JP2005187846A - Non-oriented electromagnetic steel sheet and manufacturing method therefor - Google Patents

Non-oriented electromagnetic steel sheet and manufacturing method therefor Download PDF

Info

Publication number
JP2005187846A
JP2005187846A JP2003427526A JP2003427526A JP2005187846A JP 2005187846 A JP2005187846 A JP 2005187846A JP 2003427526 A JP2003427526 A JP 2003427526A JP 2003427526 A JP2003427526 A JP 2003427526A JP 2005187846 A JP2005187846 A JP 2005187846A
Authority
JP
Japan
Prior art keywords
steel
less
content
steel sheet
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003427526A
Other languages
Japanese (ja)
Inventor
Hiroshi Fujimura
浩志 藤村
Hiroyoshi Yashiki
裕義 屋鋪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2003427526A priority Critical patent/JP2005187846A/en
Publication of JP2005187846A publication Critical patent/JP2005187846A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a non-oriented electromagnetic steel sheet which, though containing much C, has such magnetic properties of an iron core as not to deteriorate by aging due to a temperature rise of the iron core during the operation of an electrical machinery and apparatus. <P>SOLUTION: In order to achieve the object, the non-oriented electromagnetic steel sheet comprises, by mass%, 0.0026-0.010% C, 4.0% or less Si, 0.10-2.0% Mn, 0.20% or less P, 0.006% or less S, 0.20-3.0% Al, 0.0020% or more but less than 0.040% V, 0.003% or less Ti, 0.0050% or less N, 0.010% or less B, 0.20% or less Sn+Sb, 0.010% or less Ca and the balance substantially Fe with unavoidable impurities. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、モータ、変圧器等の鉄心に適用される無方向性電磁鋼板およびその製造方法に関する。特に、電気機器の中でも運転中高温となるコンプレッサモータ、誘導モータ等の鉄心および運転中高温になりさらにヒステリシス損が低いことが望まれるパワーステアリングモータ等の鉄心に好適な無方向性電磁鋼板およびその製造方法に関する。   The present invention relates to a non-oriented electrical steel sheet applied to iron cores such as motors and transformers, and a method for manufacturing the same. In particular, non-oriented electrical steel sheets suitable for iron cores such as compressor motors and induction motors that are hot during operation, and power steering motors that are desired to have high hysteresis during operation and low hysteresis loss, and the like. It relates to a manufacturing method.

地球温暖化防止、省エネルギー推進の観点等から、各種電気機器の高効率化および小型化が進められている。電気機器の効率化および小型化には、その鉄心素材である電磁鋼板の磁気特性を改善することが有効である。   From the viewpoints of preventing global warming and promoting energy saving, various electric devices are being made highly efficient and downsized. In order to increase the efficiency and miniaturization of electrical equipment, it is effective to improve the magnetic properties of the electrical steel sheet that is the core material.

従来より、電磁鋼板の磁気特性は、製品出荷前にエプスタイン法等により室温において測定されている。しかしながら、現実の電気機器運転中においては、鉄心の温度が150℃〜200℃まで上昇する場合があることから、時効効果により鉄心の磁気特性が劣化する問題があった。   Conventionally, the magnetic properties of electrical steel sheets have been measured at room temperature by the Epstein method or the like before product shipment. However, during actual electrical equipment operation, since the temperature of the iron core may rise to 150 ° C. to 200 ° C., there is a problem that the magnetic properties of the iron core deteriorate due to the aging effect.

このような時効による磁気特性劣化に対しては、劣化の原因であるセメンタイト、εカーバイド等の炭化物の析出を抑制することが有効であることが知られている。そのため、電磁鋼板に含まれるC量を極限まで低減させる努力がなされてきている。   It is known that it is effective to suppress the precipitation of carbides such as cementite and ε carbide, which are the cause of deterioration, against such deterioration of magnetic properties due to aging. For this reason, efforts have been made to reduce the amount of C contained in the electromagnetic steel sheet to the limit.

例えば、非特許文献1には、鋼中の固溶C量を0.0030%以下に低減することにより、時効劣化が抑制されると記載されている。しかしながら、これは比較的高磁場(例えば、1.5T)における鉄損に関するものである。一方、低磁場(例えば、1.0T以下)における鉄損の時効劣化はより顕著であり、現状においては十分抑制できていない。   For example, Non-Patent Document 1 describes that aging deterioration is suppressed by reducing the amount of solute C in steel to 0.0030% or less. However, this is related to iron loss at relatively high magnetic fields (eg, 1.5 T). On the other hand, the aging deterioration of the iron loss in a low magnetic field (for example, 1.0 T or less) is more remarkable and cannot be sufficiently suppressed in the present situation.

特許文献1には、時効劣化を抑制する製造方法が開示されている。この方法は、鋼を650℃〜900℃において焼鈍後、1000℃/sを超える冷却速度で急速冷却し、次いで300℃〜550℃において60秒以上の過時効処理を施すことを特徴とするものである。この方法によれば、急速冷却時に鋼板の平坦が劣化し、過時効処理により生産効率が低下する問題があった。   Patent Document 1 discloses a manufacturing method that suppresses aging degradation. This method is characterized in that after annealing the steel at 650 ° C. to 900 ° C., the steel is rapidly cooled at a cooling rate exceeding 1000 ° C./s, and then subjected to an overaging treatment at 300 ° C. to 550 ° C. for 60 seconds or more. It is. According to this method, there is a problem that the flatness of the steel sheet deteriorates during rapid cooling, and the production efficiency decreases due to the overaging treatment.

NKK技報,131(1990),16NKK Technical Report, 131 (1990), 16 特開昭64−55337号公報JP-A 64-55337

本発明は、上記問題点に鑑みてなされたものであり、C含有量が高くても、電気機器運転中における鉄心温度上昇に伴う鉄心磁気特性の時効劣化が低減される無方向性電磁鋼板を提供することを主目的とするものである。   The present invention has been made in view of the above problems, and provides a non-oriented electrical steel sheet in which aging deterioration of core magnetic properties due to a rise in core temperature during operation of electrical equipment is reduced even when the C content is high. The main purpose is to provide.

本発明は上記課題を解決するために、質量%で、C:0.0026%〜0.010%、Si:4.0%以下、Mn:0.10%〜2.0%、P:0.20%以下、S:0.006%以下、Al:0.20%〜3.0%、V:0.0020%〜0.040%未満、Ti:0.003%以下、N:0.0050%以下、B:0.010%以下、Sn+Sb:0.20%以下、Ca:0.010%以下を含有し、残部が実質的にFeおよび不可避的不純物からなることを特徴とする無方向性電磁鋼板を提供する。   In order to solve the above-described problems, the present invention provides, in mass%, C: 0.0026% to 0.010%, Si: 4.0% or less, Mn: 0.10% to 2.0%, P: 0 20% or less, S: 0.006% or less, Al: 0.20% to 3.0%, V: 0.0020% to less than 0.040%, Ti: 0.003% or less, N: 0.0. 0050% or less, B: 0.010% or less, Sn + Sb: 0.20% or less, Ca: 0.010% or less, the balance being substantially composed of Fe and inevitable impurities An electrical steel sheet is provided.

本発明に係る無方向性電磁鋼板においては、鋼成分としてVを所定量含有させることにより、時効処理後においてもセメンタイト、εカーバイド等の析出物の析出および成長が抑制される。それにより、時効による鉄損劣化が防止される。   In the non-oriented electrical steel sheet according to the present invention, by containing a predetermined amount of V as a steel component, precipitation and growth of precipitates such as cementite and ε carbide are suppressed even after aging treatment. Thereby, the iron loss deterioration by aging is prevented.

また、本発明においては、質量%で、C:0.0026%〜0.010%、Si:4.0%以下、Mn:0.10%〜2.0%、P:0.20%以下、S:0.006%以下、Al:0.20%〜3.0%、V:0.0020%〜0.040%未満、Ti:0.003%以下、N:0.0050%以下、B:0.010%以下、Sn+Sb:0.20%以下、Ca:0.010%以下を含有し、残部が実質的にFeおよび不可避的不純物からなる鋼塊または鋼片に、下記式(1)〜式(3)を充足する条件で熱間圧延、冷間圧延および仕上げ焼鈍することを特徴とする無方向性電磁鋼板の製造方法を提供する。
鋼塊または鋼片加熱温度=1050℃〜1250℃ (1)
熱間圧延終了温度=700℃〜950℃ (2)
仕上げ焼鈍温度≧800℃ (3)
Further, in the present invention, by mass, C: 0.0026% to 0.010%, Si: 4.0% or less, Mn: 0.10% to 2.0%, P: 0.20% or less S: 0.006% or less, Al: 0.20% to 3.0%, V: 0.0020% to less than 0.040%, Ti: 0.003% or less, N: 0.0050% or less, B: 0.010% or less, Sn + Sb: 0.20% or less, Ca: 0.010% or less, with the balance being substantially composed of Fe and inevitable impurities. ) To Equation (3) are provided, and a method for producing a non-oriented electrical steel sheet is provided, which includes hot rolling, cold rolling, and finish annealing.
Steel ingot or billet heating temperature = 1050 ° C. to 1250 ° C. (1)
Hot rolling end temperature = 700 ° C. to 950 ° C. (2)
Finish annealing temperature ≧ 800 ° C (3)

本発明に係る無方向性電磁鋼板の製造方法においては、鋼の加熱温度が1050℃〜1250℃に限定されることから、鋼の変形抵抗が増加せずに熱間圧延が容易になるとともに、鋼の熱延中にAlNおよびMnSが微細析出しない。   In the manufacturing method of the non-oriented electrical steel sheet according to the present invention, since the heating temperature of the steel is limited to 1050 ° C. to 1250 ° C., hot rolling is facilitated without increasing the deformation resistance of the steel, AlN and MnS do not precipitate finely during hot rolling of steel.

また、熱間圧延終了温度が700℃〜950℃に限定されることから、熱延鋼板表面の酸化スケール生成が抑制されるので、後工程の酸洗において脱スケールが容易となる。   Moreover, since the hot rolling end temperature is limited to 700 ° C. to 950 ° C., generation of oxide scale on the surface of the hot-rolled steel sheet is suppressed, so that descaling is facilitated in the subsequent pickling.

また、仕上げ焼鈍温度が800℃以上に限定されることから、鋼中の結晶粒径が大きくなり、鋼の鉄損が低減される。   Moreover, since the finish annealing temperature is limited to 800 ° C. or more, the crystal grain size in the steel is increased, and the iron loss of the steel is reduced.

また、鋼成分としてVを所定量含有させることにより、時効処理後においてもセメンタイト、εカーバイド等の析出物の析出および成長が抑制される。それにより、時効による鉄損劣化が防止される。   Further, by containing a predetermined amount of V as a steel component, precipitation and growth of precipitates such as cementite and ε carbide are suppressed even after aging treatment. Thereby, the iron loss deterioration by aging is prevented.

さらに、本発明においては、質量%で、C:0.0026%〜0.010%、Si:4.0%以下、Mn:0.10%〜2.0%、P:0.20%以下、S:0.006%以下、Al:0.20%〜3.0%、V:0.0020%〜0.040%未満、Ti:0.003%以下、N:0.0050%以下、B:0.010%以下、Sn+Sb:0.20%以下、Ca:0.010%以下を含有し、残部が実質的にFeおよび不可避的不純物からなる鋼塊または鋼片に、下記式(1)〜式(4)を充足する条件で熱間圧延、熱延板焼鈍、冷間圧延および仕上げ焼鈍することを特徴とする無方向性電磁鋼板の製造方法を提供する。
鋼塊または鋼片加熱温度=1050℃〜1250℃ (1)
熱間圧延終了温度=700℃〜950℃ (2)
熱延板焼鈍温度=750℃〜1100℃ (4)
仕上げ焼鈍温度≧800℃ (3)
Furthermore, in the present invention, by mass, C: 0.0026% to 0.010%, Si: 4.0% or less, Mn: 0.10% to 2.0%, P: 0.20% or less S: 0.006% or less, Al: 0.20% to 3.0%, V: 0.0020% to less than 0.040%, Ti: 0.003% or less, N: 0.0050% or less, B: 0.010% or less, Sn + Sb: 0.20% or less, Ca: 0.010% or less, with the balance being substantially composed of Fe and inevitable impurities. ) To Equation (4) are provided, and a method for producing a non-oriented electrical steel sheet is provided, wherein hot rolling, hot rolled sheet annealing, cold rolling and finish annealing are performed.
Steel ingot or billet heating temperature = 1050 ° C. to 1250 ° C. (1)
Hot rolling end temperature = 700 ° C. to 950 ° C. (2)
Hot-rolled sheet annealing temperature = 750 ° C. to 1100 ° C. (4)
Finish annealing temperature ≧ 800 ° C (3)

本発明に係る無方向性電磁鋼板の製造方法においては、鋼の加熱温度が1050℃〜1250℃に限定されることから、鋼の変形抵抗が増加せずに熱間圧延が容易になるとともに、鋼の熱延中にAlNおよびMnSが微細析出しない。   In the manufacturing method of the non-oriented electrical steel sheet according to the present invention, since the heating temperature of the steel is limited to 1050 ° C. to 1250 ° C., hot rolling is facilitated without increasing the deformation resistance of the steel, AlN and MnS do not precipitate finely during hot rolling of steel.

また、熱間圧延終了温度が700℃〜950℃に限定されることから、熱延鋼板表面の酸化スケール生成が抑制されるので、後工程の酸洗において脱スケールが容易となる。   Moreover, since the hot rolling end temperature is limited to 700 ° C. to 950 ° C., generation of oxide scale on the surface of the hot-rolled steel sheet is suppressed, so that descaling is facilitated in the subsequent pickling.

さらに、熱延板焼鈍温度が750℃〜1100℃に限定されることから、熱延板の粒径が大きくなり過ぎずに冷間圧延時の破断が防止されるとともに、鋼の磁気特性が向上する。   Furthermore, since the hot-rolled sheet annealing temperature is limited to 750 ° C to 1100 ° C, the grain size of the hot-rolled sheet does not become too large and breakage during cold rolling is prevented and the magnetic properties of the steel are improved. To do.

また、仕上げ焼鈍温度が800℃以上に限定されることから、鋼中の結晶粒径が大きくなり、鋼の鉄損が低減される。   Moreover, since the finish annealing temperature is limited to 800 ° C. or more, the crystal grain size in the steel is increased, and the iron loss of the steel is reduced.

さらに、鋼成分としてVを所定量含有させることにより、時効処理後においてもセメンタイト、εカーバイド等の析出物の析出および成長が抑制される。それにより、時効による鉄損劣化が防止される。   Furthermore, by containing a predetermined amount of V as a steel component, precipitation and growth of precipitates such as cementite and ε carbide are suppressed even after aging treatment. Thereby, the iron loss deterioration by aging is prevented.

本発明によれば、鋼成分としてVを所定量含有させることにより、時効処理後においてもセメンタイト、εカーバイド等の析出物の析出および成長が抑制される。それにより、時効による鉄損劣化が防止される。   According to the present invention, by containing a predetermined amount of V as a steel component, precipitation and growth of precipitates such as cementite and ε carbide are suppressed even after aging treatment. Thereby, the iron loss deterioration by aging is prevented.

本発明は、無方向性電磁鋼板およびその製造方法を含むものである。以下、それぞれについて詳細に説明する。なお、鋼中の各元素の含有量を示す「%」は、特に断りのない限り「質量%」を意味するものである。   The present invention includes a non-oriented electrical steel sheet and a manufacturing method thereof. Hereinafter, each will be described in detail. “%” Indicating the content of each element in the steel means “% by mass” unless otherwise specified.

また、本発明において、「残部が実質的にFeおよび不可避的不純物からなる」とは、本発明の効果を阻害しない範囲で他の元素を含有する場合を含むことを意味する。   Further, in the present invention, “the balance is substantially composed of Fe and inevitable impurities” means that it contains a case where other elements are contained within a range that does not impair the effects of the present invention.

A.無方向性電磁鋼板
まず、本発明の無方向性電磁鋼板について説明する。
A. First, the non-oriented electrical steel sheet of the present invention will be described.

本発明の無方向性電磁鋼板は、質量%で、C:0.0026%〜0.010%、Si:4.0%以下、Mn:0.10%〜2.0%、P:0.20%以下、S:0.006%以下、Al:0.20%〜3.0%、V:0.0020〜0.040%未満、Ti:0.003%以下、N:0.0050%以下、B:0.010%以下、Sn+Sb:0.20%以下、Ca:0.010%以下を含有し、残部が実質的にFeおよび不可避的不純物からなることを特徴とするものである。   The non-oriented electrical steel sheet of the present invention is, in mass%, C: 0.0026% to 0.010%, Si: 4.0% or less, Mn: 0.10% to 2.0%, P: 0.00. 20% or less, S: 0.006% or less, Al: 0.20% to 3.0%, V: 0.0020 to less than 0.040%, Ti: 0.003% or less, N: 0.0050% Hereinafter, B: 0.010% or less, Sn + Sb: 0.20% or less, Ca: 0.010% or less is contained, and the balance is substantially composed of Fe and inevitable impurities.

まず、本発明に至った知見およびそれに至る実験結果について説明する。発明者らは、200℃で100時間時効処理した種々の電磁鋼板の低磁場鉄損W10/50の劣化率を測定した。炭化物析出が主な時効劣化の原因と推定されることから、炭化物析出を抑制し、かつ、磁気特性劣化に影響を与えない成分を探索した。その結果、Vを添加またはVおよびBを複合添加することにより、磁気特性が良好でかつ時効劣化の少ない鋼板が得られることが今回初めて明らかになった。次に、検証実験について詳しく述べる。 First, the knowledge that led to the present invention and the experimental results that lead to it will be described. Inventors measured the deterioration rate of the low magnetic field iron loss W10 / 50 of the various electrical steel sheets age-treated at 200 degreeC for 100 hours. Since carbide precipitation is presumed to be the main cause of aging deterioration, the inventors searched for a component that suppresses carbide precipitation and does not affect magnetic property deterioration. As a result, it became clear for the first time that a steel sheet having good magnetic properties and little aging deterioration can be obtained by adding V or adding V and B in combination. Next, the verification experiment will be described in detail.

まず、真空溶解炉において、主要成分がC:0.0040%、Si:1.0%、Mn:0.20%、P:0.09%、S:0.003%、Al:0.30%、N:0.0020%、Ti:0.002%以下、Sn:0.001%以下、Sb:0.001%以下、Ca:0.0002%以下であり、V含有量が0.0010%から0.050%までおよびB含有量が0.0001%未満から0.0015%まで変化させた鋳片を作成した。次に、それらの鋳片を1100℃まで加熱し、850℃仕上げ条件にて厚さ3mmの熱延鋼板を作成した。それらの鋼板を厚さ2.3mmまで研削加工し、さらに厚さ0.5mmまで冷間圧延し、950℃で30秒の仕上げ焼鈍を行い、幅30mm、長さ100mmの単板試験片を作成し、200℃で100時間の時効処理前後の鉄損W10/50を測定した。 First, in a vacuum melting furnace, main components are C: 0.0040%, Si: 1.0%, Mn: 0.20%, P: 0.09%, S: 0.003%, Al: 0.30. %, N: 0.0020%, Ti: 0.002% or less, Sn: 0.001% or less, Sb: 0.001% or less, Ca: 0.0002% or less, and the V content is 0.0010. A cast slab was produced in which the content of B was changed from 0.05% to 0.050% and the B content was changed from less than 0.0001% to 0.0015%. Next, these slabs were heated to 1100 ° C., and hot-rolled steel sheets having a thickness of 3 mm were prepared under 850 ° C. finishing conditions. These steel plates are ground to a thickness of 2.3 mm, cold-rolled to a thickness of 0.5 mm, and subjected to a final annealing at 950 ° C. for 30 seconds to produce a single plate test piece having a width of 30 mm and a length of 100 mm. The iron loss W 10/50 before and after aging treatment at 200 ° C. for 100 hours was measured.

図1に鉄損劣化率と鋼板中V含有量との関係を示す。図1より明らかなように、鋼板中V含有量が0.0020%以上において、時効劣化が抑制されることがわかる。また、V含有量0.0020%以上かつB含有量0.0006%以上の鋼板の時効特性はさらに改善されていることがわかる。   FIG. 1 shows the relationship between the iron loss deterioration rate and the V content in the steel sheet. As is clear from FIG. 1, it is understood that aging deterioration is suppressed when the V content in the steel sheet is 0.0020% or more. Moreover, it turns out that the aging characteristic of the steel plate with V content 0.0020% or more and B content 0.0006% or more is further improved.

図2には、鉄損と鋼板中V含有量との関係を示す。図2より明らかなように、鋼板中V含有量が0.04%以上になると、時効前の磁気特性自体が劣化することがわかる。鋼板中のVによる時効劣化抑制効果の理由については明らかではないが、本発明者らは以下のように推定する。   FIG. 2 shows the relationship between the iron loss and the V content in the steel sheet. As is clear from FIG. 2, when the V content in the steel sheet is 0.04% or more, it can be seen that the magnetic properties themselves before aging deteriorate. Although the reason for the effect of suppressing aging deterioration due to V in the steel sheet is not clear, the present inventors presume as follows.

C含有量が0.0026%以上の鋼に長時間の時効処理を施すと、鋼中の固溶Cがセメンタイト、εカーバイド等となって析出する。それらの析出物は磁壁移動を阻害するため、鋼の鉄損が増加する。しかしながら、Vを含有する鋼は、セメンタイト、εカーバイド等の析出および成長が抑制されるため、鋼の鉄損が劣化しないと推定される。ただし、鋼中のV含有量が0.040%以上になると、VCが析出するため、鋼の磁気特性が劣化する。一方、鋼中のBは鋼中に粒界偏析して炭化物の生成を抑制するため、鋼の鉄損が劣化しないと推定される。   When a steel having a C content of 0.0026% or more is subjected to an aging treatment for a long time, solid solution C in the steel precipitates as cementite, ε carbide, and the like. Since these precipitates inhibit the domain wall movement, the iron loss of the steel increases. However, the steel containing V is presumed that the iron loss of the steel does not deteriorate because precipitation and growth of cementite, ε carbide and the like are suppressed. However, when the V content in the steel is 0.040% or more, VC is precipitated, so that the magnetic properties of the steel deteriorate. On the other hand, B in the steel segregates at the grain boundaries in the steel and suppresses the formation of carbides, so it is estimated that the iron loss of the steel does not deteriorate.

以上のことから、鋼成分としてVを所定量含有させることにより、時効による磁気特性劣化を少なくすることができることがわかった。   From the above, it was found that the deterioration of magnetic properties due to aging can be reduced by containing a predetermined amount of V as a steel component.

本発明においては、鋼成分としてVを所定量含有させることが特徴であるが、その効果を有効に引き出しかつ電磁鋼板として必要な他の特性を満足させるためには、後述するように鋼成分を限定する必要がある。以下、本発明の無方向性電磁鋼板における鋼成分について説明する。   In the present invention, it is characterized by containing a predetermined amount of V as a steel component. However, in order to effectively bring out the effect and satisfy other characteristics necessary for the electromagnetic steel sheet, the steel component is added as described later. Must be limited. Hereinafter, the steel component in the non-oriented electrical steel sheet of the present invention will be described.

1.鋼成分
・C
鋼中のCは、時効によりセメンタイト、εカーバイド等の炭化物を形成し、時効による鋼の磁気特性劣化の原因となる。したがって、鋼中のC含有量を低減する必要がある。鋼中C含有量が0.0026%未満にまで低減されれば時効劣化が完全に抑制されるが、大量生産される電磁鋼板の全てのC含有量を0.0026%未満にまで効率よく低減させることは容易ではない。一方、鋼中C含有量が0.010%を超えると、本発明のV添加による効果が十分ではなくなり、時効前の磁気特性も劣化することになる。以上のことから、鋼中C含有量を0.0026%以上、0.010%以下に限定する。さらに、鋼の時効劣化を改善するためには、鋼中C含有量の上限を0.0070%にすることが好ましい。
1. Steel composition ・ C
C in the steel forms carbides such as cementite and ε-carbide by aging, and causes deterioration of the magnetic properties of the steel due to aging. Therefore, it is necessary to reduce the C content in the steel. Aging deterioration is completely suppressed if the C content in steel is reduced to less than 0.0026%, but all C content in mass-produced electrical steel sheets is efficiently reduced to less than 0.0026%. It is not easy to make it happen. On the other hand, when the C content in the steel exceeds 0.010%, the effect of the V addition of the present invention is not sufficient, and the magnetic properties before aging are deteriorated. From the above, the C content in steel is limited to 0.0026% or more and 0.010% or less. Furthermore, in order to improve the aging deterioration of steel, it is preferable to set the upper limit of the C content in the steel to 0.0070%.

・Si
鋼中のSiは、鋼の比抵抗を高め、鋼の鉄損低減に有効である。鋼中Si含有量は、必要な鉄損特性に応じて決定すればよい。しかしながら、鋼中Si含有量が4.0%を超えると冷間圧延時に鋼が破断しやすくなることから、鋼の製造コストが著しく増大する。以上のことから、鋼中Si含有量は、4.0%以下に限定する。なお、鋼の鉄損を改善するためには、鋼中Si含有量1.0%以上にすることが好ましい。
・ Si
Si in steel increases the specific resistance of steel and is effective in reducing iron loss of steel. What is necessary is just to determine Si content in steel according to a required iron loss characteristic. However, if the Si content in the steel exceeds 4.0%, the steel easily breaks during cold rolling, so that the manufacturing cost of the steel increases remarkably. From the above, the Si content in the steel is limited to 4.0% or less. In addition, in order to improve the iron loss of steel, it is preferable to make Si content in steel 1.0% or more.

・Mn
鋼中のMnは、鋼の比抵抗を高め、鋼の鉄損低減に有効である。しかしながら、Mnの効果は、Siの効果よりも小さい。また、鋼中Mn含有量が2.0%を超えると、原料コストが高くなる。一方、鋼中Mn含有量が0.10%未満にまで低減すると、MnSが鋼中に微細に分散することから、鋼の磁気特性が劣化する。以上のことから、鋼中Mn含有量は、0.10%以上、2.0%以下の範囲に限定する。
・ Mn
Mn in steel increases the specific resistance of steel and is effective in reducing iron loss of steel. However, the effect of Mn is smaller than the effect of Si. Moreover, when Mn content in steel exceeds 2.0%, raw material cost will become high. On the other hand, when the Mn content in the steel is reduced to less than 0.10%, MnS is finely dispersed in the steel, so that the magnetic properties of the steel deteriorate. From the above, the Mn content in the steel is limited to the range of 0.10% or more and 2.0% or less.

・P
鋼中のPは、不可避的不純物であることから、特に添加する必要はない。しかしながら、鋼中P含有量が0.040%以上になると、鋼製品の集合組織が改善し、磁束密度が向上する。また、鋼中P含有量が0.040%以上になっても、鋼の時効特性にほとんど影響がない。したがって、必要に応じて鋼中P含有量を0.040%以上にしてもよい。ただし、鋼中P含有量が0.20%を超えると鋼の靭性が劣化することから、冷間圧延時に鋼が破断する恐れがある。以上のことから、鋼中P含有量は、0.20%以下に限定する。
・ P
Since P in steel is an unavoidable impurity, it is not particularly necessary to add it. However, when the P content in the steel is 0.040% or more, the texture of the steel product is improved and the magnetic flux density is improved. Moreover, even if the P content in the steel is 0.040% or more, the aging characteristics of the steel are hardly affected. Therefore, the P content in steel may be 0.040% or more as necessary. However, if the P content in the steel exceeds 0.20%, the toughness of the steel deteriorates, so that the steel may be broken during cold rolling. From the above, the P content in steel is limited to 0.20% or less.

・S
鋼中のSは、不可避的不純物であることから、特に添加する必要はない。しかしながら、鋼中S含有量が0.006%を超えると、鋼中に多くのMnSが形成されることから、鋼の磁気特性が劣化する。したがって、鋼中S含有量は低減する必要がある。以上のことから、鋼中S含有量は、0.006%以下に限定する。特に、鉄損特性を向上させるためには、鋼中S含有量を0.003%以下にすることが好ましい。
・ S
Since S in steel is an inevitable impurity, it is not necessary to add it in particular. However, if the S content in the steel exceeds 0.006%, a large amount of MnS is formed in the steel, so that the magnetic properties of the steel deteriorate. Therefore, it is necessary to reduce the S content in steel. From the above, the S content in steel is limited to 0.006% or less. In particular, in order to improve the iron loss characteristics, the S content in steel is preferably 0.003% or less.

・Al
鋼中のAlは、脱酸に有効な元素でありかつSiと同様に鋼の比抵抗を高めることから、鋼の鉄損低減に有効である。しかしながら、鋼中Al含有量が0.20%未満であれば、AlN、VN等が鋼中に微細に析出することから、鋼の磁気特性が劣化する。一方、鋼中Al含有量が3.0%を超えると、鋼の飽和磁束密度が著しく低下することから、鉄心性能が劣化する。以上のことから、鋼中Al含有量は、0.20%以上、3.0%以下に限定する。なお、鋼の磁束密度を改善するためには、鋼中Al含有量の上限を1.0%にすることが好ましい。
・ Al
Al in steel is an element effective for deoxidation and increases the specific resistance of steel in the same manner as Si, and is therefore effective in reducing iron loss of steel. However, if the Al content in the steel is less than 0.20%, AlN, VN and the like are finely precipitated in the steel, so that the magnetic properties of the steel deteriorate. On the other hand, when the Al content in the steel exceeds 3.0%, the saturation magnetic flux density of the steel is remarkably lowered, so that the core performance is deteriorated. From the above, the Al content in the steel is limited to 0.20% or more and 3.0% or less. In addition, in order to improve the magnetic flux density of steel, it is preferable to make the upper limit of Al content in steel 1.0%.

・V
鋼中のVは、本発明において必須の元素であり、時効による鋼の磁気特性劣化を低減させる効果を有する。しかしながら、鋼中V含有量が0.0020%未満においては、鋼の時効劣化を全く抑制することができない。一方、鋼中V含有量が0.040%以上であれば、VCが鋼中に析出し、鋼の磁気特性が劣化する。以上のことから、鋼中V含有量は、0.0020%以上、0.040%未満に限定する。なお、時効抑制効果が最も顕著になる鋼中V含有量は0.0090%以上、0.030%以下である。
・ V
V in the steel is an essential element in the present invention, and has an effect of reducing deterioration of the magnetic properties of the steel due to aging. However, when the V content in the steel is less than 0.0020%, aging deterioration of the steel cannot be suppressed at all. On the other hand, if the V content in the steel is 0.040% or more, VC precipitates in the steel, and the magnetic properties of the steel deteriorate. From the above, the V content in steel is limited to 0.0020% or more and less than 0.040%. Note that the V content in steel in which the effect of suppressing aging is most remarkable is 0.0090% or more and 0.030% or less.

・Ti
鋼中のTiは不可避的不純物であることから、特に添加する必要はない。鋼中Ti含有量が0.003%を超えると、TiN、TiS、TiC等の析出物が鋼中に微細に分散することから、鋼の磁気特性が劣化する。したがって、鋼中Ti含有量は、0.003%以下に限定する。
・ Ti
Since Ti in steel is an unavoidable impurity, it is not particularly necessary to add it. When the Ti content in the steel exceeds 0.003%, precipitates such as TiN, TiS, and TiC are finely dispersed in the steel, so that the magnetic properties of the steel deteriorate. Therefore, the Ti content in the steel is limited to 0.003% or less.

・N
鋼中のNは、不可避的不純物であることから、特に添加する必要はない。鋼中N含有量が0.0050%を超えると、AlNが鋼中に多数分散することから、鋼の磁気特性が劣化する。したがって、鋼中N含有量は、0.0050%以下に限定する。
・ N
Since N in steel is an unavoidable impurity, it is not particularly necessary to add it. If the N content in the steel exceeds 0.0050%, a large amount of AlN is dispersed in the steel, so that the magnetic properties of the steel deteriorate. Therefore, the N content in the steel is limited to 0.0050% or less.

・B
鋼中のBは、本発明において必須の元素ではないが、Vと複合添加することで時効特性をさらに改善する効果を有する。その効果を得るためには、鋼中B含有量が0.0006%以上必要である。また、鋼中B含有量が0.010%を超えると粗大なB化合物が鋼中に生成され、冷間圧延時に鋼が破断する恐れがある。以上のことから、鋼中B含有量は、0.0006%以上、0.010%以下にすることが好ましい。
・ B
B in the steel is not an essential element in the present invention, but has the effect of further improving the aging characteristics by being added in combination with V. In order to obtain the effect, the B content in steel needs to be 0.0006% or more. Moreover, when B content in steel exceeds 0.010%, a coarse B compound will be produced | generated in steel and there exists a possibility that steel may fracture | rupture at the time of cold rolling. In view of the above, the B content in steel is preferably 0.0006% or more and 0.010% or less.

・Sn+Sb
鋼中のSnおよびSbは、本発明においては必須の元素ではないが、添加することにより鋼の時効劣化を誘発することなく鋼の磁束密度が向上する。鋼の磁束密度を向上させるには、鋼中SnおよびSb含有量の合計が0.010%以上必要である。しかしながら、鋼中SnおよびSb含有量の合計が0.20%を超えると、鋼の靭性が著しく劣化することから、冷間圧延時に鋼が破断する恐れがある。以上のことから、鋼中SnおよびSb含有量の合計は、0.20%以下に限定する。また、鋼の磁束密度を向上させるためには、必要に応じて鋼中SnおよびSb含有量の合計を0.010%以上とすることが好ましい。
・ Sn + Sb
Sn and Sb in the steel are not essential elements in the present invention, but the addition increases the magnetic flux density of the steel without inducing aging deterioration of the steel. In order to improve the magnetic flux density of steel, the total of Sn and Sb contents in steel needs to be 0.010% or more. However, if the total content of Sn and Sb in the steel exceeds 0.20%, the toughness of the steel is remarkably deteriorated, so that the steel may be broken during cold rolling. From the above, the total content of Sn and Sb in the steel is limited to 0.20% or less. Moreover, in order to improve the magnetic flux density of steel, it is preferable to make the total of Sn and Sb content in steel 0.010% or more as needed.

・Ca
鋼中のCaは、特に添加する必要はない。鋼中のCaは、鋼の時効特性に影響を与えない。一方、鋼中Caは、鋼中の含有量が0.0005%以上になると、酸化物、硫化物等を粗大化させることから、鋼の磁気特性を向上させる。しかしながら、Caを0.010%以上含有した鋼は靭性が劣化することから、鋼冷却時または加熱時に鋼に割れが発生する恐れがある。以上のことから、鋼中Ca含有量は、0.010%以下に限定する。なお、磁気特性改善のためには、鋼中Ca含有量は、0.0005%以上であることが好ましい。
・ Ca
Ca in steel does not need to be added in particular. Ca in the steel does not affect the aging characteristics of the steel. On the other hand, when Ca content in steel becomes 0.0005% or more, it coarsens oxides, sulfides, and the like, thereby improving the magnetic properties of steel. However, since steel containing 0.010% or more of Ca deteriorates toughness, there is a risk of cracking in the steel during cooling or heating. From the above, the Ca content in the steel is limited to 0.010% or less. In order to improve magnetic properties, the Ca content in steel is preferably 0.0005% or more.

B.無方向性電磁鋼板の製造方法
次に、本発明の無方向性電磁鋼板の製造方法について説明する。
B. Next, a method for producing a non-oriented electrical steel sheet according to the present invention will be described.

本発明の無方向性電磁鋼板の第1の製造方法は、質量%で、C:0.0026%〜0.010%、Si:4.0%以下、Mn:0.10%〜2.0%、P:0.20%以下、S:0.006%以下、Al:0.20%〜3.0%、V:0.0020%〜0.040%未満、Ti:0.003%以下、N:0.0050%以下、B:0.010%以下、Sn+Sb:0.20%以下、Ca:0.010%以下を含有し、残部が実質的にFeおよび不可避的不純物からなる鋼塊または鋼片に、下記式(1)〜式(3)を充足する条件で熱間圧延、冷間圧延および仕上げ焼鈍することを特徴とするものである。
鋼塊または鋼片加熱温度=1050℃〜1250℃ (1)
熱間圧延終了温度=700℃〜950℃ (2)
仕上げ焼鈍温度≧800℃ (3)
The 1st manufacturing method of the non-oriented electrical steel sheet of this invention is the mass%. C: 0.0026% -0.010%, Si: 4.0% or less, Mn: 0.10% -2.0 %, P: 0.20% or less, S: 0.006% or less, Al: 0.20% to 3.0%, V: 0.0020% to less than 0.040%, Ti: 0.003% or less , N: 0.0050% or less, B: 0.010% or less, Sn + Sb: 0.20% or less, Ca: 0.010% or less, with the balance being substantially made of Fe and inevitable impurities Alternatively, the steel slab is characterized by being hot-rolled, cold-rolled and finish-annealed under the conditions satisfying the following formulas (1) to (3).
Steel ingot or billet heating temperature = 1050 ° C. to 1250 ° C. (1)
Hot rolling end temperature = 700 ° C. to 950 ° C. (2)
Finish annealing temperature ≧ 800 ° C (3)

前記鋼塊または鋼片はスラブとして例えば次のように製造される。まず、転炉で脱炭脱硫した溶鋼を取鍋内に出鋼し、その取鍋をRH式真空脱ガス装置に移動させる。次に、RH式真空脱ガス装置内において、溶鋼中のC濃度が0.0040%以下になるまで溶鋼を脱炭する。次いで、溶鋼中のSi,Mn,P,Al,V,B,Sn,SbおよびCaの含有量を調整し、溶鋼を連続鋳造機でスラブとする。   The steel ingot or steel slab is manufactured as a slab as follows, for example. First, the molten steel decarburized and desulfurized in a converter is put into a ladle, and the ladle is moved to an RH type vacuum degassing apparatus. Next, in the RH vacuum degassing apparatus, the molten steel is decarburized until the C concentration in the molten steel becomes 0.0040% or less. Next, the contents of Si, Mn, P, Al, V, B, Sn, Sb and Ca in the molten steel are adjusted, and the molten steel is made into a slab with a continuous casting machine.

次に、スラブを加熱炉で加熱する。スラブの加熱は、スラブの熱間変形抵抗を低減させかつ所定の厚さまで圧延するために必要である。スラブ加熱温度が1050℃未満では、スラブの変形抵抗が高く、熱間圧延が困難になる。一方、スラブ加熱温度が1250℃を超えると、AlNおよびMnSが固溶し、スラブの熱延中に再析出する。これらの析出物は、微細にスラブ中に多数分散することから、鋼製品の磁気特性が劣化する。したがって、スラブ加熱温度は、1050℃以上、1250℃以下に限定する。   Next, the slab is heated in a heating furnace. Slab heating is necessary to reduce the hot deformation resistance of the slab and to roll to a predetermined thickness. When the slab heating temperature is less than 1050 ° C., the deformation resistance of the slab is high and hot rolling becomes difficult. On the other hand, when the slab heating temperature exceeds 1250 ° C., AlN and MnS are dissolved and reprecipitated during hot rolling of the slab. Since many of these precipitates are finely dispersed in the slab, the magnetic properties of the steel product deteriorate. Therefore, the slab heating temperature is limited to 1050 ° C. or more and 1250 ° C. or less.

次いで、スラブを熱間圧延する。この場合、熱間圧延終了温度は、熱延板の組織制御による磁気特性改善に重要な条件である。熱間圧延終了温度が700℃未満では、熱延鋼板ミクロ組織の再結晶率がほぼ0%となることから、鋼製品の磁束密度が著しく低下する。このことは、鋼の磁気特性に有利な集合組織が得られないことに原因がある。一方、熱間圧延終了温度が950℃を超えると、熱延鋼板表面の酸化スケールが厚く成長し、その後の工程の酸洗において脱スケールが困難となる。したがって、熱間圧延終了温度は、700℃以上、950℃以下に限定する。   The slab is then hot rolled. In this case, the hot rolling end temperature is an important condition for improving the magnetic properties by controlling the structure of the hot rolled sheet. If the hot rolling end temperature is less than 700 ° C., the recrystallization rate of the hot-rolled steel sheet microstructure is almost 0%, so that the magnetic flux density of the steel product is significantly reduced. This is because a texture that is advantageous for the magnetic properties of steel cannot be obtained. On the other hand, if the hot rolling finish temperature exceeds 950 ° C., the oxide scale on the surface of the hot-rolled steel sheet grows thick, and it becomes difficult to remove the scale in pickling in the subsequent steps. Therefore, the hot rolling end temperature is limited to 700 ° C. or higher and 950 ° C. or lower.

次に、鋼板を酸洗脱スケールし、冷間圧延した後に仕上げ焼鈍を行う。鋼板表面には必要に応じて絶縁皮膜を塗布する。仕上げ焼鈍は鋼製品の鉄損を制御するために非常に重要である。鉄損は、粒径が大きいほど低下することから、仕上げ焼鈍温度は高い方がよい。仕上げ焼鈍温度が800℃未満では鉄損が十分に低減できない。したがって、仕上げ焼鈍温度は800℃以上に限定する。なお、本発明の必須元素であるVは、鋼の再結晶温度を高めるので、仕上げ焼鈍温度は高い方がよい。本発明の無方向性電磁鋼板の鉄損をさらに良好にするためには、仕上げ焼鈍温度を900℃以上にするのが好ましい。仕上げ焼鈍温度の上限は、特に限定する必要はないが、1150℃を超えると、焼鈍炉の耐火物損傷が激しくなることから製造コストが著しく増加する。したがって、仕上げ焼鈍温度は、1150℃以下とすることがより好ましい。   Next, the steel sheet is pickled and descaled, cold-rolled, and then subjected to finish annealing. If necessary, an insulating film is applied to the steel plate surface. Finish annealing is very important to control the iron loss of steel products. Since the iron loss decreases as the particle size increases, the finish annealing temperature should be higher. When the finish annealing temperature is less than 800 ° C., the iron loss cannot be sufficiently reduced. Therefore, the finish annealing temperature is limited to 800 ° C. or higher. In addition, V, which is an essential element of the present invention, increases the recrystallization temperature of steel, so that the finish annealing temperature should be higher. In order to further improve the iron loss of the non-oriented electrical steel sheet of the present invention, the finish annealing temperature is preferably 900 ° C. or higher. The upper limit of the finish annealing temperature is not particularly limited, but if it exceeds 1150 ° C., the refractory damage of the annealing furnace becomes severe, so that the manufacturing cost is remarkably increased. Therefore, the finish annealing temperature is more preferably 1150 ° C. or lower.

本発明の無方向性電磁鋼板の第2の製造方法は、質量%で、C:0.0026%〜0.010%、Si:4.0%以下、Mn:0.10%〜2.0%、P:0.20%以下、S:0.006%以下、Al:0.20%〜3.0%、V:0.0020%〜0.040%未満、Ti:0.003%以下、N:0.0050%以下、B:0.010%以下、Sn+Sb:0.20%以下、Ca:0.010%以下を含有し、残部が実質的にFeおよび不可避的不純物からなる鋼塊または鋼片に、下記式(1)〜式(4)を充足する条件で熱間圧延、熱延板焼鈍、冷間圧延および仕上げ焼鈍するものである。
鋼塊または鋼片加熱温度=1050℃〜1250℃ (1)
熱間圧延終了温度=700℃〜950℃ (2)
熱延板焼鈍温度=750℃〜1100℃ (4)
仕上げ焼鈍温度≧800℃ (3)
The 2nd manufacturing method of the non-oriented electrical steel sheet of this invention is the mass%. C: 0.0026% -0.010%, Si: 4.0% or less, Mn: 0.10% -2.0 %, P: 0.20% or less, S: 0.006% or less, Al: 0.20% to 3.0%, V: 0.0020% to less than 0.040%, Ti: 0.003% or less , N: 0.0050% or less, B: 0.010% or less, Sn + Sb: 0.20% or less, Ca: 0.010% or less, with the balance being substantially made of Fe and inevitable impurities Alternatively, the steel slab is subjected to hot rolling, hot-rolled sheet annealing, cold rolling, and finish annealing under conditions that satisfy the following formulas (1) to (4).
Steel ingot or billet heating temperature = 1050 ° C. to 1250 ° C. (1)
Hot rolling end temperature = 700 ° C. to 950 ° C. (2)
Hot-rolled sheet annealing temperature = 750 ° C. to 1100 ° C. (4)
Finish annealing temperature ≧ 800 ° C (3)

このような無方向性電磁鋼板の第2の製造方法は、上記第1の製造方法と同様に、スラブを加熱した後に熱間圧延して鋼板とする。次に、鋼板を酸洗した後に熱延板焼鈍を施す。或いは、熱延板焼鈍した後に酸洗脱スケールを施す。熱延板焼鈍は、鋼の磁気特性向上に有効である。鋼の磁気特性の効果を十分に得るためには、熱延板焼鈍温度が750℃以上必要である。一方、熱延板焼鈍温度が1100℃を超えると、熱延板の粒径が大きくなりすぎるため、鋼板の冷間圧延時に破断しやすくなる。したがって、熱延板焼鈍温度は、750℃以上、1100℃以下に限定する。   In the second manufacturing method of such a non-oriented electrical steel sheet, as in the first manufacturing method, the slab is heated and then hot rolled to obtain a steel sheet. Next, hot-rolled sheet annealing is performed after pickling the steel sheet. Alternatively, the pickling descaling is performed after the hot-rolled sheet annealing. Hot-rolled sheet annealing is effective in improving the magnetic properties of steel. In order to sufficiently obtain the effect of the magnetic properties of steel, the hot-rolled sheet annealing temperature needs to be 750 ° C. or higher. On the other hand, when the hot-rolled sheet annealing temperature exceeds 1100 ° C., the particle size of the hot-rolled sheet becomes too large, so that the steel sheet tends to break during cold rolling of the steel sheet. Therefore, the hot-rolled sheet annealing temperature is limited to 750 ° C. or higher and 1100 ° C. or lower.

次いで、上記無方向性電磁鋼板の第1の製造方法と同様に、鋼板を冷間圧延した後に仕上げ焼鈍を行う。鋼板表面には必要に応じて絶縁皮膜を塗布する。   Next, similarly to the first method for producing the non-oriented electrical steel sheet, the steel sheet is cold-rolled and then subjected to finish annealing. If necessary, an insulating film is applied to the steel plate surface.

(実施例1)
転炉で脱炭脱硫した溶鋼230tonを取鍋内に出鋼し、その取鍋をRH式真空脱ガス装置に移動させた。次に、RH式真空脱ガス装置内において、溶鋼中のC濃度が0.0040%以下になるまで脱炭した。次いで、溶鋼中のSi,Mn,P,Al,V,B,Sn,SbおよびCaの含有量を調整し、溶鋼を連続鋳造機でスラブとした。
(Example 1)
230 ton of molten steel decarburized and desulfurized in a converter was put into a ladle, and the ladle was moved to an RH type vacuum degasser. Next, decarburization was performed in the RH vacuum degassing apparatus until the C concentration in the molten steel became 0.0040% or less. Next, the contents of Si, Mn, P, Al, V, B, Sn, Sb and Ca in the molten steel were adjusted, and the molten steel was made into a slab with a continuous casting machine.

次に、スラブを加熱炉内で1150℃まで加熱し、仕上げ温度850℃〜880℃、巻き取り温度500℃で熱間圧延し、厚さ2.0mmとした。次いで、酸洗脱スケールした後に、厚さ0.5mmまで冷間圧延し、900℃〜1020℃で仕上げ焼鈍を施した。仕上げ焼鈍後、鋼板表面に絶縁皮膜を塗布した。この鋼板から28cmエプスタイン試験片を採取し、200℃で100時間時効処理した後に、JIS−C−2550規定の方法により、鉄損および磁束密度を測定した。   Next, the slab was heated to 1150 ° C. in a heating furnace and hot-rolled at a finishing temperature of 850 ° C. to 880 ° C. and a winding temperature of 500 ° C. to a thickness of 2.0 mm. Next, after pickling and descaling, it was cold-rolled to a thickness of 0.5 mm and subjected to finish annealing at 900 ° C. to 1020 ° C. After finish annealing, an insulating film was applied to the steel sheet surface. A 28 cm Epstein test piece was collected from this steel plate, and after aging treatment at 200 ° C. for 100 hours, the iron loss and magnetic flux density were measured by the method defined in JIS-C-2550.

実施例1−1〜1−8の鋼板はV含有量が0.0020%以上、比較例1−1および比較例1−2の鋼板はV含有量が0.0020%未満となるように成分調整してある。   The steel plate of Examples 1-1 to 1-8 has a V content of 0.0020% or more, and the steel plates of Comparative Example 1-1 and Comparative Example 1-2 have components so that the V content is less than 0.0020%. It has been adjusted.

(評価1)
実施例1−1〜1−8、比較例1−1および比較例1−2の鋼板の成分分析値を表1に示し、実施例1−1〜1−8、比較例1−1および比較例1−2の鋼板の磁気特性測定結果を表2、図3および図4に示す。
(Evaluation 1)
The component analysis values of the steel plates of Examples 1-1 to 1-8, Comparative Example 1-1, and Comparative Example 1-2 are shown in Table 1, Examples 1-1 to 1-8, Comparative Example 1-1, and Comparison The magnetic property measurement results of the steel sheet of Example 1-2 are shown in Table 2, FIG. 3 and FIG.

Figure 2005187846
Figure 2005187846

Figure 2005187846
Figure 2005187846

表2および図3に示すように、実施例1−1〜1−8の鋼板と比較例1−1および比較例1−2の鋼板とは、磁気特性が同程度である。しかしながら、表2および図4に示すように、実施例1−1〜1−8の鋼板は、比較例1−1および比較例1−2の鋼板に比較して時効劣化が小さくなっている。また、時効劣化に対して、鋼板中のV含有量が多いほど鋼板の時効劣化低減に効果があり、鋼板中にVおよびBを複合添加することによりさらに効果があることがわかる。なお、鋼板中にSn,Sb,Ca等を磁気特性改善のために添加しても、時効特性には特に影響を及ぼさないことが確かめられた。   As shown in Table 2 and FIG. 3, the steel sheets of Examples 1-1 to 1-8 and the steel sheets of Comparative Example 1-1 and Comparative Example 1-2 have the same magnetic properties. However, as shown in Table 2 and FIG. 4, the steel sheets of Examples 1-1 to 1-8 are less subject to aging deterioration than the steel sheets of Comparative Example 1-1 and Comparative Example 1-2. In addition, it can be seen that, with respect to aging deterioration, the more the V content in the steel sheet, the more effective the reduction of aging deterioration of the steel sheet, and the more effective by adding V and B to the steel sheet in combination. It has been confirmed that the addition of Sn, Sb, Ca, etc. to the steel plate to improve the magnetic properties does not particularly affect the aging properties.

(実施例2)
転炉で脱炭脱硫した溶鋼230tonを取鍋内に出鋼し、その取鍋をRH式真空脱ガス装置に移動させた。次に、RH式真空脱ガス装置内において、溶鋼中のC濃度が0.0040%以下になるまで脱炭した。次いで、溶鋼中のSi,Mn,P,Al,V,B,Sn,SbおよびCaの含有量を調整し、溶鋼を連続鋳造機でスラブとした。
(Example 2)
230 ton of molten steel decarburized and desulfurized in a converter was put into a ladle, and the ladle was moved to an RH type vacuum degasser. Next, decarburization was performed in the RH vacuum degassing apparatus until the C concentration in the molten steel became 0.0040% or less. Next, the contents of Si, Mn, P, Al, V, B, Sn, Sb and Ca in the molten steel were adjusted, and the molten steel was made into a slab with a continuous casting machine.

次に、スラブを加熱炉内で1150℃まで加熱し、仕上げ温度850℃〜880℃、巻き取り温度500℃で熱間圧延し、厚さ2.0mmとした。次いで、酸洗した後に、800℃で10時間焼鈍し、厚さ0.35mmまで冷間圧延し、1020℃〜1080℃で仕上げ焼鈍を施した。仕上げ焼鈍後、鋼板表面に絶縁皮膜を塗布した。この鋼板から28cmエプスタイン試験片を採取し、200℃で100時間時効処理した後に、JIS−C−2550規定の方法により、鉄損および磁束密度を測定した。   Next, the slab was heated to 1150 ° C. in a heating furnace and hot-rolled at a finishing temperature of 850 ° C. to 880 ° C. and a winding temperature of 500 ° C. to a thickness of 2.0 mm. Next, after pickling, annealing was performed at 800 ° C. for 10 hours, cold rolling to a thickness of 0.35 mm, and finish annealing was performed at 1020 ° C. to 1080 ° C. After finish annealing, an insulating film was applied to the steel sheet surface. A 28 cm Epstein test piece was collected from this steel plate, and after aging treatment at 200 ° C. for 100 hours, the iron loss and magnetic flux density were measured by the method defined in JIS-C-2550.

実施例2−1〜2−8の鋼板はV含有量が0.0020%以上、比較例2−1および比較例2−2の鋼板はV含有量が0.0020%未満となるように成分調整してある。   The steel plates of Examples 2-1 to 2-8 have a V content of 0.0020% or more, and the steel plates of Comparative Examples 2-1 and 2-2 have components so that the V content is less than 0.0020%. It has been adjusted.

(評価2)
実施例2−1〜2−8、比較例2−1および比較例2−2の鋼板の成分分析値を表3に示し、実施例2−1〜2−8、比較例2−1および比較例2−2の鋼板の磁気特性測定結果を表4、図5および図6に示す。
(Evaluation 2)
The component analysis values of the steel plates of Examples 2-1 to 2-8, Comparative Example 2-1 and Comparative Example 2-2 are shown in Table 3, Examples 2-1 to 2-8, Comparative Example 2-1 and Comparative Example The measurement results of the magnetic properties of the steel sheet of Example 2-2 are shown in Table 4, FIG. 5 and FIG.

Figure 2005187846
Figure 2005187846

Figure 2005187846
Figure 2005187846

表4、図5および図6に示すように、実施例2−1〜2−8の鋼板は、比較例2−1および比較例2−2の鋼板に比較して磁気特性が良好であり、かつ、時効劣化も小さい。また、比較的V含有量が高い実施例2−8も、比較例2−1および比較例2−2に比較して磁気特性がやや劣るが、時効特性は良好である。なお、鋼板中にSn,Sb,Ca等を磁気特性改善のために添加しても、時効特性には特に影響を及ぼさないことが確かめられた。   As shown in Table 4, FIG. 5 and FIG. 6, the steel sheets of Examples 2-1 to 2-8 have better magnetic properties than the steel sheets of Comparative Example 2-1 and Comparative Example 2-2. In addition, aging deterioration is small. In addition, Example 2-8, which has a relatively high V content, is slightly inferior in magnetic properties to Comparative Examples 2-1 and 2-2, but has good aging properties. It has been confirmed that the addition of Sn, Sb, Ca, etc. to the steel plate to improve the magnetic properties does not particularly affect the aging properties.

鉄損劣化率と鋼板中V含有量との関係を示すグラフである。It is a graph which shows the relationship between an iron loss deterioration rate and V content in a steel plate. 鉄損と鋼板中V含有量との関係を示すグラフである。It is a graph which shows the relationship between an iron loss and V content in a steel plate. 鉄損と鋼板中V含有量との関係を示すグラフである。It is a graph which shows the relationship between an iron loss and V content in a steel plate. 鉄損劣化率と鋼板中V含有量との関係を示すグラフである。It is a graph which shows the relationship between an iron loss deterioration rate and V content in a steel plate. 鉄損と鋼板中V含有量との関係を示すグラフである。It is a graph which shows the relationship between an iron loss and V content in a steel plate. 鉄損劣化率と鋼板中V含有量との関係を示すグラフである。It is a graph which shows the relationship between an iron loss deterioration rate and V content in a steel plate.

Claims (3)

質量%で、C:0.0026%〜0.010%、Si:4.0%以下、Mn:0.10%〜2.0%、P:0.20%以下、S:0.006%以下、Al:0.2%〜3.0%、V:0.0020%〜0.040%未満、Ti:0.003%以下、N:0.0050%以下、B:0.010%以下、Sn+Sb:0.20%以下、Ca:0.010%以下を含有し、残部が実質的にFeおよび不可避的不純物からなることを特徴とする無方向性電磁鋼板。 In mass%, C: 0.0026% to 0.010%, Si: 4.0% or less, Mn: 0.10% to 2.0%, P: 0.20% or less, S: 0.006% Hereinafter, Al: 0.2% to 3.0%, V: 0.0020% to less than 0.040%, Ti: 0.003% or less, N: 0.0050% or less, B: 0.010% or less Sn + Sb: 0.20% or less, Ca: 0.010% or less, the balance being substantially composed of Fe and inevitable impurities, a non-oriented electrical steel sheet, 質量%で、C:0.0026%〜0.010%、Si:4.0%以下、Mn:0.10%〜2.0%、P:0.20%以下、S:0.006%以下、Al:0.2%〜3.0%、V:0.0020%〜0.040%未満、Ti:0.003%以下、N:0.0050%以下、B:0.010%以下、Sn+Sb:0.20%以下、Ca:0.010%以下を含有し、残部が実質的にFeおよび不可避的不純物からなる鋼塊または鋼片に、下記式(1)〜式(3)を充足する条件で熱間圧延、冷間圧延および仕上げ焼鈍することを特徴とする無方向性電磁鋼板の製造方法。
鋼塊または鋼片加熱温度=1050℃〜1250℃ (1)
熱間圧延終了温度=700℃〜950℃ (2)
仕上げ焼鈍温度≧800℃ (3)
In mass%, C: 0.0026% to 0.010%, Si: 4.0% or less, Mn: 0.10% to 2.0%, P: 0.20% or less, S: 0.006% Hereinafter, Al: 0.2% to 3.0%, V: 0.0020% to less than 0.040%, Ti: 0.003% or less, N: 0.0050% or less, B: 0.010% or less Sn + Sb: 0.20% or less, Ca: 0.010% or less, and a steel ingot or steel slab consisting essentially of Fe and inevitable impurities, the following formulas (1) to (3) A method for producing a non-oriented electrical steel sheet, characterized by hot rolling, cold rolling, and finish annealing under satisfying conditions.
Steel ingot or billet heating temperature = 1050 ° C. to 1250 ° C. (1)
Hot rolling end temperature = 700 ° C. to 950 ° C. (2)
Finish annealing temperature ≧ 800 ° C (3)
質量%で、C:0.0026%〜0.010%、Si:4.0%以下、Mn:0.10%〜2.0%、P:0.20%以下、S:0.006%以下、Al:0.20%〜3.0%、V:0.0020%〜0.040%未満、Ti:0.003%以下、N:0.0050%以下、B:0.010%以下、Sn+Sb:0.20%以下、Ca:0.010%以下を含有し、残部が実質的にFeおよび不可避的不純物からなる鋼塊または鋼片に、下記式(1)〜式(4)を充足する条件で熱間圧延、熱延板焼鈍、冷間圧延および仕上げ焼鈍することを特徴とする無方向性電磁鋼板の製造方法。
鋼塊または鋼片加熱温度=1050℃〜1250℃ (1)
熱間圧延終了温度=700℃〜950℃ (2)
熱延板焼鈍温度=750℃〜1100℃ (4)
仕上げ焼鈍温度≧800℃ (3)
In mass%, C: 0.0026% to 0.010%, Si: 4.0% or less, Mn: 0.10% to 2.0%, P: 0.20% or less, S: 0.006% Hereinafter, Al: 0.20% to 3.0%, V: 0.0020% to less than 0.040%, Ti: 0.003% or less, N: 0.0050% or less, B: 0.010% or less Sn + Sb: 0.20% or less, Ca: 0.010% or less, and a steel ingot or steel slab consisting essentially of Fe and inevitable impurities, the following formula (1) to formula (4) A method for producing a non-oriented electrical steel sheet, characterized by hot rolling, hot-rolled sheet annealing, cold rolling and finish annealing under satisfying conditions.
Steel ingot or billet heating temperature = 1050 ° C. to 1250 ° C. (1)
Hot rolling end temperature = 700 ° C. to 950 ° C. (2)
Hot-rolled sheet annealing temperature = 750 ° C. to 1100 ° C. (4)
Finish annealing temperature ≧ 800 ° C (3)
JP2003427526A 2003-12-24 2003-12-24 Non-oriented electromagnetic steel sheet and manufacturing method therefor Pending JP2005187846A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003427526A JP2005187846A (en) 2003-12-24 2003-12-24 Non-oriented electromagnetic steel sheet and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003427526A JP2005187846A (en) 2003-12-24 2003-12-24 Non-oriented electromagnetic steel sheet and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2005187846A true JP2005187846A (en) 2005-07-14

Family

ID=34786776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003427526A Pending JP2005187846A (en) 2003-12-24 2003-12-24 Non-oriented electromagnetic steel sheet and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2005187846A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011132558A (en) * 2009-12-22 2011-07-07 Jfe Steel Corp Method for manufacturing non-oriented electromagnetic steel sheet
WO2015080013A1 (en) 2013-11-29 2015-06-04 株式会社神戸製鋼所 Soft magnetic steel and method for manufacturing same, and soft magnetic component obtained from soft magnetic steel
KR20210078630A (en) * 2019-12-18 2021-06-29 주식회사 포스코 Non-oriented electrical steel sheet with low core-loss and high strength after stress relief annealing and method for manufacturing the same
CN114214561A (en) * 2021-11-30 2022-03-22 马鞍山钢铁股份有限公司 Non-oriented silicon steel thin strip for ultra-efficient variable frequency air conditioner compressor and manufacturing method thereof
CN114574761A (en) * 2022-02-23 2022-06-03 湖南华菱涟源钢铁有限公司 Non-oriented electrical steel and preparation method thereof
CN115380130A (en) * 2020-04-16 2022-11-22 日本制铁株式会社 Non-oriented electromagnetic steel sheet and method for producing same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011132558A (en) * 2009-12-22 2011-07-07 Jfe Steel Corp Method for manufacturing non-oriented electromagnetic steel sheet
WO2015080013A1 (en) 2013-11-29 2015-06-04 株式会社神戸製鋼所 Soft magnetic steel and method for manufacturing same, and soft magnetic component obtained from soft magnetic steel
KR20160081934A (en) 2013-11-29 2016-07-08 가부시키가이샤 고베 세이코쇼 Soft magnetic steel and method for manufacturing same, and soft magnetic component obtained from soft magnetic steel
KR20210078630A (en) * 2019-12-18 2021-06-29 주식회사 포스코 Non-oriented electrical steel sheet with low core-loss and high strength after stress relief annealing and method for manufacturing the same
KR102297753B1 (en) * 2019-12-18 2021-09-03 주식회사 포스코 Non-oriented electrical steel sheet with low core-loss and high strength after stress relief annealing and method for manufacturing the same
CN115380130A (en) * 2020-04-16 2022-11-22 日本制铁株式会社 Non-oriented electromagnetic steel sheet and method for producing same
CN114214561A (en) * 2021-11-30 2022-03-22 马鞍山钢铁股份有限公司 Non-oriented silicon steel thin strip for ultra-efficient variable frequency air conditioner compressor and manufacturing method thereof
CN114574761A (en) * 2022-02-23 2022-06-03 湖南华菱涟源钢铁有限公司 Non-oriented electrical steel and preparation method thereof

Similar Documents

Publication Publication Date Title
JP6580700B2 (en) High magnetic flux density / low iron loss / non-oriented electrical steel sheet with good surface condition and manufacturing method thereof
KR101591222B1 (en) Method of producing non-oriented electrical steel sheet
KR101598312B1 (en) Anisotropic electromagnetic steel sheet and method for producing same
JP5675950B2 (en) Method for producing highly efficient non-oriented silicon steel with excellent magnetic properties
JP4126479B2 (en) Method for producing non-oriented electrical steel sheet
KR20180087374A (en) Non-oriented electrical steel sheet, and method of manufacturing non-oriented electrical steel sheet
JP4586741B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
KR20150093807A (en) Production method for semi-processed non-oriented electromagnetic steel sheet exhibiting superior magnetic properties
JP4319889B2 (en) Non-oriented electrical steel sheet with excellent all-round magnetic properties and method for producing the same
JP5724837B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP4358550B2 (en) Method for producing non-oriented electrical steel sheet with excellent rolling direction and perpendicular magnetic properties in the plate surface
JP2008127659A (en) Non-oriented electromagnetic steel sheet with less anisotropy
TWI641702B (en) Non-oriented electromagnetic steel sheet with excellent recyclability
JP2005206887A (en) Method for producing non-oriented magnetic steel sheet
JP4599843B2 (en) Method for producing non-oriented electrical steel sheet
JP6146582B2 (en) Method for producing non-oriented electrical steel sheet
JP2005187846A (en) Non-oriented electromagnetic steel sheet and manufacturing method therefor
JP3931842B2 (en) Method for producing non-oriented electrical steel sheet
JP2003034820A (en) Method for manufacturing grain-oriented electrical steel sheet superior in blanking property having no undercoat film
KR20220106185A (en) Hot rolled steel sheet for non-oriented electrical steel sheet
KR101110257B1 (en) Non-oriented electrical steel sheet with high magnetic flux density and manufacturing method thereof
JPH0443981B2 (en)
JP3845871B2 (en) Method for producing non-oriented electrical steel sheet with high magnetic flux density
JP4273621B2 (en) Electrical steel sheet for high-speed small motors
JP3084571B2 (en) High Si content steel plate with good workability

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120703