JP2004197217A - Nonoriented electrical steel sheet excellent in circumferential magnetic property, and production method therefor - Google Patents

Nonoriented electrical steel sheet excellent in circumferential magnetic property, and production method therefor Download PDF

Info

Publication number
JP2004197217A
JP2004197217A JP2003366026A JP2003366026A JP2004197217A JP 2004197217 A JP2004197217 A JP 2004197217A JP 2003366026 A JP2003366026 A JP 2003366026A JP 2003366026 A JP2003366026 A JP 2003366026A JP 2004197217 A JP2004197217 A JP 2004197217A
Authority
JP
Japan
Prior art keywords
less
steel sheet
electrical steel
flux density
oriented electrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003366026A
Other languages
Japanese (ja)
Other versions
JP4319889B2 (en
Inventor
Takeshi Kubota
猛 久保田
Yosuke Kurosaki
洋介 黒崎
Masahiro Fujikura
昌浩 藤倉
Tsutomu Kaido
力 開道
Takeaki Wakizaka
岳顕 脇坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2003366026A priority Critical patent/JP4319889B2/en
Publication of JP2004197217A publication Critical patent/JP2004197217A/en
Application granted granted Critical
Publication of JP4319889B2 publication Critical patent/JP4319889B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonoriented electrical steel sheet in which circumferential magnetic properties inside the steel face can be improved. <P>SOLUTION: The electrical steel sheet is produced in such a manner that alloy components to be added and (Si, Al and Mn), the corelation in the contents of the alloy elements, impurity elements (C, S, N, Ti, V, Zr, Nb and As), the crystal grain size after hot rolled sheet annealing, and the draft in cold rolling are controlled for improving the circumferential magnetic properties inside the sheet face. Thus, the ä100} texture after finish annealing is developed, and, isotropically excellent magnetic properties inside the steel sheet face can be obtained when the steel sheet is used as an iron core material, particularly, in the case of an iron core of a rotating machine. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

本発明は、電気機器鉄心材料として使用される、磁気特性の優れた無方向性電磁鋼板に関するものであり、特に、回転機鉄心材料として望ましい、鋼板の板面内全周磁気特性に優れた無方向性電磁鋼板及びその製造方法を提供するものである。   TECHNICAL FIELD The present invention relates to a non-oriented electrical steel sheet having excellent magnetic properties, which is used as a core material for electrical equipment, and particularly to a non-oriented electrical steel sheet having excellent magnetic properties all over the in-plane of a steel sheet, which is desirable as a rotating machine core material. An object of the present invention is to provide a grain-oriented electrical steel sheet and a method for manufacturing the same.

近年、電気機器、特に無方向性電磁鋼板がその鉄心材料として使用される回転機、中小型変圧器、電装品等の分野においては、世界的な電力・エネルギー節減、地球環境保全の動きの中で、高効率化、小型化の要請はますます強まりつつある。このような社会環境下において、当然無方向性電磁鋼板に対しても、その性能向上は喫緊の課題として強く要請されている。   In recent years, in the fields of electrical machinery, especially rotating machines, small and medium-sized transformers, and electrical components, in which non-oriented electrical steel sheets are used as the core material, global power and energy savings and global Thus, demands for higher efficiency and smaller size are increasing. Under such a social environment, improvement of the performance of non-oriented electrical steel sheets is naturally urgently required as an urgent issue.

周知のように、無方向性電磁鋼板においては、その性能向上に対して数多の手段がとられてきた。鉄損低減についてみると、一般には電気抵抗増大による渦電流損低減の観点から、SiあるいはAl等の含有量を高める方法が採られてきた。しかしこの方法では、反面、磁束密度の低下は避け得ないという問題点があった。   As is well known, a number of measures have been taken to improve the performance of non-oriented electrical steel sheets. Regarding reduction of iron loss, a method of increasing the content of Si, Al, or the like has been generally adopted from the viewpoint of reducing eddy current loss due to an increase in electric resistance. However, in this method, on the other hand, there is a problem that a decrease in magnetic flux density cannot be avoided.

また、単にSi、あるいはAl等の含有量を高めるのみではなく、C,S,N等の高純度鋼化や、特許文献1に記載されているようなCa添加等の化学的処置による不純物の無害化等による鉄損低減もなされてきた。さらに、特許文献2に記載されているような仕上焼鈍条件の工夫等の製造プロセス上の処置もなされてきた。一方、高磁束密度化についても、特許文献3に記載されているような熱延板焼鈍条件と冷延条件の工夫等の製造プロセス上の処置や、特許文献4に記載されているようなSn,Cu等の合金元素添加による一次再結晶集合組織改善による処置等がなされてきた。   In addition to simply increasing the content of Si, Al, or the like, impurities such as C, S, N, or other high-purity steels or chemical treatment such as the addition of Ca described in Patent Document 1 are added. Iron loss has also been reduced by detoxification and the like. Further, measures in the manufacturing process such as devising finish annealing conditions as described in Patent Document 2 have been taken. On the other hand, for increasing the magnetic flux density, measures in the manufacturing process such as devising hot-rolled sheet annealing conditions and cold-rolling conditions as described in Patent Document 3, and Sn as described in Patent Document 4 Treatments such as improvement of primary recrystallization texture by addition of alloying elements such as Cu and Cu have been made.

しかし上記のような処置により、無方向性電磁鋼板の磁気特性の向上はなされても、回転機等の鉄心として電気機器に使用される場合には、通常、JIS等で規定されている鋼板圧延方向およびその鋼板面内直角方向の平均的磁気特性のみでなく、鋼板の板面内全周磁気特性、すなわち面内での等方的に優れた磁気特性が要請される。この目的のためには、無方向性電磁鋼板の{100}集合組織を発達させることが望ましい。   However, even though the magnetic properties of the non-oriented electrical steel sheet are improved by the above-described treatment, when the steel sheet is used for electric equipment as an iron core of a rotating machine or the like, usually the steel sheet rolling specified by JIS or the like is used. In addition to the average magnetic properties in the direction and in the direction perpendicular to the steel sheet plane, the steel sheet is required to have all-round magnetic properties in the plane of the steel sheet, that is, isotropically excellent magnetic properties in the plane. For this purpose, it is desirable to develop {100} texture of the non-oriented electrical steel sheet.

無方向性電磁鋼板において{100}集合組織を発達させる手段としては、特許文献5に記載されているように、冷間圧延の圧下率を85%以上、望ましくは90%以上の強圧下とし、かつ、仕上焼鈍を700〜1200℃で2分〜1時間の長時間とする方法があるが、このような強圧下冷間圧延および長時間仕上焼鈍を施すことは、生産性の低下や製造コストの上昇、さらには、設備制約上の問題が生じ、実用化には至っていない。
特許文献6や特許文献7に記載されているように、移動更新する冷却体表面によって溶鋼を凝固せしめて薄帯となす急冷凝固法等の特殊な製造方法も開発されているが、設備制約上の問題や安定生産性の問題等が生じ、実用化には至っていない。
特開平 3−126845号公報 特開昭61−231120号公報 特開平 4−325629号公報 特開平 5−140648号公報 特公昭51−942号公報 特開平 5−279740号公報 特開平 5−306438号公報
As a means for developing {100} texture in a non-oriented electrical steel sheet, as described in Patent Document 5, the rolling reduction of cold rolling is set to 85% or more, preferably 90% or more. In addition, there is a method in which the finish annealing is performed at 700 to 1200 ° C. for a long time of 2 minutes to 1 hour. However, performing such high-pressure cold rolling and long-time finish annealing reduces productivity and production cost. , And furthermore, there has been a problem with equipment restrictions, and it has not been put to practical use.
As described in Patent Literature 6 and Patent Literature 7, special production methods such as a rapid solidification method in which molten steel is solidified by a cooling body surface to be moved and renewed to form a thin strip have been developed, but due to equipment limitations. Problems and problems with stable productivity, etc., have not yet been put to practical use.
JP-A-3-126845 JP-A-61-231120 JP-A-4-325629 JP-A-5-140648 JP-B-51-942 JP-A-5-279740 JP-A-5-306438

上記に鑑み本発明は、無方向性電磁鋼板において{100}集合組織を発達させ、回転機鉄心材料として望ましい、鋼板の板面内全周磁気特性に優れた無方向性電磁鋼板及びその製造方法を提供するものである。   In view of the above, the present invention provides a non-oriented electrical steel sheet that develops {100} texture in a non-oriented electrical steel sheet and is excellent as a rotating machine core material and has excellent in-plane magnetic properties in the entire surface of the steel sheet and a method of manufacturing the same. Is provided.

本発明者らは、無方向性電磁鋼板の通常の製造工程において、冷間圧延前の結晶組織制御と冷間圧延圧下との組み合わせにより{100}集合組織を発達させ、鋼板の板面内全周磁気特性に優れた無方向性電磁鋼板が得られないかとの観点から鋭意研究を積み重ねた。その結果、鋼板圧延方向磁束密度、およびその板面内垂直方向との磁束密度差、圧延方向から板面内22.5度方向の磁束密度、および67.5度方向,45度方向との磁束密度B50差を一定範囲に制御すれば、回転機鉄心として用いた場合に優れた鉄損特性が得られること、また製造方法としては、冷間圧延前の結晶粒径をある値以上に粗大化させることにより、冷間圧延の圧下率を適切に選べは、短時間連続仕上焼鈍で、板面内全周磁気特性を顕著に向上させることが可能であることを究明した。   The present inventors have developed {100} texture by a combination of crystal structure control before cold rolling and cold rolling reduction in a normal production process of a non-oriented electrical steel sheet, and From the viewpoint of obtaining a non-oriented electrical steel sheet with excellent peripheral magnetic properties, we have conducted intensive studies. As a result, the magnetic flux density in the rolling direction of the steel sheet, the magnetic flux density difference from the vertical direction in the sheet surface, the magnetic flux density in the direction of 22.5 degrees in the sheet surface from the rolling direction, and the magnetic fluxes in the directions of 67.5 degrees and 45 degrees If the density B50 difference is controlled within a certain range, excellent iron loss characteristics can be obtained when used as a rotating machine core, and the manufacturing method is to increase the crystal grain size before cold rolling to a certain value or more. By doing so, it was clarified that it is possible to select the rolling reduction of the cold rolling appropriately and to improve the in-plane magnetic properties all around the plate by short-time continuous finish annealing.

本発明は上記知見に基づきなされたものであり、その要旨は次の通りである。
(1) 質量%で、
C :0.002%以下、 Si:0.8%以上4.0%以下、
Al:0.1%以上2.0以下、 Mn:0.1%以上1.5%以下
を含有し、かつ、
Si+2Al−Mn:2%以上で、
残部Feおよび不可避不純物元素よりなる鋼において、圧延方向の磁束密度B50が1.69T以上でその板面内垂直方向の磁束密度B50との差が0.03T未満であり、また圧延方向から板面内22.5度方向の磁束密度B50が1.65T以上で67.5度方向の磁束密度B50との差が0.04T未満であり、かつ、45度方向の磁束密度B50との差が0.06T未満であることを特徴とする全周磁気特性の優れた無方向性電磁鋼板。
(2) 質量%でさらに、
Sn:0.02〜0.40%、 Cu:0.1〜1.0%
の1種または2種を含有することを特徴とする前記(1)に記載の全周磁気特性の優れた無方向性電磁鋼板。
The present invention has been made based on the above findings, and the gist is as follows.
(1) In mass%,
C: 0.002% or less, Si: 0.8% or more and 4.0% or less,
Al: 0.1% or more and 2.0% or less, Mn: 0.1% or more and 1.5% or less, and
Si + 2Al-Mn: 2% or more,
In the steel consisting of the balance of Fe and unavoidable impurity elements, the magnetic flux density B50 in the rolling direction is 1.69 T or more, the difference from the magnetic flux density B50 in the vertical direction in the plate surface is less than 0.03 T, and When the magnetic flux density B50 in the 22.5-degree direction is 1.65 T or more, the difference from the magnetic flux density B50 in the 67.5-degree direction is less than 0.04 T, and the difference from the magnetic flux density B50 in the 45-degree direction is 0. A non-oriented electrical steel sheet having excellent magnetic properties all around, which is less than 0.06T.
(2) In mass%,
Sn: 0.02 to 0.40%, Cu: 0.1 to 1.0%
The non-oriented electrical steel sheet according to the above (1), which comprises one or two of the following.

(3) 質量%で、
C :0.002%以下、 Si:0.8%以上4.0%以下、
Al:0.1%以上2.0以下、 Mn:0.1%以上1.5%以下
を含有し、かつ、
Si+2Al−Mn:2%以上で、
残部Feおよび不可避不純物元素よりなる鋼を、熱間圧延後、熱延板焼鈍を施し、一回の冷間圧延により最終板厚とした後、仕上焼鈍を施す無方向性電磁鋼板の製造方法において、熱延板焼鈍後の平均結晶粒径を400μm以上とし、冷間圧延を圧下率:80%以上90%以下で施し、仕上焼鈍を800℃以上950℃以下で10秒以上1分以下施すことを特徴とする全周磁気特性の優れた無方向性電磁鋼板の製造方法。
(4) 質量%でさらに、不可避不純物としてのS,N,Tiをそれぞれ0.002%以下とした鋼を用いることを特徴とする前記(3)に記載の全周磁気特性の優れた無方向性電磁鋼板の製造方法。
(5) 質量%でさらに、不可避不純物としてのV,Zr,Nb,Asをそれぞれ0.003%以下とした鋼を用いることを特徴とする前記(3)または(4)に記載の全周磁気特性の優れた無方向性電磁鋼板の製造方法。
(3) In mass%,
C: 0.002% or less, Si: 0.8% or more and 4.0% or less,
Al: 0.1% or more and 2.0% or less, Mn: 0.1% or more and 1.5% or less, and
Si + 2Al-Mn: 2% or more,
In the method for producing a non-oriented electrical steel sheet, a steel comprising the balance of Fe and unavoidable impurity elements is subjected to hot rolling, hot-rolled sheet annealing, and finally to a final sheet thickness by one cold rolling, and then subjected to finish annealing. The average grain size after hot-rolled sheet annealing is 400 µm or more, cold rolling is performed at a rolling reduction of 80% to 90%, and finish annealing is performed at 800 ° C to 950 ° C for 10 seconds to 1 minute. A method for producing a non-oriented electrical steel sheet having excellent circumferential magnetic properties, characterized by:
(4) A non-directional steel having excellent all-round magnetic characteristics as described in (3), characterized by using steel in which each of S, N, and Ti as unavoidable impurities is 0.002% or less in mass%. Manufacturing method of conductive electrical steel sheet.
(5) The full-circumferential magnetism as described in (3) or (4) above, wherein the steel is used in which each of V, Zr, Nb, and As as inevitable impurities is 0.003% or less in mass%. A method for producing non-oriented electrical steel sheets with excellent properties.

以上のように、本発明によれば、回転機鉄心材料として実用上好ましい特性を有する、鋼板の板面内全周磁気特性に優れた無方向性電磁鋼板を提供することができため、電気機器、特に無方向性電磁鋼板がその鉄心材料として使用される回転機等の分野における要請に十分に応えることができ、その工業的価値は極めて高いものである。   INDUSTRIAL APPLICABILITY As described above, according to the present invention, it is possible to provide a non-oriented electrical steel sheet having practically preferable characteristics as a rotating machine iron core material and excellent in in-plane magnetic properties in the entire surface of the steel sheet. In particular, it can sufficiently meet the requirements in the field of rotating machines and the like in which non-oriented electrical steel sheets are used as its core material, and its industrial value is extremely high.

以下、本発明を詳細に説明する。
まず、本発明の鋼成分の限定理由について述べる。
Cは、鉄損を高める有害な成分で、磁気時効の原因ともなるので、0.002%以下とする。
Hereinafter, the present invention will be described in detail.
First, the reasons for limiting the steel components of the present invention will be described.
C is a harmful component that increases iron loss and causes magnetic aging. Therefore, the content of C is set to 0.002% or less.

Siは、前記のように、電気抵抗を増大させて渦電流損を減少させることにより、鉄損を低減する作用のある成分であり、この作用を奏するためには、0.8%以上含有させる必要がある。一方、その含有量が増えると、前記のように、磁束密度が低下し、かつ、硬度の上昇を招いて、打ち抜き加工性を劣化させ、また、無方向性電磁鋼板の製造工程そのものにおいても、冷延等の作業性の低下、コスト高ともなるので、4.0%以下とする。   As described above, Si is a component having an effect of reducing iron loss by increasing eddy current loss by increasing electric resistance. To exhibit this effect, Si is contained at 0.8% or more. There is a need. On the other hand, when the content increases, as described above, the magnetic flux density decreases, and also causes an increase in hardness, deteriorates the punching workability, and also in the manufacturing process itself of the non-oriented electrical steel sheet, Since the workability such as cold rolling is lowered and the cost is increased, the content is set to 4.0% or less.

Alも、前記のように、Siと同様に電気抵抗を増大させて渦電流損を減少させることにより、鉄損を低減する作用のある成分であり、また、熱延板焼鈍時の結晶粒成長性を促進する作用を有する。これらの作用を奏するためには、0.1%以上含有させる必要がある。一方、その含有量が増えると磁束密度が低下し、かつ降伏比の減少を招いて打ち抜き加工性を劣化させるので、2.0%以下とする。   Al is also a component having the effect of reducing iron loss by increasing electric resistance and reducing eddy current loss as in the case of Si, as described above. Has the effect of promoting the nature. In order to exhibit these effects, it is necessary to contain 0.1% or more. On the other hand, when the content increases, the magnetic flux density decreases, and the yield ratio decreases, thereby deteriorating the punching workability.

Mnも、電気抵抗を増大させて渦電流損を減少させることにより、鉄損を低減する作用を有する。この目的のためには0.1%以上含有させる必要がある。しかしその含有量が増えると、熱延板焼鈍時の結晶粒成長性そのものが低下するので、1.5%以下とする。   Mn also has the effect of reducing iron loss by increasing eddy current loss by increasing electrical resistance. For this purpose, it is necessary to contain 0.1% or more. However, when the content increases, the crystal grain growth itself during annealing of the hot-rolled sheet decreases, so the content is set to 1.5% or less.

なお、上記の合金元素成分Si,Al,Mn相互の間には、Si+2Al−Mn:2%以上の関係を満足する必要がある。これは、Si+2Al−Mnが2%未満では、α−γ変態が存在する化学成分系となり、無方向性電磁鋼板の製造工程における焼鈍時、特に本発明の特徴とする熱延板焼鈍時に変態が生じ、熱延板焼鈍後の結晶粒径の粗大化を阻害し、続く冷間圧延の圧下率制御をもってしても、仕上焼鈍後の{100}集合組織の発達が抑制され、板面内全周磁気特性の向上が阻まれるためである。   In addition, it is necessary to satisfy the relationship of Si + 2Al-Mn: 2% or more between the above-mentioned alloy element components Si, Al, and Mn. This is because if Si + 2Al-Mn is less than 2%, a chemical component system in which α-γ transformation exists is present, and transformation occurs during annealing in the manufacturing process of a non-oriented electrical steel sheet, particularly during hot-rolled sheet annealing, which is a feature of the present invention. The formation of the {100} texture after the finish annealing is suppressed, and even if the rolling reduction of the subsequent cold rolling is controlled, the development of {100} texture is suppressed, This is because improvement in the circumferential magnetic properties is hindered.

Snは、鋼板の一次再結晶集合組織を磁気特性に望ましい(100)、もしくは(110)集合組織に発達させ、かつ、磁気特性に望ましくない(111)集合組織を抑制する効果を有するので、必要に応じて添加する。この目的のためには0.02%以上含有させる必要がある。一方、その含有量が増えても作用は飽和し、むしろ焼鈍時の結晶粒成長性が抑制され、磁気特性が劣化する結果となるので、0.40%以下とする。   Sn is necessary because it has the effect of developing the primary recrystallized texture of the steel sheet into a desirable (100) or (110) texture for the magnetic properties and suppressing a (111) texture undesirable for the magnetic properties. Add according to. For this purpose, it is necessary to contain 0.02% or more. On the other hand, even if the content increases, the effect is saturated, and rather the crystal grain growth during annealing is suppressed, resulting in deterioration of magnetic properties. Therefore, the content is set to 0.40% or less.

CuもSnと同様に、鋼板の一次再結晶集合組織を磁気特性に望ましいものに発達させる効果を有するので、必要に応じて添加する。この効果を発揮させるためには0.1%以上含有させる必要がある。しかし、その含有量が増えると熱間脆化を招き、無方向性電磁鋼板の製造工程における熱延等での作業性を低下させるので、1.0%以下とする。   Cu, like Sn, has the effect of developing the primary recrystallization texture of the steel sheet to a desirable one in terms of magnetic properties. Therefore, Cu is added as necessary. In order to exhibit this effect, it is necessary to contain 0.1% or more. However, when the content increases, hot embrittlement is caused, and workability in hot rolling or the like in a manufacturing process of the non-oriented electrical steel sheet is reduced.

Sは、MnS等の硫化物の微細析出により、熱間圧延後の再結晶および結晶粒成長を阻害し、熱延板焼鈍後の結晶粒径の粗大化、およびこれに伴う熱延板集合組織のランダム化を阻むので、0.002%以下とする。   S inhibits recrystallization and crystal grain growth after hot rolling due to fine precipitation of sulfides such as MnS, so that the crystal grain size becomes coarse after hot-rolled sheet annealing, and the hot-rolled sheet texture accompanying this Therefore, the content is set to 0.002% or less.

Nは、AlNをはじめTiN等の窒化物の微細析出により、熱間圧延後の再結晶および結晶粒成長を阻害し、熱延板焼鈍後の結晶粒径の粗大化、およびこれに伴う熱延板集合組織のランダム化を阻むので、0.002%以下とする。   N inhibits recrystallization and crystal grain growth after hot rolling due to fine precipitation of nitrides such as AlN and TiN, resulting in coarsening of crystal grain size after hot-rolled sheet annealing, and accompanying hot rolling. Since the plate texture is prevented from being randomized, the content is made 0.002% or less.

Tiは、再結晶温度を上昇させ、無方向性電磁鋼板の製造工程における焼鈍時に再結晶およびそれに続く結晶粒成長を遅らせる。また、無方向性電磁鋼板の磁気特性にとって好ましくない{111}集合組織を発達させる。さらに、TiNやTiC等の微細析出とも相俟って、熱延板焼鈍後の結晶粒径の粗大化、およびこれに伴う熱延板集合組織のランダム化を阻害するので、0.002%以下とする。   Ti raises the recrystallization temperature and delays recrystallization and subsequent crystal grain growth during annealing in the process of manufacturing a non-oriented electrical steel sheet. In addition, the {111} texture that is not preferable for the magnetic properties of the non-oriented electrical steel sheet is developed. Further, in combination with the fine precipitation of TiN, TiC, etc., the coarsening of the crystal grain size after the annealing of the hot-rolled sheet and the accompanying randomization of the texture of the hot-rolled sheet are hindered. And

V,Zr,Nbは,VN,VC等の炭化物や窒化物の微細析出により、熱間圧延後の再結晶および結晶粒成長を阻害し、熱延板焼鈍後の結晶粒径の粗大化、およびこれに伴う熱延板集合組織のランダム化を阻むので、それぞれ、0.003%以下とする。   V, Zr, and Nb inhibit recrystallization and crystal grain growth after hot rolling due to fine precipitation of carbides and nitrides such as VN and VC, and increase the crystal grain size after hot-rolled sheet annealing, and Since the randomization of the texture of the hot-rolled sheet is prevented, the content of each is set to 0.003% or less.

Asは、それ自身では、本発明の鋼成分範囲内では上述のような微細析出物を形成することはない。ただし、Asが含有されるとMnS等の硫化物の微細析出を促進し、熱間圧延後の再結晶および結晶粒成長を阻害することとなり、熱延板焼鈍後の結晶粒径の粗大化、およびこれに伴う熱延板集合組織のランダム化を阻むので、0.003%以下とする。 上述の成分以外は、Feおよび不可避不純物元素である。   As by itself does not form the above-mentioned fine precipitates within the steel composition range of the present invention. However, when As is contained, fine precipitation of sulfides such as MnS is promoted, and recrystallization and crystal grain growth after hot rolling are hindered. In addition, since the randomization of the texture of the hot-rolled sheet is prevented, the content is set to 0.003% or less. The components other than the above-mentioned components are Fe and unavoidable impurity elements.

次に、本発明の特徴とする、鋼板の板面内での全周磁気特性変化と回転機鉄心として用いた場合の鉄損との関係について述べる。
表1に示した成分の鋼スラブを用い、熱間圧延条件、熱延板焼鈍条件、冷間圧延条件等を調整し、表2に示した全周磁気特性を有する0.35mm厚の6種類の無方向性電磁鋼板を得た。これらの無方向性電磁鋼板を4極モータコアに加工,積層し、モータコア鉄損/素材鉄損の比、すなわちBF(ビルディングファクタ)を測定した。その測定結果を表3に示す。
Next, a description will be given of a characteristic of the present invention, that is, a relationship between a change in magnetic properties around the entire surface of the steel sheet in the plate surface and an iron loss when the steel sheet is used as a rotating machine core.
Using steel slabs of the components shown in Table 1, the hot rolling conditions, hot rolled sheet annealing conditions, cold rolling conditions, etc. were adjusted, and six types of 0.35 mm thick having the all-around magnetic properties shown in Table 2 Non-oriented electrical steel sheet was obtained. These non-oriented electrical steel sheets were processed into a four-pole motor core and laminated, and the motor core iron loss / material iron loss ratio, that is, BF (building factor) was measured. Table 3 shows the measurement results.

Figure 2004197217
Figure 2004197217

Figure 2004197217
Figure 2004197217

Figure 2004197217
Figure 2004197217

鋼板の製造条件を操作して板面内での全周磁気特性を変化させることにより、{100}<Ovw>集合組織が発達した場合に得られるような鋼板の板面内すべての方向について均一な磁気特性が必ずしも実現されなくても、モータコア鉄損/素材鉄損の比、すなわちBF(ビルディングファクタ)を低減することができ、回転機鉄心素材として実用上好ましい無方向性電磁鋼板となることがわかる。
特に、圧延方向の磁束密度B50が1.69T以上でその板面内垂直方向との磁束密度B50差が0.03T未満、圧延方向から板面内22.5度方向の磁束密度B50が1.65T以上で67.5度方向との磁束密度B50差が0.04T未満、45度方向との磁束密度B50差が0.06T未満であるNo.6では、著しくBFが低く、モータコア素材として優れた無方向性電磁鋼板が実現されている。
By manipulating the manufacturing conditions of the steel sheet to change the magnetic properties around the entire surface of the steel sheet, uniformity can be obtained in all directions in the steel sheet plane obtained when {100} <Ovw> texture develops. Even if the magnetic properties are not necessarily realized, the ratio of motor core iron loss to material iron loss, that is, BF (building factor) can be reduced, and a non-oriented electrical steel sheet which is practically preferable as a rotating machine iron core material can be obtained. I understand.
In particular, when the magnetic flux density B50 in the rolling direction is 1.69 T or more, the difference in magnetic flux density B50 from the vertical direction in the plate surface is less than 0.03 T, and the magnetic flux density B50 in the direction 22.5 degrees in the plate surface from the rolling direction is 1. The magnetic flux density B50 difference from the 67.5 degree direction at 65T or more is less than 0.04T, and the magnetic flux density B50 difference from the 45 degree direction is less than 0.06T. In No. 6, a non-oriented electrical steel sheet having a remarkably low BF and excellent as a motor core material is realized.

このように、本発明の特徴は、鋼板圧延方向磁束密度、およびその板面内垂直方向との磁束密度差、圧延方向から板面内22.5度方向の磁束密度、および67.5度方向、45度方向との磁束密度B50差を一定範囲に制御することにより、回転機鉄心として用いた場合に実用上優れた鉄損特性を有する無方向性電磁鋼板を提供することにある。   As described above, the features of the present invention include the magnetic flux density in the rolling direction of the steel sheet, the difference in the magnetic flux density from the vertical direction in the sheet surface, the magnetic flux density in the direction of 22.5 degrees in the sheet surface from the rolling direction, and the direction of 67.5 degrees. By controlling the difference in magnetic flux density B50 from the 45 ° direction to a certain range, it is possible to provide a non-oriented electrical steel sheet having practically excellent iron loss characteristics when used as a rotating machine iron core.

この場合、鋼板圧延方向磁束密度B50は1.69T以上とする必要がある。1.69T未満では、回転機の使用磁場を下げざるを得ず、またBFも増加し鉄損特性が劣化する。 鋼板圧延方向磁束密度B50とその板面内垂直方向磁束密度B50との差は0.03T未満とする必要がある。0.03T以上の差ではBFが増加する。
さらに、圧延方向から板面内22.5度方向の磁束密度B50は1.65T以上とする必要がある。1.65T未満では、回転機の使用磁場を下げざるを得ず、またBFも増加し鉄損特性が劣化する。
圧延方向から板面内22.5度方向の磁束密度B50と67.5度方向との磁束密度B50との差は0.04T未満、かつ、45度方向との磁束密度B50との差は0.06T未満とする必要がある。これらの差がそれぞれ0.04T以上,0.06T以上では、BFが増加する。尚、本発明に規定した化学成分を有する鋼であれば、以下に述べるような製造条件によって、優れた全周磁気特性を得ることが出来る。
In this case, the magnetic flux density B50 in the steel sheet rolling direction needs to be 1.69T or more. If it is less than 1.69T, the magnetic field used by the rotating machine must be reduced, and the BF increases to deteriorate the iron loss characteristics. The difference between the magnetic flux density B50 in the rolling direction of the steel sheet and the magnetic flux density B50 in the vertical direction in the plate surface must be less than 0.03T. With a difference of 0.03T or more, BF increases.
Further, the magnetic flux density B50 in the direction of 22.5 degrees in the plate surface from the rolling direction needs to be 1.65T or more. If it is less than 1.65 T, the magnetic field used by the rotating machine must be reduced, and BF increases to deteriorate iron loss characteristics.
The difference between the magnetic flux density B50 in the direction of 22.5 degrees in the plate surface from the rolling direction and the magnetic flux density B50 in the direction of 67.5 degrees is less than 0.04T, and the difference between the magnetic flux density B50 in the direction of 45 degrees is 0. 0.06T or less. When these differences are 0.04T or more and 0.06T or more, respectively, BF increases. In addition, if the steel has the chemical composition specified in the present invention, excellent all-round magnetic properties can be obtained under the following manufacturing conditions.

次に、本発明の特徴とする、熱延板焼鈍後の結晶粒径と冷間圧延の圧下率との組み合わせが磁気特性に及ぼす効果について述べる。表4に示した成分の鋼スラブを2.8mm厚に熱間圧延後、表5に示した焼鈍条件で熱延板焼鈍を施し、熱延板焼鈍後の結晶粒径を変化させ、また、冷間圧延圧下率も変化させ、900℃で30秒の仕上焼鈍を施した後、角度別(圧延方向,22.5度方向,45度方向,67.5度方向,圧延方向に垂直方向)にエプスタイン試料を採取し、磁気特性(磁束密度:B50)を測定した。その測定結果も併せて表5に示す。   Next, the effect of the combination of the crystal grain size after the hot-rolled sheet annealing and the rolling reduction of the cold rolling on the magnetic properties, which is a feature of the present invention, will be described. After hot rolling a steel slab having the components shown in Table 4 to a thickness of 2.8 mm, it was subjected to hot rolled sheet annealing under the annealing conditions shown in Table 5 to change the crystal grain size after hot rolled sheet annealing, Cold rolling reduction is also changed, and after finishing annealing at 900 ° C. for 30 seconds, different angles (rolling direction, 22.5 degree direction, 45 degree direction, 67.5 degree direction, direction perpendicular to the rolling direction) An Epstein sample was taken and magnetic properties (magnetic flux density: B50) were measured. Table 5 also shows the measurement results.

Figure 2004197217
Figure 2004197217

Figure 2004197217
Figure 2004197217

冷間圧延前、すなわち熱延板焼鈍後の平均結晶粒径と冷間圧延の圧下率との組み合わせにより、900℃で30秒の短時間連続仕上焼鈍で、板面内全周磁気特性を向上できることがわかる。特に、熱延板焼鈍後の平均結晶粒径を400μm以上に粗大化させ、かつ、冷間圧延の圧下率を85%に制御したNo.5では、著しくB50(全周平均値)が高く、全周磁気特性の優れた無方向性電磁鋼板が得られる。この場合、熱延板焼鈍後の平均結晶粒径を400μm以上に粗大化させることにより、熱延板集合組織のランダム化も促進されており、熱延板焼鈍後、すなわち冷間圧延前の平均結晶粒径の粗大化とランダム集合組織が、冷間圧延の圧下率制御との相乗効果により、仕上焼鈍後の{100}集合組織の発達を促進し、板面内全周磁気特性の顕著な向上に寄与しているものと推察される。
このように本発明の特徴は、熱延板焼鈍後の結晶粒径と冷間圧延の圧下率との組み合わせにより、短時間連続仕上焼鈍で、板面内全周磁気特性の優れた無方向性電磁鋼板を製造することにある。
Improve the entire in-plane magnetic properties by short-time continuous annealing at 900 ° C for 30 seconds by combining the average grain size after cold rolling, that is, the average grain size after annealing of the hot rolled sheet, and the rolling reduction of the cold rolling. We can see that we can do it. In particular, the average grain size after annealing of the hot-rolled sheet was coarsened to 400 μm or more, and the rolling reduction of the cold rolling was controlled to 85%. In No. 5, a non-oriented electrical steel sheet having remarkably high B50 (average value over the entire circumference) and excellent magnetic properties over the entire circumference can be obtained. In this case, by increasing the average crystal grain size after the hot-rolled sheet annealing to 400 μm or more, randomization of the hot-rolled sheet texture is also promoted, and after the hot-rolled sheet annealing, that is, the average before cold rolling. The coarsening of the crystal grain size and the random texture promote the development of {100} texture after finish annealing due to the synergistic effect of the rolling reduction control of the cold rolling, and the remarkable magnetic properties all around the sheet surface It is presumed to have contributed to the improvement.
As described above, the feature of the present invention is that the combination of the crystal grain size after the hot-rolled sheet annealing and the rolling reduction of the cold rolling makes it possible to perform the short-time continuous finish annealing and the excellent non-directionality of the in-plane magnetic properties all around the sheet surface. Manufacture of electrical steel sheets.

熱延板焼鈍後の平均結晶粒径は400μm以上にする必要がある。熱延板平均結晶粒径が400mm未満では、冷間圧延の圧下率を制御しても板面内全周磁気特性を向上させることはできない。なお、本発明に規定した鋼の不純物元素含有量であれば、熱延板焼鈍条件、すなわち焼鈍温度と時間を、無方向性電磁鋼板の通常の製造工程範囲内で適宜選定することにより、熱延板焼鈍後の平均結晶粒径を400μm以上にすることができる。   The average crystal grain size after hot-rolled sheet annealing needs to be 400 μm or more. When the average crystal grain size of the hot-rolled sheet is less than 400 mm, it is not possible to improve the in-plane magnetic properties all over the sheet even if the rolling reduction of the cold rolling is controlled. Incidentally, if the impurity element content of the steel specified in the present invention, the hot rolling sheet annealing conditions, that is, the annealing temperature and time, by appropriately selecting within the normal manufacturing process range of non-oriented electrical steel sheet, heat The average crystal grain size after the strip annealing can be 400 μm or more.

冷間圧延の圧下率は、80%以上90%以下とする。80%未満では、磁気特性の異方性が大きくなり、板面内全周磁気特性が向上しない。一方90%超では、磁気特性の異方性は減少するものの、無方向性電磁鋼板の磁気特性にとって好ましくない{111}集合組織が発達し、磁束密度が低下する。   The rolling reduction of the cold rolling is 80% or more and 90% or less. If it is less than 80%, the anisotropy of the magnetic properties increases, and the magnetic properties all around the plate surface are not improved. On the other hand, if it exceeds 90%, although the anisotropy of the magnetic properties decreases, the {111} texture unfavorable for the magnetic properties of the non-oriented electrical steel sheet develops, and the magnetic flux density decreases.

仕上焼鈍は800℃以上950℃以下で10秒以上1分以下とする。800℃未満では、磁気特性の異方性が大きくなり、板面内全周磁気特性が向上しない。一方、950℃超では、磁気特性の異方性は減少するものの、無方向性電磁鋼板の磁気特性にとって好ましくない{111}集合組織が発達し、磁束密度が低下する。また10秒未満では、結晶粒の整粒性が悪く、磁束密度の低下や鉄損の増加を招く。一方1分超では、その効果は飽和し、かつ生産性の低下や製造コストの上昇をも招く。   The finish annealing is performed at 800 ° C. to 950 ° C. for 10 seconds to 1 minute. If the temperature is lower than 800 ° C., the anisotropy of the magnetic properties increases, and the magnetic properties all around the plate surface are not improved. On the other hand, when the temperature exceeds 950 ° C., although the anisotropy of the magnetic properties decreases, the {111} texture unfavorable for the magnetic properties of the non-oriented electrical steel sheet develops, and the magnetic flux density decreases. If the time is less than 10 seconds, the sizing properties of the crystal grains are poor, leading to a decrease in magnetic flux density and an increase in iron loss. On the other hand, if it exceeds 1 minute, the effect is saturated, and a decrease in productivity and an increase in manufacturing cost are also caused.

なお、本発明の特徴とする化学成分を有する鋼は、転炉あるいは電気炉等で溶製され、連続鋳造あるいは造塊後の分塊圧延によりスラブとされた後、上記の熱間圧延以降の処理が施される。   Incidentally, steel having a chemical composition characterized by the present invention is melted in a converter or an electric furnace or the like, and after being cast into a slab by slab rolling after continuous casting or ingot casting, after the above-described hot rolling and thereafter. Processing is performed.

次に本発明の実施例を示す。
(実施例1)
表6に示した成分を含有し、表7に示した全周磁気特性を有する0.50mm厚の無方向性電磁鋼板を8極モータコアに加工,積層し、モータコア鉄損/素材鉄損の比、すなわちBF(ビルディングファクタ)を測定した。その測定結果も併せて表7に示す。
Next, examples of the present invention will be described.
(Example 1)
A 0.50 mm thick non-oriented electrical steel sheet containing the components shown in Table 6 and having the magnetic properties shown in Table 7 was processed and laminated on an 8-pole motor core, and the ratio of motor core iron loss / material iron loss was obtained. That is, BF (building factor) was measured. Table 7 also shows the measurement results.

Figure 2004197217
Figure 2004197217

Figure 2004197217
Figure 2004197217

表7において、比較例のNo.11および12は、所定の全周磁気特性、すなわち、圧延方向の磁束密度B50が1.69T以上でその板面内垂直方向との磁束密度B50差が0.03T未満、圧延方向から板面内22.5度方向の磁束密度B50が1.65T以上で67.5度方向との磁束密度B50差が0.04T未満、45度方向との磁束密度B50差が0.06T未満の条件のいずれかを満たさないため、BFが大きい。
また、比較例のNo.14,15および16は、所定の全周磁気特性を満たさないためBFが大きい。特に、Si+2Al−Mnが2%未満であるため、{100}<Ovw>集合組織の発達が難しくなっており、BFの増加を助長している。
それに対して本発明例のNo.13は、所定の所定の全周磁気特性を満足しているため素材鉄損が低いとともに、BFも著しく低い。
このように、本発明により、回転機鉄心として用いた場合に優れた鉄損特性が得られる全周磁気特性に優れた無方向性電磁鋼板を提供できることがわかる。
In Table 7, No. of the comparative example. 11 and 12 have predetermined circumferential magnetic properties, that is, the magnetic flux density B50 in the rolling direction is 1.69T or more, the difference in magnetic flux density B50 from the vertical direction in the plate is less than 0.03T, Any of the conditions in which the magnetic flux density B50 in the 22.5 degree direction is 1.65 T or more and the magnetic flux density B50 difference in the 67.5 degree direction is less than 0.04 T, and the magnetic flux density B50 difference in the 45 degree direction is less than 0.06 T Is not satisfied, the BF is large.
In addition, in Comparative Example No. 14, 15, and 16 do not satisfy the predetermined all-round magnetic characteristics, and thus have a large BF. In particular, since Si + 2Al-Mn is less than 2%, it is difficult to develop {100} <Ovw> texture, which promotes an increase in BF.
On the other hand, in the example of the present invention, no. No. 13 satisfies a predetermined magnetic property around the entire circumference, so that the core loss is low and the BF is extremely low.
Thus, according to the present invention, it can be seen that a non-oriented electrical steel sheet having excellent magnetic properties all around which excellent iron loss properties can be obtained when used as a rotating machine core.

(実施例2)
表8に示した成分を含有し、表9に示した全周磁気特性を有する0.35mm厚の無方向性電磁鋼板を4極モータコアに加工,積層し、モータコア鉄損/素材鉄損の比、すなわちBF(ビルディングファクタ)を測定した。その測定結果も併せて表9に示す。
(Example 2)
A non-oriented electrical steel sheet having a thickness of 0.35 mm and containing the components shown in Table 8 and having the magnetic properties shown in Table 9 was processed and laminated on a 4-pole motor core, and the ratio of motor core iron loss to material iron loss was obtained. That is, BF (building factor) was measured. Table 9 also shows the measurement results.

Figure 2004197217
Figure 2004197217

Figure 2004197217
Figure 2004197217

表9において、比較例のNo.21〜24は、所定の全周磁気特性、すなわち、圧延方向の磁束密度B50が1.69T以上でその板面内垂直方向との磁束密度B50差が0.03T未満、圧延方向から板面内22.5度方向の磁束密度B50が1.65T以上で67.5度方向との磁束密度B50差が0.04T未満、45度方向との磁束密度B50差が0.06T未満の条件のいずれかを満たさないため、BFが大きい。
それに対して本発明例のNo.25は、所定の所定の全周磁気特性を満足しているため、BFが著しく低い。
本発明により、回転機鉄心として用いた場合に優れた鉄損特性が得られる全周磁気特性に優れた無方向性電磁鋼板を提供できることがわかる。
In Table 9, No. of the comparative example. Reference numerals 21 to 24 denote predetermined circumferential magnetic properties, that is, the magnetic flux density B50 in the rolling direction is 1.69 T or more, the difference in magnetic flux density B50 from the vertical direction in the plate is less than 0.03 T, Any of the conditions in which the magnetic flux density B50 in the 22.5 degree direction is 1.65 T or more and the magnetic flux density B50 difference in the 67.5 degree direction is less than 0.04 T, and the magnetic flux density B50 difference in the 45 degree direction is less than 0.06 T Is not satisfied, the BF is large.
On the other hand, in the example of the present invention, no. No. 25 satisfies a predetermined magnetic property around the entire circumference, so that the BF is extremely low.
It can be seen that the present invention can provide a non-oriented electrical steel sheet having excellent magnetic properties all around, which provides excellent iron loss properties when used as a rotating machine core.

(実施例3)
表10に示した成分の鋼を、1.5mm厚、2.7mm厚、4.2mm厚にそれぞれ熱間圧延後、1000℃で2分間の熱延板焼鈍を施し、0.35mm厚に冷間圧延した後、850℃で30秒の仕上焼鈍を施した。その後、角度別(圧延方向,22.5度方向,45度方向,67.5度方向,圧延方向に垂直方向)にエプスタイン試料を採取し、磁気特性を測定した。その測定結果を表11に示す。なお、磁気特性の全周平均値は、(圧延方向+2・22.5度方向+2・45度方向+2・67.5度方向+圧延方向に垂直方向)/8により求めた。
本発明により、板面内全周磁気特性の優れた無方向性電磁鋼板の製造が可能であることがわかる。
(Example 3)
The steel having the composition shown in Table 10 was hot-rolled to a thickness of 1.5 mm, 2.7 mm, and 4.2 mm, and then hot-rolled at 1000 ° C. for 2 minutes, and cooled to a thickness of 0.35 mm. After the cold rolling, finish annealing was performed at 850 ° C. for 30 seconds. Thereafter, Epstein samples were sampled at different angles (rolling direction, 22.5 degree direction, 45 degree direction, 67.5 degree direction, direction perpendicular to the rolling direction), and the magnetic properties were measured. Table 11 shows the measurement results. The average value of the magnetic properties over the entire circumference was determined by (rolling direction + 2.22.2 ° direction + 2.45 ° direction + 2.67.5 ° direction + perpendicular to rolling direction) / 8.
According to the present invention, it can be seen that it is possible to manufacture a non-oriented electrical steel sheet having excellent in-plane magnetic properties all over the surface.

Figure 2004197217
Figure 2004197217

Figure 2004197217
Figure 2004197217

(実施例4)
表12に示した成分の鋼を、3.3mm厚に熱間圧延後、1020℃で2分間の熱延板焼鈍を施し、0.50mm厚に冷間圧延(冷間圧延の圧下率:84.8%)した後、930℃で40秒の仕上焼鈍を施し、その後、角度別(圧延方向,22.5度方向,45度方向,67.5度方向,圧延方向に垂直方向)にエプスタイン試料を採取し、磁気特性を測定した。その測定結果を表13に示す。なお、磁気特性の全周平均値は、(圧延方向+2・22.5度方向+2・45度方向+2・67.5度方向+圧延方向に垂直方向)/8により求めた。
本発明により、板面内全周磁気特性の優れた無方向性電磁鋼板が得られることがわかる。
(Example 4)
The steel having the components shown in Table 12 was hot-rolled to a thickness of 3.3 mm, and then subjected to hot-rolled sheet annealing at 1020 ° C. for 2 minutes, and then cold-rolled to a thickness of 0.50 mm (reduction ratio of cold rolling: 84). 8.8%), and then subjected to finish annealing at 930 ° C. for 40 seconds, and then Epstein according to the angles (rolling direction, 22.5 ° direction, 45 ° direction, 67.5 ° direction, perpendicular to the rolling direction). A sample was taken and the magnetic properties were measured. Table 13 shows the measurement results. The average value of the magnetic properties over the entire circumference was determined by (rolling direction + 2.22.2 ° direction + 2.45 ° direction + 2.67.5 ° direction + perpendicular to rolling direction) / 8.
According to the present invention, it can be seen that a non-oriented electrical steel sheet having excellent in-plane magnetic properties all over the plate surface can be obtained.

Figure 2004197217
Figure 2004197217

Figure 2004197217
Figure 2004197217

Claims (5)

質量%で、
C :0.002%以下、 Si:0.8%以上4.0%以下、
Al:0.1%以上2.0以下、 Mn:0.1%以上1.5%以下
を含有し、かつ、
Si+2Al−Mn:2%以上で、
残部Feおよび不可避不純物元素よりなる鋼において、圧延方向の磁束密度B50が1.69T以上でその板面内垂直方向の磁束密度B50との差が0.03T未満であり、また圧延方向から板面内22.5度方向の磁束密度B50が1.65T以上で67.5度方向の磁束密度B50との差が0.04T未満であり、かつ、45度方向の磁束密度B50との差が0.06T未満であることを特徴とする全周磁気特性の優れた無方向性電磁鋼板。
In mass%,
C: 0.002% or less, Si: 0.8% or more and 4.0% or less,
Al: 0.1% or more and 2.0% or less, Mn: 0.1% or more and 1.5% or less, and
Si + 2Al-Mn: 2% or more,
In the steel consisting of the balance of Fe and unavoidable impurity elements, the magnetic flux density B50 in the rolling direction is 1.69 T or more, the difference from the magnetic flux density B50 in the vertical direction in the plate surface is less than 0.03 T, and When the magnetic flux density B50 in the 22.5-degree direction is 1.65 T or more, the difference from the magnetic flux density B50 in the 67.5-degree direction is less than 0.04 T, and the difference from the magnetic flux density B50 in the 45-degree direction is 0. A non-oriented electrical steel sheet having excellent magnetic properties all around, which is less than 0.06T.
質量%でさらに、
Sn:0.02〜0.40%、 Cu:0.1〜1.0%
の1種または2種を含有することを特徴とする請求項1に記載の全周磁気特性の優れた無方向性電磁鋼板。
In mass%,
Sn: 0.02 to 0.40%, Cu: 0.1 to 1.0%
The non-oriented electrical steel sheet according to claim 1, wherein the non-oriented electrical steel sheet has one or two of the following.
質量%で、
C :0.002%以下、 Si:0.8%以上4.0%以下、
Al:0.1%以上2.0以下、 Mn:0.1%以上1.5%以下
を含有し、かつ、
Si+2Al−Mn:2%以上で、
残部Feおよび不可避不純物元素よりなる鋼を、熱間圧延後、熱延板焼鈍を施し、一回の冷間圧延により最終板厚とした後、仕上焼鈍を施す無方向性電磁鋼板の製造方法において、熱延板焼鈍後の平均結晶粒径を400μm以上とし、冷間圧延を圧下率:80%以上90%以下で施し、仕上焼鈍を800℃以上950℃以下で10秒以上1分以下施すことを特徴とする全周磁気特性の優れた無方向性電磁鋼板の製造方法。
In mass%,
C: 0.002% or less, Si: 0.8% or more and 4.0% or less,
Al: 0.1% or more and 2.0% or less, Mn: 0.1% or more and 1.5% or less, and
Si + 2Al-Mn: 2% or more,
In the method for producing a non-oriented electrical steel sheet, a steel comprising the balance of Fe and unavoidable impurity elements is subjected to hot rolling, hot-rolled sheet annealing, and finally to a final sheet thickness by one cold rolling, and then subjected to finish annealing. The average grain size after hot-rolled sheet annealing is 400 µm or more, cold rolling is performed at a rolling reduction of 80% to 90%, and finish annealing is performed at 800 ° C to 950 ° C for 10 seconds to 1 minute. A method for producing a non-oriented electrical steel sheet having excellent circumferential magnetic properties, characterized by:
質量%でさらに、不可避不純物としてのS,N,Tiをそれぞれ0.002%以下とした鋼を用いることを特徴とする請求項3に記載の全周磁気特性の優れた無方向性電磁鋼板の製造方法。 4. The non-oriented electrical steel sheet according to claim 3, wherein the steel is used in which the amount of S, N, and Ti as inevitable impurities is 0.002% or less by mass. Production method. 質量%でさらに、不可避不純物としてのV,Zr,Nb,Asをそれぞれ0.003%以下とした鋼を用いることを特徴とする請求項3または4に記載の全周磁気特性の優れた無方向性電磁鋼板の製造方法。 5. A non-directional steel having excellent all-round magnetic characteristics according to claim 3 or 4, wherein steel is used in which each of V, Zr, Nb, and As as unavoidable impurities is 0.003% or less by mass%. Manufacturing method of conductive electrical steel sheet.
JP2003366026A 2002-12-06 2003-10-27 Non-oriented electrical steel sheet with excellent all-round magnetic properties and method for producing the same Expired - Fee Related JP4319889B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003366026A JP4319889B2 (en) 2002-12-06 2003-10-27 Non-oriented electrical steel sheet with excellent all-round magnetic properties and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002355208 2002-12-06
JP2003366026A JP4319889B2 (en) 2002-12-06 2003-10-27 Non-oriented electrical steel sheet with excellent all-round magnetic properties and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004197217A true JP2004197217A (en) 2004-07-15
JP4319889B2 JP4319889B2 (en) 2009-08-26

Family

ID=32775093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003366026A Expired - Fee Related JP4319889B2 (en) 2002-12-06 2003-10-27 Non-oriented electrical steel sheet with excellent all-round magnetic properties and method for producing the same

Country Status (1)

Country Link
JP (1) JP4319889B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006207026A (en) * 2004-12-27 2006-08-10 Nippon Steel Corp Method for manufacturing non-oriented electromagnetic steel sheet superior in magnetic property
JP2006291346A (en) * 2005-03-14 2006-10-26 Nippon Steel Corp Method for producing non-oriented electrical steel sheet having high magnetic flux density in whole circumference
JP2008045151A (en) * 2006-08-10 2008-02-28 Nippon Steel Corp Method for manufacturing non-oriented silicon steel sheet excellent in whole circumferential characteristic and workability
WO2012017933A1 (en) 2010-08-04 2012-02-09 新日本製鐵株式会社 Process for producing non-oriented electromagnetic steel sheet
EP2889389A4 (en) * 2012-08-21 2016-04-06 Jfe Steel Corp Non-oriented magnetic steel sheet that exhibits minimal degradation in iron-loss characteristics from a punching process
JP2017106101A (en) * 2015-12-04 2017-06-15 Jfeスチール株式会社 Non-oriented electromagnetic steel sheet and manufacturing method therefor
WO2018220839A1 (en) 2017-06-02 2018-12-06 新日鐵住金株式会社 Non-oriented electromagnetic steel sheet
WO2018220837A1 (en) 2017-06-02 2018-12-06 新日鐵住金株式会社 Non-oriented electromagnetic steel sheet
WO2018220838A1 (en) 2017-06-02 2018-12-06 新日鐵住金株式会社 Non-oriented electromagnetic steel sheet
JP2019052360A (en) * 2017-09-19 2019-04-04 新日鐵住金株式会社 Non-oriented electromagnetic steel sheet and method for producing the same
WO2019160108A1 (en) 2018-02-16 2019-08-22 日本製鉄株式会社 Non-oriented electromagnetic steel sheet, and production method for non-oriented electromagnetic steel sheet
WO2019160087A1 (en) 2018-02-16 2019-08-22 日本製鉄株式会社 Non-oriented electromagnetic steel sheet, and production method for non-oriented electromagnetic steel sheet
WO2019160092A1 (en) 2018-02-16 2019-08-22 日本製鉄株式会社 Non-oriented electromagnetic steel sheet, and production method for non-oriented electromagnetic steel sheet
WO2019188940A1 (en) 2018-03-26 2019-10-03 日本製鉄株式会社 Nonoriented electromagnetic steel sheet
US10643771B2 (en) 2013-12-23 2020-05-05 Posco Non-oriented electrical steel sheet and manufacturing method therefor
CN111235462A (en) * 2020-03-04 2020-06-05 马鞍山钢铁股份有限公司 Easy-blanking electrical steel for high-efficiency fixed-frequency compressor, manufacturing method of easy-blanking electrical steel, iron core prepared from easy-blanking electrical steel and heat treatment method of iron core
EP4079895A4 (en) * 2019-12-18 2023-05-24 Posco Non-oriented electrical steel sheet and manufacturing method therefor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05306438A (en) * 1991-12-27 1993-11-19 Nippon Steel Corp Nonoriented electrical steel sheet extremely excellent in magnetic property and its manufacture
JPH07278666A (en) * 1994-04-05 1995-10-24 Nippon Steel Corp Manufacture of non-oriented silicon steel sheet with isotropic magnetic property
JPH0841540A (en) * 1994-07-28 1996-02-13 Nippon Steel Corp Production of nonoriented silicon steel sheet excellent in magnetic property in circumferential direction
JPH08246108A (en) * 1995-03-03 1996-09-24 Nippon Steel Corp Nonoriented silicon steel sheet reduced in anisotropy and its production
JP2001295003A (en) * 2000-04-11 2001-10-26 Nippon Steel Corp Thin nonoriented silicon steel sheet for high frequency small in anisotropy and excellent in surface property and its producing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05306438A (en) * 1991-12-27 1993-11-19 Nippon Steel Corp Nonoriented electrical steel sheet extremely excellent in magnetic property and its manufacture
JPH07278666A (en) * 1994-04-05 1995-10-24 Nippon Steel Corp Manufacture of non-oriented silicon steel sheet with isotropic magnetic property
JPH0841540A (en) * 1994-07-28 1996-02-13 Nippon Steel Corp Production of nonoriented silicon steel sheet excellent in magnetic property in circumferential direction
JPH08246108A (en) * 1995-03-03 1996-09-24 Nippon Steel Corp Nonoriented silicon steel sheet reduced in anisotropy and its production
JP2001295003A (en) * 2000-04-11 2001-10-26 Nippon Steel Corp Thin nonoriented silicon steel sheet for high frequency small in anisotropy and excellent in surface property and its producing method

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006207026A (en) * 2004-12-27 2006-08-10 Nippon Steel Corp Method for manufacturing non-oriented electromagnetic steel sheet superior in magnetic property
JP2006291346A (en) * 2005-03-14 2006-10-26 Nippon Steel Corp Method for producing non-oriented electrical steel sheet having high magnetic flux density in whole circumference
JP2008045151A (en) * 2006-08-10 2008-02-28 Nippon Steel Corp Method for manufacturing non-oriented silicon steel sheet excellent in whole circumferential characteristic and workability
WO2012017933A1 (en) 2010-08-04 2012-02-09 新日本製鐵株式会社 Process for producing non-oriented electromagnetic steel sheet
US9579701B2 (en) 2010-08-04 2017-02-28 Nippon Steel & Sumitomo Metal Corporation Manufacturing method of non-oriented electrical steel sheet
EP2889389A4 (en) * 2012-08-21 2016-04-06 Jfe Steel Corp Non-oriented magnetic steel sheet that exhibits minimal degradation in iron-loss characteristics from a punching process
US9767946B2 (en) 2012-08-21 2017-09-19 Jfe Steel Corporation Non-oriented electrical steel sheet being less in deterioration of iron loss property by punching
US10643771B2 (en) 2013-12-23 2020-05-05 Posco Non-oriented electrical steel sheet and manufacturing method therefor
JP2017106101A (en) * 2015-12-04 2017-06-15 Jfeスチール株式会社 Non-oriented electromagnetic steel sheet and manufacturing method therefor
KR20190137852A (en) 2017-06-02 2019-12-11 닛폰세이테츠 가부시키가이샤 Non-oriented electronic steel sheet
WO2018220839A1 (en) 2017-06-02 2018-12-06 新日鐵住金株式会社 Non-oriented electromagnetic steel sheet
US10995393B2 (en) 2017-06-02 2021-05-04 Nippon Steel Corporation Non-oriented electrical steel sheet
US10991494B2 (en) 2017-06-02 2021-04-27 Nippon Steel Corporation Non-oriented electrical steel sheet
US10968503B2 (en) 2017-06-02 2021-04-06 Nippon Steel Corporation Non-oriented electrical steel sheet
WO2018220838A1 (en) 2017-06-02 2018-12-06 新日鐵住金株式会社 Non-oriented electromagnetic steel sheet
WO2018220837A1 (en) 2017-06-02 2018-12-06 新日鐵住金株式会社 Non-oriented electromagnetic steel sheet
KR20190137851A (en) 2017-06-02 2019-12-11 닛폰세이테츠 가부시키가이샤 Non-oriented electronic steel sheet
KR20190137846A (en) 2017-06-02 2019-12-11 닛폰세이테츠 가부시키가이샤 Non-oriented electronic steel sheet
JP2019052360A (en) * 2017-09-19 2019-04-04 新日鐵住金株式会社 Non-oriented electromagnetic steel sheet and method for producing the same
KR20200088463A (en) 2018-02-16 2020-07-22 닛폰세이테츠 가부시키가이샤 Non-oriented electrical steel sheet and manufacturing method of non-oriented electrical steel sheet
WO2019160087A1 (en) 2018-02-16 2019-08-22 日本製鉄株式会社 Non-oriented electromagnetic steel sheet, and production method for non-oriented electromagnetic steel sheet
KR20200088464A (en) 2018-02-16 2020-07-22 닛폰세이테츠 가부시키가이샤 Non-oriented electrical steel sheet and manufacturing method of non-oriented electrical steel sheet
US11566303B2 (en) 2018-02-16 2023-01-31 Nippon Steel Corporation Non-oriented electrical steel sheet and method for manufacturing non-oriented electrical steel sheet
KR20200093665A (en) 2018-02-16 2020-08-05 닛폰세이테츠 가부시키가이샤 Non-oriented electrical steel sheet and manufacturing method of non-oriented electrical steel sheet
US11469018B2 (en) 2018-02-16 2022-10-11 Nippon Steel Corporation Non-oriented electrical steel sheet and method for manufacturing non-oriented electrical steel sheet
WO2019160092A1 (en) 2018-02-16 2019-08-22 日本製鉄株式会社 Non-oriented electromagnetic steel sheet, and production method for non-oriented electromagnetic steel sheet
US11459632B2 (en) 2018-02-16 2022-10-04 Nippon Steel Corporation Non-oriented electrical steel sheet and method for manufacturing non-oriented electrical steel sheet
WO2019160108A1 (en) 2018-02-16 2019-08-22 日本製鉄株式会社 Non-oriented electromagnetic steel sheet, and production method for non-oriented electromagnetic steel sheet
US11111567B2 (en) 2018-03-26 2021-09-07 Nippon Steel Corporation Non-oriented electrical steel sheet
KR20200118194A (en) 2018-03-26 2020-10-14 닛폰세이테츠 가부시키가이샤 Non-oriented electrical steel sheet
WO2019188940A1 (en) 2018-03-26 2019-10-03 日本製鉄株式会社 Nonoriented electromagnetic steel sheet
EP4079895A4 (en) * 2019-12-18 2023-05-24 Posco Non-oriented electrical steel sheet and manufacturing method therefor
CN111235462B (en) * 2020-03-04 2021-12-24 马鞍山钢铁股份有限公司 Easy-blanking electrical steel for high-efficiency fixed-frequency compressor, manufacturing method of easy-blanking electrical steel, iron core prepared from easy-blanking electrical steel and heat treatment method of iron core
CN111235462A (en) * 2020-03-04 2020-06-05 马鞍山钢铁股份有限公司 Easy-blanking electrical steel for high-efficiency fixed-frequency compressor, manufacturing method of easy-blanking electrical steel, iron core prepared from easy-blanking electrical steel and heat treatment method of iron core

Also Published As

Publication number Publication date
JP4319889B2 (en) 2009-08-26

Similar Documents

Publication Publication Date Title
JP4855222B2 (en) Non-oriented electrical steel sheet for split core
JP5437476B2 (en) Method for producing non-oriented electrical steel sheet
JP4319889B2 (en) Non-oriented electrical steel sheet with excellent all-round magnetic properties and method for producing the same
KR20150093807A (en) Production method for semi-processed non-oriented electromagnetic steel sheet exhibiting superior magnetic properties
JP4358550B2 (en) Method for producing non-oriented electrical steel sheet with excellent rolling direction and perpendicular magnetic properties in the plate surface
JP5724837B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP2970423B2 (en) Manufacturing method of non-oriented electrical steel sheet
JP2509018B2 (en) Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density and low iron loss
JP4551110B2 (en) Method for producing non-oriented electrical steel sheet
JP2005002401A (en) Method for producing non-oriented silicon steel sheet
JP2005200755A (en) Method for producing non-oriented silicon steel sheet
JPH0443981B2 (en)
JP2005187846A (en) Non-oriented electromagnetic steel sheet and manufacturing method therefor
JP2011184787A (en) High tensile strength non-oriented electromagnetic steel sheet having excellent high frequency iron loss
JP5560923B2 (en) Method for producing non-oriented electrical steel sheet with excellent magnetic properties in rolling direction
JP2022509670A (en) Non-oriented electrical steel sheet and its manufacturing method
JP2008045151A (en) Method for manufacturing non-oriented silicon steel sheet excellent in whole circumferential characteristic and workability
JP6679958B2 (en) Non-oriented electrical steel sheet manufacturing method
JP4987190B2 (en) Method for producing non-oriented electrical steel sheet with good workability and low iron loss after processing and strain relief annealing
JP2001262289A (en) NONORIENTED SILICON STEEL SHEET EXCELLENT IN MAGNETIC PROPERTY IN &gt;=1 kHz FREQUENCY REGION
JP2870817B2 (en) Manufacturing method of semi-process non-oriented electrical steel sheet with excellent magnetic properties
JP3084571B2 (en) High Si content steel plate with good workability
JP2004223605A (en) Continuous casting method for electrical steel slab
JPH0860247A (en) Production of nonoriented silicon steel sheet excellent in magnetic property
JP6575269B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070612

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090501

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090526

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090529

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120605

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4319889

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120605

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130605

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130605

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130605

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130605

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130605

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees