JP6123234B2 - Electrical steel sheet - Google Patents

Electrical steel sheet Download PDF

Info

Publication number
JP6123234B2
JP6123234B2 JP2012242633A JP2012242633A JP6123234B2 JP 6123234 B2 JP6123234 B2 JP 6123234B2 JP 2012242633 A JP2012242633 A JP 2012242633A JP 2012242633 A JP2012242633 A JP 2012242633A JP 6123234 B2 JP6123234 B2 JP 6123234B2
Authority
JP
Japan
Prior art keywords
steel sheet
average
amount
layer portion
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012242633A
Other languages
Japanese (ja)
Other versions
JP2014091850A (en
Inventor
尾田 善彦
善彦 尾田
広朗 戸田
広朗 戸田
新司 小関
新司 小関
多津彦 平谷
多津彦 平谷
中西 匡
匡 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2012242633A priority Critical patent/JP6123234B2/en
Publication of JP2014091850A publication Critical patent/JP2014091850A/en
Application granted granted Critical
Publication of JP6123234B2 publication Critical patent/JP6123234B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、エアコンコンプレッサーモータやハイブリッド電気自動車用駆動モータなどのモータコア用として好適である、高周波鉄損が低い電磁鋼板に関する。   The present invention relates to a magnetic steel sheet having a low high-frequency iron loss, which is suitable for a motor core such as an air conditioner compressor motor or a drive motor for a hybrid electric vehicle.

近年、家庭用エアコンコンプレッサーモータでは可変速運転が行われており、最高周波数は200〜400Hz程度である。そのため、PWM制御等により数kHzのキャリア周波数が重畳した状態で使用されている。また、最近急速に普及しているハイブリッド電気自動車用駆動モータや電気自動車用駆動モータも、高出力、小型化の観点から数kHzの周波数で駆動されており、モーターコア用材料について、特に高周波鉄損が低いことが要求されるようになっている。   In recent years, home air conditioner compressor motors have been operated at a variable speed, and the maximum frequency is about 200 to 400 Hz. Therefore, it is used in a state where a carrier frequency of several kHz is superimposed by PWM control or the like. In addition, hybrid electric vehicle drive motors and electric vehicle drive motors, which have been rapidly spreading recently, are driven at a frequency of several kHz from the viewpoint of high output and miniaturization. Low losses are required.

ここで、モーターコア用の素材である電磁鋼板は、打ち抜きによりモータコア形状に加工され、その後かしめ、溶接等により締結されて、巻き線後、ハウジング等に圧入もしくは焼きばめにより固定されることにより、モータコアとされる。このため、電磁鋼板は様々な加工歪みを受けることとなり、エプスタイン等で測定される素材の磁気特性に比べ、モータコアに加工後は鉄損等が大きく増加することとなる。
例えば、打ち抜き歪みに関してみると、エプスタイン試験で磁気特性を測定する場合は、試験材は幅:30mmの短冊状試験片に剪断して測定されるが、モータコアではティース幅が比較的大きなモータでも5mm程度であり、小型のモータでは2mm程度となる。ここで、打ち抜いた鉄心形状の面積に対する打ち抜き端面の累計長さの長いものほど、鉄心全体に対する歪みの影響が大きくなり、上記したようなティース幅の場合、打ち抜きによりモータコア鉄損は素材鉄損に比べ3〜5割程度も増加することとなる。このため、打ち抜きによる鉄損劣化が小さい電磁鋼板が求められている。
Here, the electromagnetic steel sheet, which is the material for the motor core, is processed into a motor core shape by punching, and then tightened by caulking, welding, etc., and after being wound, it is fixed to the housing by press-fitting or shrink fitting. And a motor core. For this reason, the electromagnetic steel sheet is subjected to various processing strains, and iron loss and the like are greatly increased after processing the motor core as compared with the magnetic characteristics of the material measured by Epstein or the like.
For example, regarding punching distortion, when measuring magnetic properties in the Epstein test, the test material is measured by shearing into a strip-shaped test piece having a width of 30 mm, but the motor core is 5 mm even with a relatively large tooth width. This is about 2 mm for a small motor. Here, the longer the cumulative length of the punched end face relative to the punched iron core area, the greater the effect of distortion on the entire iron core.In the case of the teeth width as described above, the motor core iron loss is reduced to the material iron loss by punching. It will increase by about 30 to 50%. For this reason, there is a need for an electrical steel sheet that has low iron loss deterioration due to punching.

このような課題を解決するものとして、例えば特許文献1には、Si、Mn、SをSi: 0.4〜2.0%、Mn:0.25〜1.00%、S:0.015〜0.035%の範囲に制御し、熱間圧延前のスラブ加熱温度を低温とし、熱間圧延の仕上げ温度を比較的高温とする、打ち抜きによる磁気特性の劣化が少なく、磁気特性が良好な無方向性電磁鋼板を得る技術が開示される。この技術は、鋼板中に粗大なMnSを析出させ、打ち抜き時の剪断抵抗を減少させることにより、打ち抜き時の鉄損劣化を抑制しようとするものである。   In order to solve such a problem, for example, in Patent Document 1, Si, Mn, and S include Si: 0.4 to 2.0%, Mn: 0.25 to 1.00%, and S: 0.015. Controlled to a range of ~ 0.035%, the slab heating temperature before hot rolling is set to a low temperature, the finishing temperature of hot rolling is set to a relatively high temperature, there is little deterioration in magnetic properties due to punching, and the magnetic properties are good A technique for obtaining a non-oriented electrical steel sheet is disclosed. This technique is intended to suppress iron loss deterioration at the time of punching by precipitating coarse MnS in the steel sheet and reducing the shear resistance at the time of punching.

特開平8−246052号公報JP-A-8-246052

しかしながら、特許文献1の技術のように、鋼板中に粗大な析出物を析出させることで打ち抜き時の剪断抵抗を減少させようとすると、鋼板中の析出物量が多くならざるを得ず、素材である電磁鋼板自体の鉄損が高くなるという問題を有していた。
本発明はこのような問題を鑑みなされたもので、打ち抜き時の鉄損劣化を抑制した、高周波鉄損に優れる電磁鋼板を提供することを目的とする。
However, as in the technique of Patent Document 1, when trying to reduce the shear resistance at the time of punching by precipitating coarse precipitates in the steel sheet, the amount of precipitates in the steel sheet is inevitably increased. There was a problem that iron loss of a certain electromagnetic steel sheet itself was high.
The present invention has been made in view of such problems, and an object of the present invention is to provide an electrical steel sheet excellent in high-frequency iron loss that suppresses iron loss deterioration during punching.

本発明者らが上記課題について鋭意検討したところ、鋼板表層部のSi量を高めるとともに、鋼中のMn量を高め、As量を低減することにより、打ち抜き時に鉄損劣化を起こしやすい狭幅材での高周波鉄損を低減できることが明らかとなった。   The present inventors diligently studied the above-mentioned problems. As a result of increasing the amount of Si in the surface layer of the steel sheet, increasing the amount of Mn in the steel, and reducing the amount of As, a narrow material that easily causes iron loss deterioration during punching. It became clear that the high-frequency iron loss in can be reduced.

本発明は、上記知見に基づきなされたもので、その要旨は以下の通りである。
[1]質量%で、鋼板表層部の平均Si量が4%以上7%以下、鋼板内層部の平均Si量が5%以下であり、Mn:0.5%超5%以下を含有し、As:0.002%以下、Se:0.002%以下とし、残部Feおよび不可避不純物からなる成分組成を有し、板厚方向に板厚表面が板厚中心部よりもSi濃度が高くなるSiの濃度勾配を有し、鋼板表層部の平均Si量が鋼板内層部の平均Si量に比べて0.5質量%以上高く、鋼板表層部厚さの割合が板厚の0.1〜0.7であることを特徴とする電磁鋼板。
ここで、鋼板表層部とは、鋼板の全板厚の平均Si量以上のSi濃度を有する鋼板部分であり、鋼板内層部は鋼板の全板厚の平均Si量未満のSi濃度を有する鋼板部分である。
[2]前記[1]において、さらに質量%で、Al:3%以下を含有することを特徴とする電磁鋼板。
[3]前記[1]または[2]において、さらに質量%で、Mg:0.0003%以上0.002%以下を含有することを特徴とする電磁鋼板。
The present invention has been made based on the above findings, and the gist thereof is as follows.
[1] In mass%, the average Si amount of the steel sheet surface layer portion is 4% or more and 7% or less, the average Si amount of the steel plate inner layer portion is 5% or less, Mn: more than 0.5% and containing 5% or less, Si: As: 0.002% or less, Se: 0.002% or less, having a component composition composed of the remaining Fe and inevitable impurities, and having a plate thickness surface with a Si concentration higher than the plate thickness center portion in the plate thickness direction The average Si amount in the steel sheet surface layer portion is 0.5 mass% or more higher than the average Si amount in the steel plate inner layer portion, and the thickness ratio of the steel plate surface layer portion is 0.1 to 0. 7 is an electrical steel sheet.
Here, the steel plate surface layer portion is a steel plate portion having a Si concentration equal to or higher than the average Si amount of the total thickness of the steel plate, and the steel plate inner layer portion is a steel plate portion having a Si concentration less than the average Si amount of the total thickness of the steel plate. It is.
[2] The electrical steel sheet according to [1], further containing, by mass, Al: 3% or less.
[3] The electrical steel sheet according to [1] or [2], further containing Mg: 0.0003% to 0.002% by mass.

本発明によれば、打ち抜きによる特性劣化が小さい材料を得ることができ、エアコンコンプレッサーモータ、ハイブリッド電気自動車用駆動モータ、電気自動車用駆動モータ、情報機器モータ等のティース幅が狭いモータの鉄損を低減できるという利点がある。   According to the present invention, it is possible to obtain a material whose characteristic deterioration due to punching is small, and iron loss of a motor having a narrow tooth width such as an air conditioner compressor motor, a drive motor for a hybrid electric vehicle, a drive motor for an electric vehicle, and an information equipment motor. There is an advantage that it can be reduced.

鋼板表層部の平均Si量と鉄損(W10/2k)との関係を示す図である。It is a figure which shows the relationship between the average Si amount of a steel plate surface layer part, and an iron loss (W10 / 2k). 鋼中のMn含有量と鉄損(W10/2k)との関係を示す図である。It is a figure which shows the relationship between Mn content in steel, and iron loss (W10 / 2k). 鋼中のAs含有量と鉄損(W10/2k)との関係を示す図である。It is a figure which shows the relationship between As content and steel loss (W10 / 2k) in steel. 複層比と鉄損(W10/2k)との関係を示す図である。It is a figure which shows the relationship between a multilayer ratio and iron loss (W10 / 2k). 鋼板表層部の平均Si量と鋼板内層部の平均Si量の差と鉄損(W10/2k)との関係を示す図である。It is a figure which shows the relationship between the difference of the average Si amount of a steel plate surface layer part, the average Si amount of a steel plate inner layer part, and an iron loss (W10 / 2k).

本発明を実験結果に基づいて詳細に説明する。なお、本明細書において、特にことわらない限り、成分に関する%表示は質量%を意味する。   The present invention will be described in detail based on experimental results. In addition, in this specification, unless otherwise indicated,% display regarding a component means the mass%.

まず、打ち抜きによる磁気特性劣化を調査した。
質量%でSi=3.9%、Al=tr.、Mn=0.1%、As=0.0001%、Se<0.0005%とした鋼を実験室にて溶製し、インゴットとした。その後、熱間圧延し、次いで900℃×30sの熱延板焼鈍を行い、酸洗後、冷間圧延して板厚を0.20mmの冷延板とし、引き続き1000℃×30sの仕上焼鈍を行ない、板厚方向にSi量が比較的均一な鋼板を得た。ここで得た鋼板の圧延方向および圧延直角方向から、長さ180mm幅30mmのエプスタインサンプル、および長さ180mm幅5mmのエプスタインサンプルを打ち抜きにより作製した。また、上記冷延板に1200℃にて10分間の浸珪処理を施すことにより、表面から板厚の30%の部分の平均Si量を6.5%とし、板厚中央部(板厚中心から上下に40%の部分)のSi量を4.5%とした鋼板も作成し、同様に、圧延方向および圧延直角方向から、長さ180mm幅30mmのエプスタインサンプル、および長さ180mm幅5mmのエプスタインサンプルを打ち抜きにより作製した。
First, the deterioration of magnetic characteristics due to punching was investigated.
In mass%, Si = 3.9%, Al = tr. , Mn = 0.1%, As = 0.0001%, Se <0.0005% steel was melted in the laboratory to obtain an ingot. Thereafter, hot rolling is performed, followed by hot-rolled sheet annealing at 900 ° C. × 30 s. After pickling, the sheet is cold-rolled to form a cold-rolled sheet having a thickness of 0.20 mm, followed by finish annealing at 1000 ° C. × 30 s. A steel sheet having a relatively uniform amount of Si in the thickness direction was obtained. An Epstein sample having a length of 180 mm and a width of 30 mm and an Epstein sample having a length of 180 mm and a width of 5 mm were produced by punching from the rolling direction and the direction perpendicular to the rolling direction of the steel plate obtained here. Further, by subjecting the cold-rolled sheet to a silicidation treatment at 1200 ° C. for 10 minutes, the average amount of Si in the 30% portion of the plate thickness from the surface is 6.5%, A steel plate having a Si content of 4.5% from the top and the bottom) was also prepared. Similarly, from the rolling direction and the direction perpendicular to the rolling, an Epstein sample having a length of 180 mm and a width of 30 mm, and a length of 180 mm and a width of 5 mm Epstein samples were made by stamping.

これらサンプルについて、JIS C2550に準拠してエプスタイン試験により鉄損(W10/2k)を測定した結果を表1に示す。この際、幅5mmのサンプルについては、幅方向に6枚並べて幅30mmとして測定した。このようにして測定することで、サンプルの幅30mmの中に5ヶ所の剪断部分が含まれることになるので、打抜加工による鉄損特性への影響を評価することができる。なお、表1の鉄損(W10/2k)は、圧延方向サンプルおよび圧延直角方向サンプルを半量ずつ用いて求めた鉄損(W10/2k)である。また、鉄損劣化率(%)={((幅5mm材の鉄損)−(幅30mm材の鉄損))/(幅30mm材の鉄損)}×100を求め、表1に示す。表1に示した結果から、仕上焼鈍を行った板厚方向にSiが均一な材料(均一材)では鉄損劣化率が28.9%であり、30mm幅のサンプルに比べ5mm幅のサンプルでは鉄損が30%程度増加していることがわかる。これは打ち抜きにより鋼板端面で塑性変形が生じることに加え、圧縮の応力が残留するためと考えられる。   Table 1 shows the results of measuring iron loss (W10 / 2k) by Epstein test according to JIS C2550 for these samples. At this time, for a sample having a width of 5 mm, six sheets were arranged in the width direction and measured as a width of 30 mm. By measuring in this way, five shear portions are included in the width of 30 mm of the sample, so that it is possible to evaluate the influence on the iron loss characteristics by the punching process. In addition, the iron loss (W10 / 2k) of Table 1 is the iron loss (W10 / 2k) calculated | required using the rolling direction sample and the rolling perpendicular direction sample for every half amount. Further, the iron loss deterioration rate (%) = {((iron loss of 5 mm width material) − (iron loss of 30 mm width material)) / (iron loss of 30 mm width material)} × 100 is shown in Table 1. From the results shown in Table 1, the iron loss deterioration rate is 28.9% for a material (uniform material) in which Si is uniform in the thickness direction after finish annealing, and for a sample with a width of 5 mm compared to a sample with a width of 30 mm. It can be seen that the iron loss is increased by about 30%. This is considered to be because the compressive stress remains in addition to the plastic deformation occurring at the end face of the steel sheet by punching.

一方、浸珪処理を行い板厚方向にSiの濃度勾配をつけて、表層部を板厚中央部にくらべてSi量を高くした材料(表層高Si材)では、鉄損劣化率が5.3%であり、均一材に比べて打ち抜き幅の影響が小さいことがわかる。また、30mm幅サンプルの場合、均一材と表層高Si材の鉄損はほぼ同一レベルであるが、5mm幅サンプルでは、均一材に比べて表層高Si材は大幅に低い鉄損となる。すなわち、板厚方向にSiの濃度勾配をつけて、板厚の表層部を板厚の中央部に比べて高くした鋼板で打ち抜きによる鉄損劣化が抑制されていることがわかる。この原因は明確ではないが、表層部の磁歪が低いことおよび浸珪処理による格子定数変化に起因して鋼板表層部に引張りの残留応力が生じることにより、打ち抜き時の圧縮応力の影響を受けにくくなったのではないかと考えられる。   On the other hand, in the material (surface high Si material) in which the silicon content is increased by applying a silicon concentration treatment to provide a Si concentration gradient in the plate thickness direction and making the surface layer portion higher than the plate thickness center portion, the iron loss deterioration rate is 5. It can be seen that the influence of the punching width is smaller than that of the uniform material. In the case of the 30 mm width sample, the iron loss of the uniform material and the surface high Si material is almost the same level, but in the case of the 5 mm width sample, the surface high Si material has a significantly lower iron loss than the uniform material. That is, it can be seen that the iron loss deterioration due to punching is suppressed by a steel plate in which a Si concentration gradient is provided in the plate thickness direction and the surface layer portion of the plate thickness is made higher than the central portion of the plate thickness. The cause of this is not clear, but it is less susceptible to compressive stress during punching due to low magnetostriction in the surface layer and due to tensile residual stress in the steel sheet surface due to changes in the lattice constant due to the siliconization treatment. It is thought that it became.

Figure 0006123234
Figure 0006123234

次に鋼板表層部のSi量の影響について調査した。なお、以下、鋼板表層部とは、鋼板の全板厚の平均Si量以上のSi濃度を有する鋼板部分である。また、鋼板の全板厚の平均Si量未満のSi濃度を有する鋼板部分は鋼板内層部とした。
Si=3.0%、Al=tr.、Mn=0.1%、As=0.0001%、Se<0.0005%の鋼を用い、熱間圧延し、次いで900℃×30sの熱延板焼鈍を行い、酸洗後、冷間圧延により板厚を0.20mmとした。その後、1200℃×1〜20minの浸珪処理を行い、鋼板表層部のSi量を変化させた。ここで鋼板表層部の厚さ(鋼板両側表層部の合計の厚さ)が全板厚の25%となるように、すなわち複層比が0.25となるように、浸珪処理後に1000℃にて行う拡散処理の処理時間を様々に変化させて調整した。なお、複層比とは、複層比=(鋼板両側表層部の合計の厚さ)/(鋼板の全板厚)である。
Next, the influence of the Si amount in the steel sheet surface layer portion was investigated. Hereinafter, the steel plate surface layer portion is a steel plate portion having a Si concentration equal to or higher than the average Si amount of the total thickness of the steel plate. Moreover, the steel plate part which has Si concentration less than the average Si amount of the total thickness of a steel plate was made into the steel plate inner layer part.
Si = 3.0%, Al = tr. , Mn = 0.1%, As = 0.0001%, Se <0.0005%, hot-rolled, then hot-rolled sheet annealed at 900 ° C. × 30 s, pickled, cold The plate thickness was set to 0.20 mm by rolling. Thereafter, a silicon immersion treatment at 1200 ° C. for 1 to 20 minutes was performed to change the amount of Si in the surface layer portion of the steel sheet. Here, the thickness of the steel sheet surface layer portion (total thickness of both surface layer portions of the steel plate) is 25% of the total plate thickness, that is, 1000 ° C. after the siliconization treatment so that the multilayer ratio is 0.25. The processing time of the diffusion process performed in was adjusted in various ways. The multilayer ratio is the multilayer ratio = (total thickness of both surface layer portions of the steel sheet) / (total thickness of the steel sheet).

また、ここで鋼板表層部の厚さは、鋼板の板厚方向のSiの濃度分布をEPMAにより求め、この濃度分布から、全板厚の平均のSi量を求め、この全板厚の平均Si量以上のSi濃度を有する部分を、鋼板表層部として、鋼板表層部のSi量の平均である鋼板表層部の平均Si量を求めた。   Further, here, the thickness of the steel sheet surface layer portion is obtained by determining the Si concentration distribution in the plate thickness direction of the steel plate by EPMA, and from this concentration distribution, the average Si amount of the total plate thickness is obtained, and the average Si of the total plate thickness is obtained. The average Si amount of the steel sheet surface layer portion, which is the average of the Si amount of the steel sheet surface layer portion, was determined using a portion having a Si concentration equal to or greater than the amount as the steel sheet surface layer portion.

また、このようにして得られた鋼板から、圧延方向および圧延直角方向から長さ180mm、幅5mmのエプスタインサンプルを打ち抜きにより作製し、上記と同様にして鉄損(W10/2k)を測定した。   Further, from the steel plate thus obtained, an Epstein sample having a length of 180 mm and a width of 5 mm was produced by punching from the rolling direction and the direction perpendicular to the rolling direction, and the iron loss (W10 / 2k) was measured in the same manner as described above.

図1にここで得た鋼板(0.1%Mn鋼)の鋼板表層部の平均Si量と鉄損(W10/2k)との関係を示す。なお、鋼板内層平均Si量はいずれのサンプルでも3.2%であった。これより鋼板表層部の平均Si量が4%以上で鉄損が低下していることがわかる。このことより鋼板表層部の平均Si量は4%以上、好ましくは4.5%以上とする。なお、鋼板表層部の平均Si量が7%を超えた場合には打ち抜きが困難となるため、上限は7%である。   FIG. 1 shows the relationship between the average Si content of the steel sheet surface layer portion of the steel sheet (0.1% Mn steel) obtained here and the iron loss (W10 / 2k). The steel sheet inner layer average Si amount was 3.2% in all samples. From this, it can be seen that the iron loss is reduced when the average Si content of the steel sheet surface layer portion is 4% or more. From this, the average Si content of the steel sheet surface layer portion is 4% or more, preferably 4.5% or more. In addition, since punching becomes difficult when the average Si amount of the steel sheet surface layer portion exceeds 7%, the upper limit is 7%.

ところで、このような板厚方向にSiの濃度勾配を有する鋼板の高周波鉄損をさらに低減するには、鋼板の固有抵抗を高めることが効果的である。鋼板の固有抵抗を増大させる元素としてSiがあるが、Siをさらに高めた場合には材料が非常にもろくなるため、モータの打ち抜き加工が困難となる。そこで、固有抵抗を高めつつ、鋼板が脆化しない元素としてMnに着目し検討を行った。   Incidentally, in order to further reduce the high-frequency iron loss of a steel sheet having a Si concentration gradient in the thickness direction, it is effective to increase the specific resistance of the steel sheet. Si is an element that increases the specific resistance of the steel sheet. However, when Si is further increased, the material becomes very brittle, and it is difficult to punch the motor. Then, it examined paying attention to Mn as an element which does not embrittle a steel plate, raising a specific resistance.

すなわち、Si=3.0%、Al=tr.、Mn=2.0%、As=0.0001%、Se<0.0005%の鋼を用い、熱間圧延し、次いで900℃×30sの熱延板焼鈍を行い、酸洗後、冷間圧延により板厚を0.20mmとした。その後、1200℃×1〜20minの浸珪処理を行い鋼板表層部のSi量を変化させた。ここで鋼板表層部の厚さが板厚の25%(複層比=0.25)となるように、上記したのと同様に浸珪処理後に1000℃にて行う拡散処理の処理時間を様々に変化させて調整した。また、鋼板表層部の平均Si量は、上記と同様にして求めた。   That is, Si = 3.0%, Al = tr. , Mn = 2.0%, As = 0.0001%, Se <0.0005%, hot-rolled, then hot-rolled sheet annealed at 900 ° C. × 30 s, pickled, cold The plate thickness was set to 0.20 mm by rolling. Thereafter, a silicon immersion treatment at 1200 ° C. for 1 to 20 minutes was performed to change the amount of Si in the surface layer portion of the steel sheet. Here, the treatment time of the diffusion treatment performed at 1000 ° C. after the siliconization treatment is varied in the same manner as described above so that the thickness of the steel plate surface layer portion is 25% of the plate thickness (multilayer ratio = 0.25). And adjusted. Moreover, the average Si amount of the steel sheet surface layer portion was determined in the same manner as described above.

このようにして得た鋼板より、圧延方向および圧延直角方向から長さ180mm、幅5mmのエプスタインサンプルを打ち抜きにより作製し、上記と同様にして鉄損(W10/2k)を測定した。図1にここで得た鋼板(2.0%Mn鋼)の鋼板表層部の平均Si量と鉄損(W10/2k)との関係を示す。なお、鋼板内層平均Si量はいずれのサンプルでも3.2%であった。2.0%Mn鋼は、0.1%Mn鋼よりも鉄損が小さく、特に鋼板表層部の平均Si量が4%以上でMn添加により特に鉄損が大きく低下することがわかる。この理由は明確でないが、Si、Mnの複合効果により鉄損低下が大きくなったのではないかと考えられる。   From the steel plate thus obtained, an Epstein sample having a length of 180 mm and a width of 5 mm was produced by punching from the rolling direction and the direction perpendicular to the rolling, and the iron loss (W10 / 2k) was measured in the same manner as described above. FIG. 1 shows the relationship between the average Si content of the steel sheet surface layer portion of the steel sheet (2.0% Mn steel) obtained here and the iron loss (W10 / 2k). The steel sheet inner layer average Si amount was 3.2% in all samples. It can be seen that the 2.0% Mn steel has a smaller iron loss than the 0.1% Mn steel, and in particular, the average Si content of the steel sheet surface layer portion is 4% or more, and the iron loss is particularly greatly reduced by the addition of Mn. The reason for this is not clear, but it is thought that the iron loss drop has increased due to the combined effect of Si and Mn.

次にMn添加量の影響を調査した。
Si=3.0%、Al=tr.、As=0.0001%、Se<0.0005%、Mn=0.1〜5%と、Mn量を大きく変化させた鋼を真空溶解し、熱間圧延後、900℃×30sの熱延板焼鈍を行い、酸洗後、冷間圧延により板厚を0.20mmとした。その後、1200℃×10minの浸珪処理を行い鋼板表層部の平均Si量を6.5%とした。なお、鋼板表層部の平均Si量は、上記と同様にして求めた。また、鋼板表層部の厚さが板厚の25%(複層比=0.25)となるように上記したのと同様に浸珪処理後に1000℃にて行う拡散処理の処理時間を様々に変化させて調整した。
このようにして得た鋼板より、圧延方向および圧延直角方向から長さ180mm、幅5mmのエプスタインサンプルを打ち抜きにより作製し、上記と同様にして鉄損(W10/2k)を測定した。図2に鉄損(W10/2k)に及ぼすMn量の影響を示す。これよりMn量0.5%超で鉄損が低下することがわかる。なお、Mnが5%を超えると、Mn添加の効果が飽和し、いたずらにコストアップとなるためMn量の上限は5%とする。
Next, the influence of Mn addition amount was investigated.
Si = 3.0%, Al = tr. , As = 0.0001%, Se <0.0005%, Mn = 0.1-5%, steel with greatly changed Mn content was vacuum melted, hot rolled, and then hot rolled at 900 ° C. × 30 s The plate was annealed, pickled, and then cold-rolled to a thickness of 0.20 mm. Thereafter, a siliconization treatment at 1200 ° C. for 10 minutes was performed to make the average Si content of the steel sheet surface layer portion 6.5%. In addition, the average Si amount of the steel sheet surface layer portion was determined in the same manner as described above. Moreover, the treatment time of the diffusion treatment performed at 1000 ° C. after the siliconization treatment is varied in the same manner as described above so that the thickness of the steel plate surface layer portion is 25% of the plate thickness (multilayer ratio = 0.25). Changed and adjusted.
From the steel plate thus obtained, an Epstein sample having a length of 180 mm and a width of 5 mm was produced by punching from the rolling direction and the direction perpendicular to the rolling, and the iron loss (W10 / 2k) was measured in the same manner as described above. FIG. 2 shows the effect of Mn content on iron loss (W10 / 2k). This shows that the iron loss decreases when the Mn content exceeds 0.5%. In addition, when Mn exceeds 5%, the effect of Mn addition is saturated and the cost is unnecessarily increased, so the upper limit of the amount of Mn is 5%.

次にMn添加鋼の製造安定性を調査するため、上記Mn添加量の影響を調査した図2に示した鋼のうち、2.5%Mn鋼を実験室にて10チャージ溶製し、上記Mn添加量の影響を調査した場合と同様にして鋼板を作製し、鉄損を評価したところ、鉄損の高いものが2チャージ認められた。この原因を調査するため、走査型電子顕微鏡(SEM)にて、鋼板のミクロ組織観察を行ったところ、鉄損の高い材料では粒界にMnAs析出物が認められた。通常の電磁鋼板ではMnAsの析出は認められないが、本検討のようにMn含有量が高い材料ではMnAsが析出しやすくなったものと想定される。   Next, in order to investigate the production stability of Mn added steel, 2.5% Mn steel was melted in 10 charges in the laboratory among the steels shown in FIG. When the steel sheet was prepared and the iron loss was evaluated in the same manner as in the case where the influence of the Mn addition amount was investigated, two charges with a high iron loss were recognized. In order to investigate this cause, the microstructure of the steel sheet was observed with a scanning electron microscope (SEM). As a result, MnAs precipitates were observed at grain boundaries in the material having a high iron loss. Although precipitation of MnAs is not recognized in a normal electromagnetic steel sheet, it is assumed that MnAs is likely to precipitate in a material having a high Mn content as in this study.

そこで、鉄損に及ぼすAs量の影響を調査した。
Si=3.1%、Al=tr.、Mn=2.5%およびMn=0.1%、As=0.0004〜0.0026%、Se<0.0005%とした鋼を真空溶解し、熱間圧延後、900℃×30sの熱延板焼鈍を行い、酸洗後、冷間圧延により板厚を0.20mmとした。その後、1200℃×10minの浸珪処理を行い、鋼板表層部の平均Si量を6.5%とした。ここで鋼板表層部の厚さが板厚の25%(複層比=0.25)となるように、上記したのと同様に浸珪処理後に1000℃にて行う拡散処理の処理時間を様々に変化させて調整した。
Therefore, the influence of the As amount on the iron loss was investigated.
Si = 3.1%, Al = tr. , Mn = 2.5% and Mn = 0.1%, As = 0.004-0.0026%, Se <0.0005% steel was vacuum melted and after hot rolling, 900 ° C. × 30 s Hot-rolled sheet annealing was performed, and after pickling, the sheet thickness was 0.20 mm by cold rolling. Thereafter, a siliconization treatment at 1200 ° C. for 10 minutes was performed, and the average Si content of the steel sheet surface layer portion was set to 6.5%. Here, the treatment time of the diffusion treatment performed at 1000 ° C. after the siliconization treatment is varied in the same manner as described above so that the thickness of the steel plate surface layer portion is 25% of the plate thickness (multilayer ratio = 0.25). And adjusted.

このようにして得た鋼板より、圧延方向および圧延直角方向から長さ180mm、幅5mmのエプスタインサンプルを打ち抜きにより作製し、上記と同様にして鉄損(W10/2k)を測定した。図3に鉄損に及ぼすAsの影響を示す。Mn=0.1%鋼ではAsが0.002%超となっても鉄損の増加は認められないが、Mn=2.5%鋼ではAsが0.002%超となると鉄損が増加することがわかる。このためAsの上限を0.002%とする。なお、AsはMn鉱石、Si鉱石に不純物として含まれることから、高純度の鉱石を使用することが望ましい。   From the steel plate thus obtained, an Epstein sample having a length of 180 mm and a width of 5 mm was produced by punching from the rolling direction and the direction perpendicular to the rolling, and the iron loss (W10 / 2k) was measured in the same manner as described above. FIG. 3 shows the effect of As on iron loss. In Mn = 0.1% steel, no increase in iron loss is observed even if As exceeds 0.002%, but in Mn = 2.5% steel, iron loss increases when As exceeds 0.002%. I understand that For this reason, the upper limit of As is set to 0.002%. In addition, since As is contained as an impurity in Mn ore and Si ore, it is desirable to use high-purity ore.

次に鋼板内層部のSi量について検討した。
Si=1〜4.5%、Al=tr.、Mn=2.0%、As=0.0001%、Se<0.0005%とした鋼を用い、熱間圧延後、900℃×30sの熱延板焼鈍を行い、酸洗後、冷間圧延により板厚を0.20mmとした。その後、1200℃×1〜20minの浸珪処理を行い鋼板表層部の平均Si量を6%とするとともに、鋼板内層部のSi量を変化させた。
このようにして得た鋼板について、長さ180mm、幅5mmのエプスタインサンプルの打ち抜きを行ったところ、鋼板内層部の平均Si量が5%の鋼板では打ち抜きによりサンプルを作製することができたが、5%を超える鋼板では、打ち抜き時に板に亀裂が入り、エプスタインサンプルを作製することが不可能であり、打ち抜き性が劣ることが判った。このことから、鋼板内層部のSi量は5%以下とする。
Next, the amount of Si in the inner layer of the steel sheet was examined.
Using steel with Si = 1 to 4.5%, Al = tr., Mn = 2.0%, As = 0.0001%, Se <0.0005%, after hot rolling, 900 ° C. × 30 s Hot-rolled sheet annealing was performed, and after pickling, the sheet thickness was 0.20 mm by cold rolling. Thereafter, a siliconization treatment at 1200 ° C. for 1 to 20 minutes was performed to set the average Si amount in the steel sheet surface layer portion to 6% and to change the Si amount in the inner layer portion of the steel plate.
About the steel plate obtained in this manner, when the Epstein sample with a length of 180 mm and a width of 5 mm was punched, a steel plate with an average Si amount of 5% in the steel plate inner layer part could be produced by punching, It was found that with steel plates exceeding 5%, the plate cracked during punching, and it was impossible to produce an Epstein sample, and the punchability was poor. For this reason, the Si content in the inner layer of the steel sheet is set to 5% or less.

次に複層比について検討した。
Al=tr.、Mn=2.0%、As=0.0001%、Se<0.0005%とし、Si含有量を種々変更した鋼素材を、上記と同様に、熱間圧延後、900℃×30sの熱延板焼鈍を行い、酸洗後、冷間圧延により板厚を0.20mmとし、浸珪時間を種々変更して浸珪処理を行い、鋼板表層部の平均Si量=6%、鋼板内層部の平均Si量=3%、複層比が0.05〜0.9となるようにした鋼板を作製した。
このようにして得た鋼板について、圧延方向および圧延直角方向から、長さ180mm、幅5mmのエプスタインサンプルを打ち抜きにより作製し、上記と同様にして鉄損(W10/2k)を測定した。
Next, the multilayer ratio was examined.
A steel material in which Al = tr., Mn = 2.0%, As = 0.0001%, Se <0.0005% and various Si contents were changed to 900 ° C. after hot rolling in the same manner as described above. X30s hot-rolled sheet annealed, pickled, cold rolled to a thickness of 0.20mm, silicidation time was changed in various ways, and the average Si content of steel sheet surface layer = 6% A steel sheet was prepared so that the average Si amount in the inner layer of the steel sheet was 3% and the multilayer ratio was 0.05 to 0.9.
About the steel plate thus obtained, an Epstein sample having a length of 180 mm and a width of 5 mm was produced by punching from the rolling direction and the direction perpendicular to the rolling, and the iron loss (W10 / 2k) was measured in the same manner as described above.

図4に複層比と鉄損(W10/2k)との関係を示す。これより複層比が0.1以上で鉄損が低下していることがわかる。これは表層の高Si部が板厚の0.1未満では低磁歪部および引張り応力残留部の量が小さく、打ち抜き時の鉄損劣化抑制効果が小さいためと考えられる。一方、複層比が0.7超では打ち抜き時に割れが生じたため上限は0.7とする。   FIG. 4 shows the relationship between the multilayer ratio and the iron loss (W10 / 2k). This shows that the iron loss is reduced when the multilayer ratio is 0.1 or more. This is presumably because when the surface high Si portion is less than 0.1 in thickness, the amount of the low magnetostriction portion and the residual portion of the tensile stress is small, and the effect of suppressing iron loss deterioration during punching is small. On the other hand, if the multilayer ratio exceeds 0.7, cracking occurred during punching, so the upper limit is set to 0.7.

次に、表層部の平均Si量と内層部の平均Si量の差の影響について検討した。
Si=4.5%、Al=tr.、Mn=2.0%、As=0.0001%、Se<0.0005%の鋼を用い、熱間圧延後、900℃×30sの熱延板焼鈍を行い、酸洗後、冷間圧延により板厚を0.20mmとした。その後、1200℃×1〜20minの浸珪処理を行い鋼板表層部のSi量を変化させた。ここで鋼板表層部は板厚の30%(複層比=0.3)となるように、浸珪処理後に1000℃にて行う拡散処理の処理時間を様々に変化させて調整した。
Next, the influence of the difference between the average Si amount in the surface layer portion and the average Si amount in the inner layer portion was examined.
Si = 4.5%, Al = tr. , Mn = 2.0%, As = 0.0001%, Se <0.0005%, hot-rolled, annealed at 900 ° C. for 30 s, pickled, cold-rolled Thus, the plate thickness was set to 0.20 mm. Thereafter, a silicon immersion treatment at 1200 ° C. for 1 to 20 minutes was performed to change the amount of Si in the surface layer portion of the steel sheet. Here, the steel plate surface layer portion was adjusted by varying the treatment time of the diffusion treatment performed at 1000 ° C. after the siliconization treatment so that the surface thickness of the steel plate was 30% (multilayer ratio = 0.3).

このようにして得た鋼板について、圧延方向および圧延直角方向から、長さ180mm、幅5mmのエプスタインサンプルを打ち抜きにより作製し、上記と同様にして鉄損(W10/2k)を測定した。
図5に鋼板表層部の平均Si量と鋼板内層部の平均Si量の差と鉄損(W10/2k)との関係を示す。図5より鋼板表層部の平均Si量と鋼板内層部の平均Si量の差が大きくなるにつれて鉄損(W10/2k)は低下し、この差が0.5質量%以上では鉄損(W10/2k)が安定して低くなることがわかる。これはSi差を大きくすることにより鋼板表層部に引張り応力が発生し、これにより狭幅剪断時の鉄損劣化が抑制できたものと考えられる。
About the steel plate thus obtained, an Epstein sample having a length of 180 mm and a width of 5 mm was produced by punching from the rolling direction and the direction perpendicular to the rolling, and the iron loss (W10 / 2k) was measured in the same manner as described above.
FIG. 5 shows the relationship between the difference between the average Si amount in the steel sheet surface layer portion and the average Si amount in the steel plate inner layer portion and the iron loss (W10 / 2k). As shown in FIG. 5, the iron loss (W10 / 2k) decreases as the difference between the average Si amount in the steel sheet surface layer portion and the average Si amount in the steel plate inner layer portion decreases, and when this difference is 0.5 mass% or more, the iron loss (W10 / 2k) is stable and low. This is considered to be because tensile stress was generated in the surface layer portion of the steel sheet by increasing the Si difference, thereby suppressing iron loss deterioration during narrow width shearing.

上記の実験結果を含め、本発明について説明する。
まず、本発明の成分組成について説明する。本発明の電磁鋼板は、鋼板表層部の平均Si量が4%以上7%以下、鋼板内層部の平均Si量が5%以下であり、Mn:0.5%超5%以下を含有し、As:0.002%以下、Se:0.002%以下とし、残部Feおよび不可避不純物からなる成分組成を有する。
The present invention will be described including the above experimental results.
First, the component composition of the present invention will be described. The electrical steel sheet of the present invention has an average Si amount of 4% or more and 7% or less of the steel sheet surface layer part, an average Si content of the steel sheet inner layer part of 5% or less, and Mn: more than 0.5% and containing 5% or less, As: 0.002% or less, Se: 0.002% or less, and has a component composition consisting of the remaining Fe and inevitable impurities.

鋼板表層部の平均Si量が4%以上7%以下
鋼板表層部の平均Si量は打ち抜きによる鉄損劣化に大きく影響し、鋼板表層部の平均Si量を4%以上とすることで、図1に示したように、高周波での鉄損を大きく改善することができる。一方、鋼板表層部の平均Si量が7%を超えると、打ち抜きが困難となる。したがって、鋼板表層部の平均Si量は4%以上7%以下とする。
The average Si amount of the steel sheet surface layer portion is 4% or more and 7% or less. The average Si amount of the steel plate surface layer portion greatly affects the iron loss deterioration due to punching, and the average Si amount of the steel plate surface layer portion is 4% or more. As shown in the above, iron loss at high frequencies can be greatly improved. On the other hand, when the average Si content of the steel sheet surface layer portion exceeds 7%, punching becomes difficult. Therefore, the average Si amount in the steel sheet surface layer portion is 4% or more and 7% or less.

鋼板内層部の平均Si量が5%以下
鋼板内層部の平均Si量が5%を超えると、上記したように、狭幅材を打ち抜く際に亀裂が入るなど、打ち抜きが困難となる。したがって、鋼板内層部の平均Si量は5%以下とする。
なお、本発明の鋼板のSi含有量、すなわち、全板厚の平均Si量は、4%〜6.5%程度とすることが、鉄損を良好にする観点から好ましい。
When the average Si amount in the inner layer portion of the steel sheet is 5% or less and the average Si amount in the inner layer portion of the steel sheet exceeds 5%, as described above, it becomes difficult to punch, for example, when a narrow material is punched. Therefore, the average Si amount in the inner layer of the steel sheet is 5% or less.
The Si content of the steel sheet of the present invention, that is, the average Si content of the total thickness is preferably about 4% to 6.5% from the viewpoint of improving the iron loss.

Mn:0.5%超5%以下
鋼板中のMn量を0.5%超とすることで、図2に示したように、高周波での鉄損を改善することができる。一方、Mn量が5%を超えても、Mn添加の効果が飽和し、コストアップとなるだけであるため、Mn量の上限は5%とする。
Mn: More than 0.5% and not more than 5% By making the amount of Mn in the steel sheet more than 0.5%, the iron loss at high frequency can be improved as shown in FIG. On the other hand, even if the amount of Mn exceeds 5%, the effect of adding Mn is saturated and only the cost is increased.

As:0.002%以下
Asは不純物であるが、Mn含有量が高い本発明の鋼板ではMnAsが析出しやすく、MnAsが析出すると鉄損が劣化する。本発明のようにMn量が高い電磁鋼板でも、図3に示したように、As量を0.002%以下とすることで、Asによる鉄損の劣化を抑制することができるため、As量の上限を0.002%に規制する。
As: 0.002% or less As is an impurity, but MnAs tends to precipitate in the steel sheet of the present invention having a high Mn content, and iron loss deteriorates when MnAs is precipitated. Even in a magnetic steel sheet having a high Mn amount as in the present invention, as shown in FIG. 3, by setting the As amount to 0.002% or less, iron loss deterioration due to As can be suppressed. Is restricted to 0.002%.

Se:0.002%以下
Seは不純物であり、Mn含有量が0.5%以下の場合はそれほど問題とならないが、Mn含有量が0.5%を超える場合には、鋼板中のSe量が0.002%を超えるとMnSeを形成し、鉄損が増加するため、Se量の上限を0.002%に規制する。なお、Se量の上限は0.001%とすることがより好ましい。
Se: 0.002% or less Se is an impurity. When the Mn content is 0.5% or less, there is no problem, but when the Mn content exceeds 0.5%, the amount of Se in the steel sheet. If it exceeds 0.002%, MnSe is formed and the iron loss increases, so the upper limit of the Se amount is regulated to 0.002%. The upper limit of the Se amount is more preferably 0.001%.

上記が、本発明の電磁鋼板の基本組成であり、残部はFeおよび不可避不純物であるが、本発明では上記成分組成に加えて、以下に示す元素を適宜含有させることができる。   The above is the basic composition of the electrical steel sheet of the present invention, and the balance is Fe and inevitable impurities. In the present invention, the following elements can be appropriately contained in addition to the above component composition.

Al:3%以下
Alは固有抵抗を上げるために有効な元素であるため、0.1%以上の添加が好ましい。一方、鋼板中のAl量が3%を超えると材料が脆くなり、打ち抜きが困難となるため、Al量の上限は3%とする。
Al: 3% or less Since Al is an element effective for increasing the specific resistance, addition of 0.1% or more is preferable. On the other hand, if the Al content in the steel sheet exceeds 3%, the material becomes brittle and punching becomes difficult, so the upper limit of the Al content is 3%.

Mg:0.0003%以上0.002%以下
Mgを0.0003%以上添加すると硫化物系の析出物が粗大化して、鉄損が低減される。一方、0.002%を超えて添加してもそれ以上鉄損は低減されず、いたずらにコストアップを招く。したがって、Mg量を0.0003〜0.002%の範囲として、Mgを添加することが好ましい。
Mg: 0.0003% or more and 0.002% or less Addition of 0.0003% or more of Mg coarsens sulfide-based precipitates and reduces iron loss. On the other hand, even if added over 0.002%, the iron loss is not further reduced, and the cost is unnecessarily increased. Therefore, it is preferable to add Mg with the Mg amount in the range of 0.0003 to 0.002%.

次に本発明の電磁鋼板のSiの分布について説明する。
本発明の電磁鋼板は、板厚方向に板厚表面が板厚中心部よりもSi濃度が高くなるSiの濃度勾配を有し、鋼板表層部の平均Si量が鋼板内層部の平均Si量に比べて0.5質量%以上高く、すなわち、(鋼板表層部の平均Si量)−(鋼板内層部の平均Si量)≧0.5質量%であり、鋼板表層部厚さの割合が板厚の0.1〜0.7、すなわち複層比=0.1〜0.7である。
Next, the Si distribution of the electrical steel sheet according to the present invention will be described.
The electromagnetic steel sheet of the present invention has a Si concentration gradient in which the surface of the plate thickness is higher than the center of the plate thickness in the plate thickness direction, and the average Si amount of the steel plate surface layer portion is equal to the average Si amount of the steel plate inner layer portion. Compared to 0.5% by mass or more, that is, (average Si amount of steel sheet surface layer part) − (average Si amount of steel sheet inner layer part) ≧ 0.5% by mass, and the ratio of the steel sheet surface layer part thickness is the plate thickness 0.1 to 0.7, that is, the multilayer ratio = 0.1 to 0.7.

板厚方向に板厚表面が板厚中心部よりもSi濃度が高くなるSiの濃度勾配
表1に示したように、板厚方向に均一なSiの濃度分布を有する場合に比べ、板厚表面が板厚中心部よりもSi濃度が高くなるSiの濃度勾配を有することで、打ち抜きによる鉄損劣化を抑制することができる。したがって、本発明の電磁鋼板は、板厚表面が板厚中心部よりもSi濃度が高くなるSiの濃度勾配を有することとする。
As shown in Table 1, the thickness surface of the plate thickness surface has a higher Si concentration than the central portion of the plate thickness. As shown in Table 1, the plate thickness surface has a uniform Si concentration distribution in the plate thickness direction. Has a Si concentration gradient in which the Si concentration is higher than that of the center portion of the plate thickness, so that iron loss deterioration due to punching can be suppressed. Therefore, the electrical steel sheet of the present invention has a Si concentration gradient in which the Si surface has a higher Si concentration than the central part of the plate thickness.

(鋼板表層部の平均Si量)−(鋼板内層部の平均Si量)≧0.5%
図5に示したように、鋼板表層部の平均Si量と鋼板内層部の平均Si量の差を0.5質量%以上とすることで、鉄損(W10/2k)を安定して低くすることができる。したがって(鋼板表層部の平均Si量)−(鋼板内層部の平均Si量)≧0.5質量%とする。
(Average amount of Si in steel plate surface layer portion) − (Average amount of Si in steel plate inner layer portion) ≧ 0.5%
As shown in FIG. 5, the iron loss (W10 / 2k) is stably reduced by setting the difference between the average Si amount of the steel sheet surface layer portion and the average Si amount of the steel plate inner layer portion to 0.5 mass% or more. be able to. Therefore, (average Si amount of steel plate surface layer portion) − (average Si amount of steel plate inner layer portion) ≧ 0.5 mass%.

複層比=0.1〜0.7
鋼板表層部厚さの板厚に対する割合である複層比を0.1以上とすることで、図4に示したように、5mmという狭幅材でも鉄損の劣化を抑制することができる。一方、複層比が0.7を超えると、狭幅材を打ち抜く際に割れが生じ、打ち抜きが困難となる。したがって、複層比は0.1〜0.7とする。
Multilayer ratio = 0.1-0.7
By setting the multilayer ratio, which is the ratio of the steel sheet surface layer thickness to the plate thickness, to 0.1 or more, as shown in FIG. 4, it is possible to suppress the deterioration of iron loss even with a narrow material of 5 mm. On the other hand, if the multilayer ratio exceeds 0.7, cracking occurs when punching a narrow material, making punching difficult. Therefore, the multilayer ratio is 0.1 to 0.7.

次に、本発明の電磁鋼板の製造方法について説明する。なお、本発明の鋼板を得る製造方法は、以下に説明する製造方法に限定されるものではない。
本発明においては、表層部と内部のSi量を変化させることが重要であり、そのための手法として例えば、鋼を転炉で吹練し、溶鋼を脱ガス処理し所定の成分に調整し、引き続き鋳造を行いスラブとした後、通常の方法にて熱間圧延、次いで、一回の冷間または温間圧延、もしくは中間焼鈍をはさんだ2回以上の冷間または温間圧延により所定の板厚とした後に、仕上焼鈍を行う。引き続き、浸珪処理を行うことにより本発明の表層高Si鋼を得ることができる。ここで、熱間圧延時の仕上温度、巻取り温度は特に規定する必要はなく、通常の条件で構わない。また、熱延後の熱延板焼鈍は行っても良いが必須ではない。
また、成分の異なるインゴットを貼り合わせた後、熱間圧延、冷間圧延、仕上焼鈍を行うことにより表層高Si鋼としても構わない。
Next, the manufacturing method of the electrical steel sheet of this invention is demonstrated. In addition, the manufacturing method which obtains the steel plate of this invention is not limited to the manufacturing method demonstrated below.
In the present invention, it is important to change the amount of Si in the surface layer portion and the inside, and as a technique for that purpose, for example, steel is blown in a converter, the molten steel is degassed and adjusted to a predetermined component, and subsequently After casting into a slab, it is hot-rolled by a normal method, and then a predetermined sheet thickness is obtained by one or more cold or warm rollings or two or more cold or warm rollings with intermediate annealing. Then, finish annealing is performed. Subsequently, the surface high Si steel of the present invention can be obtained by performing a siliconizing treatment. Here, the finishing temperature and the coiling temperature at the time of hot rolling need not be specified, and may be normal conditions. Moreover, although hot-rolled sheet annealing after hot rolling may be performed, it is not essential.
Moreover, after bonding ingots having different components, surface high Si steel may be obtained by performing hot rolling, cold rolling, and finish annealing.

なお、本発明の電磁鋼板の板厚について、特に規定するものではないが、鉄損低減の観点から0.35mm以下とすることが好ましく、より好ましくは0.2mm以下である。なお、下限は生産性の観点から0.05mmとすることが好ましい。   In addition, although it does not prescribe | regulate especially about the plate | board thickness of the electromagnetic steel plate of this invention, it is preferable to set it as 0.35 mm or less from a viewpoint of a core loss reduction, More preferably, it is 0.2 mm or less. The lower limit is preferably 0.05 mm from the viewpoint of productivity.

表2に示す鋼を用い、転炉で吹練した後に脱ガス処理を行うことにより所定の成分に調整後鋳造し、鋼スラブとした。この鋼スラブを1140℃で1hr加熱した後、板厚2.0mmまで熱間圧延を行った。熱延仕上げ温度は800℃とした。巻取り温度は610℃とし、巻取り後、900℃×30sの熱延板焼鈍を施した。その後、酸洗を行い、0.20mmまで冷間圧延を行い、その後、種々の条件で浸珪処理を施すことにより表2に示す鋼板を得た。なお、浸珪処理後の拡散処理は1200℃で10min間行った。   The steel shown in Table 2 was used, and after defoaming in a converter, it was degassed and then cast to a predetermined component and cast into a steel slab. The steel slab was heated at 1140 ° C. for 1 hr and then hot rolled to a thickness of 2.0 mm. The hot rolling finishing temperature was 800 ° C. The winding temperature was 610 ° C., and after winding, 900 ° C. × 30 s hot-rolled sheet annealing was performed. Then, pickling was performed, cold rolling to 0.20 mm was performed, and then a steel plate shown in Table 2 was obtained by performing a siliconizing treatment under various conditions. The diffusion treatment after the siliconization treatment was performed at 1200 ° C. for 10 minutes.

得られた鋼板について、前述の方法で、鋼板中のSiの濃度分布を調査し、鋼板表層部、鋼板内層部を特定し、各々の層の平均Si量を求めるとともに、鋼板表層部の平均Si量と鋼板内層部の平均Si量の差を求めた。結果を表2に示す。さらこのようにして得られた鋼板表層部の厚さを求めて複層比を算出し、表2に示す。   About the obtained steel sheet, the concentration distribution of Si in the steel sheet was investigated by the above-described method, the steel sheet surface layer part and the steel sheet inner layer part were specified, and the average Si amount of each layer was obtained, and the average Si of the steel sheet surface layer part was determined. The difference between the amount and the average amount of Si in the inner layer of the steel sheet was determined. The results are shown in Table 2. Further, the thickness of the surface layer portion of the steel sheet thus obtained was determined to calculate the multilayer ratio, and Table 2 shows.

また、得られた鋼板の圧延方向および圧延直角方向から長さ180mm、幅30mmおよび幅5mmのエプスタインサンプルを切り出し、JIS C2550に準拠してエプスタイン試験により磁気測定(W10/2k)を行い、また得られた結果から、前述の鉄損劣化率を求めた。結果を表2に示す。なお、ここで鉄損(W10/2k)は、圧延方向サンプルおよび圧延直角方向サンプルを半量ずつ用いて求めた鉄損(W10/2k)である。また、サンプルNo.14は鋼板表層部の平均Si量が高く、サンプルNo.17は鋼板内層部の平均Si量が高く、サンプルNo.22は複層比が大きく、サンプルNo.30はAl含有量が高い例であるが、各々、5mm幅のサンプルを打ち抜く際、亀裂や割れの発生などにより、エプスタインサンプルを作成することができなかったため、鉄損の測定を行わなかった。   Further, an Epstein sample having a length of 180 mm, a width of 30 mm and a width of 5 mm was cut out from the rolling direction and the direction perpendicular to the rolling direction of the obtained steel sheet, and subjected to magnetic measurement (W10 / 2k) by an Epstein test in accordance with JIS C2550. From the obtained results, the aforementioned iron loss deterioration rate was obtained. The results are shown in Table 2. Here, the iron loss (W10 / 2k) is an iron loss (W10 / 2k) obtained by using half of the rolling direction sample and the rolling perpendicular direction sample. Sample No. 14 has a high average Si content in the surface layer portion of the steel sheet. No. 17 has a high average Si content in the inner layer of the steel plate. No. 22 has a large multilayer ratio. No. 30 is an example having a high Al content. However, when a sample having a width of 5 mm was punched out, an Epstein sample could not be prepared due to the occurrence of cracks or cracks, and therefore iron loss was not measured.

表2より、本発明の鋼板は、鉄損劣化率が4.7%以下であり、幅狭材を打ち抜いた場合の打ち抜き性劣化が小さく、また、鉄損自体も、周波数2kHz(最大磁束密度1.0T)の時の鉄損で、30mm幅の場合112.0W/kg以下、5mm幅の場合でも116.0W/kg以下と、高周波鉄損にすぐれていることがわかる。   From Table 2, the steel sheet of the present invention has an iron loss deterioration rate of 4.7% or less, and the punching property deterioration when punching a narrow material is small, and the iron loss itself has a frequency of 2 kHz (maximum magnetic flux density). The iron loss at the time of 1.0 T) is 112.0 W / kg or less in the case of 30 mm width and 116.0 W / kg or less in the case of 5 mm width.

Figure 0006123234
Figure 0006123234

Claims (3)

質量%で、鋼板表層部の平均Si量が4%以上7%以下、鋼板内層部の平均Si量が5%以下であり、Mn:0.5%超5%以下を含有し、As:0.002%以下、Se:0.002%以下とし、残部Feおよび不可避不純物からなる成分組成を有し、板厚方向に板厚表面が板厚中心部よりもSi濃度が高くなるSiの濃度勾配を有し、鋼板表層部の平均Si量が鋼板内層部の平均Si量に比べて0.5質量%以上高く、鋼板表層部厚さの割合が板厚の0.1〜0.7であることを特徴とする電磁鋼板。
ここで、鋼板表層部とは、鋼板の全板厚の平均Si量以上のSi濃度を有する鋼板部分であり、鋼板内層部は鋼板の全板厚の平均Si量未満のSi濃度を有する鋼板部分である。
ただし、前記電磁鋼板としてクラッド型電磁鋼板を除く。
In mass%, the average Si content of the steel sheet surface layer portion is 4% or more and 7% or less, the average Si content of the steel plate inner layer portion is 5% or less, contains Mn: more than 0.5% and 5% or less, As: 0 0.002% or less, Se: 0.002% or less, having a component composition of the balance Fe and unavoidable impurities, and a Si concentration gradient in which the surface of the plate thickness is higher in the plate thickness direction than the plate thickness center portion The average Si amount of the steel sheet surface layer portion is 0.5% by mass or more higher than the average Si amount of the steel sheet inner layer portion, and the ratio of the steel sheet surface layer portion thickness is 0.1 to 0.7 of the plate thickness. An electrical steel sheet characterized by that.
Here, the steel plate surface layer portion is a steel plate portion having a Si concentration equal to or higher than the average Si amount of the total thickness of the steel plate, and the steel plate inner layer portion is a steel plate portion having a Si concentration less than the average Si amount of the total thickness of the steel plate. It is.
However, a clad electromagnetic steel sheet is excluded as the electromagnetic steel sheet.
さらに、質量%で、Al:3%以下を含有することを特徴とする請求項1に記載の電磁鋼板。   The electrical steel sheet according to claim 1, further comprising, by mass%, Al: 3% or less. さらに、質量%で、Mg:0.0003%以上0.002%以下を含有することを特徴とする請求項1または2に記載の電磁鋼板。   Furthermore, it contains Mg: 0.0003% or more and 0.002% or less by mass%, The electrical steel sheet of Claim 1 or 2 characterized by the above-mentioned.
JP2012242633A 2012-11-02 2012-11-02 Electrical steel sheet Active JP6123234B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012242633A JP6123234B2 (en) 2012-11-02 2012-11-02 Electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012242633A JP6123234B2 (en) 2012-11-02 2012-11-02 Electrical steel sheet

Publications (2)

Publication Number Publication Date
JP2014091850A JP2014091850A (en) 2014-05-19
JP6123234B2 true JP6123234B2 (en) 2017-05-10

Family

ID=50936172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012242633A Active JP6123234B2 (en) 2012-11-02 2012-11-02 Electrical steel sheet

Country Status (1)

Country Link
JP (1) JP6123234B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6327181B2 (en) * 2015-03-13 2018-05-23 Jfeスチール株式会社 High silicon steel sheet
KR102134311B1 (en) * 2018-09-27 2020-07-15 주식회사 포스코 Non-oriented electrical steel sheet and method for manufacturing the same
JP7078009B2 (en) * 2019-04-25 2022-05-31 Jfeスチール株式会社 Electrical steel sheet and its manufacturing method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000219916A (en) * 1999-01-28 2000-08-08 Nippon Steel Corp Production of nonoriented silicon steel sheet high in magnetic flux density and low in core loss
JP3280959B1 (en) * 2000-04-07 2002-05-13 新日本製鐵株式会社 Low iron loss non-oriented electrical steel sheet with good workability and method for producing the same
JP5272688B2 (en) * 2008-12-02 2013-08-28 Jfeスチール株式会社 Clad type electrical steel sheet
JP5668440B2 (en) * 2010-12-03 2015-02-12 Jfeスチール株式会社 Hot rolling method for silicon-containing steel slabs

Also Published As

Publication number Publication date
JP2014091850A (en) 2014-05-19

Similar Documents

Publication Publication Date Title
KR101598312B1 (en) Anisotropic electromagnetic steel sheet and method for producing same
KR100956530B1 (en) Nonoriented electromagnetic steel sheet
US9466411B2 (en) Non-oriented electrical steel sheet
JP5995002B2 (en) High magnetic flux density non-oriented electrical steel sheet and motor
KR101499371B1 (en) Method for producing non-oriented magnetic steel sheet
TWI665313B (en) Non-oriented electromagnetic steel plate and manufacturing method thereof
EP3533890B1 (en) Non-oriented electrical steel sheet and method for producing same
JP2019019355A (en) Electromagnetic steel and method for producing the same, motor core for rotor and method for producing the same, motor core for stator and method for producing the same, and method for producing motor core
JP2008127612A (en) Non-oriented electromagnetic steel sheet for divided core
JP2013044010A (en) Non-oriented electromagnetic steel sheet, and method of producing the same
TWI551694B (en) Nonoriented electromagnetic steel sheet with excellent high frequency core loss property
EP3095887A1 (en) Non-directional electromagnetic steel sheet having excellent magnetic properties
EP3358027A1 (en) Non-oriented electromagnetic steel sheet and manufacturing method of same
JP2011246810A (en) Nonoriented magnetic steel sheet and motor core using the same
JP2011162821A (en) Method for producing non-oriented electromagnetic steel sheet excellent in magnetic characteristic in rolling direction
TWI550104B (en) Nonoriented electromagnetic steel sheet with excellent high frequency core loss property
JP5939190B2 (en) Electrical steel sheet
JP2018178198A (en) Nonoriented electromagnetic steel sheet and manufacturing method therefor
JP6123234B2 (en) Electrical steel sheet
JP2004332042A (en) Method for producing non-oriented magnetic steel sheet excellent in magnetic characteristic in rolling direction and perpendicular direction on sheet surface
JP4946492B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP6048282B2 (en) Electrical steel sheet
JP2005200755A (en) Method for producing non-oriented silicon steel sheet
JP5560923B2 (en) Method for producing non-oriented electrical steel sheet with excellent magnetic properties in rolling direction
JP5826284B2 (en) Wire rods, steel wires having excellent magnetic properties, and methods for producing them

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170320

R150 Certificate of patent or registration of utility model

Ref document number: 6123234

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250