JP5560923B2 - Method for producing non-oriented electrical steel sheet with excellent magnetic properties in rolling direction - Google Patents

Method for producing non-oriented electrical steel sheet with excellent magnetic properties in rolling direction Download PDF

Info

Publication number
JP5560923B2
JP5560923B2 JP2010131405A JP2010131405A JP5560923B2 JP 5560923 B2 JP5560923 B2 JP 5560923B2 JP 2010131405 A JP2010131405 A JP 2010131405A JP 2010131405 A JP2010131405 A JP 2010131405A JP 5560923 B2 JP5560923 B2 JP 5560923B2
Authority
JP
Japan
Prior art keywords
rolling
cold rolling
mass
annealing
electrical steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010131405A
Other languages
Japanese (ja)
Other versions
JP2011256426A (en
Inventor
昌浩 藤倉
義行 牛神
真一 金尾
鉄州 村川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2010131405A priority Critical patent/JP5560923B2/en
Publication of JP2011256426A publication Critical patent/JP2011256426A/en
Application granted granted Critical
Publication of JP5560923B2 publication Critical patent/JP5560923B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)

Description

本発明は、分割コアなど、圧延方向の磁気特性が重視されるコアに好適な無方向性電磁鋼板を製造する製造方法に関する。   The present invention relates to a manufacturing method for manufacturing a non-oriented electrical steel sheet suitable for a core such as a split core in which magnetic properties in the rolling direction are important.

近年、モーターのステータコアとして自動車分野などで増加している分割コアは、鋼板の磁性良好な方向をコアの磁束が集中する方向、例えば、ティース方向にそろえることができるので、モーター効率の向上が期待できる。従って、圧延方向に磁気特性の優れた電磁鋼板は、分割コアに適した材料の一つと言える。   In recent years, split cores, which have been increasing in the automotive field as motor stator cores, can align the direction of good magnetic properties of steel sheets with the direction in which the magnetic flux of the core concentrates, for example, the teeth direction, which is expected to improve motor efficiency. it can. Therefore, it can be said that the electrical steel sheet having excellent magnetic properties in the rolling direction is one of the materials suitable for the split core.

ただし、二次再結晶法で製造される一方向性電磁鋼板は、コストが高いことと、グラス皮膜がコアの打抜き性を劣化させることから、モーター用の鋼板として用いるのは、一般に困難である。   However, the unidirectional electrical steel sheet produced by the secondary recrystallization method is generally difficult to use as a steel sheet for motors because of its high cost and the glass coating deteriorates the punchability of the core. .

圧延方向の磁気特性に優れた無方向性電磁鋼板の製造方法として、例えば、特許文献1には、Siを2.0質量%以下、Alを1.0質量%以上とし、仕上げ焼鈍後に圧下率3〜10%のスキンパス圧延を施し、その後、歪取り焼鈍を施す技術が開示されている。   As a method for producing a non-oriented electrical steel sheet having excellent magnetic properties in the rolling direction, for example, in Patent Document 1, Si is 2.0 mass% or less, Al is 1.0 mass% or more, and the rolling reduction after finish annealing. A technique is disclosed in which 3-10% skin pass rolling is performed, followed by strain relief annealing.

また、特許文献2には、中間焼鈍を挟む2回以上の冷間圧延を行う製造方法で、最終冷間圧延時のC含有量を0.005〜0.05質量%、最終冷間圧延における圧下率を30〜80%とする製造技術が開示されている。この技術では、C含有量が多いため、磁気時効が生じ易く、場合によっては、脱炭工程が必要になる。   Moreover, in patent document 2, it is a manufacturing method which performs the cold rolling of 2 times or more on both sides of intermediate annealing, C content at the time of final cold rolling is 0.005-0.05 mass%, in final cold rolling A manufacturing technique in which the rolling reduction is 30 to 80% is disclosed. In this technique, since the C content is large, magnetic aging is likely to occur, and in some cases, a decarburization step is required.

特開2006−265720号公報JP 2006-265720 A 特開2009−203520号公報JP 2009-203520 A

本発明は、圧延方向の磁気特性に優れ、かつ、磁気時効による鉄損特性の劣化を低減できる電磁鋼板を、安定的に提供することを目的とする。   An object of the present invention is to stably provide an electrical steel sheet that is excellent in magnetic properties in the rolling direction and that can reduce deterioration of iron loss properties due to magnetic aging.

鋼組成、及び、冷間圧延前の結晶粒径を適切に調整し、冷間圧延を、中間焼鈍を挟み二回以上行い、最終冷間圧延での圧下率を適切に調整し、更に、最終冷延において、パス毎に時効処理を施すことによって、圧延方向の磁気特性が極めて優れた無方向性電磁鋼板を製造することができる。本発明においては、パス間の時効処理は、温度と時間を適切に制御する。本発明の要旨は、以下の通りである。   The steel composition and the crystal grain size before cold rolling are appropriately adjusted, and cold rolling is performed twice or more with intermediate annealing in between, the rolling reduction rate in final cold rolling is appropriately adjusted, and the final In cold rolling, by performing an aging treatment for each pass, a non-oriented electrical steel sheet having extremely excellent magnetic properties in the rolling direction can be produced. In the present invention, the aging treatment between passes appropriately controls the temperature and time. The gist of the present invention is as follows.

(1)質量%で、
C:0.001〜0.005%、
N:0.001〜0.005%
Si:2.0〜4.0%、
Mn:0.05〜1.0%、
Al:0.1〜2.0%
を含有し、
C+N:0.002〜0.008%
であり、
S:0.005%以下、
Ti:0.005%以下、
O:0.005%以下で、
残部Fe及び不可避的不純物からなるスラブを、熱間圧延し、必要に応じて、熱延板焼鈍を施し、その後、中間焼鈍を挟む2回以上の冷間圧延を施し、次いで、仕上げ焼鈍を施し、その後、必要に応じて、絶縁被膜処理を施すことからなる無方向性電磁鋼板の製造方法において、最終の冷間圧延前の結晶粒径を100μm以上とし、最終の冷間圧延で、圧下率40〜75%で冷間圧延を施すとともに、最終の冷間圧延のパス間に、50〜300℃の温度域で1〜10分の時効処理を施すことを特徴とする圧延方向の磁気特性に優れた無方向性電磁鋼板の製造方法。
(1) In mass%,
C: 0.001 to 0.005%,
N: 0.001 to 0.005%
Si: 2.0-4.0%,
Mn: 0.05 to 1.0%
Al: 0.1 to 2.0%
Containing
C + N: 0.002 to 0.008%
And
S: 0.005% or less,
Ti: 0.005% or less,
O: 0.005% or less,
The slab composed of the remaining Fe and unavoidable impurities is hot-rolled, and if necessary, hot-rolled sheet annealing is performed, and then cold-rolling is performed twice or more sandwiching the intermediate annealing, followed by finish annealing. Then, if necessary, in the method for producing a non-oriented electrical steel sheet comprising an insulating coating treatment, the crystal grain size before the final cold rolling is set to 100 μm or more, and the rolling reduction is performed in the final cold rolling. The magnetic properties in the rolling direction are characterized by performing cold rolling at 40 to 75% and performing aging treatment for 1 to 10 minutes in the temperature range of 50 to 300 ° C. between the final cold rolling passes. A method for producing an excellent non-oriented electrical steel sheet.

(2)前記スラブが、Sn及びSbの1種又は2種を合計0.01〜0.2質量%含むことを特徴とする、請求項1に記載の圧延方向の磁気特性に優れた無方向性電磁鋼板の製造方法。   (2) The slab contains one or two of Sn and Sb in a total amount of 0.01 to 0.2% by mass, and is excellent in magnetic properties in the rolling direction according to claim 1. Method for producing an electrical steel sheet.

本発明によれば、圧延方向の磁気特性が極めて優れた無方向性電磁鋼板を製造することができ、分割コアを用いたモーターの高効率化を図ることができる。   ADVANTAGE OF THE INVENTION According to this invention, the non-oriented electrical steel plate which was extremely excellent in the magnetic characteristic of the rolling direction can be manufactured, and the high efficiency of the motor using a split core can be achieved.

二回目の冷間圧延時のパス間時効の時効時間3分における時効温度と圧延方向の磁束密度B50の関係を示す図である。It is a figure which shows the relationship between the aging temperature in the aging time of 3 minutes of the aging between passes at the time of the 2nd cold rolling, and the magnetic flux density B50 of a rolling direction. 二回目の冷間圧延時のパス間時効の時効温度200℃における時間と圧延方向の磁束密度B50の関係を示す図である。It is a figure which shows the relationship between the time in the aging temperature of 200 degreeC of the aging between passes at the time of the 2nd cold rolling, and the magnetic flux density B50 of a rolling direction. 二回目の冷間圧延前の中間焼鈍板の平均結晶粒径と圧延方向の磁束密度B50の関係を示す図である。It is a figure which shows the relationship between the average crystal grain diameter of the intermediate annealing board before the second cold rolling, and the magnetic flux density B50 of a rolling direction. 二回目の冷間圧延時の圧下率と圧延方向の磁束密度B50の関係を示す図である。It is a figure which shows the relationship between the rolling reduction at the time of the second cold rolling, and the magnetic flux density B50 of a rolling direction.

本発明について、構成要件毎に詳述する。   The present invention will be described in detail for each component.

鋼の成分組成を限定する理由は下記の通りである。   The reason for limiting the composition of steel is as follows.

<C:0.001〜0.005質量%>
Cは、鉄損を上昇させる作用を呈し磁気時効を生じさせる。従って、Cは0.005質量%以下とする。ただし、少なすぎると、冷間圧延時のパス間の時効による集合組織改善効果が発現しないので、Cは、0.001質量%以上とする。好ましくは、0.002〜0.005質量%である。
<C: 0.001 to 0.005 mass%>
C exhibits an effect of increasing iron loss and causes magnetic aging. Therefore, C is 0.005 mass% or less. However, if the amount is too small, the effect of improving the texture due to aging between passes during cold rolling does not appear, so C is set to 0.001% by mass or more. Preferably, it is 0.002-0.005 mass%.

<Si:2.0〜4.0質量%>
Siは、鋼の固有抵抗を増加させ、また、鉄損を低減する作用を呈する。この作用を得るためには、2質量%以上が必要である。一方、Siが4質量%を超えると、鋼が脆化し、圧延性が低下する。従って、Siは、2.0〜4.0質量%とする。好ましくは、2.0〜3.5質量%である。
<Si: 2.0 to 4.0% by mass>
Si increases the specific resistance of steel and also has the effect of reducing iron loss. In order to acquire this effect | action, 2 mass% or more is required. On the other hand, when Si exceeds 4 mass%, steel becomes embrittled and rollability falls. Therefore, Si is set to 2.0 to 4.0 mass%. Preferably, it is 2.0-3.5 mass%.

<Mn:0.05〜1.0質量%>
Mnは、鋼の固有抵抗を高め、また、硫化物を粗大化して無害化する作用を呈する。この作用を得るためには、0.05質量%以上が必要である。一方、Mnが1.0質量%を超えると、磁束密度の低下及びコストの上昇を招くとともに、冷延時に割れ易くなる。従って、Mnは、0.05〜1.0質量%とする。好ましくは、0.1〜0.5質量%である。
<Mn: 0.05 to 1.0% by mass>
Mn increases the specific resistance of the steel, and also acts to coarsen the sulfide and render it harmless. In order to obtain this action, 0.05% by mass or more is necessary. On the other hand, if Mn exceeds 1.0% by mass, the magnetic flux density is reduced and the cost is increased, and cracking is easily caused during cold rolling. Therefore, Mn is set to 0.05 to 1.0% by mass. Preferably, it is 0.1-0.5 mass%.

<Al:0.1〜2.0質量%>
Alは、脱酸材として有効であり、更に、窒化物を粗大にして無害化することもできる。また、Siと同様に、鋼の固有抵抗を増加させ、鉄損を低減させる。これらの作用を得るためには、0.1質量%以上が必要である。しかし、2.0質量%を超えると、鋼が脆化し、圧延性が低下する。従って、Alは、0.1〜2.0質量%とする。好ましくは、0.2〜2.0質量%である。
<Al: 0.1 to 2.0% by mass>
Al is effective as a deoxidizing material, and it can also be rendered harmless by coarsening the nitride. Moreover, like Si, the specific resistance of steel is increased and the iron loss is reduced. In order to obtain these actions, 0.1% by mass or more is necessary. However, if it exceeds 2.0 mass%, the steel becomes brittle and the rollability deteriorates. Therefore, Al is 0.1 to 2.0% by mass. Preferably, it is 0.2-2.0 mass%.

<N:0.001〜0.005質量%>
Nは、微細析出物を形成して、焼鈍中の結晶粒成長を妨げる。従って、Nは、0.005質量%以下とする。ただし、少なすぎると、冷間圧延時のパス間の時効による集合組織改善効果が発現しないので、Nは、0.001質量%以上とする。好ましくは、0.001〜0.004質量%である。
<N: 0.001 to 0.005 mass%>
N forms fine precipitates and hinders crystal grain growth during annealing. Therefore, N is set to 0.005 mass% or less. However, if the amount is too small, the effect of improving the texture due to aging between passes during cold rolling does not appear, so N is 0.001% by mass or more. Preferably, it is 0.001-0.004 mass%.

<C+N:0.002〜0.008質量%>
CとNは、冷間圧延時のパス間の時効による集合組織改善効果を発現させるうえで重要な元素である。集合組織改善効果を得るため、C+Nは、0.002質量%以上が必要である。一方、C+Nが0.008質量%を超えると、析出物により磁性が悪化する。それ故、C+Nは、0.002〜0.008質量%とする。好ましい範囲は、0.02〜0.07質量%、更に好ましい範囲は、0.02〜0.06質量%である。
<C + N: 0.002 to 0.008 mass%>
C and N are important elements for expressing the texture improving effect by aging between passes during cold rolling. In order to obtain a texture improving effect, C + N needs to be 0.002% by mass or more. On the other hand, when C + N exceeds 0.008 mass%, magnetism deteriorates due to precipitates. Therefore, C + N is 0.002 to 0.008 mass%. A preferable range is 0.02 to 0.07% by mass, and a more preferable range is 0.02 to 0.06% by mass.

<不純物>
S、Ti、及び、Oは、析出物を形成して、焼鈍中の粒成長を妨げ、磁性を劣化させるので、いずれの元素も、0.005質量%以下とする。好ましくは、いずれも、0.003質量%以下である。
<Impurity>
S, Ti, and O form precipitates, hinder grain growth during annealing, and deteriorate magnetism. Therefore, any element is made 0.005 mass% or less. Preferably, both are 0.003 mass% or less.

<Sn及びSb:1種又は2種を合計0.01〜0.2質量%>
Sn及びSbは、集合組織改善や焼鈍時の窒化・酸化抑制に有効である。その効果を得るため、1種又は2種を、合計0.01質量%以上含む必要がある。あまり多すぎると、効果は飽和し、更に、鋼の脆化や結晶粒成長抑制などに悪影響を及ぼすので、0.2質量%以下とする。好ましくは、0.03〜0.15質量%である。
<Sn and Sb: 1 type or 2 types in total 0.01 to 0.2% by mass>
Sn and Sb are effective in improving the texture and suppressing nitriding and oxidation during annealing. In order to acquire the effect, it is necessary to contain 1 type or 2 types in total 0.01 mass% or more. If the amount is too large, the effect is saturated, and further, it has an adverse effect on the embrittlement of steel and the suppression of crystal grain growth. Preferably, it is 0.03-0.15 mass%.

<その他添加元素>
特に規定はしないが、集合組織改善のため、Niを0.5〜5質量%、固有抵抗増加のため、Crを0.5〜5質量%、不純物析出抑制を目的に、希土類を0.001〜0.05質量%、硬度増加のため、Pを0.005〜0.1質量%、Cuを0.1〜3質量%、適宜添加してもよい。
<Other additive elements>
Although not stipulated, Ni is 0.5 to 5 mass% for improving the texture, Cr is 0.5 to 5 mass% for increasing the specific resistance, and rare earth is 0.001 for the purpose of suppressing impurity precipitation. In order to increase the hardness by 0.05 mass%, P may be appropriately added in an amount of 0.005 to 0.1 mass% and Cu may be 0.1 to 3 mass%.

本発明は、その他規定していない不可避的元素を含み、残部はFeである。   The present invention includes other inevitable elements that are not specified, and the balance is Fe.

次に、製造方法について説明する。   Next, a manufacturing method will be described.

本発明は、先に述べた成分組成のスラブを、熱間圧延し、必要に応じて、熱延板焼鈍を施し、その後、中間焼鈍を挟む2回以上の冷間圧延を施し、次いで、仕上げ焼鈍を施し、その後、必要に応じて、絶縁被膜処理を施すことからなる無方向性電磁鋼板の製造方法において、最終の冷間圧延前の結晶粒径を100μm以上とし、最終の冷間圧延で、圧下率40〜75%で冷間圧延を施すとともに、最終の冷間圧延のパス間に、50〜300℃の温度域で1〜10分の時効処理を施すことを特徴とする、分割コア用の無方向性電磁鋼板を製造する製造方法である。   In the present invention, the slab having the component composition described above is hot-rolled, and if necessary, hot-rolled sheet annealing is performed, and then cold rolling is performed twice or more sandwiching the intermediate annealing, followed by finishing. In the method for producing a non-oriented electrical steel sheet comprising annealing and then applying an insulating coating, if necessary, the crystal grain size before the final cold rolling is set to 100 μm or more, and the final cold rolling is performed. The split core is characterized by being subjected to cold rolling at a rolling reduction of 40 to 75% and aging treatment at a temperature range of 50 to 300 ° C. for 1 to 10 minutes between the final cold rolling passes. It is a manufacturing method which manufactures the non-oriented electrical steel sheet for use.

中間焼鈍を挟む2回以上の冷間圧延を行うことにより、冷間圧延が1回の場合より高い磁束密度が得られることは、先に示した特許文献などで公知であるが、下記条件をすべて満足することにより、磁束密度は飛躍的に改善される。   It is well known in the above-mentioned patent documents and the like that the magnetic flux density higher than that in the case of one cold rolling can be obtained by performing cold rolling twice or more with intermediate annealing. Satisfying everything will dramatically improve the magnetic flux density.

<最終冷間圧延におけるパス間時効処理:50〜300℃の温度域で1〜10分>
(実験1)パス間時効処理
表1に示す成分組成を有するインゴットを真空溶解で溶解して溶製し、1100℃で1時間加熱し、その後、熱間圧延によって、厚さ2.5mmの熱延板とした。この熱延板に、1000℃、1分の熱延板焼鈍を施して、熱延焼鈍板とした。熱延焼鈍板を酸洗した後、1回目の冷間圧延で、厚さ0.8mmの中間冷延板とし、更に、この中間冷延板に、1000℃,1分の中間焼鈍を施し中間焼鈍板とした。
<Aging treatment between passes in final cold rolling: 1 to 10 minutes in a temperature range of 50 to 300 ° C.>
(Experiment 1) Inter-aging aging treatment An ingot having the composition shown in Table 1 was melted by vacuum melting, heated at 1100 ° C. for 1 hour, and then heated to 2.5 mm in thickness by hot rolling. It was a sheet. This hot-rolled sheet was subjected to hot-rolled sheet annealing at 1000 ° C. for 1 minute to obtain a hot-rolled annealed sheet. After pickling the hot-rolled annealed plate, an intermediate cold-rolled plate having a thickness of 0.8 mm is obtained by the first cold rolling. An annealing plate was used.

得られた中間焼鈍板に、2回目の冷間圧延を、パス間で、50℃〜400℃、1〜60分の時効処理を施しながら実施し、厚さ0.35mmの最終冷延板を得た。同時に、パス間の時効処理を施さない最終冷延板も作製した。続いて、最終冷延板に、1000℃、30秒の仕上げ焼鈍を施して、最終焼鈍板とした。   The obtained intermediate annealed plate is subjected to the second cold rolling while being subjected to an aging treatment at 50 ° C. to 400 ° C. for 1 to 60 minutes between passes, and a final cold rolled plate having a thickness of 0.35 mm is obtained. Obtained. At the same time, a final cold-rolled sheet without aging treatment between passes was also produced. Subsequently, the final cold-rolled sheet was subjected to finish annealing at 1000 ° C. for 30 seconds to obtain a final annealed sheet.

Figure 0005560923
Figure 0005560923

最終焼鈍板から、単板試験片を切り出し、磁束密度B50を測定した。最終冷延時のパス間の時効時間3分における時効温度と圧延方向の磁束密度B50の関係を図1に示す。時効温度が50℃以上、300℃以下で、圧延方向のB50が、時効処理を行っていない材料に対して上昇することが分かった。   A single-sheet test piece was cut out from the final annealed plate, and the magnetic flux density B50 was measured. FIG. 1 shows the relationship between the aging temperature and the magnetic flux density B50 in the rolling direction at an aging time of 3 minutes between passes during the final cold rolling. It was found that when the aging temperature is 50 ° C. or more and 300 ° C. or less, the B50 in the rolling direction rises with respect to the material that has not been subjected to the aging treatment.

また、図2に、時効温度200℃における時効時間と磁束密度の関係を示す。1分の時効であっても、時効処理がない場合に比べて、磁束密度の向上が見られた。また、仕上げ焼鈍板に、200℃、100時間の処理を行った場合の鉄損W15/50の劣化は3%以内であった。従って、脱炭は不要であった。   FIG. 2 shows the relationship between aging time and magnetic flux density at an aging temperature of 200 ° C. Even with aging for 1 minute, the magnetic flux density was improved as compared with the case without aging treatment. Further, when the finish annealed plate was treated at 200 ° C. for 100 hours, the deterioration of the iron loss W15 / 50 was within 3%. Therefore, decarburization was not necessary.

以上から、脱炭が不要な低レベルのC含有量であっても、最終の冷間圧延時のパス間に時効処理を施すことによって、圧延方向に高い磁束密度を有する無方向性電磁鋼板を製造することができることが分かった。メカニズムは必ずしも明確でないが、パス間時効処理によって、最終焼鈍後の集合組織が、圧延方向の磁性向上に寄与する{110}<001>近傍の方位を強く含むように改善されたためと推測される。   From the above, the non-oriented electrical steel sheet having a high magnetic flux density in the rolling direction can be obtained by applying an aging treatment between passes during the final cold rolling even if the C content is low and does not require decarburization. It has been found that it can be manufactured. The mechanism is not necessarily clear, but it is presumed that the texture after the final annealing has been improved to include the orientation in the vicinity of {110} <001> that contributes to the improvement of magnetism in the rolling direction by aging treatment between passes. .

集合組織の改善には、加工で導入された転移と固溶炭素の相互作用が寄与しているものと推測される。従って、ある程度の固溶炭素を含み、時効処理を適切に行うことによって、圧延方向の磁束密度を向上させることができる。   It is presumed that the transformation introduced by processing and the interaction of solute carbon contribute to the improvement of the texture. Therefore, the magnetic flux density in the rolling direction can be improved by appropriately containing an aging treatment containing a certain amount of solute carbon.

以上から、本発明の最終冷間圧延のパス時効処理の温度域は、図1において、圧延方向の磁束密度の増加が観察された50〜300℃とする。好ましくは、150〜300℃である。時効時間は、図2から明らかなように、1分でも圧延方向の磁束密度の向上効果があり、また、10分以上では、該向上効果が飽和するので、1〜10分とした。   From the above, the temperature range of the pass aging treatment of the final cold rolling of the present invention is set to 50 to 300 ° C. at which an increase in magnetic flux density in the rolling direction is observed in FIG. Preferably, it is 150-300 degreeC. As is apparent from FIG. 2, the aging time has an effect of improving the magnetic flux density in the rolling direction even for 1 minute, and since the improvement effect is saturated after 10 minutes or more, it is set to 1 to 10 minutes.

<最終冷間圧延前の平均結晶粒径:100μm以上>
(実験2)最終冷間圧延前の平均結晶粒径
実験1で使用した厚さ2.5mmの熱延焼鈍板に、一回目の冷間圧延を施し、0.8mmの中間冷延板とした。その後、900〜1050℃、1分の中間焼鈍を施して、中間焼鈍板とした。中間焼鈍板の平均の結晶粒径は、60〜250μmの範囲で変化させた。
<Average crystal grain size before final cold rolling: 100 μm or more>
(Experiment 2) Average crystal grain size before final cold rolling The first cold rolling was applied to the 2.5 mm thick hot rolled annealed plate used in Experiment 1 to obtain an 0.8 mm intermediate cold rolled plate. . Then, 900-1050 degreeC and the intermediate annealing for 1 minute were given, and it was set as the intermediate annealing board. The average crystal grain size of the intermediate annealed plate was changed in the range of 60 to 250 μm.

その後、2回目の冷間圧延を、パス間で200℃、3分の時効処理を施しながら実施し、厚さ0.35mmの最終冷延板を得た。最終冷延板に、1000℃、30秒の仕上げ焼鈍を施して、最終焼鈍板とし、最終焼鈍板から単板試験片を切り出し、磁束密度B50を測定した。   Then, the 2nd cold rolling was implemented, performing the aging treatment at 200 degreeC for 3 minutes between passes, and obtained the final cold-rolled sheet of thickness 0.35mm. The final cold rolled sheet was subjected to finish annealing at 1000 ° C. for 30 seconds to obtain a final annealed sheet. A single plate test piece was cut out from the final annealed sheet, and the magnetic flux density B50 was measured.

二回目の冷間圧延前の平均結晶粒径と圧延方向の磁束密度B50の関係を図3に示す。二回目の冷間圧延前の平均結晶粒径が大きくなるのに伴い、圧延方向のB50が上昇するのが観察された。   FIG. 3 shows the relationship between the average grain size before the second cold rolling and the magnetic flux density B50 in the rolling direction. It was observed that B50 in the rolling direction increased as the average grain size before the second cold rolling increased.

図3から分かるように、圧延方向の磁束密度B50は、最終の冷間圧延前の平均結晶粒径が100μm以上で顕著に上昇し始め、その後も、平均結晶粒径とともに上昇し続ける。100μm以下では、圧延方向の磁気特性の向上に有効な{110}<001>集合組織が、最終焼鈍後に十分発達しないため、磁束密度が向上しないと推測される。   As can be seen from FIG. 3, the magnetic flux density B50 in the rolling direction starts to increase significantly when the average crystal grain size before the final cold rolling is 100 μm or more, and continues to increase with the average crystal grain size thereafter. If it is 100 μm or less, the {110} <001> texture effective for improving the magnetic properties in the rolling direction is not sufficiently developed after the final annealing, so it is presumed that the magnetic flux density is not improved.

{100}<001>集合組織を十分発達させるため、本発明では、最終冷間圧延前の平均結晶粒径を100μm以上とする。好ましくは、150μm以上、更に好ましくは、2000μm以上とする。   In order to sufficiently develop the {100} <001> texture, in the present invention, the average grain size before the final cold rolling is set to 100 μm or more. Preferably, it is 150 μm or more, more preferably 2000 μm or more.

<最終冷間圧延の圧下率:40〜75%>
(実験3)最終冷間圧延の圧下率
実験1で使用した厚さ2.5mmの熱延焼鈍板に、一回目の冷間圧延を、圧下率を変えて施し、0.45〜2.3mmの中間冷延板とした。その中間冷延板に、1000℃、1分の中間焼鈍を施し、その後、2回目の冷間圧延を、パス間で、200℃、3分の時効処理を施しながら実施し、厚さ0.35mmの最終冷延板を得た。
<Draft ratio of final cold rolling: 40 to 75%>
(Experiment 3) Reduction ratio of final cold rolling The first cold rolling was applied to the 2.5 mm thick hot-rolled annealing plate used in Experiment 1 with a reduction ratio of 0.45 to 2.3 mm. The intermediate cold-rolled sheet was used. The intermediate cold-rolled sheet is subjected to an intermediate annealing at 1000 ° C. for 1 minute, and then a second cold rolling is performed while performing an aging treatment at 200 ° C. for 3 minutes between passes. A 35 mm final cold rolled sheet was obtained.

最終の冷間圧延の圧下率は30〜85%の範囲で変化させた。その後、最終冷延板に、1000℃、30秒の仕上げ焼鈍を施して、最終焼鈍板とし、最終焼鈍板から単板試験片を切り出し、磁束密度B50を測定した。   The reduction ratio of the final cold rolling was changed in the range of 30 to 85%. Thereafter, the final cold-rolled sheet was subjected to finish annealing at 1000 ° C. for 30 seconds to obtain a final annealed sheet, a single-sheet test piece was cut out from the final annealed sheet, and the magnetic flux density B50 was measured.

二回目の冷間圧延時の圧下率と延方向の磁束密度B50の関係を図4に示す。圧下率が40〜70%の間で、圧延方向のB50の上昇が観察された。   FIG. 4 shows the relationship between the rolling reduction during the second cold rolling and the magnetic flux density B50 in the extending direction. An increase in B50 in the rolling direction was observed when the rolling reduction was between 40 and 70%.

最終冷間圧延の圧下率は、図4から、40〜75%とする。圧延方向の磁束密度の向上に有効な{110}<001>集合組織を発達させるには、圧下率を40%以上とする必要がある。一方、圧下率を75%より大きくすると、磁束密度を低下させる{111}//ND集合組織が発達して、図4に示すような現象が観察されるものと推測される。好ましくは、圧下率を45〜70%、更に好ましくは、55〜70%とする。   The rolling reduction of the final cold rolling is 40 to 75% from FIG. In order to develop a {110} <001> texture effective in improving the magnetic flux density in the rolling direction, the rolling reduction needs to be 40% or more. On the other hand, when the rolling reduction is larger than 75%, it is presumed that the {111} // ND texture that reduces the magnetic flux density develops and the phenomenon shown in FIG. 4 is observed. Preferably, the rolling reduction is 45 to 70%, more preferably 55 to 70%.

<その他の製造方法>
一般的な鋼板の製造方法を適用できる。即ち、転炉で吹練した溶鋼を脱ガス処理して所定の成分組成に調整し、引き続き、鋳造、熱間圧延を行い、熱延板とする。熱間圧延におけるスラブ加熱温度や加工温度、巻取り温度等は、特に制限されることはない。
<Other manufacturing methods>
A general steel plate manufacturing method can be applied. That is, the molten steel blown in the converter is degassed to adjust to a predetermined component composition, and subsequently cast and hot rolled to obtain a hot rolled sheet. The slab heating temperature, processing temperature, winding temperature and the like in hot rolling are not particularly limited.

熱延板焼鈍は、必ずしも必要でないが、行うことによって、最終焼鈍板の集合組織に、{110}<001>の発達を強く促進することができるので、優れた磁気特性を得るためには、実施することが望ましい。次いで、中間焼鈍を挟んだ2回以上の冷間圧延を施して所定の板厚とし、その後、最終仕上げ焼鈍を施し、必要に応じて、絶縁被膜処理を施して、製品板とする。   Although hot-rolled sheet annealing is not always necessary, the development of {110} <001> can be strongly promoted in the texture of the final annealed sheet by performing, so in order to obtain excellent magnetic properties, It is desirable to implement. Next, two or more cold rollings with intermediate annealing are performed to obtain a predetermined plate thickness, followed by final finish annealing, and if necessary, an insulating coating is applied to obtain a product plate.

なお、中間焼鈍を挟む冷間圧延の回数を増やすことで、最終焼鈍後の集合組織に、{110}<001>の発達を強く促進することができるので、より磁束密度を向上させることができる。   In addition, by increasing the number of cold rolling sandwiching the intermediate annealing, the development of {110} <001> can be strongly promoted in the texture after the final annealing, so that the magnetic flux density can be further improved. .

次に、本発明の実施例について説明するが、実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。   Next, examples of the present invention will be described. The conditions in the examples are one example of conditions used for confirming the feasibility and effects of the present invention, and the present invention is based on this one example of conditions. It is not limited. The present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.

<実施例1>
表2に示す成分組成の鋼を、熱間圧延により2.5mmの熱延板とし、その後、1000℃、1分の熱延板焼鈍を施して、熱延焼鈍板とした。酸洗後、1回目の冷間圧延で、厚さ0.8mmの中間冷延板とし、更に、この中間冷延板に、1000℃,1分の中間焼鈍を施し、中間焼鈍板とした。
<Example 1>
Steel with the component composition shown in Table 2 was hot rolled into a 2.5 mm hot rolled sheet, and then subjected to hot rolled sheet annealing at 1000 ° C. for 1 minute to obtain a hot rolled annealed sheet. After the pickling, the first cold rolling was performed to obtain an intermediate cold-rolled sheet having a thickness of 0.8 mm. Further, the intermediate cold-rolled sheet was subjected to intermediate annealing at 1000 ° C. for 1 minute to obtain an intermediate-annealed sheet.

得られた中間焼鈍板に、2回目の冷間圧延を、パス間で、200℃、3分の時効処理を施しながら実施し、厚さ0.35mmの最終冷延板を得た。続いて、最終冷延板に、1000℃、30秒の仕上げ焼鈍を施して、最終焼鈍板とした。最終焼鈍板から単板試験片を切り出し、圧延方向の磁束密度B50と鉄損W10/400を測定した。   The obtained intermediate annealed plate was subjected to the second cold rolling while being subjected to an aging treatment at 200 ° C. for 3 minutes between passes to obtain a final cold-rolled plate having a thickness of 0.35 mm. Subsequently, the final cold-rolled sheet was subjected to finish annealing at 1000 ° C. for 30 seconds to obtain a final annealed sheet. A single plate test piece was cut out from the final annealed plate, and the magnetic flux density B50 and iron loss W10 / 400 in the rolling direction were measured.

また、仕上げ焼鈍直後に、200℃×100時間の時効処理を行った試験片について、鉄損W15/50を測定し、時効処理による鉄損の劣化が3%以上あったものを、磁気時効が生じたものと判断した。   Moreover, about the test piece which performed the aging treatment of 200 degreeC x 100 hours immediately after finishing annealing, the iron loss W15 / 50 was measured, and the thing which deterioration of the iron loss by the aging treatment was 3% or more has magnetic aging. Judged to have occurred.

磁気測定の結果を表2に示す。本発明では、圧延方向の磁束密度B50が1.78T以上と非常に高く、圧延方向の鉄損W10/400は15W/kg以下で小さい。更に、磁気時効は起こらない。   The magnetic measurement results are shown in Table 2. In the present invention, the magnetic flux density B50 in the rolling direction is as high as 1.78 T or more, and the iron loss W10 / 400 in the rolling direction is as small as 15 W / kg or less. Furthermore, magnetic aging does not occur.

Figure 0005560923
Figure 0005560923

一方、比較例は、以下の通りである。   On the other hand, a comparative example is as follows.

比較例B1及びB3は、基本成分が同じ発明例A1などと比較して、鉄損は同等であるが、磁束密度B50が低い。CとNが少ないため、パス間時効の効果が得られなかったと推測される。B2及びB4は、Cが多く、磁気時効で、鉄損は劣化した。B5は、Siが1.5%と少ないため、固有抵抗が小さく、磁束密度は高いが、鉄損は大きい。   Comparative Examples B1 and B3 have the same iron loss but a lower magnetic flux density B50 compared to Invention Example A1 and the like having the same basic components. Since C and N are small, it is presumed that the effect of aging between paths was not obtained. B2 and B4 had a lot of C, magnetic aging, and iron loss deteriorated. Since B5 has a small Si content of 1.5%, the specific resistance is small and the magnetic flux density is high, but the iron loss is large.

B6は、Siが多いため鋼が脆化し、冷間圧延で鋼板が破断した。B7は、鉄損が大きい。Mnが少ないため、熱延で硫化物が微細に析出し、仕上げ焼鈍時に結晶粒成長を妨げたと推測される。   Since B6 has a lot of Si, the steel becomes brittle, and the steel plate was broken by cold rolling. B7 has a large iron loss. Since Mn is small, it is presumed that the sulfide was finely precipitated by hot rolling and hindered crystal grain growth during finish annealing.

B8は、Mnが多すぎるため、冷間圧延で破断した。B9は、鉄損が大きい。これは、Alが少ないことによる窒化物の微細析出が原因と推定される。B10は、Alが多すぎて、冷間圧延で破断した。B11〜B13は、S、Ti、及び/又は、Oの不純物が多く、鉄損が大きい。   Since B8 has too much Mn, it broke by cold rolling. B9 has a large iron loss. This is presumed to be caused by fine precipitation of nitride due to the small amount of Al. B10 contained too much Al and was broken by cold rolling. B11-B13 have many impurities of S, Ti, and / or O, and have a large iron loss.

<実施例2>
表1に示す成分組成を有するインゴットを用い、実験2及び3に記載の方法で、最終冷延板を得た。最終冷間圧延前の結晶粒径、最終冷間圧延の圧下率、最終冷間圧延の際のパス間に行う時効処理条件とともに、得られた鋼板の圧延方向の磁束密度B50と鉄損W10/400を、表3に示す。
<Example 2>
Using the ingot having the component composition shown in Table 1, final cold rolled sheets were obtained by the methods described in Experiments 2 and 3. Along with the crystal grain size before the final cold rolling, the reduction ratio of the final cold rolling, the aging treatment conditions performed between passes during the final cold rolling, the magnetic flux density B50 in the rolling direction and the iron loss W10 / 400 is shown in Table 3.

発明例により、必要以上の時間をかけずに、効率よく、1.81T以上の高い磁束密度をもつ鋼板を得ることができることが分る。鉄損は、13W/kg以下である。   According to the invention example, it can be seen that a steel sheet having a high magnetic flux density of 1.81 T or more can be obtained efficiently without taking more time than necessary. The iron loss is 13 W / kg or less.

Figure 0005560923
Figure 0005560923

一方、比較例は、以下の通りである。   On the other hand, a comparative example is as follows.

比較例D1は、最終冷間圧延前の平均結晶粒径が75μmと小さいため、発明例と比べて、磁束密度が低く、鉄損も大きい。D2は、最終冷間圧延の圧下率が小さく、D3は、最終冷間圧延の圧下率が大きすぎて、磁束密度が低く、鉄損は大きい。   In Comparative Example D1, the average crystal grain size before final cold rolling is as small as 75 μm, so the magnetic flux density is low and the iron loss is large compared to the inventive examples. D2 has a small rolling reduction of the final cold rolling, and D3 has a large rolling reduction of the final cold rolling, the magnetic flux density is low, and the iron loss is large.

D4は、パス間時効処理の温度が低く、D5は、逆に、温度が高く、また、D6は、時効処理の時間が短いため、磁束密度が低く、鉄損は大きい。D7は、高い磁束密度と低い鉄損は得られるが、パス間時効の時間が長すぎるため、生産性が悪い。   D4 has a low temperature for the aging treatment between passes, D5 has a high temperature, and D6 has a short magnetic aging time, so the magnetic flux density is low and the iron loss is large. D7 can obtain a high magnetic flux density and a low iron loss, but has a low productivity because the time for aging between passes is too long.

前述したように、本発明によれば、圧延方向の磁気特性が極めて優れた無方向性電磁鋼板を製造することができ、分割コアを用いたモーターの高効率化を図ることができる。よって、本発明は、電磁鋼板製造及び利用産業において、利用可能性が高いものである。   As described above, according to the present invention, a non-oriented electrical steel sheet with extremely excellent magnetic properties in the rolling direction can be manufactured, and the efficiency of a motor using a split core can be increased. Therefore, this invention has a high applicability in an electromagnetic steel plate manufacture and utilization industry.

Claims (2)

質量%で、
C:0.001〜0.005%、
N:0.001〜0.005%、
Si:2.0〜4.0%、
Mn:0.05〜1.0%、
Al:0.1〜2.0%
を含有し、
C+N:0.002〜0.008%
であり、
S:0.005%以下、
Ti:0.005%以下、
O:0.005%以下で、
残部Fe及び不可避的不純物からなるスラブを、熱間圧延し、必要に応じて、熱延板焼鈍を施し、その後、中間焼鈍を挟む2回以上の冷間圧延を施し、次いで、仕上げ焼鈍を施し、その後、必要に応じて、絶縁被膜処理を施すことからなる無方向性電磁鋼板の製造方法において、最終の冷間圧延前の結晶粒径を100μm以上とし、最終の冷間圧延で、圧下率40〜75%で冷間圧延を施すとともに、最終の冷間圧延のパス間に、50〜300℃の温度域で1〜10分の時効処理を施すことを特徴とする圧延方向の磁気特性に優れた無方向性電磁鋼板の製造方法。
% By mass
C: 0.001 to 0.005%,
N: 0.001 to 0.005%,
Si: 2.0-4.0%,
Mn: 0.05 to 1.0%
Al: 0.1 to 2.0%
Containing
C + N: 0.002 to 0.008%
And
S: 0.005% or less,
Ti: 0.005% or less,
O: 0.005% or less,
The slab composed of the remaining Fe and unavoidable impurities is hot-rolled, and if necessary, hot-rolled sheet annealing is performed, and then cold-rolling is performed twice or more sandwiching the intermediate annealing, followed by finish annealing. Then, if necessary, in the method for producing a non-oriented electrical steel sheet comprising an insulating coating treatment, the crystal grain size before the final cold rolling is set to 100 μm or more, and the rolling reduction is performed in the final cold rolling. The magnetic properties in the rolling direction are characterized by performing cold rolling at 40 to 75% and performing aging treatment for 1 to 10 minutes in the temperature range of 50 to 300 ° C. between the final cold rolling passes. A method for producing an excellent non-oriented electrical steel sheet.
前記スラブが、Sn及びSbの1種又は2種を合計0.01〜0.2質量%含むことを特徴とする、請求項1に記載の圧延方向の磁気特性に優れた無方向性電磁鋼板の製造方法。   The non-oriented electrical steel sheet having excellent rolling direction magnetic properties according to claim 1, wherein the slab contains one or two of Sn and Sb in a total amount of 0.01 to 0.2 mass%. Manufacturing method.
JP2010131405A 2010-06-08 2010-06-08 Method for producing non-oriented electrical steel sheet with excellent magnetic properties in rolling direction Active JP5560923B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010131405A JP5560923B2 (en) 2010-06-08 2010-06-08 Method for producing non-oriented electrical steel sheet with excellent magnetic properties in rolling direction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010131405A JP5560923B2 (en) 2010-06-08 2010-06-08 Method for producing non-oriented electrical steel sheet with excellent magnetic properties in rolling direction

Publications (2)

Publication Number Publication Date
JP2011256426A JP2011256426A (en) 2011-12-22
JP5560923B2 true JP5560923B2 (en) 2014-07-30

Family

ID=45472934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010131405A Active JP5560923B2 (en) 2010-06-08 2010-06-08 Method for producing non-oriented electrical steel sheet with excellent magnetic properties in rolling direction

Country Status (1)

Country Link
JP (1) JP5560923B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6524438B2 (en) * 2015-04-30 2019-06-05 日本製鉄株式会社 Hot-rolled sheet for non-oriented electrical steel sheet, method for producing the same, non-oriented electrical steel sheet having excellent magnetic properties, and method for producing the same
TWI707959B (en) * 2018-11-02 2020-10-21 日商日本製鐵股份有限公司 Non-oriented magnetic steel sheet

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0757887B2 (en) * 1989-05-24 1995-06-21 株式会社神戸製鋼所 Manufacturing method of non-oriented electrical steel sheet with developed {100} <uvw> texture
JPH08253816A (en) * 1995-03-15 1996-10-01 Nippon Steel Corp Production of grain oriented silicon steel sheet with ultrahigh magnetic flux density
JPH11236618A (en) * 1998-02-24 1999-08-31 Kawasaki Steel Corp Production of low core loss nonoriented silicon steel sheet

Also Published As

Publication number Publication date
JP2011256426A (en) 2011-12-22

Similar Documents

Publication Publication Date Title
KR101682284B1 (en) Non-oriented electrical steel sheet
JP5273235B2 (en) Method for producing non-oriented electrical steel sheet
JP5854182B2 (en) Method for producing non-oriented electrical steel sheet
JP4855222B2 (en) Non-oriented electrical steel sheet for split core
JP4613748B2 (en) Manufacturing method of electrical steel sheet
EP3533890B1 (en) Non-oriented electrical steel sheet and method for producing same
JP5437476B2 (en) Method for producing non-oriented electrical steel sheet
JP6665794B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP5825494B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
KR20140113739A (en) Method for producing non-oriented magnetic steel sheet
TWI551694B (en) Nonoriented electromagnetic steel sheet with excellent high frequency core loss property
JP5200376B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP5402694B2 (en) Method for producing non-oriented electrical steel sheet with excellent magnetic properties in rolling direction
JP4589747B2 (en) Non-oriented electrical steel sheet with excellent magnetic properties, its manufacturing method and strain relief annealing method
KR102264103B1 (en) Non-oriented electrical steel sheet having an excellent recyclability
JP2004197217A (en) Nonoriented electrical steel sheet excellent in circumferential magnetic property, and production method therefor
TWI550104B (en) Nonoriented electromagnetic steel sheet with excellent high frequency core loss property
JP2007031755A (en) Method for producing non-oriented silicon steel sheet for rotor
JP6804291B2 (en) Non-oriented electrical steel sheet and its manufacturing method
JP5939190B2 (en) Electrical steel sheet
JP5560923B2 (en) Method for producing non-oriented electrical steel sheet with excellent magnetic properties in rolling direction
JP6123234B2 (en) Electrical steel sheet
JP2001323347A (en) Nonoriented silicon steel sheet excellent in workability, recyclability and magnetic property after strain relieving annealing
JP4551110B2 (en) Method for producing non-oriented electrical steel sheet
JP2014122405A (en) Nonoriented silicon steel sheet for spiral core and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130702

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140513

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140526

R151 Written notification of patent or utility model registration

Ref document number: 5560923

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350