Before the finish annealing step, a hot-rolled sheet annealing step for subjecting the hot-rolled steel sheet, which is a material of the cold-rolled steel sheet, to hot-rolled sheet annealing at a temperature of 600 ° C. or higher and 900 ° C. or lower for 2 hours or more, A method for producing a non-oriented electrical steel sheet for aging heat treatment, further comprising: a cold rolling process in which cold rolling is performed on the hot-rolled steel sheet subjected to sheet annealing.
前記冷間圧延鋼板が、前記Feの一部に代えて、質量%で、B:0.010%以下を含有することを特徴とする請求項に記載の時効熱処理用無方向性電磁鋼板の製造方法。 The non-oriented electrical steel sheet for aging heat treatment according to claim 4 , wherein the cold-rolled steel sheet contains B: 0.010% or less in mass% instead of a part of the Fe. Production method. 前記冷間圧延鋼板が、前記Feの一部に代えて、質量%で、Ti、Nb、VおよびZrからなる群から選択される少なくとも1種の元素を合計で0.01%以上0.1%以下の範囲内で含有することを特徴とする請求項または請求項に記載の時効熱処理用無方向性電磁鋼板の製造方法。 In the cold-rolled steel sheet, at least one element selected from the group consisting of Ti, Nb, V, and Zr is 0.01% or more in total by 0.1% by mass instead of a part of the Fe. method for producing a non-oriented electrical steel sheet for aging of claim 4 or claim 5, wherein% by containing within the following range.
JP2005214568A 2005-07-25 2005-07-25 Method for producing non-oriented electrical steel sheet for aging heat treatment Active JP4696750B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005214568A JP4696750B2 (en) 2005-07-25 2005-07-25 Method for producing non-oriented electrical steel sheet for aging heat treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005214568A JP4696750B2 (en) 2005-07-25 2005-07-25 Method for producing non-oriented electrical steel sheet for aging heat treatment

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010249635A Division JP5418469B2 (en) 2010-11-08 2010-11-08 Method for producing non-oriented electrical steel sheet for aging heat treatment

Publications (2)

Publication Number Publication Date
JP2007031754A JP2007031754A (en) 2007-02-08
JP4696750B2 true JP4696750B2 (en) 2011-06-08

Family

ID=37791364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005214568A Active JP4696750B2 (en) 2005-07-25 2005-07-25 Method for producing non-oriented electrical steel sheet for aging heat treatment

Country Status (1)

Country Link
JP (1) JP4696750B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5423175B2 (en) * 2009-06-23 2014-02-19 新日鐵住金株式会社 Non-oriented electrical steel sheet and manufacturing method thereof
JP5671869B2 (en) * 2010-08-09 2015-02-18 新日鐵住金株式会社 Non-oriented electrical steel sheet and manufacturing method thereof
CN103261463B (en) * 2011-04-13 2015-11-25 新日铁住金株式会社 Highly strong, non-oriented electrical steel sheet
CN103952629B (en) * 2014-05-13 2016-01-20 北京科技大学 Silicon cold rolling non-orientation silicon steel and manufacture method in one
WO2016175121A1 (en) * 2015-04-27 2016-11-03 新日鐵住金株式会社 Non-oriented magnetic steel sheet
JP7323762B2 (en) * 2018-12-14 2023-08-09 日本製鉄株式会社 High-strength non-oriented electrical steel sheet with excellent caulking properties
JP7256361B2 (en) * 2018-12-14 2023-04-12 日本製鉄株式会社 Non-oriented electrical steel sheet and manufacturing method thereof, rotor core core of IPM motor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58120733A (en) * 1982-01-09 1983-07-18 Nippon Steel Corp Continuous annealing method of electromagnetic steel plate
JPH09310124A (en) * 1996-05-21 1997-12-02 Nippon Steel Corp Manufacture of nonoriented silicon steel sheet excellent in shape and magnetic property
JP2001003136A (en) * 1999-06-22 2001-01-09 Nippon Steel Corp Rolled shape steel with high strength and high toughness, and its manufacture
JP2002256399A (en) * 2001-03-06 2002-09-11 Sumitomo Metal Ind Ltd Double oriented silicon steel sheet and production method therefor
JP2004300535A (en) * 2003-03-31 2004-10-28 Jfe Steel Kk High strength nonoriented silicon steel sheet having excellent magnetic property, and its production method
JP2005008906A (en) * 2003-06-16 2005-01-13 Jfe Steel Kk High-strength non-oriented magnetic steel sheet excellent in high-frequency magnetic property

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58120733A (en) * 1982-01-09 1983-07-18 Nippon Steel Corp Continuous annealing method of electromagnetic steel plate
JPH09310124A (en) * 1996-05-21 1997-12-02 Nippon Steel Corp Manufacture of nonoriented silicon steel sheet excellent in shape and magnetic property
JP2001003136A (en) * 1999-06-22 2001-01-09 Nippon Steel Corp Rolled shape steel with high strength and high toughness, and its manufacture
JP2002256399A (en) * 2001-03-06 2002-09-11 Sumitomo Metal Ind Ltd Double oriented silicon steel sheet and production method therefor
JP2004300535A (en) * 2003-03-31 2004-10-28 Jfe Steel Kk High strength nonoriented silicon steel sheet having excellent magnetic property, and its production method
JP2005008906A (en) * 2003-06-16 2005-01-13 Jfe Steel Kk High-strength non-oriented magnetic steel sheet excellent in high-frequency magnetic property

Also Published As

Publication number Publication date
JP2007031754A (en) 2007-02-08

Similar Documents

Publication Publication Date Title
JP5228379B2 (en) Non-oriented electrical steel sheet with excellent strength and magnetic properties and manufacturing method thereof
US20200040423A1 (en) Non-oriented electrical steel sheet
JP5995002B2 (en) High magnetic flux density non-oriented electrical steel sheet and motor
KR20120086367A (en) High strength non-oriented electric steel having higher magnetic flux density and manufacture method thereof
JP4696750B2 (en) Method for producing non-oriented electrical steel sheet for aging heat treatment
JP5194535B2 (en) High strength non-oriented electrical steel sheet
WO2007063581A1 (en) Nonoriented electromagnetic steel sheet and process for producing the same
JP2008240104A (en) High-strength non-oriented electromagnetic steel sheet and method for producing the same
JP2007031755A (en) Method for producing non-oriented silicon steel sheet for rotor
JP4349340B2 (en) Method for producing Cu-containing non-oriented electrical steel sheet
JP3835227B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP5418469B2 (en) Method for producing non-oriented electrical steel sheet for aging heat treatment
JPS62256917A (en) High-tensile non-oriented electrical steel sheet for rotating machine and its production
JP4710458B2 (en) Method for producing non-oriented electrical steel sheet for rotor
JP2011179027A (en) Method for manufacturing non-oriented electromagnetic steel sheet for high-frequency current
JP2005060811A (en) High-tensile non-oriented magnetic steel sheet and its production method
JP4424075B2 (en) Non-oriented electrical steel sheet, non-oriented electrical steel sheet for aging heat treatment, and production method thereof
JP5245977B2 (en) Method for producing non-oriented electrical steel sheet
JP4599843B2 (en) Method for producing non-oriented electrical steel sheet
JP2003055746A (en) Nonoriented silicon steel sheet and production method therefor
JP5614063B2 (en) High tension non-oriented electrical steel sheet with excellent high-frequency iron loss
JP5186781B2 (en) Non-oriented electrical steel sheet for aging heat treatment, non-oriented electrical steel sheet and method for producing the same
JP5648661B2 (en) Non-oriented electrical steel sheet for aging heat treatment, non-oriented electrical steel sheet and method for producing the same
JP4356580B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
CN105331879A (en) Non-oriented silicon steel for high-power-density motor and production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070723

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090428

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090611

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101108

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20101202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110214

R150 Certificate of patent or registration of utility model

Ref document number: 4696750

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120703

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20121030

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140311

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140311

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350