JP4599843B2 - Method for producing non-oriented electrical steel sheet - Google Patents

Method for producing non-oriented electrical steel sheet Download PDF

Info

Publication number
JP4599843B2
JP4599843B2 JP2004011122A JP2004011122A JP4599843B2 JP 4599843 B2 JP4599843 B2 JP 4599843B2 JP 2004011122 A JP2004011122 A JP 2004011122A JP 2004011122 A JP2004011122 A JP 2004011122A JP 4599843 B2 JP4599843 B2 JP 4599843B2
Authority
JP
Japan
Prior art keywords
steel
hot
rolled
less
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004011122A
Other languages
Japanese (ja)
Other versions
JP2005200755A (en
Inventor
浩志 藤村
裕義 屋鋪
洋克 仁富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Industries Ltd
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2004011122A priority Critical patent/JP4599843B2/en
Publication of JP2005200755A publication Critical patent/JP2005200755A/en
Application granted granted Critical
Publication of JP4599843B2 publication Critical patent/JP4599843B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)

Description

本発明は、無方向性電磁鋼板の製造方法に関する。特に、本発明は、電気自動車、エアコン、発電機等の鉄心用材料として好適な無方向性電磁鋼板の製造方法に関する。   The present invention relates to a method for producing a non-oriented electrical steel sheet. In particular, the present invention relates to a method for producing a non-oriented electrical steel sheet suitable as an iron core material for electric vehicles, air conditioners, generators and the like.

地球温暖化ガスを削減する必要性から、自動車、家電製品等の分野では消費エネルギーの少ない新製品開発が重要である。例えば、自動車分野においては、ガソリンエンジンとモータとを組合わせたハイブリッド駆動自動車(HEV)、モータ駆動の電気自動車等の低燃費自動車がある。家電製品分野においては、年間電気消費量の少ない高効率エアコン、冷蔵庫等がある。これらの共通した技術はモータであり、モータの高効率化が重要な技術となっている。このモータ高効率化を支える技術の一つとして、鉄心となる無方向性電磁鋼板の低鉄損化が知られている。   Because of the need to reduce global warming gas, it is important to develop new products that consume less energy in the fields of automobiles and home appliances. For example, in the automobile field, there are low fuel consumption vehicles such as a hybrid drive vehicle (HEV) combining a gasoline engine and a motor, and a motor drive electric vehicle. In the field of home appliances, there are high-efficiency air conditioners, refrigerators, etc. with low annual electricity consumption. These common technologies are motors, and high efficiency of the motors is an important technology. As one of the technologies supporting the high efficiency of the motor, it is known to reduce the iron loss of the non-oriented electrical steel sheet as the iron core.

無方向性電磁鋼板の鉄損を低減する方法については、従来から様々な方法が提案されている。その方法は大きく第1〜第3の3つの方法に分けられる。第1の方法は、Si,Al等の成分を増やして鋼板の比抵抗を高めて渦電流損失を低減する方法である。第2の方法は、鋼中のC,N,S,Ti等の不純物成分をできる限り低減しかつ鋼の結晶粒径を大きくして、ヒステリシス損失成分を低減する方法である。第3の方法は、鋼に熱延板焼鈍を行って冷延前の結晶粒径を大きくすることにより磁気特性に有利な集合組織を制御する方法である。   Various methods have been proposed for reducing iron loss of non-oriented electrical steel sheets. The method is roughly divided into the first to third methods. The first method is a method of increasing eddy current loss by increasing the specific resistance of the steel sheet by increasing components such as Si and Al. The second method is a method of reducing the hysteresis loss component by reducing the impurity components such as C, N, S, and Ti in the steel as much as possible and increasing the crystal grain size of the steel. The third method is a method of controlling a texture that is advantageous for magnetic properties by subjecting steel to hot-rolled sheet annealing to increase the crystal grain size before cold rolling.

しかしながら、第1の方法のようにSi,Al量を増加させ、かつ、第2の方法のように上記不純物成分をできるだけ低減して純度を高めた熱延鋼板は、第3の方法のように熱延板焼鈍することにより結晶粒径が大きくなることから、熱延鋼板の靱性が著しく低下する。そのため、冷間圧延時に破断して鋼板の歩留まりが著しく低下する問題があった。また、これを回避する技術としては、300℃〜600℃での温間圧延技術があるが、特別の設備が必要であり、製造コストが上昇する問題があった。   However, the hot-rolled steel sheet with increased purity by increasing the amount of Si and Al as in the first method and reducing the impurity components as much as in the second method is as in the third method. Since the crystal grain size is increased by annealing the hot-rolled sheet, the toughness of the hot-rolled steel sheet is significantly reduced. For this reason, there is a problem that the yield of the steel sheet is remarkably lowered due to breakage during cold rolling. Moreover, as a technique for avoiding this, there is a warm rolling technique at 300 ° C. to 600 ° C. However, there is a problem that special equipment is required and the manufacturing cost increases.

また、特許文献1には、無方向性電磁鋼板の製造にあたり連続鋳造スラブの等軸晶率を高める技術について示されている。この、特許文献1に記載されている発明においては、熱延板焼鈍工程が省略されていることから冷間圧延時の破断が抑制される。しかしながら、磁気特性が十分に改善されていない。   Patent Document 1 discloses a technique for increasing the equiaxed crystal ratio of a continuously cast slab when manufacturing a non-oriented electrical steel sheet. In the invention described in Patent Document 1, since the hot-rolled sheet annealing step is omitted, breakage during cold rolling is suppressed. However, the magnetic properties are not sufficiently improved.

特公平7−33544号公報Japanese Patent Publication No. 7-33544

本発明は、上記問題点に鑑みてなされたものであり、冷間圧延性が良好で且つ磁気特性に優れた無方向性電磁鋼板の製造方法を提供することを主目的とするものである。   This invention is made | formed in view of the said problem, and it aims at providing the manufacturing method of the non-oriented electrical steel sheet which was excellent in cold-rollability and excellent in the magnetic characteristic.

本発明は、上記課題を解決するために、質量%で、C:0.004%以下、Si:1.5%〜4%、Mn:0.1%〜2%、P:0.2%以下、S:0.002%以下、Al:0.1%〜3%、N:0.003%以下、O:0.003%以下、B:0.0050%以下、Ti:0.003%以下、Ca:0.005%以下を含有し、さらに鋼中のSn,Sb,SiおよびAlが下記式(1)および式(2)を満足し、残部が実質的にFe及び不純物からなる鋼塊または鋼片に熱間圧延を施す工程と、上記熱間圧延により得られる熱延鋼板に熱延板焼鈍を施す工程と、上記熱延板焼鈍を施した熱延鋼板に一回または中間焼鈍をはさんだ二回以上の冷間圧延を施す工程と、上記冷間圧延により得られる冷延鋼板に焼鈍を施す工程とを備える無方向性電磁鋼板の製造方法であって、上記鋼塊または鋼片の等軸晶率を30%以上とし、上記熱延鋼板の厚さを2.5mm以下とし、さらに上記熱延板焼鈍の焼鈍温度を750℃以上1100℃以下とすることを特徴とする無方向性電磁鋼板の製造方法を提供する。
Sn+Sb≦0.1% (1)
Si+Al≧2% (2)
(式(1)中および式(2)中において、Sn,Sb,SiおよびAlは、それぞれの元素の含有量を質量%で表した数値である。)
In order to solve the above problems, the present invention provides, in mass%, C: 0.004% or less, Si: 1.5% to 4%, Mn: 0.1% to 2%, P: 0.2% Hereinafter, S: 0.002% or less, Al: 0.1% to 3%, N: 0.003% or less, O: 0.003% or less, B: 0.0050% or less, Ti: 0.003% Hereinafter, steel containing Ca: 0.005% or less, Sn, Sb, Si and Al in the steel satisfy the following formulas (1) and (2), and the balance is substantially composed of Fe and impurities. The step of hot-rolling the ingot or steel slab, the step of subjecting the hot-rolled steel sheet obtained by hot rolling to hot-rolled sheet annealing, and the hot-rolled steel sheet subjected to the hot-rolled sheet annealing once or intermediate annealing A non-directional method comprising a step of performing cold rolling twice or more sandwiched between and a step of annealing the cold-rolled steel sheet obtained by the cold rolling. A method for producing an electrical steel sheet, wherein the equiaxed crystal ratio of the steel ingot or steel slab is 30% or more, the thickness of the hot-rolled steel sheet is 2.5 mm or less, and the annealing temperature of the hot-rolled sheet annealing is further set. Provided is a method for producing a non-oriented electrical steel sheet, characterized by being 750 ° C. or higher and 1100 ° C. or lower.
Sn + Sb ≦ 0.1% (1)
Si + Al ≧ 2% (2)
(In the formula (1) and the formula (2), Sn, Sb, Si and Al are numerical values representing the content of each element in mass%.)

本発明に係る無方向性電磁鋼板の製造方法においては、スラブの等軸晶率を増加させ、熱延鋼板の板厚を低減することにより、冷間圧延時に破断することなく磁気特性に優れた無方向性電磁鋼板を製造することができる。   In the method for producing a non-oriented electrical steel sheet according to the present invention, by increasing the equiaxed crystal ratio of the slab and reducing the thickness of the hot-rolled steel sheet, it has excellent magnetic properties without breaking during cold rolling. A non-oriented electrical steel sheet can be manufactured.

本発明によれば、冷間圧延時に破断することなく磁気特性に優れた無方向性電磁鋼板を製造することができる。   According to the present invention, a non-oriented electrical steel sheet having excellent magnetic properties can be produced without breaking during cold rolling.

以下、本発明の無方向性電磁鋼板の製造方法について詳細に説明する。   Hereinafter, the manufacturing method of the non-oriented electrical steel sheet of this invention is demonstrated in detail.

なお、鋼中の各元素の含有量を示す「%」は、特に断りのない限り「質量%」を意味するものである。さらに、鋼塊または鋼片をスラブということもある。また、スラブから製造した熱延鋼板に熱延板焼鈍を施した鋼板を熱延焼鈍板という。 “%” Indicating the content of each element in the steel means “% by mass” unless otherwise specified . Et al is sometimes a steel ingot or slab of the slab. Moreover, the steel plate which gave the hot-rolled sheet annealing to the hot-rolled steel sheet manufactured from the slab is called a hot-rolled annealed sheet.

本発明の無方向性電磁鋼板の製造方法は、質量%で、C:0.004%以下、Si:1.5%〜4%、Mn:0.1%〜2%、P:0.2%以下、S:0.002%以下、Al:0.1%〜3%、N:0.003%以下、O:0.003%以下、B:0.0050%以下、Ti:0.003%以下、Ca:0.005%以下を含有し、さらに鋼中のSn、Sb、SiおよびAlが下記式(1)および式(2)を満足し、残部が実質的にFe及び不純物からなる鋼塊または鋼片に熱間圧延を施す工程と、上記熱間圧延により得られる熱延鋼板に熱延板焼鈍を施す工程と、上記熱延板焼鈍を施した熱延鋼板に一回または中間焼鈍をはさんだ二回以上の冷間圧延を施す工程と、上記冷間圧延により得られる冷延鋼板に焼鈍を施す工程とを備える無方向性電磁鋼板の製造方法であって、上記鋼塊または鋼片の等軸晶率を30%以上とし、上記熱延鋼板の厚さを2.5mm以下とし、さらに上記熱延板焼鈍の焼鈍温度を750℃以上1100℃以下とすることを特徴とするものである。
Sn+Sb≦0.1% (1)
Si+Al≧2% (2)
なお、上記式(1)および式(2)において、Sn,Sb,SiおよびAlは、それぞれの元素の含有量を質量%で表した数値である。
The manufacturing method of the non-oriented electrical steel sheet according to the present invention is, in mass%, C: 0.004% or less, Si: 1.5% to 4%, Mn: 0.1% to 2%, P: 0.2. %: S: 0.002% or less, Al: 0.1% to 3%, N: 0.003% or less, O: 0.003% or less, B: 0.0050% or less, Ti: 0.003 %, Ca: 0.005% or less, Sn, Sb, Si and Al in the steel satisfy the following formulas (1) and (2), and the balance is substantially composed of Fe and impurities. A step of hot-rolling a steel ingot or steel slab, a step of subjecting the hot-rolled steel sheet obtained by hot rolling to hot-rolled sheet annealing, and a hot-rolled steel sheet subjected to the hot-rolled sheet annealing once or in the middle A method comprising two or more cold rolling steps with annealing and a step of annealing the cold-rolled steel sheet obtained by the cold rolling. A method for producing a heat-resistant electrical steel sheet, wherein the steel ingot or steel piece has an equiaxed crystal ratio of 30% or more, the thickness of the hot-rolled steel sheet is 2.5 mm or less, and the annealing temperature of the hot-rolled sheet annealing Is 750 ° C. or higher and 1100 ° C. or lower.
Sn + Sb ≦ 0.1% (1)
Si + Al ≧ 2% (2)
In the above formulas (1) and (2), Sn, Sb, Si and Al are numerical values representing the content of each element in mass%.

本発明者らは、磁気特性の良好な高い比抵抗を有し、不純物成分の少ない無方向性電磁鋼板用の熱延鋼板を冷間圧延する際に起きる破断を抑制する方法がないかとの観点から鋭意研究を積み重ねてきた。その結果、特定の不純物成分を低減し、鋼塊または鋼片の等軸晶率を高め、熱延鋼板の板厚を低減することにより、冷間圧延性が良好で且つ磁気特性に優れた無方向性電磁鋼板が得られることを見いだした。以下、この発明をなすに至った知見及びそれに至る実験結果について説明する。   The present inventors have a viewpoint that there is a method for suppressing breakage that occurs when cold-rolling a hot-rolled steel sheet for a non-oriented electrical steel sheet having a high specific resistance with good magnetic properties and a small amount of impurity components. Since then, we have accumulated extensive research. As a result, by reducing specific impurity components, increasing the equiaxed crystal ratio of the steel ingot or billet, and reducing the thickness of the hot-rolled steel sheet, the cold rolling property is excellent and the magnetic properties are excellent. It has been found that a grain-oriented electrical steel sheet can be obtained. Hereinafter, the knowledge that has led to the present invention and the experimental results leading to this will be described.

転炉−RH−連続鋳造の工程にて、主要成分がC:0.002%、Si:3.0%、Mn:0.2%、P:0.01%、S:0.0006%、Al:0.7%、N:0.002%、O:0.002%、B:<0.0003%、Ti:0.002%、Ca:<0.0003%、Sn:0.001%、Sb:<0.001%で、等軸晶率が0%から60%である厚さ250mmのスラブを1150℃に加熱した後に850℃仕上げ条件にて厚さ2.0mm、2.4mm、2.6mmまで熱間圧延を行った。これらの鋼板を酸洗後、800℃10hの焼鈍を行い、冷間圧延を施した。図1にこれらの結果を示す。   In the converter-RH-continuous casting process, the main components are C: 0.002%, Si: 3.0%, Mn: 0.2%, P: 0.01%, S: 0.0006%, Al: 0.7%, N: 0.002%, O: 0.002%, B: <0.0003%, Ti: 0.002%, Ca: <0.0003%, Sn: 0.001% , Sb: <0.001%, slab having a thickness of 250 mm with an equiaxed crystal ratio of 0% to 60%, heated to 1150 ° C., and then subjected to a finishing condition of 850 ° C. to a thickness of 2.0 mm, 2.4 mm, Hot rolling was performed up to 2.6 mm. These steel sheets were pickled, annealed at 800 ° C. for 10 hours, and cold-rolled. FIG. 1 shows these results.

図1は、スラブの等軸晶率および熱延鋼板の厚さと冷間圧延破断の有無との関係を示すグラフである。図1の横軸はスラブの等軸晶率を示し、図1の縦軸は熱延鋼板の厚さを示す。また、図1中の「○」印は冷間圧延時に破断しなかったことを示し、「×」印は冷間圧延時に破断したことを示す。図1に示すように、等軸晶率30%未満のスラブから製造した熱延焼鈍板は冷間圧延時に破断することが判明した。また、厚さが2.5mmを超える熱延鋼板に焼鈍を施した熱延板焼鈍板も冷間圧延時に破断することが判明した。一方、等軸晶率30%以上のスラブを厚さが2.5mm以下になるまで熱間圧延して製造した熱延板焼鈍板は、冷間圧延時に破断しないことが判明した。なお、スラブの等軸晶率は鋳造方向に対し垂直なスラブ断面でかつスラブ幅中央部で観察される等軸晶部分の面積率から求めた。   FIG. 1 is a graph showing the relationship between the equiaxed crystal ratio of a slab, the thickness of a hot-rolled steel sheet, and the presence or absence of cold rolling fracture. The horizontal axis in FIG. 1 indicates the equiaxed crystal ratio of the slab, and the vertical axis in FIG. 1 indicates the thickness of the hot-rolled steel sheet. In addition, “◯” in FIG. 1 indicates that no fracture occurred during cold rolling, and “X” represents that fracture occurred during cold rolling. As shown in FIG. 1, it has been found that a hot-rolled annealed plate manufactured from a slab having an equiaxed crystal ratio of less than 30% breaks during cold rolling. Further, it has been found that a hot-rolled sheet annealed plate obtained by annealing a hot-rolled steel sheet having a thickness exceeding 2.5 mm also breaks during cold rolling. On the other hand, it has been found that a hot-rolled sheet annealed plate produced by hot rolling a slab having an equiaxed crystal ratio of 30% or more until the thickness becomes 2.5 mm or less does not break during cold rolling. The equiaxed crystal ratio of the slab was obtained from the area ratio of the equiaxed crystal portion observed in the slab cross section perpendicular to the casting direction and in the center portion of the slab width.

スラブの等軸晶率を増加させることによる冷間圧延の破断低減効果については必ずしも明らかでないが、本発明者らは次のように推察する。Si,Al量の高い鋼の結晶構造は、凝固から室温にいたるまで体心立方構造であり、途中温度での相変態がない。したがって、連続鋳造により製造したスラブは非常に粗大な柱状晶凝固組織を有する。また、この柱状晶は熱間圧延時に再結晶しづらい(100)面方位を有していることから、熱間圧延後も粗大な組織が残留する。   Although it is not necessarily clear about the rupture reduction effect of cold rolling by increasing the equiaxed crystal ratio of the slab, the present inventors infer as follows. The crystal structure of steel with a high amount of Si and Al is a body-centered cubic structure from solidification to room temperature, and there is no phase transformation at intermediate temperatures. Therefore, the slab manufactured by continuous casting has a very coarse columnar crystal solidification structure. Further, since this columnar crystal has a (100) plane orientation that is difficult to recrystallize during hot rolling, a coarse structure remains even after hot rolling.

上記のような熱延鋼板を焼鈍すると、不均一な組織となり粗大な結晶粒が散在する。この傾向は、鉄損低減のためS,Ti等の不純物成分を低減した鋼板でより顕著となる。熱延鋼板の靱性は結晶粒径が大きいほど劣化することから、冷間圧延においては粗大な結晶粒が存在する鋼板で破断しやすくなると考えられる。本発明においては、スラブの等軸晶率を高めていることから、熱間圧延中の再結晶が生じやすく、熱延鋼板の組織が均質となり、冷延破断が生じにくいと推察される。また、熱延鋼板の厚さが厚くなると塑性変形が強く拘束されて脆性割れの亀裂進展エネルギーが小さくなることから、冷間圧延時に割れ易くなると考えられる。   When the hot-rolled steel sheet as described above is annealed, it becomes a non-uniform structure and coarse crystal grains are scattered. This tendency becomes more prominent in a steel sheet in which impurity components such as S and Ti are reduced to reduce iron loss. Since the toughness of a hot-rolled steel sheet deteriorates as the crystal grain size increases, it is considered that in cold rolling, the steel sheet having coarse crystal grains is likely to break. In the present invention, since the equiaxed crystal ratio of the slab is increased, it is presumed that recrystallization during hot rolling is likely to occur, the structure of the hot-rolled steel sheet is uniform, and cold-rolling fracture is unlikely to occur. Further, when the thickness of the hot-rolled steel sheet is increased, plastic deformation is strongly restrained and the crack progress energy of the brittle cracks is reduced, so that it is considered that the hot-rolled steel sheet is easily cracked during cold rolling.

本発明においては、鋼塊または鋼片の等軸晶率を増加させることにより冷間圧延の破断を低減させるものであるが、その効果を有効に引き出しかつ電磁鋼板として必要な他の特性を満足させるためには、後述するように鋼成分、鋼塊または鋼片の等軸晶率、熱延鋼板厚さおよび熱延板焼鈍温度を限定する必要がある。以下、本発明の無方向性電磁鋼板の製造方法における鋼成分、鋼塊または鋼片の等軸晶率、熱延鋼板厚さおよび熱延板焼鈍温度について説明する。   In the present invention, the breaking of cold rolling is reduced by increasing the equiaxed crystal ratio of the steel ingot or steel slab, but the effect is effectively drawn out and other characteristics necessary for the electromagnetic steel sheet are satisfied. To achieve this, it is necessary to limit the equiaxed crystal ratio, hot-rolled steel sheet thickness, and hot-rolled sheet annealing temperature of the steel component, steel ingot or steel slab, as will be described later. Hereinafter, the steel component, the equiaxed crystal ratio of the steel ingot or steel slab, the hot-rolled steel sheet thickness, and the hot-rolled sheet annealing temperature in the method for producing the non-oriented electrical steel sheet of the present invention will be described.

1.鋼成分
・C
鋼中のCは、200℃程度の低温時効により炭化物(セメンタイト、εカーバイド)を鋼中に形成し、鋼の磁気特性劣化の原因となることから、なるべく低減することが重要である。鋼中C含有量が0.004%を超えると、時効による鋼の磁気特性劣化が生じる。したがって、鋼中C含有量は、0.004%以下に限定する。
1. Steel composition ・ C
It is important to reduce C in the steel as much as possible because carbides (cementite, ε carbide) are formed in the steel by low temperature aging at about 200 ° C. and cause deterioration of the magnetic properties of the steel. When the C content in the steel exceeds 0.004%, the magnetic properties of the steel deteriorate due to aging. Therefore, the C content in the steel is limited to 0.004% or less.

・Si
鋼中のSiは、鋼の比抵抗を高めることから鋼の鉄損低減に有効である。しかしながら、鋼中Si含有量が1.5%未満では鋼の鉄損が十分に低減できない。一方、鋼中Si含有量が4%を超えると冷間圧延時に鋼板が破断しやすくなり製造コストが著しく増大する。したがって、鋼中Si含有量は、1.5%以上4%以下とする。なお、鋼の鉄損をより一層低減するためには鋼中Si含有量は、2%以上であることが好ましい。
・ Si
Si in steel is effective in reducing iron loss of steel because it increases the specific resistance of steel. However, if the Si content in the steel is less than 1.5%, the iron loss of the steel cannot be sufficiently reduced. On the other hand, if the Si content in the steel exceeds 4%, the steel sheet is easily broken during cold rolling, and the production cost is remarkably increased. Therefore, the Si content in steel is 1.5% or more and 4% or less. In order to further reduce the iron loss of the steel, the Si content in the steel is preferably 2% or more.

・Mn
鋼中のMnは、鋼の比抵抗を高めることから鋼の鉄損低減に有効である。しかしながら、その効果はSiの効果より小さい。鋼中Mn含有量が0.1%未満になるとMnSが鋼中に微細に分散して鋼の鉄損が劣化する。一方、鋼中Mn含有量が2%を超えると、原料コストが大きくなる。したがって、鋼中Mn含有量は、0.1%以上2%以下に限定する。
・ Mn
Mn in steel is effective in reducing iron loss of steel because it increases the specific resistance of steel. However, the effect is smaller than that of Si. When the Mn content in the steel is less than 0.1%, MnS is finely dispersed in the steel and the iron loss of the steel is deteriorated. On the other hand, if the Mn content in the steel exceeds 2%, the raw material cost increases. Therefore, the Mn content in the steel is limited to 0.1% or more and 2% or less.

・P
Pは鋼中の不純物であり、熱延鋼板の靱性を低下させることから、鋼中P含有量はなるべく低減するのが好ましい。鋼中P含有量が0.2%を超えると鋼の靱性が著しく劣化し、冷間圧延時に鋼板が破断する。したがって、鋼中P含有量は0.2%以下に限定する。一方、Pは鋼の磁束密度を向上させるという作用を有することから、熱延鋼板の靱性劣化を最小限に抑えて、高磁場での鋼の磁束密度を改善するために、P含有量を0.03%以上0.12%以下にすることが好ましい。
・ P
P is an impurity in the steel and lowers the toughness of the hot-rolled steel sheet. Therefore, it is preferable to reduce the P content in the steel as much as possible. When the P content in the steel exceeds 0.2%, the toughness of the steel is remarkably deteriorated, and the steel plate is broken during cold rolling. Therefore, the P content in steel is limited to 0.2% or less. On the other hand, P has the effect of improving the magnetic flux density of the steel. Therefore, in order to minimize the toughness deterioration of the hot-rolled steel sheet and improve the magnetic flux density of the steel in a high magnetic field, the P content is reduced to 0. It is preferable to set it to 0.03% or more and 0.12% or less.

・S
Sは鋼中の不純物であり、添加する必要はない。鋼中S含有量が0.002%を超えると微細なMnSが鋼中に形成され、鋼の鉄損が劣化する。したがって、鋼中S含有量は0.002%以下に限定する。なお、鋼の鉄損をより一層低減するためには、鋼中S含有量を0.001%以下にすることが好ましい。
・ S
S is an impurity in steel and does not need to be added. If the S content in the steel exceeds 0.002%, fine MnS is formed in the steel and the iron loss of the steel deteriorates. Therefore, the S content in the steel is limited to 0.002% or less. In order to further reduce the iron loss of the steel, the S content in the steel is preferably 0.001% or less.

・Al
鋼中のAlは、Siと同様に鋼の比抵抗を高めることから、鋼の鉄損低減に有効である。また、Alは鋼の脱酸に有効であり、鋼の清浄度を高めて熱延鋼板の靱性を高めるのに重要である。しかし、鋼中Al含有量が3%を超えると鋼の飽和磁束密度が著しく低下し鋼の鉄心性能が劣化する。一方、鋼中Al含有量が0.1%未満ではAlNが鋼中に微細に分散して鋼の鉄損が低下する。したがって、鋼中Al含有量は0.1%以上3%以下に限定する。なお、より一層熱延鋼板の靱性を改善するには、鋼中Al含有量を1%以上2.5%以下にすることが好ましい。さらに、鋼中Si含有量および鋼中Al含有量の合計は2%以上に限定する。鋼中Si含有量および鋼中Al含有量の合計が2%未満であれば、鋼板の比抵抗が十分大きくならずに渦電流損が増大するからである。
・ Al
Al in steel increases the specific resistance of steel in the same manner as Si, and is therefore effective in reducing iron loss of steel. Further, Al is effective for deoxidation of steel and is important for increasing the cleanliness of the steel and increasing the toughness of the hot-rolled steel sheet. However, when the Al content in the steel exceeds 3%, the saturation magnetic flux density of the steel is remarkably lowered and the iron core performance of the steel is deteriorated. On the other hand, if the Al content in the steel is less than 0.1%, AlN is finely dispersed in the steel and the iron loss of the steel is reduced. Therefore, the Al content in the steel is limited to 0.1% or more and 3% or less. In order to further improve the toughness of the hot-rolled steel sheet, the Al content in the steel is preferably set to 1% or more and 2.5% or less. Furthermore, the total of the Si content in steel and the Al content in steel is limited to 2% or more. This is because if the total of the Si content in steel and the Al content in steel is less than 2%, the specific resistance of the steel sheet is not sufficiently increased and eddy current loss increases.

・N
Nは、鋼中の不純物であり、添加する必要はない。鋼中N含有量が0.003%を超えるとAlN,TiNが鋼中に多数析出し、鋼の磁気特性が劣化する。したがって、鋼中N含有量は0.003%以下に限定する。
・ N
N is an impurity in steel and does not need to be added. If the N content in the steel exceeds 0.003%, a large number of AlN and TiN precipitate in the steel and the magnetic properties of the steel deteriorate. Therefore, the N content in the steel is limited to 0.003% or less.

・O
Oは鋼中の不純物元素であり、本発明においては極力低減することが不可欠である。鋼中O含有量が0.003%を超えると熱延鋼板の靱性が劣化し、冷間圧延時に破断しやすくなる。したがって、鋼中O含有量は0.003%以下に限定する。なお、本発明における鋼中O含有量は、無方向性電磁鋼板の表面にある絶縁コーティングを研磨により完全除去した鋼板を用いて分析した量とする。
・ O
O is an impurity element in steel, and it is essential to reduce it as much as possible in the present invention. When the O content in the steel exceeds 0.003%, the toughness of the hot-rolled steel sheet is deteriorated, and it is easy to break during cold rolling. Therefore, the O content in the steel is limited to 0.003% or less. In addition, O content in steel in this invention is taken as the quantity analyzed using the steel plate which removed the insulation coating in the surface of a non-oriented electrical steel plate completely by grinding | polishing.

・B
Bは、本発明において必須の元素ではない。しかしながら、鋼中B含有量を0.0003%以上とすることで熱延鋼板の靱性が向上し、冷間圧延時に破断しにくくなる。一方、鋼中B含有量が0.0050%を超えると粗大なB化合物が鋼中に生成し、却って冷間圧延時に破断する恐れがある。したがって、鋼中B含有量は0.0050%以下に限定する。なお鋼板製造性の観点より、鋼中B含有量は0.0003%以上0.0030%以下にすることが好ましい。
・ B
B is not an essential element in the present invention. However, by setting the B content in the steel to 0.0003% or more, the toughness of the hot-rolled steel sheet is improved, and it is difficult to break during cold rolling. On the other hand, if the B content in the steel exceeds 0.0050%, a coarse B compound is produced in the steel, and on the other hand, there is a possibility of breaking during cold rolling. Therefore, the B content in the steel is limited to 0.0050% or less. From the viewpoint of steel sheet manufacturability, the B content in the steel is preferably 0.0003% or more and 0.0030% or less.

・Ti
Tiは、鋼中に炭化物、窒化物、硫化物を形成し、鋼の磁気特性を劣化させると共に熱延鋼板の靱性を低下させることから、なるべく低減する必要がある。鋼中Ti含有量が0.003%を超えるとTi系析出物が鋼中に分散して熱延鋼板の靱性が劣化する。したがって、鋼中Ti含有量は0.003%以下に限定する。
・ Ti
Ti forms carbides, nitrides, and sulfides in the steel, which deteriorates the magnetic properties of the steel and lowers the toughness of the hot-rolled steel sheet, so it needs to be reduced as much as possible. If the Ti content in the steel exceeds 0.003%, Ti-based precipitates are dispersed in the steel and the toughness of the hot-rolled steel sheet deteriorates. Therefore, the Ti content in the steel is limited to 0.003% or less.

・Ca
Caは、本発明では必須の元素でない。しかしながら、鋼中Ca含有量を0.001%以上とすることにより鋼中の硫化物、酸化物等が粗大化することから、鋼の鉄損低減に有効な元素である。一方、鋼中Ca含有量が0.005%を超えると熱延鋼板の靱性が劣化する。したがって、鋼中Ca含有量は0.005%以下に限定する。なお、鋼の鉄損をより一層低減するには鋼中Ca含有量を0.001%以上0.003%以下とすることが好ましい。
・ Ca
Ca is not an essential element in the present invention. However, when the Ca content in the steel is 0.001% or more, sulfides, oxides, etc. in the steel are coarsened, so this is an effective element for reducing the iron loss of the steel. On the other hand, when the Ca content in the steel exceeds 0.005%, the toughness of the hot-rolled steel sheet deteriorates. Therefore, the Ca content in the steel is limited to 0.005% or less. In order to further reduce the iron loss of the steel, the Ca content in the steel is preferably 0.001% or more and 0.003% or less.

・Sn,Sb
Sn,Sbは、少量添加することで無方向性電磁鋼板の磁気特性を向上させるのに有効な元素である。しかしながら、鋼中のSn,Sbの合計含有量が0.1%を超えると熱延鋼板の靱性を著しく低下させる。したがって、鋼中のSn,Sbの合計含有量を0.1%以下に限定する。なお、熱延鋼板の靱性劣化を最小限に抑え、磁気特性を改善するためには、鋼中のSn,Sbの合計含有量を0.01%以上0.03%以下にすることがより好ましい。
・ Sn, Sb
Sn and Sb are effective elements for improving the magnetic properties of the non-oriented electrical steel sheet by adding a small amount. However, if the total content of Sn and Sb in the steel exceeds 0.1%, the toughness of the hot-rolled steel sheet is significantly reduced. Therefore, the total content of Sn and Sb in the steel is limited to 0.1% or less. In order to minimize the toughness deterioration of the hot-rolled steel sheet and improve the magnetic properties, it is more preferable that the total content of Sn and Sb in the steel is 0.01% or more and 0.03% or less. .

2.等軸晶率
本発明においては、冷間圧延性を改善するためには鋼塊または鋼片の等軸晶率を高めることが重要である。その効果を十分得るには、等軸晶率30%以上が必要である。また、等軸晶率を高める具体的な方法としては、一般に知られている溶鋼の電磁攪拌、鋳造時の溶鋼過加熱温度(=鋳込み温度−凝固温度)の低減等がある。なお、鋼塊または鋼片の等軸晶率は、鋳造方向に対し垂直なスラブ断面でかつスラブ幅中央部で観察される等軸晶部分の面積率から算出するものとする。
2. Equiaxial crystal ratio In the present invention, it is important to increase the equiaxed crystal ratio of a steel ingot or steel slab in order to improve cold rollability. In order to obtain the effect sufficiently, an equiaxed crystal ratio of 30% or more is necessary. Specific methods for increasing the equiaxed crystal ratio include generally known electromagnetic stirring of molten steel, reduction of molten steel overheating temperature (= casting temperature−solidification temperature) during casting, and the like. The equiaxed crystal ratio of the steel ingot or steel slab is calculated from the area ratio of the equiaxed crystal portion observed in the slab cross section perpendicular to the casting direction and at the center portion of the slab width.

3.熱間圧延方法
本発明における熱間圧延としては通常の方法を用いることができるが、冷間圧延における割れ破断を抑制するためには、粗圧延の段階で圧下率25%以上の強圧下圧延を1パス以上行うことが好ましい。
3. Hot rolling method Although a normal method can be used as hot rolling in the present invention, in order to suppress crack fracture in cold rolling, strong rolling at a rolling reduction of 25% or more is performed at the stage of rough rolling. It is preferable to perform one or more passes.

4.熱延鋼板の厚さ
Si含有量が高く不純物成分の少ない熱延鋼板は、冷間圧延において割れ易い。冷間圧延における割れは、熱延鋼板の厚さと強い相関がある。例えば、熱延鋼板の厚さが2.5mmを超えると、冷間圧延における破断率が著しく高くなる。したがって、熱延鋼板の厚さは2.5mm以下に限定する。さらに好ましくは、2.3mm以下である。また、鋼の磁気特性をより一層向上させるためには、熱延鋼板の板厚は2.0mm以下が好ましい。また、冷間圧延時の割れ防止に対して、熱延鋼板の板厚下限は特に必要ない。ただし、板厚を薄くすると磁気特性は改善される傾向にあるが、一方で熱延鋼板の表面積が増加し、酸洗能率が低下する。酸洗能率を重視すれば、熱延鋼板の板厚下限は0.8mmとするのが好ましい。
4). Thickness of hot-rolled steel sheet A hot-rolled steel sheet having a high Si content and a low impurity content is easily cracked in cold rolling. Cracks in cold rolling have a strong correlation with the thickness of the hot-rolled steel sheet. For example, when the thickness of the hot-rolled steel sheet exceeds 2.5 mm, the breaking rate in cold rolling becomes extremely high. Therefore, the thickness of the hot-rolled steel sheet is limited to 2.5 mm or less. More preferably, it is 2.3 mm or less. In order to further improve the magnetic properties of the steel, the thickness of the hot rolled steel sheet is preferably 2.0 mm or less. Further, the lower limit of the thickness of the hot-rolled steel sheet is not particularly necessary for preventing cracking during cold rolling. However, when the plate thickness is reduced, the magnetic properties tend to be improved, but on the other hand, the surface area of the hot-rolled steel plate increases and the pickling efficiency decreases. If importance is attached to the pickling efficiency, the lower limit of the thickness of the hot-rolled steel sheet is preferably 0.8 mm.

5.熱延板焼鈍温度
本発明において、熱延板焼鈍は、鋼板の磁気特性を向上させるための必須工程である。熱延板焼鈍温度が750℃未満では熱延焼鈍板の結晶粒径が小さくなることから、磁気特性に有利な集合組織が発達しない。したがって、最終製品の磁気特性が低下する。一方、熱延板焼鈍温度が1100℃を超えると熱延焼鈍板の結晶粒径が大きくなりすぎることから、冷間圧延において破断しやすくなる。したがって、熱延板焼鈍温度は、750℃以上1100℃以下に限定する。
5. Hot-rolled sheet annealing temperature In the present invention, hot-rolled sheet annealing is an essential process for improving the magnetic properties of the steel sheet. When the hot-rolled sheet annealing temperature is lower than 750 ° C., the crystal grain size of the hot-rolled annealed sheet becomes small, so that a texture that is advantageous for magnetic properties does not develop. Therefore, the magnetic properties of the final product are reduced. On the other hand, if the hot-rolled sheet annealing temperature exceeds 1100 ° C., the crystal grain size of the hot-rolled annealed sheet becomes too large, so that it is easy to break in cold rolling. Therefore, the hot-rolled sheet annealing temperature is limited to 750 ° C. or higher and 1100 ° C. or lower.

なお、本発明は、上述した実施形態に限定されるものではない。上述の実施形態は例示であり、本明細書の特許請求の範囲に記載された技術的思想と実質的に同一の構成を有し、同様の効果を奏するものは、如何なるものであっても本発明の技術的範囲に包含される。   In addition, this invention is not limited to embodiment mentioned above. The above-described embodiment is an exemplification, and it is the present invention that has substantially the same configuration as the technical idea described in the claims of the present specification and has the same effect. It is included in the technical scope of the invention.

(実施例)
転炉で脱炭脱硫した溶鋼230tonを取鍋内に出鋼し、その取鍋をRH式真空脱ガス装置に移動した。その後、RH式真空脱ガス装置で溶鋼の減圧脱炭を行い、溶鋼中C濃度を0.005%以下とした後に、Si,Mn,P,S,Al,B,Ca,Sn,Sbの成分を調整し、連続鋳造機にてスラブとした。表1に各スラブ(鋼A〜鋼P)の成分分析値を示す。表1の成分分析値の単位は質量%である。表1に示すように、鋼A〜鋼Gはいずれの鋼成分も本発明の限定範囲内にあり、鋼H〜鋼Pは鋼中のいずれかの鋼成分が本発明の限定範囲から外れている。なお、鋼Pは、Si含有量とAl含有量の合計が0.2%未満であることから、本発明の限定範囲から外れている。
(Example)
230 ton of molten steel decarburized and desulfurized in a converter was put into a ladle, and the ladle was moved to an RH type vacuum degassing apparatus. Thereafter, decarburization of the molten steel is performed with an RH vacuum degassing apparatus, and after the C concentration in the molten steel is set to 0.005% or less, components of Si, Mn, P, S, Al, B, Ca, Sn, and Sb are included. The slab was adjusted with a continuous casting machine. Table 1 shows component analysis values of each slab (steel A to steel P). The unit of component analysis values in Table 1 is mass%. As shown in Table 1, any of the steel components of steel A to steel G is within the limited range of the present invention, and any of the steel components in steel H to steel P is out of the limited range of the present invention. Yes. Note that the steel P is out of the limited range of the present invention because the sum of the Si content and the Al content is less than 0.2%.

Figure 0004599843
Figure 0004599843

次に、鋼A〜鋼Pを加熱炉で1150℃まで加熱し、仕上げ温度850℃〜880℃、巻き取り温度500℃で熱間圧延し、厚さ1.4mm〜3.0mmの鋼板とした。次いで、上記鋼板に対して、酸洗脱スケールして焼鈍しない場合、720℃で10時間焼鈍する場合、800℃で10時間焼鈍する場合および酸洗前に1120℃で30秒焼鈍して酸洗する場合に分けてそれぞれの処理を施した。次に、各鋼板を厚さ0.35mmまで冷間圧延し、1030℃で仕上げ焼鈍した。仕上げ焼鈍後、各鋼板表面に絶縁皮膜を塗布した。これらの鋼板から28cmエプスタイン試験片を採取し、JIS−C−2550規定の方法により鉄損を測定した。   Next, Steel A to Steel P were heated to 1150 ° C. in a heating furnace, and hot-rolled at a finishing temperature of 850 ° C. to 880 ° C. and a winding temperature of 500 ° C. to obtain a steel plate having a thickness of 1.4 mm to 3.0 mm. . Next, the steel plate is not pickled and descaled, annealed at 720 ° C for 10 hours, annealed at 800 ° C for 10 hours, and annealed at 1120 ° C for 30 seconds before pickling. Each process was given separately. Next, each steel plate was cold-rolled to a thickness of 0.35 mm and finish-annealed at 1030 ° C. After finish annealing, an insulating film was applied to the surface of each steel plate. 28 cm Epstein specimens were collected from these steel plates, and the iron loss was measured by the method defined in JIS-C-2550.

鋼板の製造条件、冷延破断有無および磁気特性を表2に示す。表2に示すように、実施例4〜実施例8においては、鋼成分、等軸晶率、熱延鋼板の厚さおよび熱延板焼鈍温度が本発明の限定範囲内にある。一方、比較例1〜比較例19においては、鋼成分、等軸晶率、熱延鋼板の厚さおよび熱延板焼鈍温度のいずれかが本発明の限定範囲外にある。 Table 2 shows the production conditions, presence / absence of cold-rolling fracture, and magnetic properties of the steel sheet. As shown in Table 2, in the actual施例4 Example 8, the steel composition, etc. JikuAkiraritsu, thickness and hot rolled sheet annealing temperature of hot-rolled steel sheet is within the limited range of the present invention. On the other hand, in Comparative Examples 1 to 19, any of the steel components, the equiaxed crystal ratio, the thickness of the hot-rolled steel sheet, and the hot-rolled sheet annealing temperature is out of the limited range of the present invention.

Figure 0004599843
Figure 0004599843

(評価)
施例4〜実施例8においては、いずれも冷間圧延時の破断がなく、かつ、鋼板の鉄損W15/50が2.3W/kg未満の良好な値となった。一方、等軸晶率が本発明の限定範囲未満である比較例1,2の鋼板、熱延鋼板厚さが本発明の限定範囲を超える比較例3,4の鋼板および熱延板焼鈍温度が本発明の限定範囲を超える比較例6の鋼板は、冷間圧延時に破断した。また、熱延板焼鈍温度が本発明の限定範囲未満である比較例5の鋼板は、磁気特性が著しく劣化した。さらに、熱延板焼鈍を省略した比較例7〜9の鋼板は、熱延板焼鈍処理を施した同一成分の鋼板よりも磁気特性が劣化した。また、鋼成分であるTi,O,B,Ca,Snのいずれかの含有量が本発明の限定範囲を超えている比較例11,12,15,17の鋼板は、冷間圧延時に破断した。さらに、鋼成分のN,Mn,Al,S,(Si+Al)のいずれかの含有量が本発明の限定範囲外である比較例10,13,14,16,18,19の鋼板は、磁気特性が劣化した。
(Evaluation)
In actual施例4 Example 8, both without breakage during cold rolling, and iron loss W15 / 50 of the steel sheet was a satisfactory value of less than 2.3 W / kg. On the other hand, the steel plates of Comparative Examples 1 and 2 whose equiaxed crystal ratio is less than the limited range of the present invention, the steel plates of Comparative Examples 3 and 4 whose hot-rolled steel plate thickness exceeds the limited range of the present invention, and the hot-rolled sheet annealing temperature The steel plate of Comparative Example 6 exceeding the limited range of the present invention broke during cold rolling. In addition, the steel sheet of Comparative Example 5 having a hot-rolled sheet annealing temperature less than the limited range of the present invention was significantly deteriorated in magnetic properties. Further, the steel sheets of Comparative Examples 7 to 9 in which the hot-rolled sheet annealing was omitted had deteriorated magnetic properties as compared with the same-component steel sheets subjected to the hot-rolled sheet annealing treatment. Moreover, the steel plates of Comparative Examples 11, 12, 15, and 17 in which the content of any one of Ti, O, B, Ca, and Sn, which are steel components, exceeds the limited range of the present invention, fractured during cold rolling. . Furthermore, the steel sheets of Comparative Examples 10, 13, 14, 16, 18, and 19 in which the content of any of the steel components N, Mn, Al, S, and (Si + Al) is outside the limited range of the present invention are magnetic properties. Deteriorated.

以上のことから、鋼成分、等軸晶率、熱延鋼板の厚さおよび熱延板焼鈍温度を本発明の範囲内に限定することにより、冷間圧延時の破断がなく、かつ、低鉄損の鋼板を製造できることが確かめられた。   From the above, by limiting the steel component, equiaxed crystal ratio, hot-rolled steel sheet thickness and hot-rolled sheet annealing temperature within the scope of the present invention, there is no breakage during cold rolling and low iron It was confirmed that a steel plate with a loss could be produced.

スラブの等軸晶率および熱延鋼板の厚さと冷間圧延破断の有無との関係を示すグラフである。It is a graph which shows the relationship between the equiaxed crystal ratio of a slab, the thickness of a hot-rolled steel plate, and the presence or absence of cold rolling fracture.

Claims (1)

質量%で、C:0.004%以下、Si:1.5%〜4%、Mn:0.1%〜2%、P:0.03%〜0.2%、S:0.002%以下、Al:%〜3%、N:0.003%以下、O:0.003%以下、B:0.0050%以下、Ti:0.003%以下、Ca:0.005%以下を含有し、さらに鋼中のSn,Sb,SiおよびAlが下記式(1)および式(2)を満足し、残部がFe及び不可避的不純物からなる鋼塊または鋼片に熱間圧延を施す工程と、前記熱間圧延により得られる熱延鋼板に熱延板焼鈍を施す工程と、前記熱延板焼鈍を施した熱延鋼板に一回または中間焼鈍をはさんだ二回以上の冷間圧延を施す工程と、前記冷間圧延により得られる冷延鋼板に焼鈍を施す工程とを備える無方向性電磁鋼板の製造方法であって、前記鋼塊または鋼片の等軸晶率を30%以上とし、前記熱延鋼板の厚さを2.0mm以下とし、さらに前記熱延板焼鈍の焼鈍温度を750℃以上1100℃以下とすることを特徴とする無方向性電磁鋼板の製造方法。
Sn+Sb≦0.1% (1)
Si+Al≧2% (2)
(式(1)中および式(2)中において、Sn,Sb,SiおよびAlは、それぞれの
元素の含有量を質量%で表した数値である。)
In mass%, C: 0.004% or less, Si: 1.5% to 4%, Mn: 0.1% to 2%, P: 0.03% to 0.2 %, S: 0.002% Hereinafter, Al: 1 % to 3%, N: 0.003% or less, O: 0.003% or less, B: 0.0050% or less, Ti: 0.003% or less, Ca: 0.005% or less A step of hot rolling steel ingots or steel slabs containing Sn, Sb, Si and Al satisfying the following formulas (1) and (2), the balance being Fe and inevitable impurities: And a step of subjecting the hot-rolled steel sheet obtained by the hot rolling to hot-rolled sheet annealing, and a hot-rolled steel sheet subjected to the hot-rolled sheet annealing at least once, or two or more cold rolling sandwiched between intermediate annealing. A method for producing a non-oriented electrical steel sheet, comprising: a step of applying, and a step of annealing the cold-rolled steel sheet obtained by the cold rolling, The equiaxed crystal ratio of the steel ingot or steel slab is 30% or more, the thickness of the hot-rolled steel sheet is 2.0 mm or less, and the annealing temperature of the hot-rolled sheet annealing is 750 ° C. or more and 1100 ° C. or less. The manufacturing method of the non-oriented electrical steel sheet characterized by these.
Sn + Sb ≦ 0.1% (1)
Si + Al ≧ 2% (2)
(In the formula (1) and the formula (2), Sn, Sb, Si and Al are numerical values representing the content of each element in mass%.)
JP2004011122A 2004-01-19 2004-01-19 Method for producing non-oriented electrical steel sheet Expired - Fee Related JP4599843B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004011122A JP4599843B2 (en) 2004-01-19 2004-01-19 Method for producing non-oriented electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004011122A JP4599843B2 (en) 2004-01-19 2004-01-19 Method for producing non-oriented electrical steel sheet

Publications (2)

Publication Number Publication Date
JP2005200755A JP2005200755A (en) 2005-07-28
JP4599843B2 true JP4599843B2 (en) 2010-12-15

Family

ID=34823639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004011122A Expired - Fee Related JP4599843B2 (en) 2004-01-19 2004-01-19 Method for producing non-oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JP4599843B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5076510B2 (en) * 2007-01-17 2012-11-21 住友金属工業株式会社 Non-oriented electrical steel sheet for rotor and manufacturing method thereof
EP2520681B1 (en) * 2009-12-28 2018-10-24 Posco Non-oriented electrical steel sheet having superior magnetic properties and a production method therefor
JP5892327B2 (en) 2012-03-15 2016-03-23 Jfeスチール株式会社 Method for producing non-oriented electrical steel sheet
RU2617304C2 (en) 2013-02-21 2017-04-24 ДжФЕ СТИЛ КОРПОРЕЙШН Method of semi-finished sheet manufacture from electrical steel with excellent magnetic properties
JP6319574B2 (en) * 2014-08-14 2018-05-09 Jfeスチール株式会社 Non-oriented electrical steel sheet with excellent magnetic properties
US11299792B2 (en) 2014-12-24 2022-04-12 Posco Non-oriented electrical steel sheet and manufacturing method therefor
DE102018201622A1 (en) * 2018-02-02 2019-08-08 Thyssenkrupp Ag Afterglow, but not nachglühpflichtiges electrical tape
CN112430778A (en) * 2019-08-26 2021-03-02 宝山钢铁股份有限公司 Thin non-oriented electrical steel plate and manufacturing method thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03126845A (en) * 1989-10-13 1991-05-30 Nippon Steel Corp Nonoriented silicon steel sheet excellent in magnetic property
JPH0550185A (en) * 1991-08-20 1993-03-02 Sumitomo Metal Ind Ltd Manufacture of nonoriented electromagnetic steel sheet
JPH10251754A (en) * 1997-03-14 1998-09-22 Nippon Steel Corp Manufacture of nonoriented silicon steel sheet
JPH11138238A (en) * 1997-10-31 1999-05-25 Sumitomo Metal Ind Ltd Production of b-containing austenitic stainless steel cast slab
JPH11222653A (en) * 1998-02-06 1999-08-17 Nippon Steel Corp Non-oriented silicon steel sheet for electric vehicle motor and its production
JPH11343544A (en) * 1997-11-04 1999-12-14 Kawasaki Steel Corp Iron-chromium-silicon alloy excellent in high frequency magnetic property and its production
JP2000096195A (en) * 1998-09-18 2000-04-04 Nippon Steel Corp Nonoriented silicon steel sheet for motor of electric automobile and its production
JP2003113451A (en) * 2001-10-05 2003-04-18 Kawasaki Steel Corp Non-oriented electromagnetic steel sheet for electromotive power steering motor and manufacturing therefor
JP2003213385A (en) * 2002-01-23 2003-07-30 Sumitomo Metal Ind Ltd Nonoriented silicon steel sheet

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03126845A (en) * 1989-10-13 1991-05-30 Nippon Steel Corp Nonoriented silicon steel sheet excellent in magnetic property
JPH0550185A (en) * 1991-08-20 1993-03-02 Sumitomo Metal Ind Ltd Manufacture of nonoriented electromagnetic steel sheet
JPH10251754A (en) * 1997-03-14 1998-09-22 Nippon Steel Corp Manufacture of nonoriented silicon steel sheet
JPH11138238A (en) * 1997-10-31 1999-05-25 Sumitomo Metal Ind Ltd Production of b-containing austenitic stainless steel cast slab
JPH11343544A (en) * 1997-11-04 1999-12-14 Kawasaki Steel Corp Iron-chromium-silicon alloy excellent in high frequency magnetic property and its production
JPH11222653A (en) * 1998-02-06 1999-08-17 Nippon Steel Corp Non-oriented silicon steel sheet for electric vehicle motor and its production
JP2000096195A (en) * 1998-09-18 2000-04-04 Nippon Steel Corp Nonoriented silicon steel sheet for motor of electric automobile and its production
JP2003113451A (en) * 2001-10-05 2003-04-18 Kawasaki Steel Corp Non-oriented electromagnetic steel sheet for electromotive power steering motor and manufacturing therefor
JP2003213385A (en) * 2002-01-23 2003-07-30 Sumitomo Metal Ind Ltd Nonoriented silicon steel sheet

Also Published As

Publication number Publication date
JP2005200755A (en) 2005-07-28

Similar Documents

Publication Publication Date Title
KR101582581B1 (en) Non-oriented Silicon Steel and Its Manufacturing Method
JP5675950B2 (en) Method for producing highly efficient non-oriented silicon steel with excellent magnetic properties
JP6580700B2 (en) High magnetic flux density / low iron loss / non-oriented electrical steel sheet with good surface condition and manufacturing method thereof
JP5712863B2 (en) Method for producing non-oriented electrical steel sheet
JP4126479B2 (en) Method for producing non-oriented electrical steel sheet
EP4001450A1 (en) 600mpa grade non-oriented electrical steel sheet and manufacturing method thereof
WO2013134895A1 (en) Non-oriented electrical steel plate and manufacturing process therefor
WO1986007390A1 (en) Process for producing silicon steel sheet having soft magnetic characteristics
JP4358550B2 (en) Method for producing non-oriented electrical steel sheet with excellent rolling direction and perpendicular magnetic properties in the plate surface
JP5824965B2 (en) Method for producing non-oriented electrical steel sheet
JP4599843B2 (en) Method for producing non-oriented electrical steel sheet
JP2007247047A (en) Non-oriented electromagnetic steel sheet
JP3835227B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP4349340B2 (en) Method for producing Cu-containing non-oriented electrical steel sheet
JP5712862B2 (en) Method for producing non-oriented electrical steel sheet
JP5839172B2 (en) Method for producing grain-oriented electrical steel sheet
JP6123234B2 (en) Electrical steel sheet
JP3931842B2 (en) Method for producing non-oriented electrical steel sheet
JP5712864B2 (en) Method for producing non-oriented electrical steel sheet and method for evaluating cold rollability
JP3352904B2 (en) Manufacturing method of non-oriented electrical steel sheet
JP2005187846A (en) Non-oriented electromagnetic steel sheet and manufacturing method therefor
JP4228995B2 (en) Manufacturing method of electrical steel sheet
JP5972540B2 (en) Non-oriented electrical steel sheet
JP3178270B2 (en) Manufacturing method of non-oriented electrical steel sheet
WO2024080140A1 (en) Nonoriented electromagnetic steel sheet and method for manufacturing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080826

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100831

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100913

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4599843

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120703

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20121030

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees