JP2006291346A - Method for producing non-oriented electrical steel sheet having high magnetic flux density in whole circumference - Google Patents
Method for producing non-oriented electrical steel sheet having high magnetic flux density in whole circumference Download PDFInfo
- Publication number
- JP2006291346A JP2006291346A JP2005330830A JP2005330830A JP2006291346A JP 2006291346 A JP2006291346 A JP 2006291346A JP 2005330830 A JP2005330830 A JP 2005330830A JP 2005330830 A JP2005330830 A JP 2005330830A JP 2006291346 A JP2006291346 A JP 2006291346A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic flux
- flux density
- electrical steel
- oriented electrical
- steel sheet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Manufacturing Of Steel Electrode Plates (AREA)
- Soft Magnetic Materials (AREA)
- Metal Rolling (AREA)
Abstract
Description
本発明は、回転機鉄心材料として望ましい、鋼板の板面内全周磁気特性に優れた無方向性電磁鋼板の製造方法を提供するものである。 The present invention provides a method for producing a non-oriented electrical steel sheet that is desirable as a rotating machine core material and has excellent in-plane magnetic properties within the plate surface of the steel sheet.
無方向性電磁鋼板は、大型発電機、モータ、音響機器用や安定器などの小型静止器に使用される。最近の省エネルギー、省資源のニーズが強く、エアコン、冷蔵庫などのコンプレッサーモータや、電気自動車の駆動モータでは特に高効率化が指向され、これらにはSi+Alが1.9%以上のクラスの磁束密度が高く鉄損の少ない高効率無方向性電磁鋼板が使用される場合が多い。 Non-oriented electrical steel sheets are used for small stationary devices such as large generators, motors, acoustic equipment and ballasts. There is a strong need for energy and resource saving in recent years, and compressor motors such as air conditioners and refrigerators, as well as drive motors for electric vehicles, are particularly aimed at higher efficiency. These include magnetic flux density of a class of Si + Al of 1.9% or more. High efficiency non-oriented electrical steel sheets with high iron loss and low iron loss are often used.
回転機などの鉄心として電気機器に使用される場合には、通常、JIS等で規定されている鋼板の圧延方向(以下、「L方向」と記す)とその直角方向(以下、「C方向」と記す)の平均の磁気特性のみでなく、鋼板板面内の全周磁気特性が優れていることが求められる。この目的のためには、鋼板面内に鉄の磁化容易軸を含まない{111}方位粒を可能な限り減らし、鋼板面内に鉄の磁化容易軸を含む{100}方位粒を極力集合組織を発達させることが望ましい。 When used in electrical equipment as an iron core such as a rotating machine, the rolling direction (hereinafter referred to as “L direction”) of steel sheets and the perpendicular direction (hereinafter referred to as “C direction”), which are normally specified by JIS, etc. In addition to the average magnetic properties of the steel sheet, it is required to have excellent all-round magnetic properties in the steel plate surface. For this purpose, the {111} orientation grains that do not include the iron easy axis in the steel plate surface are reduced as much as possible, and the {100} orientation grains that include the iron easy axis in the steel plate surface are as much as possible. It is desirable to develop.
Si+Alが1.9%以上のクラス無方向性電磁鋼板は、一般に熱延板焼鈍が適用され、{111}方位粒を少なくしようとはしているものの、それでも{111}方位粒は多く存在するのが現状である。{111}方位粒を減らし、その上で{100}方位粒を増やし、一段と全周の磁束密度を高め、鉄損を下げることが重要である。 Class non-oriented electrical steel sheets with Si + Al of 1.9% or more are generally subjected to hot-rolled sheet annealing, and are trying to reduce {111} orientation grains, but there are still many {111} orientation grains. is the current situation. It is important to reduce {111} -oriented grains, increase {100} -oriented grains, further increase the magnetic flux density of the entire circumference, and reduce iron loss.
{100}方位粒を増やした鋼板の製造方法としては下記が提案されている。
特許文献1(特開平3−294422号)には、熱延板焼鈍を1000℃以上1200℃以下の温度で30秒から5分間行い、冷延を80%以上90%以下の冷延率とし、仕上焼鈍を850℃以上1000℃以下で15秒〜2分間行うことを特徴とする方法が提案されている。
The following has been proposed as a method for producing a steel sheet with increased {100} oriented grains.
In Patent Document 1 (Japanese Patent Laid-Open No. 3-294422), hot-rolled sheet annealing is performed at a temperature of 1000 ° C. or higher and 1200 ° C. or lower for 30 seconds to 5 minutes, and cold rolling is performed at a cold rolling rate of 80% or higher and 90% or lower, There has been proposed a method characterized in that finish annealing is performed at 850 ° C. or higher and 1000 ° C. or lower for 15 seconds to 2 minutes.
特許文献2(特開2004−197217号)には、熱延板焼鈍後の平均結晶粒径を400μm以上とし、冷間圧延を圧下率80%以上90%以下で施し、仕上焼鈍を800℃以上950℃以下で10秒以上1分以下施すことを特徴とする方法が提案されている。 In Patent Document 2 (Japanese Patent Application Laid-Open No. 2004-197217), the average grain size after hot-rolled sheet annealing is set to 400 μm or more, cold rolling is performed at a reduction rate of 80% to 90%, and finish annealing is performed at 800 ° C. or more. There has been proposed a method characterized by performing the treatment at 950 ° C. or lower for 10 seconds to 1 minute.
特許文献3(特開平8−100215号)には、冷間圧延時の板厚と圧延ロール径の関係について、下記(1)式のM値を0.1〜7とする方法が提案されている。
非特許文献1には、0.26%Si成分系、熱延板焼鈍なし、冷延率82%の条件で、上記(1)式のM値が小さい方が、冷延に続く再結晶処理後の鋼板の1/5層の{111}方位粒が抑制され、キューブ方位粒が増加すると報告されている。 Non-Patent Document 1 discloses that a recrystallization treatment following cold rolling is performed when the M value of the above formula (1) is small under the conditions of 0.26% Si component system, no hot-rolled sheet annealing, and a cold rolling rate of 82%. It has been reported that {111} oriented grains in 1/5 layer of later steel plates are suppressed and cube oriented grains increase.
特許文献4(特許2578074号)には、無方向性電磁鋼板の冷間圧延時の板温度を、150℃〜470℃の温度域で圧延する方法が提案されている。
しかし、特開平3−294422号公報、特開平8−100215号公報の方法は、L,C方向の磁束密度を高くする技術である。加えて、特開平8−100215号公報の方法は、Si+Alが1.9%以上では磁束密度の向上が少ない。非特許文献1の方法も測定例にB50と記載があるが、無方向性電磁鋼板はJIS C2550により、L,C方向の試料により測定すると規程されているので、これもL,C方向の磁束密度で評価したものと考えられ、L,C方向の磁束密度を高くする技術と解される。 However, the methods disclosed in Japanese Patent Laid-Open Nos. 3-294422 and 8-11005 are techniques for increasing the magnetic flux density in the L and C directions. In addition, the method disclosed in Japanese Patent Laid-Open No. 8-100185 has little improvement in magnetic flux density when Si + Al is 1.9% or more. Although the method of Non-Patent Document 1 also describes B50 in the measurement example, the non-oriented electrical steel sheet is regulated by JIS C2550 to measure with a sample in the L and C directions. It is considered that the density is evaluated, and it is understood that the magnetic flux density in the L and C directions is increased.
特開2004−197217号公報の方法は、明細書にも記載されているとおり、{100}集合組織の発達を目的とした技術であるが、特に冷延率を90%超に上げた場合、{111}方位粒の発達による全周磁束密度の低下を招いてしまうという欠点があった。 本発明は、前記の従来の技術の課題を解決した、冷延率が90%超の場合においても全周の磁束密度の高い無方向性電磁鋼板を提供するものである。 As described in the specification, the method of Japanese Patent Application Laid-Open No. 2004-197217 is a technique aimed at the development of {100} texture, but particularly when the cold rolling rate is increased to over 90%, There was a drawback that the reduction of the magnetic flux density around the periphery due to the development of {111} oriented grains. The present invention provides a non-oriented electrical steel sheet that solves the above-described problems of the prior art and has a high magnetic flux density on the entire circumference even when the cold rolling rate exceeds 90%.
特許2578074号では、請求項1に板温度150℃〜470℃で圧延することが規定されているが、これはSi:4.5重量%〜7.1重量%含有されており、脆いために圧延時のわれ対策として温度を上げて圧延するものであって、本発明とは目的が異なり、また成分も異なる。 In Japanese Patent No. 2578074, it is specified in claim 1 that rolling is performed at a plate temperature of 150 ° C. to 470 ° C. This is because Si: 4.5 wt% to 7.1 wt% is contained and is brittle. As a countermeasure against cracking during rolling, rolling is performed at a higher temperature, and the purpose is different from that of the present invention, and the components are also different.
すなわち本発明は、
(1)質量%で、
C :0.004%以下、 Si:1.5%〜3.5%、
Al:0.2%〜3.0%、 1.9%≦(%Si+%Al)、
Mn:0.02〜1.0%、 S :0.0030%以下、
N :0.0030%以下、
残部Fe及び不可避的不純物の組成よりなるスラブをスラブ加熱し、熱延し、熱延板焼鈍を行い、冷延、仕上焼鈍を行う無方向性電磁鋼板の製造方法において、熱延板焼鈍後の平均結晶粒径を300μm以上、冷間圧延において下記式で表されるM値を0.1以上5以下、冷延率を85%〜93%とすることを特徴とした全周の磁束密度の高い無方向性電磁鋼板の製造方法。
(1) In mass%,
C: 0.004% or less, Si: 1.5% to 3.5%,
Al: 0.2% to 3.0%, 1.9% ≦ (% Si +% Al),
Mn: 0.02 to 1.0%, S: 0.0030% or less,
N: 0.0030% or less,
In the manufacturing method of the non-oriented electrical steel sheet in which the slab composed of the remaining Fe and the inevitable impurities is slab-heated, hot-rolled, hot-rolled sheet annealed, cold-rolled, and finish-annealed, The magnetic flux density of the entire circumference is characterized in that the average grain size is 300 μm or more, the M value represented by the following formula in cold rolling is 0.1 to 5 and the cold rolling rate is 85% to 93%. Manufacturing method of high non-oriented electrical steel sheet.
(2)質量%で、Sn,Sbの1種または2種を各々の含有量で0.02〜0.4%含有させることを特徴とする前記(1)に記載の全周の磁束密度の高い無方向性電磁鋼板の製造方法。 (2) The magnetic flux density of the entire circumference as described in (1) above is characterized in that 0.02 to 0.4% of Sn or Sb is contained in each content by mass%. Manufacturing method of high non-oriented electrical steel sheet.
(3)質量%で、REM,Mg,Caの1種または2種以上を各々の含有量で0.0005%〜0.020%を含有させることを特徴とする前記(1)または(2)に記載の全周の磁束密度の高い無方向性電磁鋼板の製造方法。 (3) The above (1) or (2), characterized by containing 0.0005% to 0.020% of each of REM, Mg, and Ca in a content of 1% by mass The manufacturing method of the non-oriented electrical steel sheet with high magnetic flux density of all the circumferences as described in 2.
(4)冷間圧延を180〜350℃で行うことを特徴とする前記(1)〜(3)のいずれか1つに記載の全周の磁束密度の高い無方向性電磁鋼板の製造方法。 (4) Cold rolling is performed at 180-350 degreeC, The manufacturing method of the non-oriented electrical steel sheet with high magnetic flux density of the perimeter as described in any one of said (1)-(3) characterized by the above-mentioned.
本発明によれば、冷延率が85%〜93%と高い場合に、熱延板焼鈍後の平均結晶粒径を300μm以上、かつ、前記(1)式のM値を0.1以上5以下に制御することにより、{111}方位粒の減少と{100}方位粒の発達の効果によって、従来の方法よりも全周磁束密度の非常に高い磁気特性の優れた無方向性電磁鋼板を製造する方法を提供できる。エアコン、冷蔵庫などのコンプレッサーモータや、電気自動車の駆動モータなどの高効率モータの鉄心に使用されるSi+Alが1.9%以上のクラスの無方向性電磁鋼板への要請に十分応えたものであり、その工業的価値は極めて高いものである。 According to the present invention, when the cold rolling rate is as high as 85% to 93%, the average crystal grain size after hot-rolled sheet annealing is 300 μm or more, and the M value of the formula (1) is 0.1 or more and 5 By controlling the following, a non-oriented electrical steel sheet having excellent magnetic properties with a much higher magnetic flux density than the conventional method due to the reduction of {111} orientation grains and the development of {100} orientation grains. A method of manufacturing can be provided. It fully meets the demand for non-oriented electrical steel sheets with a 1.9% or higher Si + Al class used in the cores of high-efficiency motors such as compressor motors for air conditioners and refrigerators, and drive motors for electric vehicles. , Its industrial value is extremely high.
以下、本発明の詳細について説明する。
本発明者らはSi+Alが1.9%以上のクラスで全周磁束密度の高い無方向性電磁鋼板を製造する方法を鋭意検討した結果、熱延板焼鈍後の平均結晶粒径を300μm以上、冷間圧延において前記(1)式で表される定数Mが0.1以上5以下とし、冷延率85%〜93%とすることが非常に有効であり、冷延を180〜350℃で行うと更に有効であることを見いだした。
Details of the present invention will be described below.
As a result of earnestly examining the method for producing a non-oriented electrical steel sheet having a high total magnetic flux density in a class of Si + Al of 1.9% or more, the present inventors have determined that the average grain size after hot-rolled sheet annealing is 300 μm or more, In cold rolling, it is very effective that the constant M represented by the formula (1) is 0.1 to 5 and the cold rolling rate is 85% to 93%. I found it more effective when done.
表1は、本発明者が行なった実験結果の一例である。C:0.0025%、Si:2.1%、Al:0.3%、Mn:0.23%、S:0.0017%、N:0.0015%、残部不可避的不純物を含むスラブをスラブ加熱し、3.90mm厚と1.40mm厚に熱延し(冷延前板厚t:3.90mm,1.40mm)、1100℃×1分の熱延板焼鈍を行い、熱延板焼鈍板の平均結晶粒径を352μmとした。そして、冷延ワークロール径を200mmφとし、5パスで75%と91%の圧下率で0.35mmに冷間圧延し、850℃で1分の仕上焼鈍を行い、磁気測定した。全周磁束密度y-Rは、圧延方向からX度方向の磁束密度の値をy-Xとして下記の式で求めた。
y-R={y-0+y-90+2×(y-22.5+y-45+y-67.5)}/8
冷延の圧下率、圧延スケジュール、M値と全周磁束密度の関係を表1に示す。図1には、圧延方向からの角度と磁束密度の関係を示す。
Table 1 is an example of experimental results conducted by the present inventors. A slab containing C: 0.0025%, Si: 2.1%, Al: 0.3%, Mn: 0.23%, S: 0.0017%, N: 0.0015%, and the balance inevitable impurities Slab heated, hot rolled to 3.90 mm thickness and 1.40 mm thickness (sheet thickness before cold rolling t: 3.90 mm, 1.40 mm), hot-rolled sheet annealed at 1100 ° C x 1 minute, hot-rolled sheet The average crystal grain size of the annealed plate was 352 μm. And the diameter of the cold-rolled work roll was 200 mmφ, cold rolled to 0.35 mm at 75% and 91% reduction ratios in 5 passes, finish annealing at 850 ° C. for 1 minute, and magnetically measured. The total circumferential magnetic flux density y −R was obtained by the following equation, where y −X represents the value of the magnetic flux density in the X degree direction from the rolling direction.
y −R = {y −0 + y −90 + 2 × (y −22.5 + y −45 + y −67.5 )} / 8
Table 1 shows the relationship between the rolling reduction of the cold rolling, the rolling schedule, the M value, and the total magnetic flux density. FIG. 1 shows the relationship between the angle from the rolling direction and the magnetic flux density.
冷延率が91%でM値が4.71の本発明例では、0度,90度方向共に高い磁束密度を得られ、45度方向も比較例と比べ高く、比較例1〜3と比べ全周磁束密度が非常に高くなることが分かる。 In the example of the present invention with a cold rolling rate of 91% and an M value of 4.71, a high magnetic flux density can be obtained in both the 0 degree and 90 degree directions, and the 45 degree direction is also higher than the comparative examples, compared with the comparative examples 1 to 3. It can be seen that the total magnetic flux density is very high.
次に、熱延板焼鈍板平均結晶粒径の影響を検討した。表1の実験と同じC:0.0025%、Si:2.1%、Al:0.3%、Mn:0.23%、S:0.0017%、N:0.0015%、残部不可避的不純物を含むスラブをスラブ加熱し、3.90mm厚に熱延し(冷延前板厚t:3.90mm)、種々の温度で熱延板焼鈍し、平均結晶粒径を変更した。そして、冷延ワークロール径:200mmφ、5パスで表1の本発明例,M:4.71と比較例1,M:6.75の圧延スケジュールで0.35mmに冷延率91%で冷間圧延し、850℃、1分の仕上焼鈍を行い、磁気測定した。このときの熱延板焼鈍板平均結晶粒径と全周磁束密度の関係を図2に示す。これより、M値が4.71、かつ、熱延板焼鈍板平均結晶粒径が300μm以上の場合に顕著に高い磁束密度を得られることが分かる。 Next, the influence of the average crystal grain size of the hot-rolled sheet annealed sheet was examined. Same as the experiment of Table 1 C: 0.0025%, Si: 2.1%, Al: 0.3%, Mn: 0.23%, S: 0.0017%, N: 0.0015%, the remainder is inevitable A slab containing a typical impurity was slab heated, hot-rolled to a thickness of 3.90 mm (sheet thickness t before cold rolling: 3.90 mm), and annealed at various temperatures to change the average crystal grain size. Then, cold rolled work roll diameter: 200 mmφ, 5 passes, Table 1 of the present invention, M: 4.71, Comparative Example 1, M: 6.75 Rolling schedule to 0.35 mm with a cold rolling rate of 91% It was hot rolled, subjected to a final annealing at 850 ° C. for 1 minute, and magnetically measured. FIG. 2 shows the relationship between the average grain size of the hot-rolled sheet annealed plate and the total magnetic flux density. This shows that a remarkably high magnetic flux density can be obtained when the M value is 4.71 and the hot-rolled sheet annealed plate average crystal grain size is 300 μm or more.
以下に本発明の限定理由を説明する。
Cは、オーステナイト、フェライト2相域とせず、フェライト1相とするため0.004%以下とした。
The reason for limitation of the present invention will be described below.
C is 0.004% or less in order to make it a ferrite one phase, not an austenite or ferrite two phase region.
Si:1.5%〜3.5%、Al:0.2%〜3.0%、1.9%≦(%Si+%Al):Cが0.004%以下で、1.9%≦(%Si+%Al)であればオーステナイト、フェライト2相域とならずフェライト1相となるため、1.9%≦(%Si+%Al)とした。Si,Alは電気抵抗を上げ、渦電流損失を下げるため、下限は各々1.5%,0.2%とした。Si,Alを各々3.5%超,3.0%超添加すると加工性が著しく劣化する。 Si: 1.5% to 3.5%, Al: 0.2% to 3.0%, 1.9% ≦ (% Si +% Al): C is 0.004% or less, and 1.9% ≦ If (% Si +% Al), the austenite and ferrite do not become the two-phase region, but the ferrite one-phase, so 1.9% ≦ (% Si +% Al). Since Si and Al increase the electric resistance and decrease the eddy current loss, the lower limits are set to 1.5% and 0.2%, respectively. When Si and Al are added in excess of 3.5% and 3.0%, respectively, the workability is remarkably deteriorated.
Mnは、脆性を改善するため、0.02%以上とする。上限の1%は、これ以上添加すると磁束密度が劣化する。 Mn is made 0.02% or more in order to improve brittleness. When the upper limit of 1% is added, the magnetic flux density deteriorates.
Sは、微細な硫化物をつくり、鉄損に有害な作用を演ずるため、0.0030%以下とする。 S forms 0.0030% or less in order to produce a fine sulfide and to play a harmful effect on iron loss.
NはAlNなど微細な窒化物をつくり、鉄損に有害な作用を演ずるため、0.0030%以下とする。 N forms fine nitrides such as AlN and exerts a harmful effect on iron loss, so 0.0030% or less.
熱延板焼鈍後の平均結晶粒径は300μm以上とする。図2に示すように300μm未満であると高い磁束密度を得られない。 The average crystal grain size after hot-rolled sheet annealing is set to 300 μm or more. As shown in FIG. 2, when it is less than 300 μm, a high magnetic flux density cannot be obtained.
また更に磁気特性を向上させたい場合には、下記の手段を採用することができる。
Sn,Sbの1種または2種を各々の含有量で0.02〜0.4%含有させる。0.02%以上とすると磁束密度B50を高くできる。上限の0.4%は効果が飽和するためである。
If it is desired to further improve the magnetic characteristics, the following means can be employed.
One or two of Sn and Sb are contained in an amount of 0.02 to 0.4%. If it is 0.02% or more, the magnetic flux density B50 can be increased. The upper limit of 0.4% is because the effect is saturated.
REM,Mg,Caを1種または2種以上を各々の含有量で0.0005%以上含有すると、鋼中のSがREM硫化物、Mg硫化物、Ca硫化物を粗大に生成し、微細な硫化物が少なくなり、良好な磁気特性を得られる。上限の0.020%は、これを超えて含有するとかえって磁気特性が悪化するためである。 When one or more of REM, Mg, and Ca are contained in each content of 0.0005% or more, S in the steel generates REM sulfide, Mg sulfide, and Ca sulfide coarsely and is fine. Sulfide is reduced and good magnetic properties can be obtained. If the upper limit of 0.020% is contained, the magnetic properties deteriorate.
下記式のM値は0.1〜5とする。5を超えると高い磁束密度を得られず、0.1未満では、冷延のパス回数が多くなりすぎたり、冷延ワークロール径が小さくなりすぎるなどの生産上の負荷が大きくなりすぎる。
冷延率は85%〜93%とする。85%未満や93%を超えると高い全周磁束密度を得られない。 The cold rolling rate is 85% to 93%. If it is less than 85% or exceeds 93%, a high full-circumferential magnetic flux density cannot be obtained.
冷間圧延の温度は、180〜350℃とする。180℃未満や350℃超では、実施例に示すように良好な磁気特性改善効果を得られないためである。 The temperature of cold rolling shall be 180-350 degreeC. This is because if the temperature is lower than 180 ° C. or higher than 350 ° C., a good effect of improving magnetic characteristics cannot be obtained as shown in the examples.
C:0.0014%、Si:2.21%、Mn:0.19%、Al:0.30%、S:0.0012%、N:0.0019%を含有するスラブを1150℃で加熱し、2.70mm厚に熱間圧延した。1050℃で120秒の熱延板焼鈍を行い、熱延板焼鈍板平均結晶粒径を321μmとした。そして、種々の条件でM値を変えて0.35mmに冷延し、980℃×60秒の連続焼鈍し、絶縁皮膜を塗布して製品とした。このとき冷延率は87%である。全周磁束密度または全周鉄損は、全周値をy-R、X度方向の実測値をy-Xとして下記の式で求めた。
y-R={y-0+y-90+2×(y-22.5+y-45+y-67.5)}/8
この時の冷延条件と磁気特性の関係を表2に示す。
これより、本発明例では良好な磁気特性を得られることが分かる。
A slab containing C: 0.0014%, Si: 2.21%, Mn: 0.19%, Al: 0.30%, S: 0.0012%, N: 0.0019% is heated at 1150 ° C. And hot rolled to a thickness of 2.70 mm. Hot rolled sheet annealing was performed at 1050 ° C. for 120 seconds, and the average crystal grain size of the hot rolled sheet annealed sheet was set to 321 μm. Then, the M value was changed under various conditions, cold-rolled to 0.35 mm, continuously annealed at 980 ° C. for 60 seconds, and an insulating film was applied to obtain a product. At this time, the cold rolling rate is 87%. The total magnetic flux density or total iron loss was determined by the following equation, where y −R was the total value and y −X was the measured value in the X-degree direction.
y −R = {y −0 + y −90 + 2 × (y −22.5 + y −45 + y −67.5 )} / 8
Table 2 shows the relationship between the cold rolling conditions and the magnetic properties at this time.
From this, it can be seen that good magnetic properties can be obtained in the example of the present invention.
C:0.0012%、Si:2.19%、Mn:0.17%、Al:0.33%、S:0.0020%、N:0.0012%を含有するスラブを1150℃で加熱し、2.70mm厚に熱間圧延した。種々の温度で120秒の熱延板焼鈍を行い、熱延板焼鈍板平均結晶粒径を変化させた。そして、実施例1のNo.2の冷延スケジュールで0.35mmに冷延し、980℃×60秒の連続焼鈍し、絶縁皮膜を塗布して製品とした。
この時の、熱延板焼鈍温度、熱延板焼鈍板平均結晶粒径と磁気特性の関係を表3に示す。全周磁束密度または全周鉄損は、全周値をy-R、X度方向の実測値をy-Xとして下記の式で求めた。
y-R={y-0+y-90+2×(y-22.5+y-45+y-67.5)}/8
これより、本発明例では良好な磁気特性を得られることが分かる。
A slab containing C: 0.0012%, Si: 2.19%, Mn: 0.17%, Al: 0.33%, S: 0.0020%, N: 0.0012% is heated at 1150 ° C. And hot rolled to a thickness of 2.70 mm. Hot-rolled sheet annealing was performed at various temperatures for 120 seconds to change the average crystal grain size of the hot-rolled sheet annealed sheet. And No. 1 of Example 1. The product was cold-rolled to 0.35 mm according to the cold-rolling schedule of No. 2, continuously annealed at 980 ° C. for 60 seconds, and an insulating film was applied to obtain a product.
Table 3 shows the relationship between the hot-rolled sheet annealing temperature, the hot-rolled sheet annealed plate average crystal grain size, and the magnetic properties at this time. The total magnetic flux density or total iron loss was determined by the following equation, where y −R was the total value and y −X was the measured value in the X-degree direction.
y −R = {y −0 + y −90 + 2 × (y −22.5 + y −45 + y −67.5 )} / 8
From this, it can be seen that good magnetic properties can be obtained in the example of the present invention.
C:0.0019%、Si:2.00%、Mn:0.31%、Al:0.29%、S:0.0009%、N:0.0014%を含有するスラブを1150℃で加熱し、種々の板厚に熱間圧延した。1050℃で90秒の熱延板焼鈍を行い、熱延板焼鈍板平均結晶粒径を321μmとした。そして、表4の条件で0.35mmに冷延し、980℃×60秒の連続焼鈍し、絶縁皮膜を塗布して製品とした。この時の、冷延率、冷延条件と磁気特性の関係を表4に示す。全周磁束密度または全周鉄損は、全周値をy-R、X度方向の実測値をy-Xとして下記の式で求めた。
y-R={y-0+y-90+2×(y-22.5+y-45+y-67.5)}/8
これより、本発明例では良好な磁気特性を得られることが分かる。
A slab containing C: 0.0019%, Si: 2.00%, Mn: 0.31%, Al: 0.29%, S: 0.0009%, N: 0.0014% is heated at 1150 ° C. And hot rolled to various plate thicknesses. Hot-rolled sheet annealing was performed at 1050 ° C. for 90 seconds, and the average crystal grain size of the hot-rolled sheet annealed sheet was set to 321 μm. And it cold-rolled to 0.35 mm on the conditions of Table 4, 980 degreeC x 60 second continuous annealing, apply | coated the insulating film, and was set as the product. Table 4 shows the relationship between the cold rolling rate, cold rolling conditions, and magnetic properties at this time. The total magnetic flux density or total iron loss was determined by the following equation, where y −R was the total value and y −X was the measured value in the X-degree direction.
y −R = {y −0 + y −90 + 2 × (y −22.5 + y −45 + y −67.5 )} / 8
From this, it can be seen that good magnetic properties can be obtained in the example of the present invention.
C:0.0011%、Si:3.04%、Mn:0.19%、Al:0.60%、S:0.0009%、N:0.0011%を含有し、表5に示す成分を含有するスラブを1100℃で加熱し、2.70mm厚に熱間圧延した。1100℃で90秒の熱延板焼鈍を行い、熱延板焼鈍板平均結晶粒径を334μmとした。そして、冷延ロール径70mmφで表6に示す条件で0.35mmに冷延し、1020℃×60秒の連続焼鈍し、絶縁皮膜を塗布して製品とした。この時の、成分と磁気特性の関係を表5に示す。全周磁束密度または全周鉄損は、全周値をy-R、X度方向の実測値をy-Xとして下記の式で求めた。
y-R={y-0+y-90+2×(y-22.5+y-45+y-67.5)}/8
これより、Sn,Sbを含有するとB50が高くなり、REM,Ca,Mgを含有するとW15/50が低くなることが分かる。
C: 0.0011%, Si: 3.04%, Mn: 0.19%, Al: 0.60%, S: 0.0009%, N: 0.0011%, components shown in Table 5 Was heated at 1100 ° C. and hot-rolled to a thickness of 2.70 mm. Hot-rolled sheet annealing was performed at 1100 ° C. for 90 seconds, and the average crystal grain size of the hot-rolled sheet annealed sheet was set to 334 μm. And it cold-rolled to 0.35 mm on the conditions shown in Table 6 by the diameter of 70 mm of cold-rolled rolls, continuously annealed at 1020 ° C. for 60 seconds, and applied an insulating film to obtain a product. Table 5 shows the relationship between components and magnetic characteristics at this time. The total magnetic flux density or total iron loss was determined by the following equation, where y −R was the total value and y −X was the measured value in the X-degree direction.
y −R = {y −0 + y −90 + 2 × (y −22.5 + y −45 + y −67.5 )} / 8
From this, it can be seen that when Sn and Sb are contained, B50 is high, and when REM, Ca and Mg are contained, W15 / 50 is low.
C:0.0012%、Si:2.19%、Mn:0.21%、Al:0.31%、S:0.0010%、N:0.0017%を含有するスラブを1150℃で加熱し、2.70mm厚に熱間圧延した。1050℃で120秒の熱延板焼鈍を行い、熱延板焼鈍板平均結晶粒径を322μmとした。そして、表2のNo.1とNo.4の冷延条件で種々の温度で0.35mmに冷延し、980℃×60秒の連続焼鈍し、絶縁皮膜を塗布して製品とした。このとき冷延率は87%である。全周磁束密度または全周鉄損は、全周値をy-R、X度方向の実測値をy-Xとして下記の式で求めた。
y-R={y-0+y-90+2×(y-22.5+y-45+y-67.5)}/8
この時の、冷延条件、冷延温度と磁気特性の関係を表6に示す。
これより、冷延温度を180〜350℃とすると、更に良好な磁気特性を得られることが分かる。
A slab containing C: 0.0012%, Si: 2.19%, Mn: 0.21%, Al: 0.31%, S: 0.0010%, N: 0.0017% is heated at 1150 ° C. And hot rolled to a thickness of 2.70 mm. Hot rolled sheet annealing was performed at 1050 ° C. for 120 seconds, and the average crystal grain size of the hot rolled sheet annealed sheet was set to 322 μm. In Table 2, No. 1 and No. The product was cold-rolled to 0.35 mm at various temperatures under the cold-rolling condition of No. 4, continuously annealed at 980 ° C. for 60 seconds, and coated with an insulating film to obtain a product. At this time, the cold rolling rate is 87%. The total magnetic flux density or total iron loss was determined by the following equation, where y −R was the total value and y −X was the measured value in the X-degree direction.
y −R = {y −0 + y −90 + 2 × (y −22.5 + y −45 + y −67.5 )} / 8
Table 6 shows the relationship between the cold rolling conditions, the cold rolling temperature, and the magnetic properties at this time.
From this, it can be seen that when the cold rolling temperature is 180 to 350 ° C., even better magnetic properties can be obtained.
Claims (4)
C :0.004%以下、
Si:1.5%〜3.5%、
Al:0.2%〜3.0%、
1.9%≦(%Si+%Al)、
Mn:0.02〜1.0%、
S :0.0030%以下、
N :0.0030%以下、
残部Fe及び不可避的不純物の組成よりなるスラブをスラブ加熱し、熱延し、熱延板焼鈍を行い、冷延、仕上焼鈍を行う無方向性電磁鋼板の製造方法において、熱延板焼鈍後の平均結晶粒径を300μm以上、冷間圧延において下記式で表されるM値を0.1以上5以下、冷延率を85%〜93%とすることを特徴とした全周の磁束密度の高い無方向性電磁鋼板の製造方法。
径 % By mass
C: 0.004% or less,
Si: 1.5% to 3.5%
Al: 0.2% to 3.0%,
1.9% ≦ (% Si +% Al),
Mn: 0.02 to 1.0%,
S: 0.0030% or less,
N: 0.0030% or less,
In the manufacturing method of the non-oriented electrical steel sheet in which the slab composed of the remaining Fe and the inevitable impurities is slab-heated, hot-rolled, hot-rolled sheet annealed, cold-rolled, and finish-annealed, The magnetic flux density of the entire circumference is characterized in that the average grain size is 300 μm or more, the M value represented by the following formula in cold rolling is 0.1 to 5 and the cold rolling rate is 85% to 93%. Manufacturing method of high non-oriented electrical steel sheet.
Cold rolling is performed at 180-350 degreeC, The manufacturing method of the non-oriented electrical steel sheet with high magnetic flux density of the perimeter of any one of Claims 1-3 characterized by the above-mentioned.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005330830A JP5025942B2 (en) | 2005-03-14 | 2005-11-15 | Method for producing non-oriented electrical steel sheet |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005072041 | 2005-03-14 | ||
JP2005072041 | 2005-03-14 | ||
JP2005330830A JP5025942B2 (en) | 2005-03-14 | 2005-11-15 | Method for producing non-oriented electrical steel sheet |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006291346A true JP2006291346A (en) | 2006-10-26 |
JP5025942B2 JP5025942B2 (en) | 2012-09-12 |
Family
ID=37412217
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005330830A Active JP5025942B2 (en) | 2005-03-14 | 2005-11-15 | Method for producing non-oriented electrical steel sheet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5025942B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012136763A (en) * | 2010-12-28 | 2012-07-19 | Jfe Steel Corp | Method for producing high-strength electromagnetic steel sheet |
JP2017106101A (en) * | 2015-12-04 | 2017-06-15 | Jfeスチール株式会社 | Non-oriented electromagnetic steel sheet and manufacturing method therefor |
KR20200020013A (en) | 2015-10-02 | 2020-02-25 | 제이에프이 스틸 가부시키가이샤 | Non-oriented electromagnetic steel sheet and manufacturing method of same |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0331420A (en) * | 1989-06-29 | 1991-02-12 | Nippon Steel Corp | Production of full-processed non-oriented electrical steel sheet having excellent magnetic characteristics |
JPH08100215A (en) * | 1994-08-03 | 1996-04-16 | Nippon Steel Corp | Production of nonoriented silicon steel sheet with high magnetic flux density |
JP2003119552A (en) * | 2001-10-12 | 2003-04-23 | Nippon Steel Corp | Nonoriented magnetic steel sheet with low iron loss and excellent workability, and manufacturing method therefor |
JP2004197217A (en) * | 2002-12-06 | 2004-07-15 | Nippon Steel Corp | Nonoriented electrical steel sheet excellent in circumferential magnetic property, and production method therefor |
-
2005
- 2005-11-15 JP JP2005330830A patent/JP5025942B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0331420A (en) * | 1989-06-29 | 1991-02-12 | Nippon Steel Corp | Production of full-processed non-oriented electrical steel sheet having excellent magnetic characteristics |
JPH08100215A (en) * | 1994-08-03 | 1996-04-16 | Nippon Steel Corp | Production of nonoriented silicon steel sheet with high magnetic flux density |
JP2003119552A (en) * | 2001-10-12 | 2003-04-23 | Nippon Steel Corp | Nonoriented magnetic steel sheet with low iron loss and excellent workability, and manufacturing method therefor |
JP2004197217A (en) * | 2002-12-06 | 2004-07-15 | Nippon Steel Corp | Nonoriented electrical steel sheet excellent in circumferential magnetic property, and production method therefor |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012136763A (en) * | 2010-12-28 | 2012-07-19 | Jfe Steel Corp | Method for producing high-strength electromagnetic steel sheet |
KR20200020013A (en) | 2015-10-02 | 2020-02-25 | 제이에프이 스틸 가부시키가이샤 | Non-oriented electromagnetic steel sheet and manufacturing method of same |
JP2017106101A (en) * | 2015-12-04 | 2017-06-15 | Jfeスチール株式会社 | Non-oriented electromagnetic steel sheet and manufacturing method therefor |
Also Published As
Publication number | Publication date |
---|---|
JP5025942B2 (en) | 2012-09-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6651759B2 (en) | Non-oriented electrical steel sheet and manufacturing method thereof | |
JP5760504B2 (en) | Oriented electrical steel sheet and manufacturing method thereof | |
JP5724824B2 (en) | Method for producing non-oriented electrical steel sheet with good magnetic properties in rolling direction | |
US9579701B2 (en) | Manufacturing method of non-oriented electrical steel sheet | |
JP6842546B2 (en) | Non-oriented electrical steel sheet and its manufacturing method | |
US11802319B2 (en) | Double oriented electrical steel sheet and method for manufacturing same | |
JP2019183185A (en) | Nonoriented electromagnetic steel sheet | |
JP2013087305A (en) | Grain-oriented electromagnetic steel sheet, method for production thereof, and transformer | |
JP2008174773A (en) | Nonoriented electromagnetic steel sheet for rotor, and its production method | |
JP5447167B2 (en) | Non-oriented electrical steel sheet and manufacturing method thereof | |
JP4319889B2 (en) | Non-oriented electrical steel sheet with excellent all-round magnetic properties and method for producing the same | |
JP4855225B2 (en) | Non-oriented electrical steel sheet with small anisotropy | |
JP6443355B2 (en) | Method for producing grain-oriented electrical steel sheet | |
JP7052391B2 (en) | Manufacturing method of grain-oriented electrical steel sheet and grain-oriented electrical steel sheet | |
JP2024041844A (en) | Method for producing non-oriented magnetic steel sheet | |
JP4358550B2 (en) | Method for producing non-oriented electrical steel sheet with excellent rolling direction and perpendicular magnetic properties in the plate surface | |
JP4218077B2 (en) | Non-oriented electrical steel sheet and manufacturing method thereof | |
JP5100000B2 (en) | Method for producing non-oriented electrical steel sheet with excellent magnetic properties | |
JP2003213385A (en) | Nonoriented silicon steel sheet | |
JP5025942B2 (en) | Method for producing non-oriented electrical steel sheet | |
JP2008189976A (en) | Nonoriented electrical steel sheet having reduced in core loss degradation caused by compressive stress, and method for producing the same | |
JP7253055B2 (en) | Non-oriented electrical steel sheet and manufacturing method thereof | |
JP2001152300A (en) | Nonoriented silicon steel sheet minimal in magnetic anisotropy in high frequency region and excellent in press workability | |
JP2007262519A (en) | Method for producing double oriented silicon steel sheet | |
WO2019245044A1 (en) | Grain-oriented electrical steel sheet with excellent magnetic characteristics |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080306 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100715 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100720 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100917 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20110329 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110628 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20110706 |
|
A912 | Removal of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20110909 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120620 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150629 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5025942 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150629 Year of fee payment: 3 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150629 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |