JP4855225B2 - Non-oriented electrical steel sheet with small anisotropy - Google Patents

Non-oriented electrical steel sheet with small anisotropy Download PDF

Info

Publication number
JP4855225B2
JP4855225B2 JP2006316200A JP2006316200A JP4855225B2 JP 4855225 B2 JP4855225 B2 JP 4855225B2 JP 2006316200 A JP2006316200 A JP 2006316200A JP 2006316200 A JP2006316200 A JP 2006316200A JP 4855225 B2 JP4855225 B2 JP 4855225B2
Authority
JP
Japan
Prior art keywords
steel sheet
iron loss
oriented electrical
electrical steel
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006316200A
Other languages
Japanese (ja)
Other versions
JP2008127659A (en
Inventor
岳顕 脇坂
聡 新井
高英 島津
憲人 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2006316200A priority Critical patent/JP4855225B2/en
Publication of JP2008127659A publication Critical patent/JP2008127659A/en
Application granted granted Critical
Publication of JP4855225B2 publication Critical patent/JP4855225B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Soft Magnetic Materials (AREA)
  • Metal Rolling (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Description

本発明は、モーターやトランスのコア(鉄芯)材料として用いる異方性の小さい無方向性電磁鋼板に関する。   The present invention relates to a non-oriented electrical steel sheet with small anisotropy used as a core (iron core) material of a motor or a transformer.

近年、環境保全や、省エネルギーの観点から、電気自動車への関心が高まり、駆動用モーターは、高速回転と小型化とともに、800Hz前後が基本周波数となってきている。   In recent years, interest in electric vehicles has increased from the viewpoints of environmental protection and energy saving, and drive motors have become a fundamental frequency around 800 Hz along with high-speed rotation and miniaturization.

このため、モーターのコア材料である無方向性電磁鋼板においては、渦電流損失を低減するため、板厚を薄くするとともに、固有抵抗を高め、さらに、鋼板強度(ローター剛性を上げる)を改善するため、Si含有量及びAl含有量を高める必要がある。   For this reason, in the non-oriented electrical steel sheet that is the core material of the motor, in order to reduce eddy current loss, the sheet thickness is reduced, the specific resistance is increased, and further the steel sheet strength (increasing the rotor rigidity) is improved. Therefore, it is necessary to increase the Si content and the Al content.

さらに、無方向性電磁鋼板には、モーターの初動トルクを改善するため、高い磁束密度も要求される。   Furthermore, non-oriented electrical steel sheets are also required to have a high magnetic flux density in order to improve the initial torque of the motor.

モーターコアは、無方向性電磁鋼板を打ち抜いて製造されるが、通常、無方向性電磁鋼板から、一つのコアを打ち抜くので、磁気特性は、鋼板の圧延方向(コイル長手方向、以下「L方向」ということがある。)、L方向と90°の方向(コイル幅方向、以下「C方向」ということがある。)、L方向と45°の方向の磁気特性において、差(異方性)が小さいことが望まれる(例えば、特許文献1〜4、参照)。   A motor core is manufactured by punching a non-oriented electrical steel sheet. Usually, since a single core is punched from a non-oriented electrical steel sheet, the magnetic properties are determined by the rolling direction of the steel sheet (coil longitudinal direction, hereinafter referred to as “L direction”). In the magnetic characteristics in the L direction and 90 ° (coil width direction, hereinafter referred to as “C direction”), and in the L direction and 45 ° direction (anisotropy). Is desired to be small (for example, see Patent Documents 1 to 4).

しかし、例示の特許文献1〜4では、磁束密度の異方性について研究、調査されているものの、現在の電気自動車に必要な高周波鉄損の異方性、特に、最も高周波鉄損が劣化しているL方向と55°の角度をなす方向(以下、「X方向」ということがある。)の高周波鉄損に対する研究、調査が不足している。   However, in Patent Documents 1 to 4 shown as examples, although anisotropy of magnetic flux density is studied and investigated, the anisotropy of high-frequency iron loss necessary for current electric vehicles, particularly, the highest high-frequency iron loss is deteriorated. There is insufficient research and investigation on high-frequency iron loss in a direction that forms an angle of 55 ° with the L direction (hereinafter, referred to as “X direction”).

また、再結晶焼鈍での炉中張力制御によって、鋼板のL方向とC方向の商用周波数での鉄損を調整する方法が知られているが、この方法も、最も高周波鉄損が劣化しているX方向の高周波鉄損を制御するものではない(例えば、特許文献5〜9、参照)。   Also, a method of adjusting the iron loss at the commercial frequency in the L direction and the C direction of the steel sheet by controlling the tension in the furnace during recrystallization annealing is known, but this method also has the highest frequency iron loss. It does not control the high-frequency iron loss in the X direction (see, for example, Patent Documents 5 to 9).

特開2006−45613号公報JP 2006-45613 A 特開2006−45641号公報JP 2006-45641 A 特開2006−144036号公報JP 2006-144036 A 特開2006−199999号公報JP 2006-199999 A 特公昭47−505号公報Japanese Patent Publication No. 47-505 特開昭58−120733号公報JP 58-120733 A 特開平3−223422号公報JP-A-3-223422 特開平3−271323号公報JP-A-3-271323 特開平7−179947号公報JP-A-7-179947

本発明者は、無方向性電磁鋼板において、打ち抜かれたコアとしての磁気特性、特に、高周波鉄損を改善するため、最も高周波鉄損が劣化している方向の高周波鉄損を改善し、最も鉄損が優れているL方向の鉄損に近づける研究開発を行った。   The present inventor has improved the high-frequency iron loss in the direction in which the high-frequency iron loss is most deteriorated in order to improve the magnetic characteristics as a punched core, particularly the high-frequency iron loss, in the non-oriented electrical steel sheet, Research and development were conducted to bring the iron loss closer to the L direction iron loss.

その結果、高周波鉄損が方向で異なる高周波鉄損の異方性を改善するためには、強圧下の冷間圧延(以下「強圧下冷延」ということがある。)を行うことが有効であるが、一方で、全体的な角度における磁束密度が劣化することが判明した。   As a result, in order to improve the anisotropy of the high-frequency iron loss in which the high-frequency iron loss varies depending on the direction, it is effective to perform cold rolling under strong pressure (hereinafter sometimes referred to as “strong rolling cold rolling”). On the other hand, it has been found that the magnetic flux density at the overall angle deteriorates.

さらに、この磁束密度の劣化を防止するには、所定量のSnを添加することが有効であることが判明した。   Furthermore, it has been found that adding a predetermined amount of Sn is effective in preventing the deterioration of the magnetic flux density.

しかし、鋼板の板厚を薄くし、かつ、Si量及び/又はAl量を増加すると、最も高周波鉄損が劣化している方向(X方向)において、異常に劣化した高周波鉄損を示す現象が頻発した。つまり、特定の方向の高周波鉄損が異常に低下し、結局、無方向性電磁鋼板が一体型コア用に適さないという問題に遭遇した。   However, when the plate thickness of the steel sheet is reduced and the amount of Si and / or Al is increased, there is a phenomenon in which the high-frequency iron loss is abnormally deteriorated in the direction in which the high-frequency iron loss is most deteriorated (X direction). It occurred frequently. That is, the high-frequency iron loss in a specific direction is abnormally reduced, and eventually, the non-oriented electrical steel sheet is not suitable for an integral core.

そこで、本発明は、モーターコアとして最適な磁気特性を有する異方性の小さい無方向性電磁鋼板を提供することを目的とする。   Therefore, an object of the present invention is to provide a non-oriented electrical steel sheet with small anisotropy having optimum magnetic characteristics as a motor core.

本発明者は、質量%で、Si:2〜4%、及び、Al:0.3〜2%を含有する0.1〜0.3mm厚の強圧下冷延による無方向性電磁鋼板において、Snを所定量添加して、{100}ゴス方位粒を増加させて、鋼板面上の全体的な角度における磁気特性(高周波鉄損)を改善することを基本思想とし、一体型コア用として最適な磁気特性を確保する手段について、鋭意研究した。その結果、次の知見を得るに至った。   The present inventor is a non-oriented electrical steel sheet by cold rolling under strong pressure of 0.1 to 0.3 mm thickness containing Si: 2 to 4% and Al: 0.3 to 2% by mass%. The basic idea is to add a predetermined amount of Sn to increase {100} goth-oriented grains and improve the magnetic properties (high-frequency iron loss) at the overall angle on the steel sheet surface, making it ideal for use as an integral core We have eagerly studied the means to ensure the proper magnetic properties. As a result, the following knowledge was obtained.

(x)L、方向、C方向、及び、X方向の磁気特性(特に、高周波鉄損)の差(異方性)は、製品板厚、冷間圧延における圧下率(冷延率)、再結晶焼鈍時の鋼板幅収縮率の三つのファクターに関連するが、最終的に、これらを適切に制御すれば、異方性の小さい高周波鉄損W10/800を確保することができる。 (X) The difference (anisotropy) in magnetic properties (particularly high-frequency iron loss) in the L, direction, C direction, and X direction is the product sheet thickness, the reduction ratio (cold rolling ratio) in cold rolling, Although related to the three factors of the steel sheet width shrinkage ratio during crystal annealing, finally, if these are appropriately controlled, a high-frequency iron loss W 10/800 with small anisotropy can be secured.

(y)L方向とC方向の磁気特性を繋ぐ、X方向(L方向と55°の方向)の磁気特性は、特に、高周波鉄損が最も大きく、その結果、コアとしての磁気特性を支配するといえるから、重要な指標であるところ、該磁気特性は、特に、再結晶焼鈍時における鋼板幅の収縮の程度(収縮率)に密接に関連する。   (Y) The magnetic characteristics in the X direction (the direction of 55 degrees with respect to the L direction) connecting the magnetic characteristics in the L direction and the C direction have the largest high-frequency iron loss, and as a result, dominate the magnetic characteristics as a core. Thus, as an important indicator, the magnetic characteristics are closely related to the degree of shrinkage (shrinkage rate) of the steel sheet width particularly during recrystallization annealing.

本発明は、上記知見に基づいてなされたもので、その要旨は以下のとおりである。   This invention was made | formed based on the said knowledge, and the summary is as follows.

(1) 質量%で、C:0.005%以下、Si:2〜4%、Mn:1%以下、Al:0.3〜2%、Sn:0.003〜0.2%を含有し、残部がFe及び不可避的不純物からなる熱延板に熱延板焼鈍を施した後、圧下率が84.4〜95%の冷間圧延を一回施し、次いで、再結晶焼鈍を、該焼鈍中の鋼板幅収縮率を0.5%以下に制御しつつ施して製造した0.1〜0.3mm厚の無方向性電磁鋼板であって、
圧延方向(L方向)の鉄損W10/800(L)と、圧延方向と55°の方向(X方向)の鉄損W10/800(X)が、下記式(1)を満たす磁気特性を有する
ことを特徴とする異方性の小さい無方向性電磁鋼板。
10/800(X)/W10/800(L)≦1.20 ・・・(1)
(1) By mass%, C: 0.005% or less, Si: 2-4%, Mn: 1% or less, Al: 0.3-2%, Sn: 0.003-0.2% The hot-rolled sheet comprising the balance Fe and inevitable impurities is subjected to hot-rolled sheet annealing, and then subjected to cold rolling with a rolling reduction of 84.4 to 95% once, followed by recrystallization annealing. It is a non-oriented electrical steel sheet having a thickness of 0.1 to 0.3 mm manufactured by controlling the steel sheet width shrinkage rate to 0.5% or less,
The iron loss W 10/800 in the rolling direction (L direction) (L), the iron loss W 10/800 in the rolling direction and 55 ° direction (X direction) (X) is, magnetic properties satisfying the following formulas (1) A non-oriented electrical steel sheet having small anisotropy, characterized by comprising:
W 10/800 (X) / W 10/800 (L) ≦ 1.20 (1)

(2) 前記磁気特性において、鉄損W10/800が40W/kg以下であることを特徴とする前記(1)に記載の異方性の小さい無方向性電磁鋼板。 (2) The non-oriented electrical steel sheet with small anisotropy according to (1), wherein the iron loss W 10/800 is 40 W / kg or less in the magnetic characteristics.

) 前記熱延板焼鈍を900℃超の温度で施すことを特徴とする前記(1)又は(2)に記載の異方性の小さい無方向性電磁鋼板。 ( 3 ) The non-oriented electrical steel sheet having a small anisotropy according to (1) or (2) , wherein the hot-rolled sheet annealing is performed at a temperature exceeding 900 ° C.

本発明によれば、モーターコア、特に、一体打抜きコア用として最適な磁気特性を有する無方向性電磁鋼板を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the non-oriented electrical steel sheet which has an optimal magnetic characteristic as an object for motor cores, especially an integral stamping core can be provided.

本発明は、質量%で、C:0.005%以下、Si:2〜4%、Mn:1%以下、Al:0.3〜2%、Sn:0.003〜0.2%を含有し、残部がFe及び不可避的不純物からなる熱延板に熱延板焼鈍を施した後、圧下率が84.4〜95%の冷間圧延を一回施し、次いで、再結晶焼鈍を施して製造した0.1〜0.3mm厚の無方向性電磁鋼板であって、
(i)再結晶焼鈍中の鋼板幅収縮率を0.5%以下に制御しつつ、再結晶焼鈍を施すこと、及び
(ii)L方向の鉄損W10/800(L)と、X方向(L方向と55°の方向)の鉄損W10/800(X)が、下記式(1)を満たす磁気特性を有すること
を特徴とする。
10/800(X)/W10/800(L)≦1.20 ・・・(1)
The present invention contains, in mass%, C: 0.005% or less, Si: 2-4%, Mn: 1% or less, Al: 0.3-2%, Sn: 0.003-0.2% Then, after hot-rolled sheet annealing was performed on the hot-rolled sheet consisting of Fe and inevitable impurities, the cold rolling with a rolling reduction of 84.4 to 95% was performed once, and then recrystallization annealing was performed. A manufactured non-oriented electrical steel sheet having a thickness of 0.1 to 0.3 mm,
(I) performing recrystallization annealing while controlling the steel sheet width shrinkage during recrystallization annealing to 0.5% or less; and (ii) iron loss W 10/800 (L) in the L direction and the X direction. The iron loss W 10/800 (X) in the direction of 55 ° (L direction and 55 °) has a magnetic characteristic that satisfies the following formula (1).
W 10/800 (X) / W 10/800 (L) ≦ 1.20 (1)

ここに、W10/800は、磁束密度1.0T、周波数800Hzでの鉄損である。 Here, W 10/800 is an iron loss at a magnetic flux density of 1.0 T and a frequency of 800 Hz.

まず、熱延板の成分組成を限定する理由について説明する。なお、以下、%は、質量%を意味する。   First, the reason for limiting the component composition of the hot-rolled sheet will be described. Hereinafter, “%” means mass%.

Cは、鋼板を強化する元素であるが、磁気特性の点で有害な元素であり、極力低減するのが好ましいので、Cは、0.005%以下に限定した。好ましくは、0.003%以下である。   C is an element that reinforces the steel sheet. However, C is an element harmful in terms of magnetic properties and is preferably reduced as much as possible. Therefore, C is limited to 0.005% or less. Preferably, it is 0.003% or less.

Siは、鋼板の電気抵抗を高め、鉄損を低減する元素であるので、2%以上を含有する。4%を超えて含有すると、鋼板が脆化し、また、所要の鉄損W10/800が得られないので、Siの上限を4%とした。 Since Si is an element that increases the electrical resistance of the steel sheet and reduces iron loss, it contains 2% or more. If the content exceeds 4%, the steel plate becomes brittle, and the required iron loss W 10/800 cannot be obtained. Therefore, the upper limit of Si was set to 4%.

Mnは、熱間圧延時に、MnSとしてSを固定し、熱間圧延時の鋼板耳割れを防止する元素である。固溶Mnは、鋼板の電気抵抗を高め、鉄損を低減するが、Mnが多すぎると、結晶粒成長性が阻害されるので、Mnの上限を1%とした。   Mn is an element that fixes S as MnS at the time of hot rolling and prevents steel plate ear cracks during hot rolling. Solid solution Mn increases the electrical resistance of the steel sheet and reduces iron loss. However, if Mn is too much, crystal grain growth is inhibited, so the upper limit of Mn is set to 1%.

Alは、Siと同様に、鋼板の電気抵抗を高め、鉄損を低減する元素であるので、0.3%以上含有させる。一方、2%を超えて含有すると、添加コストの問題や、飽和磁束密度の低下が懸念されるので、上限を2%とした。   Al, like Si, is an element that increases the electrical resistance of the steel sheet and reduces the iron loss, so it is contained in an amount of 0.3% or more. On the other hand, if the content exceeds 2%, there is a concern about the problem of addition cost and a decrease in saturation magnetic flux density, so the upper limit was made 2%.

Snは、Si:2〜4%、及び、Al:0.3〜2%を含有する無方向性電磁鋼板において、強圧下冷延後の再結晶焼鈍時に、{100}面方位粒を増加させ、特に、L方向とC方向の磁気特性(磁束密度)を改善するため、0.003%以上含有する必要がある。一方、0.2%を超えて含有しても、上記改善効果は飽和するし、熱間脆性の問題で疵が増加するので、上限を0.2%とした。   Sn increases the number of {100} face orientation grains during recrystallization annealing after cold rolling under strong pressure in a non-oriented electrical steel sheet containing Si: 2-4% and Al: 0.3-2%. In particular, in order to improve the magnetic properties (magnetic flux density) in the L direction and the C direction, it is necessary to contain 0.003% or more. On the other hand, even if the content exceeds 0.2%, the above improvement effect is saturated and wrinkles increase due to hot brittleness, so the upper limit was made 0.2%.

本発明は、上記元素の他、不可避的不純物として、S、P、N、Cu、Ni、Cr、Ca、及び、REM等を、本発明の機械特性及び磁気特性を損なわない範囲で含有してもよい。ただし、従来どおり、不純物としてのS、P、及び、Nは少ないほうが好ましい。それら成分は、いずれも、0.003%以下が好ましい。また、狙いの異方性を阻害しないことを確認した組成範囲は、Cu<0.2%、Ni<0.1%、Cr<0.1%、Ca<0.01%、Nb<0.002%、Ti<0.003%、REM<0.01%である。   In addition to the above elements, the present invention contains S, P, N, Cu, Ni, Cr, Ca, REM, etc. as inevitable impurities within a range not impairing the mechanical and magnetic properties of the present invention. Also good. However, as in the past, it is preferable that S, P, and N as impurities are small. All of these components are preferably 0.003% or less. The composition ranges confirmed not to inhibit the target anisotropy are Cu <0.2%, Ni <0.1%, Cr <0.1%, Ca <0.01%, Nb <0. 002%, Ti <0.003%, REM <0.01%.

本発明は、上記成分組成の熱延板に熱延板焼鈍を施した後、冷間圧延を一回施し、次いで、再結晶焼鈍を施した0.1〜0.3mm厚の鋼板が、下記式(1)を満たす磁気特性を有することを特徴とする。
10/800(X)/W10/800(L)≦1.20 ・・・(1)
In the present invention, a hot-rolled sheet having the above component composition is subjected to hot-rolled sheet annealing, then cold-rolled once, and then subjected to recrystallization annealing, a 0.1 to 0.3 mm-thick steel sheet is It has the magnetic characteristic which satisfy | fills Formula (1), It is characterized by the above-mentioned.
W 10/800 (X) / W 10/800 (L) ≦ 1.20 (1)

一般に、ステータコアを一体型で打ち抜いたモーターコアの性能は、方向別の鉄損において、最も劣化した鉄損に規制されると考えられる。つまり、L方向の鉄損特性が優れていても、他の方向の鉄損特性が大きく劣っていれば、モーターコアの性能は、その劣った鉄損特性に引きずられてしまい、優れたコア特性を得ることができない。   In general, it is considered that the performance of a motor core in which a stator core is integrally punched is regulated by the most deteriorated iron loss in each direction. In other words, even if the iron loss characteristic in the L direction is excellent, if the iron loss characteristic in the other direction is greatly inferior, the performance of the motor core is dragged by the inferior iron loss characteristic, and the excellent core characteristic Can't get.

Si及びAlが本発明範囲内にある、板厚0.1〜0.3mmの高Si、高Al系無方向性電磁鋼板の磁気特性を、角度5°毎に調査すると、高周波鉄損W10/800の最悪値は、L方向から55°回転した方向(X方向)であることが判明した。 When the magnetic properties of a high Si, high Al non-oriented electrical steel sheet having a thickness of 0.1 to 0.3 mm, in which Si and Al are within the scope of the present invention, are examined at every angle of 5 °, high-frequency iron loss W 10 The worst value of / 800 was found to be the direction rotated by 55 ° from the L direction (X direction).

このX方向は、従来、低周波特性の最悪値で知られていた45°方向(L方向から45°回転した方向)とは、微妙に異なる方向である。なぜ、高周波鉄損W10/800の最悪値の方向が、L方向から55°回転した方向(X方向)なのかの詳細については、今後の調査に待たなければならないが、本発明者は、高周波域での磁束の表皮効果が、鋼板の持つ集合組織の厚み方向の勾配と有機的に絡んだ結果ではないかと推定している。いずれにして、W10/800(X)/W10/800(L)は、無方向性電磁鋼板の適確性を判断する上で、極めて重要な指標である。 This X direction is a slightly different direction from the 45 ° direction (the direction rotated 45 ° from the L direction), which has been conventionally known as the worst value of the low frequency characteristics. The details of why the direction of the worst value of the high-frequency iron loss W 10/800 is the direction rotated by 55 ° from the L direction (X direction) must wait for further investigation. It is estimated that the skin effect of the magnetic flux in the high frequency range is the result of organic entanglement with the gradient in the thickness direction of the texture of the steel sheet. In any case, W 10/800 (X) / W 10/800 (L) is a very important index for judging the accuracy of the non-oriented electrical steel sheet.

本発明において、W10/800(X)/W10/800(L)は、1.20以下に規制する。1.20超であれば、高周波鉄損の方向間の異方性が大きくなり、モーターコアとしての鉄損特性が不満である。 In the present invention, W 10/800 (X) / W 10/800 (L) is regulated to 1.20 or less. If it exceeds 1.20, the anisotropy between the directions of the high-frequency iron loss increases, and the iron loss characteristics as a motor core are unsatisfactory.

本発明は、熱延板に熱延板焼鈍を施した後、冷間圧延を一回施し、次いで、再結晶焼鈍を施すことを要件とするものであるので、次に、好ましい製造要件について説明する。   Since the present invention requires that hot-rolled sheet is subjected to hot-rolled sheet annealing, then cold-rolled once, and then recrystallized annealing, the preferable manufacturing requirements are described next. To do.

熱延板焼鈍については、高温焼鈍が好ましい。この焼鈍により、熱延板の結晶粒径を粗大化すると、冷間圧延、再結晶後に、{111}方位粒が減少する傾向を示すので、焼鈍温度は、900℃以上が好ましい。   About hot-rolled sheet annealing, high temperature annealing is preferable. When the crystal grain size of the hot-rolled sheet is increased by this annealing, the {111} -oriented grains tend to decrease after cold rolling and recrystallization. Therefore, the annealing temperature is preferably 900 ° C. or higher.

冷間圧延における圧下率は、指標:W10/800(X)/W10/800(L)に敏感に影響するので重要である。圧下率が大きいと、W10/800(X)/W10/800(L)が改善されるが、95%超では、磁束密度B50の劣化が大きい。一方、圧下率が80%未満であると、熱延板を、工業的に難しい薄い領域の板厚まで圧延することが必要となり、工業的に生産性が悪い。なお、本発明では、圧下率の下限を実施例で確認されている84.4%とした。 The rolling reduction in cold rolling is important because it sensitively affects the index: W 10/800 (X) / W 10/800 (L). If the rolling reduction is large, W 10/800 (X) / W 10/800 (L) is improved, but if it exceeds 95%, the magnetic flux density B 50 is greatly deteriorated. On the other hand, when the rolling reduction is less than 80%, it is necessary to roll the hot-rolled sheet to a thickness in a thin region that is difficult industrially, and industrial productivity is poor. In the present invention, the lower limit of the rolling reduction is 84.4% as confirmed in the examples.

無方向性電磁鋼板の製品板厚は、0.1〜0.3mmとする。製品板厚を薄くすれば、高周波鉄損が改善されるが、0.1mm未満では、工業的に生産性が悪い。一方、製品板厚が0.3mm超であると、本発明の高周波鉄損W10/800が不満となる。 The product thickness of the non-oriented electrical steel sheet is 0.1 to 0.3 mm. If the product plate thickness is reduced, the high-frequency iron loss is improved, but if it is less than 0.1 mm, the productivity is industrially poor. On the other hand, if the product plate thickness exceeds 0.3 mm, the high-frequency iron loss W 10/800 of the present invention is unsatisfactory.

再結晶焼鈍において、焼鈍中の鋼板のクリープ変形量、特に、鋼板の幅方向の縮みは、X方向の高周波鉄損に強く影響するので、重要である。   In recrystallization annealing, the amount of creep deformation of the steel sheet during annealing, particularly the shrinkage in the width direction of the steel sheet, is important because it strongly affects the high-frequency iron loss in the X direction.

本発明の鋼板は、板厚が薄いこと、及び、高温焼鈍が必要であること(本発明は、高固有抵抗で薄いため、渦電流損が少ないので、結晶粒径は、比較的粗粒側の50〜200μmが好ましい)から、再結晶焼鈍中に伸び変形し易く、鋼板幅が縮小するので、特に注意して、鋼板幅の縮小を制御する必要がある。   The steel sheet of the present invention is thin and requires high-temperature annealing (the present invention is thin with high specific resistance, so there is little eddy current loss, so the crystal grain size is relatively coarse. Therefore, it is necessary to control the reduction of the steel plate width with particular care because the steel plate width is easily reduced and the steel plate width is reduced during recrystallization annealing.

再結晶焼鈍中の鋼板変形量は、鋼板幅の収縮率で管理されなければならない。鋼板幅の収縮率は、再結晶焼鈍前後における鋼板幅の縮小量を、再結晶焼鈍前の鋼板幅で割り、100を掛けたものである。   The amount of steel plate deformation during recrystallization annealing must be managed by the shrinkage ratio of the steel plate width. The shrinkage ratio of the steel plate width is obtained by dividing the reduction amount of the steel plate width before and after the recrystallization annealing by the steel plate width before the recrystallization annealing and multiplying by 100.

従来の鋼板伸び率で、X方向における高周波鉄損特性の劣化の程度を把握することは難しいが、本発明者は、鋼板幅の収縮率と、X方向の鉄損W10/800(X)の相関がより優れていること見いだした。つまり、変形モードとしては、C方向(幅方向)に捕らえるほうが、X方向により近く、より適切であると推測される。 Although it is difficult to grasp the degree of deterioration of the high-frequency iron loss characteristics in the X direction with the conventional steel sheet elongation rate, the present inventor has found that the steel sheet width shrinkage rate and the X direction iron loss W 10/800 (X). I found that the correlation was better. That is, as the deformation mode, it is estimated that capturing in the C direction (width direction) is closer to the X direction and more appropriate.

また、鋼板幅の管理は、携帯の巻尺で簡単に計測できるので簡便である(長手方向の伸びは、予め、鋼板表面にケガキ線などを入れ、その伸びから求めるので面倒である)。   Moreover, the management of the steel plate width is simple because it can be easily measured with a portable tape measure (elongation in the longitudinal direction is troublesome because a marking line or the like is previously placed on the steel plate surface and obtained from the elongation).

鋼板幅の収縮率が大きくなると、W10/800(X)/W10/800(L)が劣化する。その限界が、0.5%である。鋼板幅の収縮率が、0.5%を超えると、鉄損の異方性が大きくなって不満である。 W 10/800 (X) / W 10/800 (L) deteriorates when the shrinkage ratio of the steel plate width increases. The limit is 0.5%. When the shrinkage ratio of the steel plate width exceeds 0.5%, the anisotropy of the iron loss is increased, which is unsatisfactory.

鋼板幅の収縮率は、炉中の鋼板張力、鋼板温度、ハースロール同士の周回速度のマッチィング程度、形状矯正用熱間レベラーでの鋼板変形量などによって左右されるので、これらを、適宜制御する。   The shrinkage ratio of the steel sheet width depends on the steel sheet tension in the furnace, the steel sheet temperature, the degree of matching of the circulating speed between the hearth rolls, the deformation amount of the steel sheet at the hot leveler for shape correction, and so on. .

また、鉄損W10/800は、40W/kg以下であることが好ましい。コンパクトなモーターコアにするための高速回転仕様に適用させるためである。 The iron loss W 10/800 is preferably 40 W / kg or less. This is because it is applied to a high-speed rotation specification for making a compact motor core.

次に、本発明の実施例について説明するが、実施例の条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。   Next, examples of the present invention will be described. The conditions of the examples are one example of conditions adopted for confirming the feasibility and effects of the present invention, and the present invention is limited to this one example of conditions. Is not to be done. The present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.

(実施例1)
鋼を真空溶解炉で溶解しつつ成分組成を調整し、表1に示す成分組成を有するインゴットを鋳造した。これを、1000℃に加熱して、熱間圧延を施し、熱延板を得た。次いで、N2雰囲気中、900℃で200秒均熱して焼鈍を施した。酸洗後、冷延して、0.23mm厚(冷延率80%と92%)とした。
Example 1
The component composition was adjusted while melting steel in a vacuum melting furnace, and an ingot having the component composition shown in Table 1 was cast. This was heated to 1000 ° C. and subjected to hot rolling to obtain a hot rolled sheet. Next, annealing was performed by soaking at 900 ° C. for 200 seconds in an N 2 atmosphere. After pickling, it was cold rolled to a thickness of 0.23 mm (cold rolling rate of 80% and 92%).

次いで、再結晶焼鈍を、H2雰囲気中、1050℃、15秒均熱して、実施した。平均結晶粒径は、180μmであった。再結晶焼鈍での鋼板幅の収縮率は、0.15%であった。磁気特性を、55mm角SSTで、角度別に測定した。得られた結果を表1に示す。 Next, recrystallization annealing was performed by soaking at 1050 ° C. for 15 seconds in an H 2 atmosphere. The average crystal grain size was 180 μm. The shrinkage ratio of the steel plate width by recrystallization annealing was 0.15%. The magnetic characteristics were measured for each angle with a 55 mm square SST. The obtained results are shown in Table 1.

磁束密度B50は、磁化力5000A/mでの磁束密度(単位T)であり、L方向とC方向の測定値を平均したものである。W10/800は、磁束密度1.0T、周波数800Hzでの鉄損で、L方向とC方向の測定値を平均したものである。 The magnetic flux density B 50 is a magnetic flux density (unit T) at a magnetizing force of 5000 A / m, and is an average of measured values in the L direction and the C direction. W 10/800 is an iron loss at a magnetic flux density of 1.0 T and a frequency of 800 Hz, and is an average of measured values in the L direction and the C direction.

なお、平均結晶粒径は、鋼板断面を光学顕微鏡で観察した組織において、L方向の線分と交差する結晶粒界の個数を数え、平均化して求めた。   The average crystal grain size was obtained by counting and averaging the number of crystal grain boundaries intersecting the line segment in the L direction in the structure obtained by observing the cross section of the steel sheet with an optical microscope.

A値は、以下の式で定義される。
A値=W10/800(X)/W10/800(L)
The A value is defined by the following equation.
A value = W 10/800 (X) / W 10/800 (L)

実施例2以下もこれらの記号に準じるものとする。   Example 2 and subsequent examples are also based on these symbols.

Figure 0004855225
Figure 0004855225

Sn添加量が増えれば、A値が小さくなって、異方性が改善され、また、磁束密度も良くなる傾向にある。特に、強圧下冷延において、Sn添加の効果が著しいことが分かる。   If the amount of added Sn increases, the A value decreases, the anisotropy is improved, and the magnetic flux density tends to be improved. In particular, it can be seen that the effect of Sn addition is remarkable in cold rolling under strong pressure.

(実施例2)
質量%で、C:0.003%、Si:3%、Mn:0.15%、Al:0.4%、S:0.0001%、N:0.0010%、Sn:0.05%を含むインゴットを、1200℃に加熱し、表2に示す各種の板厚の熱延板を得た。N2雰囲気中で、1150℃で60秒均熱して、熱延板焼鈍を実施してから、0.28mm厚まで冷延した。
(Example 2)
In mass%, C: 0.003%, Si: 3%, Mn: 0.15%, Al: 0.4%, S: 0.0001%, N: 0.0010%, Sn: 0.05% The ingot containing was heated to 1200 ° C. to obtain hot-rolled sheets having various plate thicknesses shown in Table 2. After soaking at 1150 ° C. for 60 seconds in a N 2 atmosphere and performing hot-rolled sheet annealing, it was cold-rolled to a thickness of 0.28 mm.

次いで、再結晶焼鈍を、20%H2+80%N2雰囲気中で、900℃、10秒均熱して行った。平均結晶粒径は、50μmであった。鋼板幅の収縮率は、0.3%であった。得られた結果を表2に示す。 Next, recrystallization annealing was performed by soaking at 900 ° C. for 10 seconds in a 20% H 2 + 80% N 2 atmosphere. The average grain size was 50 μm. The shrinkage ratio of the steel plate width was 0.3%. The obtained results are shown in Table 2.

Figure 0004855225
Figure 0004855225

冷延率が増加すると、異方性を示すA値が改善されることが分かる。また、本発明範囲の冷延率において、優れた磁束密度が得られていることが分かる。   It can be seen that as the cold rolling rate increases, the A value indicating anisotropy is improved. Moreover, it turns out that the outstanding magnetic flux density is obtained in the cold rolling rate of this invention range.

(実施例3)
質量%で、C:0.002%、Si:2.9%、Mn:0.22%、Al:1.1%、S:0.001%、N:0.0012%、Sn:0.12%を含むスラブを、1150℃に加熱し、1.8mm厚の熱延コイルを得た。
(Example 3)
In mass%, C: 0.002%, Si: 2.9%, Mn: 0.22%, Al: 1.1%, S: 0.001%, N: 0.0012%, Sn: 0.00. The slab containing 12% was heated to 1150 ° C. to obtain a 1.8 mm thick hot rolled coil.

なお、その他の成分(不可避的不純物として)を分析すると、P:0.02%、Cu:0.09%、Ni:0.04%、Cr:0.05%、Ca:0.0013%、V:0.001%、Ti:0.002%、Nb:0.001%、Mo:0.002%、Sb:0.0001%であった。   When other components (as inevitable impurities) were analyzed, P: 0.02%, Cu: 0.09%, Ni: 0.04%, Cr: 0.05%, Ca: 0.0013%, V: 0.001%, Ti: 0.002%, Nb: 0.001%, Mo: 0.002%, Sb: 0.0001%.

この熱延コイルを、N2雰囲気中で、910℃で100秒均熱して、熱延板焼鈍を実施し、その後、0.11mmまで冷延(冷延率93.9%)した。鋼板幅は、1000mmとした。次いで、1000℃、15秒の均熱を、50%H2+50%N2雰囲気を鋼板下から吹き付ける、いわゆるフローティング炉で行った。 This hot-rolled coil was soaked at 910 ° C. for 100 seconds in an N 2 atmosphere and subjected to hot-rolled sheet annealing, and then cold-rolled to 0.11 mm (cold rolling rate of 93.9%). The steel plate width was 1000 mm. Next, soaking at 1000 ° C. for 15 seconds was performed in a so-called floating furnace in which a 50% H 2 + 50% N 2 atmosphere was blown from below the steel plate.

炉中の鋼板張力を、0.1〜0.3kgf/mm2とし、冷却ゾーンの700℃で、熱間レベラー3本の中の中央ロールの押し込み量を調整して、鋼板幅の収縮率を変更した。平均結晶粒径は、100μmであった。結果を表3示す。 The steel sheet tension in the furnace is 0.1 to 0.3 kgf / mm 2, and the amount of shrinkage of the steel sheet width is adjusted by adjusting the amount of pressing of the central roll in the three hot levelers at 700 ° C. in the cooling zone. changed. The average grain size was 100 μm. The results are shown in Table 3.

なお、B値=W10/800(C)/W10/800(L) とした。 B value = W 10/800 (C) / W 10/800 (L).

Figure 0004855225
Figure 0004855225

表3から、幅収縮率(鋼板幅の収縮率)が増加し、本発明の範囲を超えると、X方向の高周波鉄損が大きく劣化することが分かる。また、B値によれば、C方向の高周波鉄損は、幅収縮率が0.71%までは問題が少ないようである。なお、W15/50(C)/W15/50(L)の指標で測定すると、実験No.1→5の順で、それぞれ、1.09、1.10、1.10、1.11、1.35であった。 From Table 3, it can be seen that when the width shrinkage ratio (shrinkage ratio of the steel sheet width) increases and exceeds the range of the present invention, the high-frequency iron loss in the X direction is greatly deteriorated. Also, according to the B value, the high frequency iron loss in the C direction seems to be less problematic until the width shrinkage rate is 0.71%. In addition, when measured with the index W 15/50 (C) / W 15/50 (L), the experiment No. They were 1.09, 1.10, 1.10, 1.11 and 1.35 in the order of 1 → 5, respectively.

これらのことから、高周波鉄損の優れたコアを得るためには、鋼板の幅方向の収縮率を、本発明の範囲内に厳密に制御しなければならないことが分かる。   From these facts, it can be seen that in order to obtain a core excellent in high-frequency iron loss, the shrinkage ratio in the width direction of the steel sheet must be strictly controlled within the scope of the present invention.

前述したように、本発明によれば、モーターやトランスのコア用として最適な磁気特性を有する無方向性電磁鋼板を提供することができる。したがって、本発明は、無方向性電磁鋼板を素材として用いる電気機器製造産業において利用可能性が大きいものである。   As described above, according to the present invention, it is possible to provide a non-oriented electrical steel sheet having optimum magnetic properties for a motor or transformer core. Therefore, the present invention has great applicability in the electrical equipment manufacturing industry using non-oriented electrical steel sheets as raw materials.

Claims (3)

質量%で、C:0.005%以下、Si:2〜4%、Mn:1%以下、Al:0.3〜2%、Sn:0.003〜0.2%を含有し、残部がFe及び不可避的不純物からなる熱延板に熱延板焼鈍を施した後、圧下率が84.4〜95%の冷間圧延を一回施し、次いで、再結晶焼鈍を、該焼鈍中の鋼板幅収縮率を0.5%以下に制御しつつ施して製造した0.1〜0.3mm厚の無方向性電磁鋼板であって、
圧延方向(L方向)の鉄損W10/800(L)と、圧延方向と55°の方向(X方向)の鉄損W10/800(X)が、下記式(1)を満たす磁気特性を有する
ことを特徴とする異方性の小さい無方向性電磁鋼板。
10/800(X)/W10/800(L)≦1.20 ・・・(1)
In mass%, C: 0.005% or less, Si: 2-4%, Mn: 1% or less, Al: 0.3-2%, Sn: 0.003-0.2%, the balance being After hot-rolled sheet annealing is performed on a hot-rolled sheet made of Fe and inevitable impurities , cold rolling with a rolling reduction of 84.4 to 95% is performed once, and then recrystallization annealing is performed on the steel sheet during the annealing. A non-oriented electrical steel sheet having a thickness of 0.1 to 0.3 mm produced by controlling the width shrinkage rate to 0.5% or less,
The iron loss W 10/800 in the rolling direction (L direction) (L), the iron loss W 10/800 in the rolling direction and 55 ° direction (X direction) (X) is, magnetic properties satisfying the following formulas (1) A non-oriented electrical steel sheet having small anisotropy, characterized by comprising:
W 10/800 (X) / W 10/800 (L) ≦ 1.20 (1)
前記磁気特性において、鉄損W10/800が40W/kg以下であることを特徴とする請求項1に記載の異方性の小さい無方向性電磁鋼板。 The non-oriented electrical steel sheet with small anisotropy according to claim 1, wherein the iron loss W 10/800 is 40 W / kg or less in the magnetic characteristics. 前記熱延板焼鈍を900℃超の温度で施すことを特徴とする請求項1又は2に記載の異方性の小さい無方向性電磁鋼板。 The non-oriented electrical steel sheet with small anisotropy according to claim 1 or 2 , wherein the hot-rolled sheet annealing is performed at a temperature exceeding 900 ° C.
JP2006316200A 2006-11-22 2006-11-22 Non-oriented electrical steel sheet with small anisotropy Active JP4855225B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006316200A JP4855225B2 (en) 2006-11-22 2006-11-22 Non-oriented electrical steel sheet with small anisotropy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006316200A JP4855225B2 (en) 2006-11-22 2006-11-22 Non-oriented electrical steel sheet with small anisotropy

Publications (2)

Publication Number Publication Date
JP2008127659A JP2008127659A (en) 2008-06-05
JP4855225B2 true JP4855225B2 (en) 2012-01-18

Family

ID=39553797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006316200A Active JP4855225B2 (en) 2006-11-22 2006-11-22 Non-oriented electrical steel sheet with small anisotropy

Country Status (1)

Country Link
JP (1) JP4855225B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8160760B2 (en) * 2009-09-23 2012-04-17 GM Global Technology Operations LLC Human-machine interface device for an autonomic vehicle control system
JP6033089B2 (en) * 2013-01-07 2016-11-30 新日鐵住金株式会社 Electrical steel sheet and rotor for rotor core
JP6828815B2 (en) * 2017-06-02 2021-02-10 日本製鉄株式会社 Non-oriented electrical steel sheet
EP3633055B1 (en) * 2017-06-02 2023-07-19 Nippon Steel Corporation Non-oriented electrical steel sheet
JP6828816B2 (en) * 2017-06-02 2021-02-10 日本製鉄株式会社 Non-oriented electrical steel sheet
TWI693289B (en) * 2017-06-07 2020-05-11 日商日本製鐵股份有限公司 Non-directional electromagnetic steel plate
JP7040184B2 (en) * 2018-03-20 2022-03-23 日本製鉄株式会社 Non-oriented electrical steel sheet and its manufacturing method
EP3783126B1 (en) 2018-03-26 2023-09-06 Nippon Steel Corporation Non-oriented electrical steel sheet

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3719183B2 (en) * 2001-10-05 2005-11-24 Jfeスチール株式会社 Non-oriented electrical steel sheet for electric power steering motor and manufacturing method thereof

Also Published As

Publication number Publication date
JP2008127659A (en) 2008-06-05

Similar Documents

Publication Publication Date Title
JP4855222B2 (en) Non-oriented electrical steel sheet for split core
EP3859032B1 (en) Non-oriented electrical steel sheet and method for producing same, and motor core and method for producing same
JP4586669B2 (en) Method for producing non-oriented electrical steel sheet for rotor
JP4681450B2 (en) Non-oriented electrical steel sheet with excellent magnetic properties in the rolling direction and manufacturing method thereof
JP4855225B2 (en) Non-oriented electrical steel sheet with small anisotropy
JP5712863B2 (en) Method for producing non-oriented electrical steel sheet
JP4855220B2 (en) Non-oriented electrical steel sheet for split core
JP6451832B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP6432173B2 (en) Non-oriented electrical steel sheet with good all-round magnetic properties
JP6855895B2 (en) Non-oriented electrical steel sheet and its manufacturing method
JP2011084761A (en) Non-oriented electromagnetic steel sheet for rotor and manufacturing method therefor
JP4860783B2 (en) Non-oriented electrical steel sheet
JP2019183185A (en) Nonoriented electromagnetic steel sheet
JP4710465B2 (en) Method for producing non-oriented electrical steel sheet for rotor
JP6443355B2 (en) Method for producing grain-oriented electrical steel sheet
JP4218077B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP2018178198A (en) Nonoriented electromagnetic steel sheet and manufacturing method therefor
JP6855894B2 (en) Non-oriented electrical steel sheet and its manufacturing method
JP7028337B2 (en) Non-oriented electrical steel sheet and manufacturing method of laminated core using it
JP4710458B2 (en) Method for producing non-oriented electrical steel sheet for rotor
JP4855221B2 (en) Non-oriented electrical steel sheet for split core
JP2008260996A (en) Non-oriented electromagnetic steel sheet superior in magnetic properties in rolling direction, and manufacturing method therefor
JP2001152300A (en) Nonoriented silicon steel sheet minimal in magnetic anisotropy in high frequency region and excellent in press workability
JP4622162B2 (en) Non-oriented electrical steel sheet
JP3497431B2 (en) Low iron loss non-oriented electrical steel sheet having good workability and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111018

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111026

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4855225

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350