JP7040184B2 - Non-oriented electrical steel sheet and its manufacturing method - Google Patents

Non-oriented electrical steel sheet and its manufacturing method Download PDF

Info

Publication number
JP7040184B2
JP7040184B2 JP2018052220A JP2018052220A JP7040184B2 JP 7040184 B2 JP7040184 B2 JP 7040184B2 JP 2018052220 A JP2018052220 A JP 2018052220A JP 2018052220 A JP2018052220 A JP 2018052220A JP 7040184 B2 JP7040184 B2 JP 7040184B2
Authority
JP
Japan
Prior art keywords
cold rolling
steel sheet
rolling
plate thickness
oriented electrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018052220A
Other languages
Japanese (ja)
Other versions
JP2019163509A (en
Inventor
智 鹿野
大介 新國
岳顕 脇坂
利幸 白石
健二 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2018052220A priority Critical patent/JP7040184B2/en
Publication of JP2019163509A publication Critical patent/JP2019163509A/en
Application granted granted Critical
Publication of JP7040184B2 publication Critical patent/JP7040184B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)
  • Metal Rolling (AREA)

Description

本発明は、無方向性電磁鋼板およびその製造方法に関する。 The present invention relates to a non-oriented electrical steel sheet and a method for manufacturing the same.

モータに用いられる無方向性電磁鋼板(例えば、分割鉄心等の無方向性電磁鋼板)には、圧延方向の磁気特性を向上させることが従来から求められている。そのために、磁気特性に好ましい<001>方向が圧延方向に平行な集合組織(以下、RD//<001>)を発達させるように、様々な検討がなされてきている。 Non-oriented electrical steel sheets used in motors (for example, non-oriented electrical steel sheets such as split iron cores) have been conventionally required to improve magnetic properties in the rolling direction. Therefore, various studies have been made so as to develop an aggregate structure (hereinafter, RD // <001>) in which the <001> direction, which is preferable for the magnetic characteristics, is parallel to the rolling direction.

例えば、特許文献1には、冷延前の粒径を100μm以下にした熱延鋼板を冷延し、続く再結晶焼鈍の再結晶温度以上までを平均昇温速度100℃/sec以上で急速加熱することが開示されている。また、このようにして得られた無方向性電磁鋼板は、圧延方向の磁気特性に優れることが開示されている。
特許文献2には、質量%で、Si量が1.5%~3.5%およびP量が0.06%~0.20%で含有し、{100}<001>方位の集積度を{110}<001>方位の集積度より大きくした無方向性電磁鋼板が開示されている。また、この無方向性電磁鋼板は、L方向およびC方向の磁気特性に優れることが開示されている。さらに、この無方向性電磁鋼板は、冷間圧延において、中間焼鈍を挟む2回冷延を行うことにより得られることが開示されている。
特許文献3には、L方向およびC方向の両方向ともに優れた無方向性電磁鋼板が開示されている。また、この無方向性電磁鋼板は、冷間圧延において、上側ワークロールおよび下側ワークロール間の周速比が10%以上である異周速冷延を行うことにより得られることが開示されている。
特許文献4には、質量%で、Al量が0.02%以下で含有し、L方向およびC方向の磁気特性に優れた無方向性電磁鋼板が開示されている。また、この無方向性電磁鋼板は、冷間圧延の最終パスを除く少なくとも1パスを、100℃~300℃で行うことにより得られることが開示されている。
特許文献5には、熱延で少なくとも1パスを異周速圧延する熱延板の製造方法が開示されている。
For example, in Patent Document 1, a hot-rolled steel sheet having a particle size before cold rolling of 100 μm or less is cold-rolled and rapidly heated up to the recrystallization temperature of subsequent recrystallization annealing at an average temperature rise rate of 100 ° C./sec or more. It is disclosed to do. Further, it is disclosed that the non-oriented electrical steel sheet thus obtained is excellent in magnetic properties in the rolling direction.
In Patent Document 2, the amount of Si is 1.5% to 3.5% and the amount of P is 0.06% to 0.20% in mass%, and the degree of integration in the {100} <001> orientation is described. {110} <001> Non-oriented electrical steel sheets having a greater degree of integration than the orientation are disclosed. Further, it is disclosed that this non-oriented electrical steel sheet is excellent in magnetic properties in the L direction and the C direction. Further, it is disclosed that this non-oriented electrical steel sheet can be obtained by cold rolling twice with intermediate annealing sandwiched between them.
Patent Document 3 discloses an excellent non-oriented electrical steel sheet in both the L direction and the C direction. Further, it is disclosed that this non-oriented electrical steel sheet can be obtained by cold rolling at different peripheral speeds in which the peripheral speed ratio between the upper work roll and the lower work roll is 10% or more. There is.
Patent Document 4 discloses a non-oriented electrical steel sheet having an Al content of 0.02% or less in mass% and excellent magnetic properties in the L and C directions. Further, it is disclosed that this non-oriented electrical steel sheet can be obtained by performing at least one pass excluding the final pass of cold rolling at 100 ° C to 300 ° C.
Patent Document 5 discloses a method for manufacturing a hot-rolled plate in which at least one pass is hot-rolled at different peripheral speeds.

特開2012-132070号公報Japanese Unexamined Patent Publication No. 2012-13207 特開2012-036454号公報Japanese Unexamined Patent Publication No. 2012-036454 特開2005-186112号公報Japanese Unexamined Patent Publication No. 2005-186112 特開2002-003944号公報Japanese Patent Application Laid-Open No. 2002-003944 特開平03-138317号公報Japanese Unexamined Patent Publication No. 03-138317

ところで、近年、例えば、分割鉄心用に適用される無方向性電磁鋼板には、幅方向(以下、「C方向」と称する場合がある)の磁気特性向上が求められ、さらに、安価であることが要求されている。そのため、従来の無方向性電磁鋼板は、磁気特性に加えて生産コストの観点でもさらなる改善の余地があった。
例えば、特許文献1に記載の無方向性電磁鋼板は、L方向の磁気特性に優れるが、C方向の磁気特性に改善の余地がある。
特許文献2に記載の無方向性電磁鋼板は、{100}<001>方位が発達しているので、L及びC方向の磁気特性が好ましい。しかし、磁気特性が十分とはいえず、磁気特性改善にさらなる改善の余地がある。さらに、この集合組織を得るためには中間焼鈍を挟む2回の冷延が必要であるため、生産コストの点で不利である。
特許文献3に記載の無方向性電磁鋼板の製造方法では、冷延時の鋼板とロール間の摩擦係数が従来通りであるため、必ずしも表裏面および板厚中央に付加的せん断ひずみが多く導入されているわけではない。したがって、付加的せん断ひずみ導入による表裏面および板厚中央の集合組織改善に対して改善の余地があり、磁気特性をさらに向上させる見込みがある。
特許文献4に記載の無方向性電磁鋼板では、Al量が0.02%以下に限定されており、低鉄損が要求される高Al量の無方向性電磁鋼板は得られていない。また、製造方法については、最終冷延を除く冷延での温間圧延が前提となるため設備コストの点で不利である。
特許文献5に記載の無方向性電磁鋼板では、熱延での少なくとも1パスを異周速圧延するので、熱延板厚のばらつきが発生する。その結果、冷延率が変化し磁束密度の値がばらつくことが想定される。
By the way, in recent years, for example, non-oriented electrical steel sheets applied for split iron cores are required to improve magnetic properties in the width direction (hereinafter, may be referred to as "C direction"), and are inexpensive. Is required. Therefore, the conventional non-oriented electrical steel sheet has room for further improvement in terms of production cost in addition to magnetic characteristics.
For example, the non-oriented electrical steel sheet described in Patent Document 1 is excellent in magnetic properties in the L direction, but there is room for improvement in magnetic properties in the C direction.
Since the non-oriented electrical steel sheet described in Patent Document 2 has a well-developed {100} <001> orientation, magnetic properties in the L and C directions are preferable. However, the magnetic characteristics are not sufficient, and there is room for further improvement in improving the magnetic characteristics. Further, in order to obtain this texture, it is necessary to perform two cold rolls sandwiching the intermediate annealing, which is disadvantageous in terms of production cost.
In the method for manufacturing grain-oriented electrical steel sheet described in Patent Document 3, since the coefficient of friction between the steel sheet and the roll during cold rolling is the same as before, a large amount of additional shear strain is necessarily introduced on the front and back surfaces and the center of the plate thickness. Not at all. Therefore, there is room for improvement in the texture improvement on the front and back surfaces and the center of the plate thickness by introducing additional shear strain, and it is expected that the magnetic characteristics will be further improved.
In the non-oriented electrical steel sheet described in Patent Document 4, the Al content is limited to 0.02% or less, and a non-oriented electrical steel sheet having a high Al content that requires low iron loss has not been obtained. In addition, the manufacturing method is disadvantageous in terms of equipment cost because it is premised on warm rolling in cold rolling excluding final cold rolling.
In the non-oriented electrical steel sheet described in Patent Document 5, at least one pass in hot rolling is rolled at different peripheral speeds, so that the thickness of the hot rolled sheet varies. As a result, it is assumed that the cold rolling ratio changes and the value of the magnetic flux density varies.

本発明の課題は、磁束密度が高く、優れた磁気特性を有する無方向性電磁鋼板、及びこの電磁鋼板を低コストで製造する製造方法を提供するものである。 An object of the present invention is to provide a non-oriented electrical steel sheet having a high magnetic flux density and excellent magnetic properties, and a manufacturing method for manufacturing the electrical steel sheet at low cost.

上記課題を解決するための手段には、以下の態様が含まれる。 The means for solving the above problems include the following aspects.

<1>
質量%で、
C :0.0001%~0.005%、
Si:2.0%~5.0%、
Mn:0.1%~3.0%、
Al:0.1%~3.0%、
P :0.001%~0.20%、
S :0.0001%~0.005%、
N :0.0001%~0.005%、
Sn:0.001%~0.20%、並びに、
残部:Fe及び不純物からなる化学組成を有し、
鋼板表面から板厚1/10位置、板厚1/2位置、および板厚9/10位置における{410}<001>方位の集積度の和が13.0以上である無方向性電磁鋼板。
<2>
<1>に記載の無方向性電磁鋼板を製造する方法であって、
質量%で、C :0.0001%~0.005%、Si:2.0%~5.0%、Mn:0.1%~3.0%、Al:0.1%~3.0%、P :0.001%~0.20%、S :0.0001%~0.005%、N :0.0001%~0.005%、Sn:0.001%~0.20%、並びに、残部:Fe及び不純物からなる化学組成を有する鋼片を、熱間圧延する熱間圧延工程と、
前記熱間圧延後の鋼板に、冷間圧延を行う冷間圧延工程であって、累積された付加的剪断ひずみの平均値(aveΓ)が4.0以上である鋼板とする冷間圧延工程と、
前記冷間圧延後の鋼板に、仕上げ焼鈍する工程と、
を有する無方向性電磁鋼板の製造方法。
<3>
<1>に記載の無方向性電磁鋼板を製造する方法であって、
質量%で、C :0.0001%~0.005%、Si:2.0%~5.0%、Mn:0.1%~3.0%、Al:0.1%~3.0%、P :0.001%~0.20%、S :0.0001%~0.005%、N :0.0001%~0.005%、Sn:0.001%~0.20%、並びに、残部:Fe及び不純物からなる化学組成を有する鋼片を、熱間圧延する熱間圧延工程と、
前記熱間圧延後の鋼板に、冷間圧延を行う冷間圧延工程であって、周速の異なる2つのワークロールによる異周速での冷間圧延を、前記ワークロールと、前記ワークロールに接する鋼板の表面との摩擦係数が0.1超~0.3であり、かつ異速率が5%~40%である圧延を1パス以上実施し、前記摩擦係数と前記異速率を満足する異周速での冷延の合計圧下率が20%~50%となる条件で行う冷間圧延工程と、
前記冷間圧延後の鋼板に、仕上げ焼鈍する工程と、
を有する無方向性電磁鋼板の製造方法。
<1>
By mass%,
C: 0.0001% to 0.005%,
Si: 2.0% -5.0%,
Mn: 0.1% -3.0%,
Al: 0.1% -3.0%,
P: 0.001% to 0.20%,
S: 0.0001% to 0.005%,
N: 0.0001% to 0.005%,
Sn: 0.001% to 0.20%, and
Remaining: Has a chemical composition consisting of Fe and impurities,
A non-oriented electrical steel sheet in which the sum of the degree of integration of {410} <001> orientations at the plate thickness 1/10 position, the plate thickness 1/2 position, and the plate thickness 9/10 position from the surface of the steel plate is 13.0 or more.
<2>
The method for manufacturing non-oriented electrical steel sheets according to <1>.
By mass%, C: 0.0001% to 0.005%, Si: 2.0% to 5.0%, Mn: 0.1% to 3.0%, Al: 0.1% to 3.0. %, P: 0.001% to 0.20%, S: 0.0001% to 0.005%, N: 0.0001% to 0.005%, Sn: 0.001% to 0.20%, In addition, the balance: a hot rolling step of hot rolling a steel piece having a chemical composition consisting of Fe and impurities.
A cold rolling step of cold rolling a steel sheet after hot rolling, and a cold rolling step of making a steel sheet having an average value (aveΓ) of accumulated additional shear strains of 4.0 or more. ,
The process of finish annealing the steel sheet after cold rolling and
A method for manufacturing a non-oriented electrical steel sheet having.
<3>
The method for manufacturing non-oriented electrical steel sheets according to <1>.
By mass%, C: 0.0001% to 0.005%, Si: 2.0% to 5.0%, Mn: 0.1% to 3.0%, Al: 0.1% to 3.0. %, P: 0.001% to 0.20%, S: 0.0001% to 0.005%, N: 0.0001% to 0.005%, Sn: 0.001% to 0.20%, In addition, the balance: a hot rolling step of hot rolling a steel piece having a chemical composition consisting of Fe and impurities.
In the cold rolling step of cold rolling the steel sheet after hot rolling, cold rolling at different peripheral speeds by two work rolls having different peripheral speeds is performed on the work roll and the work roll. Rolling with a friction coefficient of more than 0.1 to 0.3 and a different speed rate of 5% to 40% with the surface of the steel sheet in contact is carried out for one pass or more, and the friction coefficient and the different speed rate are satisfied. A cold rolling process performed under the condition that the total reduction rate of cold rolling at peripheral speed is 20% to 50%, and
The process of finish annealing the steel sheet after cold rolling and
A method for manufacturing a non-oriented electrical steel sheet having.

本発明によれば、磁束密度が高く、優れた磁気特性を有する無方向性電磁鋼板、及びこの電磁鋼板を低コストで製造する製造方法が提供される。 INDUSTRIAL APPLICABILITY According to the present invention, a non-oriented electrical steel sheet having a high magnetic flux density and excellent magnetic properties, and a manufacturing method for manufacturing the electrical steel sheet at low cost are provided.

各摩擦係数における異速率が及ぼす板厚方向での付加的せん断ひずみの分布の影響を表すグラフである。It is a graph which shows the influence of the distribution of the additional shear strain in the plate thickness direction which the different speed rate has on each friction coefficient. 各摩擦係数における異速率が及ぼすaveΓへの影響を表すグラフである。It is a graph which shows the influence on aveΓ that the different speed rate at each friction coefficient has. 磁束密度B50に及ぼす累積aveΓの影響を表すグラフである。It is a graph which shows the influence of the cumulative avoid Γ on the magnetic flux density B 50 . 各方位における板厚方向の集積度の和に及ぼす累積aveΓの影響を表すグラフである。It is a graph which shows the influence of cumulative aveΓ on the sum of the degree of accumulation in the plate thickness direction in each direction. 摩擦係数0.20の場合における累積aveΓに及ぼす異周速冷延の圧下率および異速率の影響を表すグラフである。It is a graph which shows the influence of the reduction rate and the different speed rate of different peripheral speed cold rolling on the cumulative aveΓ in the case of the friction coefficient 0.20. 摩擦係数0.20の場合におけるL方向の磁束密度B50に及ぼす異周速冷延の圧下率および異速率の影響を表すグラフである。It is a graph showing the influence of the reduction rate and the different speed rate of different peripheral speed cold rolling on the magnetic flux density B 50 in the L direction when the friction coefficient is 0.20. 摩擦係数0.20の場合におけるC方向の磁束密度B50に及ぼす異周速冷延の圧下率および異速率の影響を表すグラフである。It is a graph showing the influence of the reduction rate and the different speed rate of different peripheral speed cold rolling on the magnetic flux density B 50 in the C direction when the friction coefficient is 0.20.

以下、本発明の好ましい実施形態の一例について説明する。 Hereinafter, an example of a preferred embodiment of the present invention will be described.

本明細書中において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。また、「~」の前後に記載される数値に「超」および「未満」の少なくとも一方が付されている場合の数値範囲は、これら数値を下限値または上限値として含まない範囲を意味する。
本明細書中において、成分(元素)の含有量を示す「%」は、「質量%」を意味する。
本明細書中において、C(炭素)の含有量を、「C量」と表記することがある。他の元素の含有量についても同様に表記することがある。
本明細書中において、「工程」との用語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の目的が達成されれば、本用語に含まれる。
In the present specification, the numerical range represented by using "-" means a range including the numerical values before and after "-" as the lower limit value and the upper limit value. Further, the numerical range when at least one of "greater than" and "less than" is attached to the numerical values before and after "to" means a range in which these numerical values are not included as the lower limit value or the upper limit value.
In the present specification, "%" indicating the content of a component (element) means "mass%".
In the present specification, the content of C (carbon) may be referred to as "C amount". The content of other elements may be described in the same manner.
In the present specification, the term "process" is used not only as an independent process but also as long as the intended purpose of the process is achieved even if it cannot be clearly distinguished from other processes. included.

本明細書中において、方位(例えば、{410}<001>方位)は、圧延面の法線方向(圧延面方向)のミラー指数、および圧延方向と平行な方向(圧延面内方向)のミラー指数について、それぞれ±5°以内の方位であるものを表す。
なお、以下の説明において、板厚1/10位置、板厚1/2位置、および板厚9/10位置は、それぞれ、1/10t、1/2t、および1/9tと称する場合がある。
In the present specification, the orientation (for example, {410} <001> orientation) is the Miller index in the normal direction of the rolling surface (rolling surface direction) and the mirror in the direction parallel to the rolling direction (in-rolling surface direction). Each index represents an orientation within ± 5 °.
In the following description, the plate thickness 1/10 position, the plate thickness 1/2 position, and the plate thickness 9/10 position may be referred to as 1/10t, 1 / 2t, and 1 / 9t, respectively.

<無方向性電磁鋼板>
本実施形態の無方向性電磁鋼板は、質量%で、C:0.0001%~0.005%、Si:2.0%~5.0%、Mn:0.1%~3.0%、Al:0.1%~3.0%、P:0.001%~0.20%、S:0.0001%~0.005%、N:0.0001%~0.005%、Sn:0.001%~0.20%、並びに、残部:Fe及び不純物を含有する化学組成を有する。そして、鋼板表面から板厚1/10位置、板厚1/2位置、および板厚9/10位置における{410}<001>方位の集積度の和が13.0以上である。
<A non-oriented electrical steel sheet>
The non-directional electromagnetic steel plate of the present embodiment has C: 0.0001% to 0.005%, Si: 2.0% to 5.0%, Mn: 0.1% to 3.0% in mass%. , Al: 0.1% to 3.0%, P: 0.001% to 0.20%, S: 0.0001% to 0.005%, N: 0.0001% to 0.005%, Sn : 0.001% to 0.20%, and balance: Fe and a chemical composition containing impurities. The sum of the degree of integration of the {410} <001> orientations at the plate thickness 1/10 position, the plate thickness 1/2 position, and the plate thickness 9/10 position from the surface of the steel plate is 13.0 or more.

本実施形態の無方向性電磁鋼板では、板厚全体に導入される付加的せん断ひずみ量の平均値(板厚平均での付加的せん断ひずみ量)が増加したことで、1/10t、1/2t、および9/10tにおける{410}<001>方位の集積度の和が13.0以上となっていると考えられる。
{410}<001>方位は、磁気特性に好ましい{100}<001>方位に近い方位であるため、磁気特性の向上に好ましい方位といえる。この磁気特性に好ましい{410}<001>方位の集積度が13.0以上に発達していることで、磁束密度が向上したと考えられる。したがって、本実施形態の無方向性電磁鋼板は優れた磁気特性を有する。
なお、1/10t、1/2t、および9/10tにおける{410}<001>方位の集積度の和は、言い換えると、鋼板両側の1/10tの2つの位置および1/2tにおける{410}<001>方位の集積度の合計でもある。
In the non-directional electromagnetic steel plate of the present embodiment, the average value of the additional shear strain amount introduced in the entire plate thickness (additional shear strain amount in the plate thickness average) is increased, so that 1 / 10t, 1 / It is considered that the sum of the accumulation degrees of the {410} <001> orientations at 2t and 9 / 10t is 13.0 or more.
Since the {410} <001> direction is a direction close to the {100} <001> direction that is preferable for the magnetic characteristics, it can be said that the direction is preferable for improving the magnetic characteristics. It is considered that the magnetic flux density is improved because the degree of integration of the {410} <001> orientation, which is preferable for this magnetic characteristic, is developed to 13.0 or more. Therefore, the non-oriented electrical steel sheet of the present embodiment has excellent magnetic properties.
The sum of the degree of integration of the {410} <001> orientations at 1 / 10t, 1 / 2t, and 9 / 10t is, in other words, {410} at the two positions of 1 / 10t on both sides of the steel sheet and at 1 / 2t. <001> It is also the total degree of integration of orientations.

結晶方位は次の方法で測定できる。鋼板から切り出した24mm×24mm程度の鋼板サンプルの両面に対し、機械研磨および化学研磨を実施する。このとき、鋼板表面から板厚1/10位置、板厚1/2位置、板厚9/10位置までの板厚方向中央位置が表面となるまで、それぞれの面を減厚し、測定用試験片を作製する。
各測定用試験片について、X線回折装置により、{200}面、{110}面、{211}面の極点図を測定し、各層における結晶方位分布関数ODF(Orientation Determination Function)を作成する。この結晶方位分布関数に基づき、各層における各方位の集積度を得る。{410}<001>方位の集積度はφ2=0°断面のΦ=20°およびφ1=0°における集積度の値を読み取る。そして、板厚1/10位置、板厚1/2位置、板厚9/10位置における値の和をとる。この他、{111}<112>方位の集積度を測定する場合は、φ2=45°断面のΦ=55°およびφ1=30°における集積度の値を読み取る。また、{110}<001>方位の集積度を測定する場合は、φ2=0°断面のΦ=45°およびφ1=0°における集積度の値を読み取る。これらの結晶方位の集積度それぞれについて、板厚1/10位置、板厚1/2位置、板厚9/10位置における値の和をとる。
The crystal orientation can be measured by the following method. Mechanical polishing and chemical polishing are performed on both sides of a steel plate sample of about 24 mm × 24 mm cut out from the steel plate. At this time, each surface is thinned until the center position in the plate thickness direction from the surface of the steel plate to the plate thickness 1/10 position, the plate thickness 1/2 position, and the plate thickness 9/10 position becomes the surface, and the measurement test is performed. Make a piece.
For each measurement test piece, pole figures of {200} plane, {110} plane, and {211} plane are measured by an X-ray diffractometer, and a crystal orientation distribution function ODF (Orientation Determination Function) in each layer is created. Based on this crystal orientation distribution function, the degree of integration of each orientation in each layer is obtained. For the degree of integration of {410} <001> orientation, read the value of the degree of integration at Φ = 20 ° and φ1 = 0 ° in the cross section of φ2 = 0 °. Then, the sum of the values at the plate thickness 1/10 position, the plate thickness 1/2 position, and the plate thickness 9/10 position is taken. In addition, when measuring the degree of integration in the {111} <112> direction, the values of the degree of integration at Φ = 55 ° and φ1 = 30 ° in the cross section of φ2 = 45 ° are read. Further, when measuring the degree of integration in the {110} <001> direction, the values of the degree of integration at Φ = 45 ° and φ1 = 0 ° in the cross section of φ2 = 0 ° are read. For each of the accumulation degrees of these crystal orientations, the sum of the values at the plate thickness 1/10 position, the plate thickness 1/2 position, and the plate thickness 9/10 position is taken.

また、集合組織が、上記条件を満足する無方向性電磁鋼板が得られ、さらにコスト的に有利な製造条件を検討した。板厚平均での付加的せん断ひずみ量を増加させるには、1パス以上を周速の異なる2つのワークロールによる異周速での冷間圧延(以下、「異周速冷延」と称する場合がある。)を施すことが有効である。異周速冷延は、付加的せん断ひずみが板厚表面から板厚中心まで導入されやすい。しかしながら、単に、異周速冷延を行うのみでは、板厚平均での付加的せん断ひずみ量の導入が未だ十分ではないと考えられ、磁束密度が十分に向上しない場合があった。 In addition, a non-oriented electrical steel sheet having an texture that satisfies the above conditions was obtained, and further cost-effective manufacturing conditions were examined. In order to increase the amount of additional shear strain on the average plate thickness, one pass or more is cold rolled at different peripheral speeds by two work rolls with different peripheral speeds (hereinafter referred to as "different peripheral speed cold rolling"). It is effective to apply). In the different peripheral speed cold rolling, additional shear strain is likely to be introduced from the plate thickness surface to the plate thickness center. However, it is considered that the introduction of the additional shear strain amount on the average plate thickness is not yet sufficient simply by performing different peripheral speed cold rolling, and the magnetic flux density may not be sufficiently improved.

製造条件をさらに検討したところ、異周速冷延において、適正な異速率下で、ワークロールと、ワークロールに接する鋼板の表面との摩擦係数、および異周速冷延を適用する合計圧下率を特定の範囲としたときに、板厚平均での付加的せん断ひずみ量の導入が著しく増加することが判明した。そして、冷間圧延後の鋼板に仕上げ焼鈍を行うことで、再結晶および再結晶粒成長によって、集合組織が上記条件を満たし、それにより、磁気特性が向上することを確認した。また、冷延工程を1回とし、この異周速冷延を1回の冷延工程において行うことで、低コスト化に寄与することになった。 Further examination of the manufacturing conditions revealed that in different peripheral speed cold rolling, the coefficient of friction between the work roll and the surface of the steel plate in contact with the work roll under an appropriate different speed rate, and the total reduction rate to which the different peripheral speed cold rolling is applied. It was found that the introduction of the additional shear strain amount in the average plate thickness was significantly increased when was set to a specific range. Then, it was confirmed that by performing finish annealing on the steel sheet after cold rolling, the texture met the above conditions by recrystallization and growth of recrystallized grains, and thereby the magnetic properties were improved. Further, by performing the cold rolling process once and performing this different peripheral speed cold rolling in one cold rolling step, it has contributed to cost reduction.

以下、本実施形態に係る無方向性電磁鋼板における化学組成の限定理由について述べる。なお、鋼板の成分組成について、「%」は「質量%」である。 Hereinafter, the reasons for limiting the chemical composition of the non-oriented electrical steel sheet according to this embodiment will be described. Regarding the composition of the steel sheet, "%" is "mass%".

本実施形態に係る無方向性電磁鋼板は、質量%で、C:0.0001%~0.005%、Si:2.0%~5.0%、Mn:0.1%~3.0%、Al:0.1%~3.0%、P:0.001%~0.20%、S:0.0001%~0.005%、N:0.0001%~0.005%、Sn:0.001%~0.20%、並びに、残部:Fe及び不純物からなる化学組成を有していてもよい。 The non-directional electromagnetic steel plate according to the present embodiment has C: 0.0001% to 0.005%, Si: 2.0% to 5.0%, Mn: 0.1% to 3.0 in mass%. %, Al: 0.1% to 3.0%, P: 0.001% to 0.20%, S: 0.0001% to 0.005%, N: 0.0001% to 0.005%, It may have a chemical composition consisting of Sn: 0.001% to 0.20%, and the balance: Fe and impurities.

(C:0.0001%~0.005%)
Cは、含有量が多いと、鉄損が低下する。そのため、C量は0.0001%~0.005%以下とする。C量は0.004%以下であることがよく、0.003%以下であることが好ましい。
(C: 0.0001% to 0.005%)
When the content of C is large, the iron loss decreases. Therefore, the amount of C is set to 0.0001% to 0.005% or less. The amount of C is often 0.004% or less, preferably 0.003% or less.

(Si:2.0%~5.0%)
Siは、電気抵抗を増加させるために有効な元素である。しかし、Si量が過剰になると、熱延板焼鈍の有無にかかわらず、冷延性が低下する。そのため、Si量は2.0%~5.0%とする。Si量は4.5%以下であることがよく、4.0%以下であることが好ましい。また、Si量は2.5%以上であることがよく、3.0%以上であることが好ましい。
(Si: 2.0% to 5.0%)
Si is an effective element for increasing electrical resistance. However, if the amount of Si is excessive, the cold ductility is lowered regardless of the presence or absence of hot-rolled sheet annealing. Therefore, the amount of Si is set to 2.0% to 5.0%. The amount of Si is often 4.5% or less, preferably 4.0% or less. Further, the amount of Si is often 2.5% or more, preferably 3.0% or more.

(Mn:0.1%~3.0%)
Mnは電気抵抗を増大させて渦電流損を減少させるとともに、鉄損を低減する作用がある。しかし、Mn量が過剰になると、効果が飽和する。そのため、Mn量は0.1%~3.0%とする。Mn量は2.5%以下であることがよく、2.0%以下であることが好ましい。また、Mn量は0.5%以上であることがよく、0.8%以上であることが好ましい。
(Mn: 0.1% to 3.0%)
Mn has the effect of increasing electrical resistance to reduce eddy current loss and reducing iron loss. However, when the amount of Mn becomes excessive, the effect is saturated. Therefore, the amount of Mn is set to 0.1% to 3.0%. The amount of Mn is often 2.5% or less, preferably 2.0% or less. The amount of Mn is often 0.5% or more, preferably 0.8% or more.

(Al:0.1%~3.0%)
AlはSi同様に電気抵抗を増加させるのに有効な元素である。しかし、Al量が過剰になると、鋳造性が低下する。そのため、Al量は0.1%~3.0%とする。Al量は2.5%以下であることがよく、2.0%以下であることが好ましい。また、Al量は0.3%以上であることがよく、0.5%以上であることが好ましい。
(Al: 0.1% to 3.0%)
Like Si, Al is an effective element for increasing electrical resistance. However, if the amount of Al is excessive, the castability is lowered. Therefore, the amount of Al is set to 0.1% to 3.0%. The amount of Al is often 2.5% or less, preferably 2.0% or less. The amount of Al is often 0.3% or more, preferably 0.5% or more.

(P:0.001%~0.20%)
Pは磁束密度を低下させることなく強度を高める作用がある。しかし、P量が過剰になると、鋼の靱性を損ない、鋼板に破断が生じやすくなる。そのため、P量は0.001%~0.20%とする。P量は0.15%以下であることがよく、0.10%以下であることが好ましい。
(P: 0.001% to 0.20%)
P has the effect of increasing the strength without lowering the magnetic flux density. However, if the amount of P is excessive, the toughness of the steel is impaired and the steel sheet is liable to break. Therefore, the amount of P is set to 0.001% to 0.20%. The amount of P is often 0.15% or less, preferably 0.10% or less.

(S:0.0001%~0.005%)
Sは、含有量が多いと、硫化物の増加により、鉄損に悪影響を及ぼす。そのため、S量は0.0001%~0.005%とする。S量は0.003%以下であることがよく、0.001%以下であることが好ましい。
(S: 0.0001% to 0.005%)
If the content of S is high, the increase in sulfide causes an adverse effect on iron loss. Therefore, the amount of S is set to 0.0001% to 0.005%. The amount of S is often 0.003% or less, preferably 0.001% or less.

(N:0.0001%~0.005%)
Nは、含有量が多いと、窒化物の増加により、鉄損に悪影響を及ぼす。そのため、N量は0.0001%~0.005%とする。N量は0.002%以下であることがよく、0.001%以下であることが好ましい。
(N: 0.0001% to 0.005%)
If the content of N is high, the increase in nitrides adversely affects the iron loss. Therefore, the amount of N is set to 0.0001% to 0.005%. The amount of N is often 0.002% or less, preferably 0.001% or less.

(Sn:0.001%~0.20%)
Snは磁束密度を高める作用がある。しかし、Sn量が過剰になると、鋼の靱性を損ない、鋼板に破断が生じやすくなる。そのため、Sn量は0.001~0.20%とする。Sn量は0.10%以下であることがよく、0.05%以下であることが好ましい。
(Sn: 0.001% to 0.20%)
Sn has the effect of increasing the magnetic flux density. However, if the Sn amount is excessive, the toughness of the steel is impaired and the steel sheet is liable to break. Therefore, the Sn amount is set to 0.001 to 0.20%. The Sn amount is often 0.10% or less, preferably 0.05% or less.

(Feおよび不純物)
鋼板の残部は、Feおよび不純物である。本実施形態の化学組成において、上述した各元素を除いた残部は、Fe及び不純物である。
ここで、不純物とは、原材料に含まれる成分、または、製造の過程で混入する成分であって、意図的に鋼板に含有させたものではない成分を指す。
(Fe and impurities)
The rest of the steel sheet is Fe and impurities. In the chemical composition of this embodiment, the balance excluding each element described above is Fe and impurities.
Here, the impurity refers to a component contained in the raw material or a component mixed in the manufacturing process and not intentionally contained in the steel sheet.

なお、測定試料となる鋼板が、表面に絶縁皮膜等を有している場合は、これを除去した後に測定する。絶縁皮膜等を除去する方法としては、例えば、次の方法が挙げられる。
まず、絶縁皮膜等を有する無方向性電磁鋼板を、水酸化ナトリウム水溶液(NaOH:10質量%+HO:90質量%)に、80℃で15分間、浸漬する。次いで、硫酸水溶液(HSO:10質量%+HO:90質量%)に、80℃で3分間、浸漬する。その後、硝酸水溶液(HNO:10質量%+HO:90質量%)によって、常温(25℃)で1分間弱、浸漬して洗浄する。最後に、温風のブロアーで1分間弱、乾燥させる。これにより、絶縁皮膜が除去される。
If the steel sheet used as the measurement sample has an insulating film or the like on the surface, the measurement is performed after removing the insulating film or the like. Examples of the method for removing the insulating film and the like include the following methods.
First, a non-oriented electrical steel sheet having an insulating film or the like is immersed in an aqueous sodium hydroxide solution (NaOH: 10% by mass + H2O : 90% by mass) at 80 ° C. for 15 minutes. Then, it is immersed in an aqueous sulfuric acid solution (H 2 SO 4 : 10% by mass + H 2 O: 90% by mass) at 80 ° C. for 3 minutes. Then, it is washed by immersing it in a nitric acid aqueous solution (HNO 3 : 10% by mass + H2 O: 90% by mass) at room temperature (25 ° C.) for a little less than 1 minute. Finally, dry with a warm air blower for a little less than 1 minute. As a result, the insulating film is removed.

鋼板中の各元素の含有割合は、例えば、誘導結合プラズマ質量分析法(ICP-MS法:Inductively Coupled Plasma-Mass Spectrometry)により測定することができる。具体的には、まず、測定対象となる無方向性電磁鋼板を準備する。絶縁皮膜等を有する場合は、上記操作により除去しておく。そして、当該電磁鋼板の一部を切子状にして秤量し、これを測定用試料とする。当該測定用試料を酸に溶解させて酸溶解液とし、残渣は濾紙回収して別途アルカリ等に融解し、融解物を酸で抽出して溶液化する。当該溶液と前記酸溶解液とを混合し、必要に応じて希釈することにより、ICP-MS測定用溶液とすることができる。 The content ratio of each element in the steel plate can be measured by, for example, inductively coupled plasma mass spectrometry (ICP-MS method: Inductively Coupled Plasma-Mass Spectrometry). Specifically, first, a non-oriented electrical steel sheet to be measured is prepared. If it has an insulating film, remove it by the above operation. Then, a part of the electrical steel sheet is cut into pieces and weighed, and this is used as a measurement sample. The sample for measurement is dissolved in an acid to prepare an acid solution, the residue is collected from a filter paper and separately melted in an alkali or the like, and the melt is extracted with an acid to form a solution. By mixing the solution and the acid-dissolving solution and diluting them as necessary, an ICP-MS measurement solution can be obtained.

(無方向性電磁鋼板の製造方法)
次に、本実施形態の無方向性電磁鋼板の好ましい製造方法の一例について説明する。
(Manufacturing method of non-oriented electrical steel sheet)
Next, an example of a preferable manufacturing method of the non-oriented electrical steel sheet of the present embodiment will be described.

本実施形態の無方向性電磁鋼板の好適な製造方法の一例としては、前述の化学組成(質量%で、C:0.0001%~0.005%、Si:2.0%~5.0%、Mn:0.1%~3.0%、Al:0.1%~3.0%、P:0.001%~0.20%、S:0.0001%~0.005%、N:0.0001%~0.005%、Sn:0.001%~0.20%、並びに、残部:Fe及び不純物を含有する)を有する鋼片を、熱間圧延する熱間圧延(熱延)工程と、熱間圧延後の鋼板に冷間圧延する冷間圧延(冷延)工程と、冷間圧延後の鋼板に仕上げ焼鈍する工程と、を有する。
冷延工程では、累積された付加的剪断ひずみの平均値(aveΓ)が4.0以上である鋼板(冷延板)とする。
As an example of a suitable manufacturing method for the non-directional electromagnetic steel sheet of the present embodiment, the above-mentioned chemical composition (in mass%, C: 0.0001% to 0.005%, Si: 2.0% to 5.0) %, Mn: 0.1% to 3.0%, Al: 0.1% to 3.0%, P: 0.001% to 0.20%, S: 0.0001% to 0.005%, Hot rolling (heat) of hot rolling a steel piece having N: 0.0001% to 0.005%, Sn: 0.001% to 0.20%, and the balance: containing Fe and impurities). It has a rolling) step, a cold rolling (cold rolling) step of cold rolling on a steel sheet after hot rolling, and a step of finishing and annealing the steel sheet after cold rolling.
In the cold rolling step, a steel plate (cold rolled plate) having an average value (aveΓ) of accumulated additional shear strains of 4.0 or more is used.

累積された付加的剪断ひずみの平均値(aveΓ)が4.0以上となる冷延板が得られるのであれば、冷延工程の条件は特に限定されるものではない。このような冷延板を得るための冷延工程としては、例えば、異周速での冷延を施すことが挙げられる。異周速での冷延を施す場合の好ましい条件は特に限定されず、例えば、後述の異周速での冷延条件が挙げられる。 As long as a cold-rolled plate having an average value (aveΓ) of cumulative additional shear strains of 4.0 or more can be obtained, the conditions of the cold-rolled step are not particularly limited. Examples of the cold rolling step for obtaining such a cold rolling plate include cold rolling at different peripheral speeds. The preferred conditions for cold rolling at different peripheral speeds are not particularly limited, and examples thereof include cold rolling conditions at different peripheral speeds, which will be described later.

本実施形態の無方向性電磁鋼板の好適な製造方法の他の一例としては、前述の化学組成(質量%で、C:0.0001%~0.005%、Si:2.0%~5.0%、Mn:0.1%~3.0%、Al:0.1%~3.0%、P:0.001%~0.20%、S:0.0001%~0.005%、N:0.0001%~0.005%、Sn:0.001%~0.20%、並びに、残部:Fe及び不純物を含有する)を有する鋼片を、熱間圧延する熱間圧延(熱延)工程と、熱間圧延後の鋼板に冷間圧延する冷間圧延(冷延)工程と、冷間圧延後の鋼板に仕上げ焼鈍する工程と、を有する。
冷延工程は、周速の異なる2つのワークロールによる異周速での冷間圧延を、ワークロールと、ワークロールに接する鋼板の表面との摩擦係数が0.1超~0.3であり、かつ、異速率が5%~40%である圧延を1パス以上実施し、摩擦係数と異速率を満足する異周速での冷延の合計圧下率が20~50%となる条件で実施する。
As another example of a suitable manufacturing method for the non-directional electromagnetic steel sheet of the present embodiment, the above-mentioned chemical composition (in mass%, C: 0.0001% to 0.005%, Si: 2.0% to 5) .0%, Mn: 0.1% to 3.0%, Al: 0.1% to 3.0%, P: 0.001% to 0.20%, S: 0.0001% to 0.005 %, N: 0.0001% to 0.005%, Sn: 0.001% to 0.20%, and the balance: containing Fe and impurities) is hot-rolled. It has a (hot rolling) step, a cold rolling (cold rolling) step of cold rolling on a steel sheet after hot rolling, and a step of finishing and annealing on a steel sheet after cold rolling.
In the cold rolling process, cold rolling with two work rolls with different peripheral speeds is performed at different peripheral speeds, and the coefficient of friction between the work roll and the surface of the steel plate in contact with the work roll is more than 0.1 to 0.3. In addition, rolling with a different speed rate of 5% to 40% is carried out for one pass or more, and the total reduction rate of cold rolling at different peripheral speeds satisfying the friction coefficient and the different speed rate is 20 to 50%. do.

ここで、異速率とは、周速の異なる2つのワークロールのうち、高速側のワークロール(以下、高速ワークロールと称する場合がある)の周速と低速側のワークロール(以下、低速ワークロールと称する場合がある)の周速とにより求められる値である。具体的には、高速ワークロールの周速をV、低速ワークロールの周速をVとした場合、下記式(A)で表される。
式(A) 異速率(%)=((V/V)-1)×100
Here, the different speed ratio refers to the peripheral speed of the work roll on the high speed side (hereinafter, may be referred to as a high speed work roll) and the work roll on the low speed side (hereinafter, low speed work) among the two work rolls having different peripheral speeds. It is a value obtained by the peripheral speed (sometimes called a roll). Specifically, when the peripheral speed of the high-speed work roll is V H and the peripheral speed of the low-speed work roll is VL , it is expressed by the following equation (A).
Equation (A) Different speed rate (%) = (( VH / VL ) -1) × 100

(熱間圧延工程)
上記の化学組成を有する鋼片を加熱した後、熱間圧延する工程である。熱延前の鋼片の加熱温度は特に限定されるものではないが、例えば、コスト等の観点から1000℃~1300℃(好ましくは1100℃~1200℃)が挙げられる。
(Hot rolling process)
This is a step of hot rolling after heating a steel piece having the above chemical composition. The heating temperature of the steel pieces before hot rolling is not particularly limited, and examples thereof include 1000 ° C. to 1300 ° C. (preferably 1100 ° C. to 1200 ° C.) from the viewpoint of cost and the like.

加熱後の鋼片に対し粗熱延を施した後、仕上げ圧延(以下、「仕上げ熱延」と称する場合がある)を施す。粗熱延を終了した後、仕上げ熱延を施す。仕上げ熱延を施すときの仕上げ温度は特に限定するものではないが、例えば、800℃~1200℃(好ましくは800℃~900℃)が挙げられる。 After rough hot rolling on the heated steel pieces, finish rolling (hereinafter, may be referred to as "finish hot rolling") is performed. After finishing the rough hot rolling, finish hot rolling is performed. The finishing temperature at the time of hot rolling is not particularly limited, and examples thereof include 800 ° C. to 1200 ° C. (preferably 800 ° C. to 900 ° C.).

なお、熱延工程と、次工程の冷延工程との間に、必要に応じて、酸洗工程および熱延板焼鈍工程の少なくとも一方を有していてもよい。例えば、熱延後の鋼板に、酸洗を行う酸洗工程を有してよく、熱延後の鋼板に、焼鈍を行う熱延板焼鈍工程を有していてもよい。また、熱延後の鋼板に、酸洗を行い、酸洗後の鋼板に熱延焼鈍を行ってもよく、熱延後の鋼板に、熱延焼鈍を行い、熱延焼鈍後の鋼板に、酸洗を行ってもよい。さらに、熱延後の鋼板にショットブラストで表面に凹凸を与えると、冷延での摩擦係数が増加するのでより好適である。なお、熱延板焼鈍を行う場合の温度は、特に限定するものではないが、例えば、900℃~1150℃(好ましくは950℃~1050℃)の範囲が挙げられる。 If necessary, at least one of a pickling step and a hot rolling plate annealing step may be provided between the hot rolling step and the cold rolling step of the next step. For example, the hot-rolled steel sheet may have a pickling step of pickling, and the hot-rolled steel sheet may have a hot-rolled sheet annealing step of annealing. Further, the hot-rolled steel sheet may be pickled and the hot-rolled steel sheet may be hot-rolled and annealed. Pickling may be performed. Further, it is more preferable to give unevenness to the surface of the hot-rolled steel sheet by shot blasting because the friction coefficient in cold rolling increases. The temperature at which the hot-rolled sheet is annealed is not particularly limited, and examples thereof include a range of 900 ° C. to 1150 ° C. (preferably 950 ° C. to 1050 ° C.).

(冷間圧延工程)
次に、熱延後の鋼板に冷延を施す。冷延工程は、生産性の観点から1回の冷間圧延で実施する。ここで、1回の冷間圧延は、仕上げ板厚とするために施される冷延を表す。
(Cold rolling process)
Next, cold rolling is applied to the hot-rolled steel sheet. The cold rolling process is carried out by one cold rolling from the viewpoint of productivity. Here, one cold rolling represents the cold rolling applied to obtain the finished plate thickness.

冷延工程では、累積された付加的剪断ひずみの平均値(aveΓ)が4.0以上である冷延板とする。aveΓの上限は特に限定されず、例えば、10.0以下であってもよい。以下、冷延板のaveΓが4.0以上となる好ましい冷延工程について説明する。 In the cold-rolling step, a cold-rolled plate having an average value (aveΓ) of accumulated additional shear strains of 4.0 or more is used. The upper limit of aveΓ is not particularly limited and may be, for example, 10.0 or less. Hereinafter, a preferable cold rolling step in which the ave Γ of the cold rolling plate is 4.0 or more will be described.

冷延工程は、1)ワークロールと、ワークロールに接する鋼板の表面との摩擦係数が0.1超~0.3であり、2)異速率が5%~40%である圧延パスを1パス以上行い、1)および2)を満足するパスについて、3)合計圧下率が20%~50%となるように行う。
以下では、上記1)および2)を満たす異周速冷延を「適合異周速冷延」と記述することがある。また、異周速冷延のうち、特に上記1)および2)を満たす圧延であることを区別する必要がない場合は、単に「異周速冷延」と記述することがある。
また、本明細書では、説明の記述を簡略化するため、異速率=0%の圧延、つまり同周速の圧延を、「異速率ゼロの異周速冷延」として記述することがある。
In the cold rolling process, 1) the coefficient of friction between the work roll and the surface of the steel plate in contact with the work roll is more than 0.1 to 0.3, and 2) the rolling pass having a different speed ratio of 5% to 40% is 1 Perform more than one pass, and for passes that satisfy 1) and 2), 3) make the total rolling reduction rate 20% to 50%.
In the following, different peripheral speed cold rolling that satisfies the above 1) and 2) may be described as "compatible different peripheral speed cold rolling". Further, when it is not necessary to distinguish between the different peripheral speed cold rolling and the rolling satisfying the above 1) and 2), it may be simply described as "different peripheral speed cold rolling".
Further, in the present specification, in order to simplify the description of the description, rolling at a different speed rate = 0%, that is, rolling at the same peripheral speed may be described as "different peripheral speed cold rolling with a different speed rate of zero".

上記1)~3)を満たす異周速冷延を行うことで、板厚全体に導入される付加的せん断ひずみが増加する。付加的せん断ひずみ量が増加した冷延後の鋼板に対して、仕上げ焼鈍を行うことで、再結晶および結晶粒成長によって、{410}<001>方位の集合組織が発達する。{410}<001>方位は、磁気特性に好ましい{100}<001>方位に近いので、無方向性電磁鋼板の磁気特性にとって好ましい方位である。その結果、無方向性電磁鋼板の磁気特性が向上する。 By performing different peripheral speed cold rolling satisfying the above 1) to 3), the additional shear strain introduced in the entire plate thickness is increased. By performing finish annealing on the cold-rolled steel sheet in which the amount of additional shear strain has increased, recrystallization and grain growth develop an texture in the {410} <001> orientation. Since the {410} <001> orientation is close to the {100} <001> orientation preferable for the magnetic characteristics, it is a preferable orientation for the magnetic characteristics of the non-oriented electrical steel sheet. As a result, the magnetic properties of the non-oriented electrical steel sheet are improved.

冷延は、タンデム圧延機、リバース圧延機のいずれの圧延機で圧延してもよい。冷延は、単独のパスでもよく、複数のパスでもよい。 Cold rolling may be performed by either a tandem rolling mill or a reverse rolling mill. Cold rolling may be a single pass or multiple passes.

また、例えば、冷延が複数の圧延スタンドを有するタンデム圧延機による圧延である場合、異周速冷延を1パス以上行うとは、複数の圧延スタンドのうち、少なくとも一つのスタンドにおいて、高速ワークロールおよび低速ワークロールによって、異周速冷延を行うことを表す。 Further, for example, when the cold rolling is rolling by a tandem rolling mill having a plurality of rolling stands, performing different peripheral speed cold rolling for one pass or more means that the high-speed work is performed at at least one of the plurality of rolling stands. Indicates that different peripheral speed cold rolling is performed by a roll and a low-speed work roll.

適合異周速冷延は、少なくとも1パス行うことで、板厚平均での付加的せん断ひずみ量が増加する。適合異周速冷延は、冷延でのいずれのパスでもよいが、板形状確保の観点から、冷延パスのうち、パスの前半で行うことがよい。適合異周速冷延は、1パスでもよく、例えば、パスの前半とは1パス目でもよい。また、適合異周速冷延は、複数パスで行ってもよいが、全パスを異周速冷延すると鋼板が反りやすくなる傾向となる。それにより、鋼板(鋼帯)の巻き取りが困難となる場合が考えられるため、冷延の最終パスは同周速冷延とすることが好ましい。 By performing at least one pass of the conforming different peripheral speed cold rolling, the amount of additional shear strain on the average plate thickness increases. The compatible different peripheral speed cold rolling may be any cold rolling pass, but from the viewpoint of ensuring the plate shape, it is preferable to perform the cold rolling in the first half of the cold rolling pass. The compatible different peripheral speed cold rolling may be one pass, for example, the first half of the pass may be the first pass. Further, the conforming different peripheral speed cold rolling may be performed by a plurality of passes, but if all the passes are cold rolled at different peripheral speeds, the steel sheet tends to warp easily. As a result, it may be difficult to wind the steel plate (steel strip), so it is preferable that the final path of cold rolling is cold rolling at the same peripheral speed.

適合異周速冷延を複数パスで行う場合、奇数パスと、偶数パスとで、低速ワークロールおよび高速ワークロールを入れ替えてもよい。例えば、1パス目は、上側ワークロールを高速ワークロールおよび下側ワークロールを低速ワークロールとし、2パス目は、上側ワークロールを低速ワークロールおよび下側ワークロールを高速ワークロールとしてもよい。これら組み合わせを繰り返してもよい。
なお、上側ワークロールおよび下側ワークロールの周速の組み合わせは、上記に限られない。適合異周速冷延となるのであれば、各パスにおいて、低速ワークロールおよび高速ワークロールの順序は特に限定されるものではない。
When the conforming different peripheral speed cold rolling is performed in a plurality of passes, the low-speed work roll and the high-speed work roll may be exchanged between the odd-numbered pass and the even-numbered pass. For example, in the first pass, the upper work roll may be a high-speed work roll and the lower work roll may be a low-speed work roll, and in the second pass, the upper work roll may be a low-speed work roll and the lower work roll may be a high-speed work roll. These combinations may be repeated.
The combination of peripheral speeds of the upper work roll and the lower work roll is not limited to the above. The order of the low-speed work roll and the high-speed work roll is not particularly limited in each pass as long as the conforming different peripheral speed cold rolling is performed.

冷間圧延の全パス(適合異周速冷延を含む)の温度条件としては、常温(例えば、25℃)以上でもよく、50℃以上でもよく、300℃以上でもよく、350℃以上でもよい。一方、過剰に加熱すると、冷延するときの鋼板が軟化して、板厚全体にわたって、付加的せん断ひずみが導入され難くなる。そのため、上限を600℃以下とすることがよく、500℃以下でもよく、200℃以下としてもよい。したがって、冷延の全パスの温度域は、常温~600℃の温度域とすることがよい。コスト、脆性割れ防止の点から、常温~150℃の温度域とすることがよい。 The temperature conditions for all cold rolling passes (including compatible different peripheral speed cold rolling) may be room temperature (for example, 25 ° C.) or higher, 50 ° C. or higher, 300 ° C. or higher, or 350 ° C. or higher. .. On the other hand, excessive heating softens the steel sheet when it is cold-rolled, making it difficult to introduce additional shear strain over the entire plate thickness. Therefore, the upper limit is often 600 ° C. or lower, 500 ° C. or lower, or 200 ° C. or lower. Therefore, the temperature range of all cold-rolled passes is preferably a temperature range of normal temperature to 600 ° C. From the viewpoint of cost and prevention of brittle cracking, it is preferable to use a temperature range of normal temperature to 150 ° C.

本実施形態に係る無方向性電磁鋼板の好適な製造方法の一態様では、適合異周速冷延を行う冷延パスにおいて、ワークロール(高速ワークロールおよび低速ワークロールのいずれも)とワークロールに接する鋼板の表面との摩擦係数(以下、単に「摩擦係数」と称する場合がある)が0.1超~0.3であるパスを規定の対象とする。
摩擦係数が0.1超~0.3の範囲であることで、板厚平均での付加的せん断ひずみ量が著しく増加する。摩擦係数が0.1以下でも、付加的せん断ひずみが導入されるが、板厚全体に導入される付加的せん断ひずみ量が少ない。そのため、磁束密度B50の向上効果が十分に得られない。また、摩擦係数が0.3を超える場合は、圧延荷重が増加するので、板厚を低減することが困難になる。その結果、生産性が低下する。摩擦係数の好ましい下限は、0.15以上であり、好ましい上限は、0.25以下である。
In one aspect of a preferred method for manufacturing a non-directional electromagnetic steel sheet according to the present embodiment, a work roll (both a high-speed work roll and a low-speed work roll) and a work roll are used in a cold-rolling pass for performing compatible different-circumferential cold-rolling. A path having a coefficient of friction with the surface of the steel sheet in contact with the surface of the steel sheet (hereinafter, may be simply referred to as “coefficient of friction”) of more than 0.1 to 0.3 is defined.
When the friction coefficient is in the range of more than 0.1 to 0.3, the amount of additional shear strain on the average plate thickness is significantly increased. Even if the friction coefficient is 0.1 or less, additional shear strain is introduced, but the amount of additional shear strain introduced in the entire plate thickness is small. Therefore, the effect of improving the magnetic flux density B 50 cannot be sufficiently obtained. Further, when the friction coefficient exceeds 0.3, the rolling load increases, which makes it difficult to reduce the plate thickness. As a result, productivity is reduced. The preferable lower limit of the friction coefficient is 0.15 or more, and the preferable upper limit is 0.25 or less.

また、本実施形態に係る無方向性電磁鋼板の好適な製造方法の一態様では、適合異周速冷延を行う冷延パスにおいて、異速率が5%~40%であるパスを規定の対象とする。異速率が5%未満であると、前述の摩擦係数及び後述の異周速冷延の合計圧下率が適正な範囲にあっても、板厚平均での付加的せん断ひずみ量の導入が十分とはなり難い。そのため、磁束密度B50の向上効果が十分に得られない。一方、異速率が40%を超えても、摩擦係数及び合計圧下率に関わらず、板厚全体にわたって付加的せん断ひずみが導入されにくくなる。また、生産性が低下する。異速率の好ましい下限は、10%以上であり、好ましい上限は、35%以下である。 Further, in one aspect of the preferable manufacturing method of the non-oriented electrical steel sheet according to the present embodiment, in the cold-rolled pass for performing conforming different peripheral speed cold rolling, a pass having a different speed rate of 5% to 40% is specified. And. When the different speed rate is less than 5%, even if the above-mentioned friction coefficient and the total reduction rate of the different peripheral speed cold rolling described later are within the appropriate range, it is sufficient to introduce the additional shear strain amount on the average plate thickness. It's hard to become. Therefore, the effect of improving the magnetic flux density B 50 cannot be sufficiently obtained. On the other hand, even if the different speed rate exceeds 40%, additional shear strain is less likely to be introduced over the entire plate thickness regardless of the friction coefficient and the total reduction rate. In addition, productivity is reduced. The preferred lower limit of the variability rate is 10% or more, and the preferred upper limit is 35% or less.

なお、上記の摩擦係数および異速率を満足する「異周速冷延」を特に「適合異周速冷延」と呼ぶことがあるのは、前述のとおりである。 As described above, the "different peripheral speed cold rolling" that satisfies the above friction coefficient and the different speed rate may be particularly referred to as "compatible different peripheral speed cold rolling".

さらに、本実施形態に係る無方向性電磁鋼板の好適な製造方法の一態様では、適合異周速冷延の合計圧下率は20%~50%とする。適合異周速冷延の合計圧下率が20%未満であると、各パスの摩擦係数及び異速率が適正な範囲にあっても、板厚全体にわたって、付加的せん断ひずみが十分に導入され難い。そのため、磁束密度B50の向上効果が十分に得られない。一方、適合異周速冷延の合計圧下率が50%を超えると、板厚全体に付加的せん断ひずみが導入される量は増加するが、鋼板が反るため生産性が低下する。適合異周速冷延の合計圧下率の好ましい下限は、20%以上であり、好ましい上限は、40%以下である。 Further, in one aspect of the preferred method for manufacturing grain-oriented electrical steel sheets according to the present embodiment, the total reduction rate of conforming different peripheral speed cold rolling is 20% to 50%. If the total reduction rate of the compatible different peripheral speed cold rolling is less than 20%, it is difficult to sufficiently introduce additional shear strain over the entire plate thickness even if the friction coefficient and the different speed rate of each pass are within the appropriate range. .. Therefore, the effect of improving the magnetic flux density B 50 cannot be sufficiently obtained. On the other hand, when the total reduction rate of the conforming different peripheral speed cold rolling exceeds 50%, the amount of additional shear strain introduced in the entire plate thickness increases, but the productivity decreases because the steel plate warps. The preferable lower limit of the total reduction rate of the conforming different peripheral speed cold rolling is 20% or more, and the preferable upper limit is 40% or less.

なお、適合異周速冷延を2パス以上で実施する場合の合計圧下率rは、各パスでの適合異周速冷延を行った冷延率をr、r、・・・、rとしたとき、下記式(B)で求める。
式(B) r(%)={1-(1-r)×(1-r)×・・・×(1-r)}×100
ここで、本実施形態に係る無方向性電磁鋼板の好適な製造方法の一態様において、適合異周速冷延の「圧下率」については、「合計圧下率」の制御が重要であり、「各パスの圧下率」は合計圧下率が上記の範囲となるように定めればよい。つまり、例えば、適合異周速冷延の圧下率が非常に低いパスであっても、複数回実施して合計圧下率が上記範囲に入れば、磁束密度が高く、優れた磁気特性を有する無方向性電磁鋼板を得ることが可能である。
The total reduction rate r when the conforming different peripheral speed cold rolling is carried out in two or more passes is the cold rolling rate r 1 , r 2 , ... When rn is set, it is calculated by the following formula (B).
Equation (B) r (%) = {1- (1-r 1 ) × (1-r 2 ) × ・ ・ ・ × (1-r n )} × 100
Here, in one aspect of the preferred method for manufacturing grain-oriented electrical steel sheets according to the present embodiment, it is important to control the "total reduction rate" for the "reduction rate" of conforming different peripheral speed cold rolling. The "rolling rate of each pass" may be set so that the total rolling rate is within the above range. That is, for example, even if the pass has a very low reduction rate of conforming different peripheral speed cold rolling, if the total reduction rate falls within the above range after being performed multiple times, the magnetic flux density is high and the magnetic properties are excellent. It is possible to obtain grain-oriented electrical steel sheets.

ここで、摩擦係数、異速率、及び適合異周速冷延での合計圧下率についての検討の一例を、図を参照しつつ説明する。 Here, an example of the examination of the friction coefficient, the different speed rate, and the total reduction rate in the compatible different peripheral speed cold rolling will be described with reference to the figure.

まず、摩擦係数と付加的せん断ひずみの板厚方向分布との関係について図1を参照して説明する。図1は、各摩擦係数における異速率が及ぼす板厚方向での付加的せん断ひずみの分布の影響を表すグラフである。図1に示すグラフは、具体的には、熱延板厚を2mmから仕上げ板厚0.25mmまで、合計6パスで冷間圧延を行う工程において、1パス目を摩擦係数μが0.05または0.20の場合について、各摩擦係数における異周速冷延を圧下率30%で行い、2パス目以降(つまり、2パス目から6パス目)は摩擦係数0.05の同周速冷延を行ったときの関係を示している。無次元化板厚位置=0.0はワークロールの高速側表面(Hと表記)、無次元化板厚位置=0.5は板厚中心、無次元化板厚位置=1.0はワークロールの低速側(Lと表記)を表している。図1に示すように、摩擦係数μが0.05では、異速率増加に伴い、板厚中央近傍(1/2t)の付加的せん断ひずみが増加する。
一方、摩擦係数μが0.20では、異速率0%において、鋼板表裏面近傍(0t、1t)の付加的せん断ひずみが著しく増加する。さらに、摩擦係数μが0.20では、異周速冷延を適用した場合に、板厚中央近傍(1/2t)の付加的せん断ひずみが著しく増加することが分かる。
First, the relationship between the friction coefficient and the distribution of the additional shear strain in the plate thickness direction will be described with reference to FIG. FIG. 1 is a graph showing the effect of the distribution of additional shear strain in the plate thickness direction on the different speed rate at each friction coefficient. In the graph shown in FIG. 1, specifically, in the process of cold rolling in a total of 6 passes from a hot-rolled plate thickness of 2 mm to a finished plate thickness of 0.25 mm, the friction coefficient μ is 0.05 in the first pass. Or, in the case of 0.20, cold rolling at different peripheral speeds at each friction coefficient is performed at a reduction rate of 30%, and the same peripheral speed with a friction coefficient of 0.05 is performed after the second pass (that is, from the second pass to the sixth pass). It shows the relationship when cold rolling is performed. The dimensionless plate thickness position = 0.0 is the high-speed side surface of the work roll (denoted as H), the dimensionless plate thickness position = 0.5 is the plate thickness center, and the dimensionless plate thickness position = 1.0 is the work. It represents the low speed side of the roll (denoted as L). As shown in FIG. 1, when the friction coefficient μ is 0.05, the additional shear strain near the center of the plate thickness (1 / 2t) increases as the rate of variation increases.
On the other hand, when the friction coefficient μ is 0.20, the additional shear strain in the vicinity of the front and back surfaces (0t, 1t) of the steel sheet increases remarkably at a different speed rate of 0%. Further, it can be seen that when the friction coefficient μ is 0.20, the additional shear strain near the center of the plate thickness (1 / 2t) is remarkably increased when the different peripheral speed cold rolling is applied.

ここで、付加的せん断ひずみの測定法を説明する。鋼板に導入される付加的剪断ひずみは、汎用の汎用圧延解析システムNSCARMを用いて、剛塑性での有限要素解析法によって計算する。まず、引張試験による応力ひずみ曲線、圧延荷重と圧下率の関係などを用いて、材料の変形抵抗式σ0.2=a×(ε+b)を得る。ここでεはひずみ、a、b、nは試験によって得られる材料定数である。次に、解析を行なう。薄板圧延を考慮し、ここでは板幅方向には板が広がらないとして、平面歪拘束条件とし、板厚方向と圧延方向について疑似2次元解析する。考慮する範囲は、ワークロール入側はワークロールの接触弧長から1倍の範囲まで、ワークロール出側は接触弧長の0.5倍とすればよい。この範囲において、考慮する要素数は、板厚方向に60分割、圧延方向にワークロール入側で40分割、ワークロールバイト内で200分割、及びワークロール出側で20分割の合計260分割(=40+200+20)、並びに、板厚方向及び圧延方向の合計で15600要素(=60×260)とすればよい。計算に考慮する圧延条件は、ワークロールの入側板厚及び出側板厚、ワークロール直径、摩擦係数、並びに、低速側及び高速側のワークロール周速である。これによって図1に示すような付加的剪断ひずみの板厚分布が得られる。 Here, a method for measuring additional shear strain will be described. The additional shear strain introduced into the steel sheet is calculated by the finite element analysis method with rigid plasticity using the general-purpose rolling analysis system NSCARM. First, the deformation resistance equation σ 0.2 = a × (ε + b) n of the material is obtained by using the stress-strain curve obtained by the tensile test and the relationship between the rolling load and the rolling ratio. Here, ε is a strain, and a, b, and n are material constants obtained by the test. Next, analysis is performed. In consideration of thin plate rolling, it is assumed that the plate does not spread in the plate width direction, and the plane strain constraint condition is set, and a pseudo two-dimensional analysis is performed for the plate thickness direction and the rolling direction. The range to be considered may be a range of 1 times the contact arc length of the work roll on the work roll entry side and 0.5 times the contact arc length on the work roll exit side. In this range, the number of elements to be considered is 60 divisions in the plate thickness direction, 40 divisions in the work roll entry side in the rolling direction, 200 divisions in the work roll bite, and 20 divisions in the work roll exit side, for a total of 260 divisions (=). 40 + 200 + 20), and the total of the plate thickness direction and the rolling direction may be 15600 elements (= 60 × 260). The rolling conditions to be considered in the calculation are the input side plate thickness and the exit side plate thickness of the work roll, the work roll diameter, the friction coefficient, and the work roll peripheral speed on the low speed side and the high speed side. As a result, the plate thickness distribution of the additional shear strain as shown in FIG. 1 can be obtained.

次に,板厚方向の付加的剪断ひずみから、平均付加的剪断ひずみ(aveΓ)を求める。これによって図2に示すようなaveΓの異速率依存性が得られる。 Next, the average additional shear strain (aveΓ) is obtained from the additional shear strain in the plate thickness direction. As a result, the variable velocity dependence of aveΓ as shown in FIG. 2 can be obtained.

次に、付加的せん断ひずみの平均値(aveΓ)と異速率との関係について説明する。図1において付加的剪断ひずみの板厚方向分布を得た後、各々の無次元化板厚位置における付加的剪断ひずみを平均する。この値がaveΓを表す。図2は、各摩擦係数における異速率が及ぼすaveΓへの影響を表すグラフである。図2に示すグラフは、具体的には、熱延板厚を2mmから仕上げ板厚0.25mmまで、合計6パスで冷間圧延を行う工程において、1パス目を摩擦係数μが0.05または0.20の場合について、各摩擦係数における異周速冷延を圧下率30%で行い、2パス目以降(つまり、2から6パス目)は摩擦係数0.05の同周速冷延を行ったときの関係を示している。図2に示すように、摩擦係数μが0.05では、異速率が増加してもaveΓはそれほど増加しない。これに対し、摩擦係数μが0.20では、異速率0%においてaveΓは著しく増加する。このように、摩擦係数の上昇によって、aveΓが上昇することが分かる。さらに付加的せん断ひずみが極大となる異速率が存在することが分かる。 Next, the relationship between the mean value (aveΓ) of the additional shear strain and the variable velocity rate will be described. After obtaining the plate thickness direction distribution of the additional shear strain in FIG. 1, the additional shear strain at each dimensionless plate thickness position is averaged. This value represents aveΓ. FIG. 2 is a graph showing the effect of the different speed rate at each friction coefficient on aveΓ. In the graph shown in FIG. 2, specifically, in the process of cold rolling in a total of 6 passes from a hot-rolled plate thickness of 2 mm to a finished plate thickness of 0.25 mm, the friction coefficient μ is 0.05 in the first pass. Or, in the case of 0.20, different peripheral speed cold rolling at each friction coefficient is performed at a reduction rate of 30%, and the same peripheral speed cold rolling with a friction coefficient of 0.05 is performed on the second and subsequent passes (that is, the 2nd to 6th passes). Shows the relationship when As shown in FIG. 2, when the friction coefficient μ is 0.05, aveΓ does not increase so much even if the different speed rate increases. On the other hand, when the friction coefficient μ is 0.20, the aveΓ increases remarkably at a different speed rate of 0%. In this way, it can be seen that as the coefficient of friction increases, aveΓ increases. Furthermore, it can be seen that there is an extremum rate at which the additional shear strain is maximized.

次に、磁束密度B50とaveΓとの関係について、図3を参照して、説明する。図3は、磁束密度B50に及ぼすaveΓの影響を表すグラフである。図3に示すグラフは、熱延板厚を2mmから仕上げ板厚0.25mmまで、合計6パスの冷延のうち、1パス目における摩擦係数(0.05または0.2)と異速率(0~40%)を変化させて30%圧延し、2パス目以降は摩擦係数0.05で同周速冷延を行った結果を示している。
図3に示すように、摩擦係数μが0.05では、異周速冷延を行ってaveΓが増加しても、磁束密度B50の向上は少ない。一方で、1パス目において摩擦係数μが0.20で、異速率が増加すると、摩擦係数μが0.20では、aveΓが増加し、L方向およびC方向のB50が著しく上昇することが分かる。
Next, the relationship between the magnetic flux density B 50 and the ave Γ will be described with reference to FIG. FIG. 3 is a graph showing the effect of aveΓ on the magnetic flux density B 50 . The graph shown in FIG. 3 shows the coefficient of friction (0.05 or 0.2) and the different speed rate (0.05 or 0.2) in the first pass of the total of 6 passes of cold rolling from the hot rolled plate thickness of 2 mm to the finished plate thickness of 0.25 mm. It shows the result of rolling 30% by changing (0 to 40%) and performing cold rolling at the same peripheral speed with a friction coefficient of 0.05 from the second pass onward.
As shown in FIG. 3, when the friction coefficient μ is 0.05, the magnetic flux density B 50 does not improve much even if the ave Γ increases due to cold rolling at different peripheral speeds. On the other hand, when the friction coefficient μ is 0.20 and the different speed rate increases in the first pass, when the friction coefficient μ is 0.20, aveΓ increases and B50 in the L direction and C direction increases remarkably. I understand.

次に、1/10t、1/2t、および9/10tにおける{111}<112>方位の集積度の和、1/10t、1/2t、および9/10tにおける{410}<001>方位の集積度の和、並びに1/10t、1/2t、および9/10tにおける{110}<001>方位の集積度の和と、aveΓとの関係を、図4を参照して説明する。図4は、これら各方位における板厚方向の集積度の和に及ぼすaveΓの影響を表すグラフである。 Next, the sum of the integration degrees of the {111} <112> orientations at 1 / 10t, 1 / 2t, and 9 / 10t, and the {410} <001> orientations at 1 / 10t, 1 / 2t, and 9 / 10t. The relationship between the sum of the degrees of integration and the sum of the degrees of integration of the {110} <001> orientations at 1 / 10t, 1 / 2t, and 9 / 10t and aveΓ will be described with reference to FIG. FIG. 4 is a graph showing the effect of aveΓ on the sum of the degree of integration in the plate thickness direction in each of these directions.

図4に示すように、摩擦係数μが0.20のとき、1/10t、1/2t、および9/10tにおける{410}<001>方位の集積度の和は、aveΓの増加とともに、上昇することが分かる。一方で、1/10t、1/2t、および9/10tにおける{111}<112>方位の集積度の和、並びに1/10t、1/2t、および9/10tにおける{110}<001>方位の集積度の和は、ほとんど変化が見られないことが分かる。{111}<112>方位は、磁気特性の向上にとっては好ましくない方位である。また、{110}<001>方位はL方向の磁気特性にとっては好ましいが、C方向の磁気特性にとっては好ましくないため、磁気特性に異方性を生じさせる。そのため、{111}<112>方位および{110}<001>方位の集積度が発達しないことは、L方向およびC方向の両方向の磁気特性に優れた無方向性電磁鋼板を得る点で有利である。
また、摩擦係数μが0.05のとき、aveΓが増加しても、1/10t、1/2t、および9/10tにおける{410}<001>方位の集積度の和は、ほとんど変化が見られないことが分かる。さらに、1/10t、1/2t、および9/10tにおける{111}<112>方位の集積度の和、並びに1/10t、1/2t、および9/10tにおける{110}<001>方位の集積度の和についても、ほとんど変化が見られないことが分かる。
なお、図3および図4において、四角で囲まれている部分は、1/10t、1/2t、および9/10tにおける{410}<001>方位の集積度の和が13以上となる範囲であって、磁束密度が優れる範囲を示している。
As shown in FIG. 4, when the coefficient of friction μ is 0.20, the sum of the degree of integration of the {410} <001> orientations at 1 / 10t, 1 / 2t, and 9 / 10t increases with the increase of aveΓ. You can see that it does. On the other hand, the sum of the integration degrees of {111} <112> orientations at 1 / 10t, 1 / 2t, and 9 / 10t, and the {110} <001> orientations at 1 / 10t, 1 / 2t, and 9 / 10t. It can be seen that the sum of the degree of accumulation of is hardly changed. The {111} <112> orientation is not preferable for improving the magnetic characteristics. Further, the {110} <001> orientation is preferable for the magnetic characteristics in the L direction, but is not preferable for the magnetic characteristics in the C direction, so that anisotropy is generated in the magnetic characteristics. Therefore, the fact that the degree of integration of the {111} <112> orientation and the {110} <001> orientation does not develop is advantageous in obtaining a non-oriented electrical steel sheet having excellent magnetic characteristics in both the L direction and the C direction. be.
Further, when the friction coefficient μ is 0.05, even if aveΓ increases, the sum of the accumulation degrees of the {410} <001> directions at 1 / 10t, 1 / 2t, and 9 / 10t almost changes. I know I can't. Further, the sum of the integration degrees of the {111} <112> orientations at 1 / 10t, 1 / 2t, and 9 / 10t, and the {110} <001> orientations at 1 / 10t, 1 / 2t, and 9 / 10t. It can be seen that there is almost no change in the sum of the degree of accumulation.
In addition, in FIGS. 3 and 4, the portion surrounded by the square is in the range where the sum of the accumulation degrees of the {410} <001> orientations at 1 / 10t, 1 / 2t, and 9 / 10t is 13 or more. Therefore, it shows a range in which the magnetic flux density is excellent.

次に、摩擦係数μが0.20の場合について、aveΓに及ぼす異周速冷延の合計圧下率および異速率の関係について、図5を参照して説明する。図5は、摩擦係数0.20の場合における累積aveΓに及ぼす異周速冷延の圧下率および異速率の影響を表すグラフである。図5に示すグラフは、具体的には、熱延板厚を2mmから仕上げ板厚0.25mmまで、合計6パスで冷間圧延を行う工程において、1パス目の摩擦係数μが0.20の場合で、異周速冷延の合計圧下率および異速率を変えて異周速冷延し、2パス目以降は摩擦係数0.05の同周速冷延を行ったときのaveΓを示している。図5中の四角で囲まれている数値はaveΓを表す。また、図5中に、aveΓが4.0以上となるライン、6.0以上となるライン、及び8.0以上となるラインを示している。
図5に示すように、異周速冷延の合計圧下率が増加するほどaveΓは増加する。一方で、異周速冷延の圧下率によって、aveΓが極大となる異速率は変化することが分かる。なお、図5~図7において、縦軸の異速率が0%のときの横軸は、異周速冷延を同周速冷延としたときの圧下率を表す。
Next, in the case where the friction coefficient μ is 0.20, the relationship between the total reduction rate and the different speed rate of different peripheral speed cold rolling on aveΓ will be described with reference to FIG. FIG. 5 is a graph showing the effects of the reduction rate and the different speed rate of different peripheral speed cold rolling on the cumulative aveΓ when the friction coefficient is 0.20. Specifically, the graph shown in FIG. 5 shows that the friction coefficient μ of the first pass is 0.20 in the process of cold rolling in a total of 6 passes from a hot-rolled plate thickness of 2 mm to a finished plate thickness of 0.25 mm. In the case of, the aveΓ when the total reduction rate and the different speed rate of the different peripheral speed cold rolling are changed and the different peripheral speed cold rolling is performed, and the same peripheral speed cold rolling with a friction coefficient of 0.05 is shown after the second pass. ing. The numerical value surrounded by the square in FIG. 5 represents aveΓ. Further, in FIG. 5, a line having an ave Γ of 4.0 or more, a line having an have Γ of 6.0 or more, and a line having an have Γ of 8.0 or more are shown.
As shown in FIG. 5, aveΓ increases as the total reduction rate of different-circumferential cold rolling increases. On the other hand, it can be seen that the extremum rate at which aveΓ is maximized changes depending on the reduction rate of cold rolling at different peripheral speeds. In FIGS. 5 to 7, the horizontal axis on the vertical axis when the different speed rate is 0% represents the reduction rate when the different peripheral speed cold rolling is defined as the same peripheral speed cold rolling.

次に、熱延板厚を2mmから仕上げ板厚0.25mmまで、合計6パスで冷間圧延を行う工程において、1パス目の摩擦係数μが0.20の場合で、L方向の磁束密度B50に及ぼす異周速冷延の合計圧下率および異速率の関係について、図6を参照して説明する。また、C方向の磁束密度B50に及ぼす異周速冷延の合計圧下率および異速率の関係について、図7を参照して説明する。 Next, in the process of cold rolling with a total of 6 passes from a hot-rolled plate thickness of 2 mm to a finished plate thickness of 0.25 mm, when the friction coefficient μ of the first pass is 0.20, the magnetic flux density in the L direction. The relationship between the total reduction rate and the different speed rate of different peripheral speed cold rolling on B 50 will be described with reference to FIG. Further, the relationship between the total reduction rate and the different speed rate of the different peripheral speed cold rolling on the magnetic flux density B 50 in the C direction will be described with reference to FIG. 7.

図6は、摩擦係数μが0.20の場合におけるL方向の磁束密度B50に及ぼす異周速冷延の合計圧下率および異速率の影響を示すグラフである。また、図7は、摩擦係数μが0.20の場合におけるC方向の磁束密度B50に及ぼす異周速冷延の合計圧下率および異速率の影響を示すグラフである。図6中、四角で囲まれている数値は、L方向の磁束密度B50を表し、図7中、四角で囲まれている数値は、C方向の磁束密度B50を表す。また、図6中に、L方向の磁束密度B50が1.71以上となるライン、1.73以上となるライン、及び1.75以上となるラインを示している。さらに、図7中に、C方向の磁束密度B50が1.67以上となるライン、1.69以上となるライン、及び1.71以上となるラインを示している。 FIG. 6 is a graph showing the effects of the total reduction rate and the different speed rate of different peripheral speed cold rolling on the magnetic flux density B 50 in the L direction when the friction coefficient μ is 0.20. Further, FIG. 7 is a graph showing the effects of the total reduction rate and the different speed rate of different peripheral speed cold rolling on the magnetic flux density B 50 in the C direction when the friction coefficient μ is 0.20. In FIG. 6, the numerical value surrounded by a square represents the magnetic flux density B 50 in the L direction, and the numerical value surrounded by the square in FIG. 7 represents the magnetic flux density B 50 in the C direction. Further, FIG. 6 shows a line having a magnetic flux density B 50 in the L direction of 1.71 or more, a line having a magnetic flux density of 1.73 or more, and a line having a magnetic flux density B 50 of 1.75 or more. Further, FIG. 7 shows a line having a magnetic flux density B 50 in the C direction of 1.67 or more, a line having a magnetic flux density of 1.69 or more, and a line having a magnetic flux density B 50 of 1.71 or more.

図6に示すように、異周速冷延の合計圧下率が増加するほどL方向の磁束密度B50には増加するが、異周速冷延の圧下率によって、L方向のB50が極大となる異速率は変化することが分かる。
また、図7に示すように、異周速冷延の合計圧下率が増加するほどC方向のB50には増加するが、異周速冷延の圧下率によって、C方向の磁束密度B50が極大となる異速率は変化することが分かる。
As shown in FIG. 6, the magnetic flux density B 50 in the L direction increases as the total reduction rate of the different peripheral speed cold rolling increases, but the B 50 in the L direction becomes maximum due to the reduction rate of the different peripheral speed cold rolling. It can be seen that the different speed rate becomes different.
Further, as shown in FIG. 7, as the total reduction rate of different peripheral speed cold rolling increases, it increases to B 50 in the C direction, but the magnetic flux density B 50 in the C direction depends on the reduction rate of different peripheral speed cold rolling. It can be seen that the variable speed rate at which is maximized changes.

上記のように、摩擦係数が0.1以下であるとき、異速率を増加させても、板厚全体に導入される付加的せん断ひずみの平均値(aveΓ)の増加が少ないため、L方向およびC方向ともに、磁束密度B50の向上効果が少ない。また、異周速冷延の圧下率を増加させれば、aveΓは増加するが、合計異速率によってaveΓが変化し、それによって、L方向およびC方向ともに磁束密度B50の向上効果が変化することがわかる。 As described above, when the friction coefficient is 0.1 or less, even if the variable velocity rate is increased, the increase in the mean value (aveΓ) of the additional shear strain introduced in the entire plate thickness is small, so that the L direction and the L direction and The effect of improving the magnetic flux density B 50 is small in both the C directions. Further, if the reduction rate of the different peripheral speed cold rolling is increased, the ave Γ increases, but the ave Γ changes depending on the total different speed rate, and thereby the effect of improving the magnetic flux density B 50 changes in both the L direction and the C direction. You can see that.

したがって、本実施形態に係る無方向性電磁鋼板の好適な製造方法の一態様では、異周速での冷延の条件を、1)ワークロールと、ワークロールに接する鋼板の表面との摩擦係数が0.1超~0.3であり、2)異速率が5%~40%であり、3)異周速冷延を行う合計圧下率が20%~50%である条件としている。
そして、上記のように、付加的せん断ひずみの平均値(aveΓ)の導入量は、異周速冷延の合計圧下率と異速率とのバランスによって決定されるものである。そのため、付加的せん断ひずみの平均値(aveΓ)の導入量が増加するように、異速率と異周速冷延での合計圧下率とのバランスを考慮し、各々の条件を決定すればよい。aveΓが4.0%以上になると、鋼板表面から板厚1/10位置、板厚1/2位置、および板厚9/10位置における{410}<001>方位の集積度の和の値が増加する。それによって、本実施形態の無方向性電磁鋼板は、磁気特性が向上する。したがって、aveΓが4.0%以上であるとする。
Therefore, in one aspect of the preferred method for manufacturing a non-directional electromagnetic steel sheet according to the present embodiment, the conditions for cold rolling at different peripheral speeds are 1) the coefficient of friction between the work roll and the surface of the steel sheet in contact with the work roll. Is more than 0.1 to 0.3, 2) the different speed rate is 5% to 40%, and 3) the total reduction rate for cold rolling at different peripheral speeds is 20% to 50%.
Then, as described above, the amount of introduction of the average value (aveΓ) of the additional shear strain is determined by the balance between the total reduction rate and the different speed rate of the different peripheral speed cold rolling. Therefore, each condition may be determined in consideration of the balance between the different speed rate and the total reduction rate in different peripheral speed cold rolling so that the introduction amount of the average value (aveΓ) of the additional shear strain increases. When aveΓ becomes 4.0% or more, the value of the sum of the degree of integration of the {410} <001> orientations at the plate thickness 1/10 position, the plate thickness 1/2 position, and the plate thickness 9/10 position from the steel plate surface becomes the value. To increase. As a result, the non-oriented electrical steel sheet of the present embodiment has improved magnetic properties. Therefore, it is assumed that aveΓ is 4.0% or more.

また、適合異周速は、1パスのみ行ってもよく、複数パスでおこなってもよい。適合異周速冷延を複数パスで行う場合には、各パスでの摩擦係数が0.1超~0.3、各パスでの異速率が5%~40%であり、摩擦係数および異速率がこの範囲にある異周速冷延(適合異周速冷延)の合計圧下率が20%~50%あればよい。適合異周速冷延の各パスの圧下率は合計圧下率が20%~50%となる範囲で任意に定めればよい。 Further, the compatible different peripheral speed may be performed by only one pass or by a plurality of passes. When the conforming different peripheral speed cold rolling is performed in multiple passes, the friction coefficient in each pass is more than 0.1 to 0.3, and the different speed rate in each pass is 5% to 40%, and the friction coefficient and the difference are different. The total reduction rate of different peripheral speed cold rolling (compatible different peripheral speed cold rolling) in which the speed rate is in this range may be 20% to 50%. The reduction rate of each pass of the conforming different peripheral speed cold rolling may be arbitrarily determined within the range where the total reduction rate is 20% to 50%.

なお、適合異周速冷延を含む冷延全体における全圧下率(全パスでの総圧下率)は、80%~95%とすることがよい。
ここで、冷延全体とは、摩擦係数および異速率に関わらず、異周速での冷延パスおよび異周速以外(つまり同周速)での冷延パスで行った冷延の全体を表す。よって、冷延が全て適合異周速冷延である場合の冷延全体における全圧下率は、前述の適合異周速冷延での合計圧下率と同じ値となる。
The total reduction rate (total reduction rate in all paths) of the entire cold rolling including the conforming different peripheral speed rolling may be 80% to 95%.
Here, the whole cold rolling means the whole cold rolling performed by the cold rolling pass at a different peripheral speed and the cold rolling pass other than the different peripheral speed (that is, the same peripheral speed) regardless of the friction coefficient and the different speed rate. show. Therefore, when all the cold rolling is conforming different peripheral speed cold rolling, the total reduction rate in the whole cold rolling is the same value as the total reduction rate in the above-mentioned compatible different peripheral speed cold rolling.

(仕上げ焼鈍工程)
次に、冷延後の鋼板に仕上げ焼鈍を施す。仕上げ焼鈍工程における諸条件は、無方向性電磁鋼板にとって望ましい{410}<001>方位の集合組織が発達する条件であれば、特に規定されるものではない。例えば、仕上げ焼鈍温度は800℃~1200℃(好ましくは850℃~1150℃)、仕上げ焼鈍時間は5秒~5時間(好ましくは10秒~3時間)とすることが好ましい。昇温速度は10℃/秒~100℃/秒であることが好ましい。
(Finish annealing process)
Next, the steel sheet after cold rolling is finish-annealed. The conditions in the finish annealing step are not particularly specified as long as the texture of the {410} <001> orientation, which is desirable for the non-oriented electrical steel sheet, develops. For example, the finish annealing temperature is preferably 800 ° C. to 1200 ° C. (preferably 850 ° C. to 1150 ° C.), and the finish annealing time is preferably 5 seconds to 5 hours (preferably 10 seconds to 3 hours). The rate of temperature rise is preferably 10 ° C./sec to 100 ° C./sec.

(その他の工程)
本実施形態に係る無方向性電磁鋼板を得るために、上記の工程以外に、従来の無方向性電磁鋼板の製造工程と同様のその他の工程を設けてもよい。その他の工程の各条件は、従来の無方向性電磁鋼板の製造工程と同様の条件を採用してもよい。仕上げ焼鈍工程後の鋼板(無方向性電磁鋼板)の表面に絶縁皮膜を設ける絶縁皮膜形成工程を有していてもよい。
(Other processes)
In order to obtain the non-oriented electrical steel sheet according to the present embodiment, other steps similar to the conventional non-oriented electrical steel sheet manufacturing process may be provided in addition to the above steps. As each condition of the other steps, the same conditions as those of the conventional non-oriented electrical steel sheet manufacturing process may be adopted. It may have an insulating film forming step of providing an insulating film on the surface of the steel sheet (non-oriented electrical steel sheet) after the finish annealing step.

絶縁皮膜の形成方法は特に限定されないが、例えば、樹脂または無機物を溶剤に溶解した絶縁皮膜形成用組成物を調製し、当該絶縁皮膜形成用組成物を、鋼板表面に公知の方法で均一に塗布する方法が挙げられる。それにより、有機系皮膜または無機系皮膜の絶縁皮膜を形成することができる。 The method for forming the insulating film is not particularly limited, but for example, a composition for forming an insulating film in which a resin or an inorganic substance is dissolved in a solvent is prepared, and the composition for forming the insulating film is uniformly applied to the surface of the steel sheet by a known method. There is a way to do it. Thereby, an insulating film of an organic film or an inorganic film can be formed.

絶縁皮膜は、具体的には、例えば、有機系皮膜、無機系皮膜のいずれであってもよい。有機系皮膜としては、例えばポリアミン系樹脂;アクリル樹脂;アクリルスチレン樹脂;アルキッド樹脂;ポリエステル樹脂;シリコーン樹脂;フッ素樹脂;ポリオレフィン樹脂;スチレン樹脂;酢酸ビニル樹脂;エポキシ樹脂;フェノール樹脂;ウレタン樹脂;メラミン樹脂等が挙げられる。また、無機系皮膜としては、例えば、リン酸塩系皮膜;リン酸アルミニウム系皮膜等が挙げられる。さらに、前記の樹脂を含む有機-無機複合系皮膜等が挙げられる。
絶縁皮膜の厚みは、特に限定されないが、片面当たりの膜厚として0.05μm~2μmであることが好ましい。
Specifically, the insulating film may be, for example, either an organic film or an inorganic film. Examples of the organic film include polyamine resin; acrylic resin; acrylic styrene resin; alkyd resin; polyester resin; silicone resin; fluororesin; polyolefin resin; styrene resin; vinyl acetate resin; epoxy resin; phenol resin; urethane resin; melamine. Examples include resin. Examples of the inorganic film include a phosphate film; an aluminum phosphate film and the like. Further, an organic-inorganic composite film containing the above resin and the like can be mentioned.
The thickness of the insulating film is not particularly limited, but is preferably 0.05 μm to 2 μm as the film thickness per one side.

以上の工程によって、本実施形態に係る無方向性電磁鋼板が得られる。 By the above steps, the non-oriented electrical steel sheet according to the present embodiment can be obtained.

本実施形態によれば、磁束密度が高く、磁気特性に優れた無方向性電磁鋼板が得られる。そのため、本実施形態に係る無方向性電磁鋼板は、電気機器の各種コア材料、特に、回転機、中小型変圧器、無人航空機(ドローンなど)、電装品等のモータのコア材料として好適に適用できる。 According to this embodiment, a non-oriented electrical steel sheet having a high magnetic flux density and excellent magnetic characteristics can be obtained. Therefore, the non-oriented electrical steel sheet according to the present embodiment is suitably applied as a core material for various core materials of electrical equipment, particularly motors such as rotary machines, small and medium-sized transformers, unmanned aerial vehicles (drones, etc.), and electrical components. can.

なお、本発明は、上記に限定されるものではない。上記は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。 The present invention is not limited to the above. The above is an example, and any material having substantially the same configuration as the technical idea described in the claims of the present invention and having the same effect and effect is the technique of the present invention. It is included in the scope.

以下、実施例を例示して、本発明を具体的に説明するが、本発明はこれに限定されるものではない。当業者であれば、特許請求の範囲に記載された思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。 Hereinafter, the present invention will be specifically described by exemplifying examples, but the present invention is not limited thereto. It is clear that a person skilled in the art can come up with various modifications or modifications within the scope of the ideas described in the claims, and these also naturally belong to the technical scope of the present invention. It is understood that it is a thing.

下記の実施例において、無方向性電磁鋼板の評価方法は以下に示すとおりである。 In the following examples, the evaluation method of the non-oriented electrical steel sheet is as shown below.

[1/10t、1/2t、及び9/10tにおける各方位の集積度の和]
既述の結晶方位の測定方法にしたがって、1/10t、1/2t、及び9/10tにおける{410}<001>方位の集積度の和を求める。さらに、実施例1では、1/10t、1/2t、及び9/10tにおける{111}<112>方位の集積度の和、並びに、1/10t、1/2t、及び9/10tにおける{110}<001>方位の集積度の和も求める。
[Sum of accumulation in each direction at 1 / 10t, 1 / 2t, and 9 / 10t]
According to the above-mentioned method for measuring the crystal orientation, the sum of the degree of integration of the {410} <001> orientations at 1 / 10t, 1 / 2t, and 9 / 10t is obtained. Further, in Example 1, the sum of the degree of integration of {111} <112> orientations at 1 / 10t, 1 / 2t, and 9 / 10t, and {110 at 1 / 10t, 1 / 2t, and 9 / 10t. } <001> Also find the sum of the degree of integration of the directions.

[磁束密度]
仕上げ焼鈍後に得られた無方向性電磁鋼板から切り出した55mm×55mmの鋼板サンプルに対して、L方向およびC方向に、それぞれ5000A/mの磁化力を与え、そのときの磁束密度の値B50(T)を測定する。
[Magnetic flux density]
A magnetizing force of 5000 A / m was applied to the 55 mm × 55 mm steel sheet sample cut out from the non-oriented electrical steel sheet obtained after finish annealing in the L and C directions, respectively, and the value of the magnetic flux density at that time was B 50 . (T) is measured.

<実施例1>
質量%で、C:0.003%、Si:3.3%、Mn:1.0%、Al:0.7%、P:0.02%、S:0.001%、N:0.001%、Sn:0.03%、並びに、残部:Fe及び不純物からなる化学組成の鋼片に粗熱延を施す。その後、1150℃に加熱して仕上げ熱延を施し、板厚2.0mmの熱延板を得る。仕上げ熱延後の鋼板に、酸洗を施す。酸洗後の鋼板に、900℃で1分間焼鈍する熱延板焼鈍を施し、平均粒径90μmの冷延前組織とする。さらに、表1に示す条件で、冷延の1パス目において、摩擦係数および異速率を変更し、異周速冷延の圧下率を30%、冷延温度を100℃として異周速冷延を実施する。そして、2パス目以降を同周速冷延とし、板厚が0.25mmとなるように冷延を施す(冷延全体で6パス)。冷延後の鋼板に、昇温速度20℃/secで加熱して、1000℃で30秒間の仕上げ焼鈍を施して、無方向性電磁鋼板を得る。
一方、比較材として、上記と同化学組成の鋼片を、上記と同条件の過程を経て熱延焼鈍板を得る。そして、この熱延焼鈍板を、表1に示す条件で、冷延の1パス目において摩擦係数を変更し、全パス同周速で、温度を100℃として冷間圧延し、板厚0.25mmの冷延板を得る。また、この熱延焼鈍板を、表1に示す条件で、冷延の1パス目において摩擦係数を変更し、さらに、異速率を5%、異周速冷延の圧下率を30%、温度を100℃として異周速冷延を実施する。そして、2パス目以降を同周速冷延とし、板厚0.25mmの冷延板を得る。この冷延鋼板に、昇温速度20℃/secで加熱して、1000℃で30秒間の仕上げ焼鈍を施して、無方向性電磁鋼板を得る。
得られた各無方向性電磁鋼板について、1/10t、1/2t、及び9/10tにおける各方位の集積度の和を求める。さらに、aveΓ及び磁束密度の評価を行う。結果を表1に示す。
<Example 1>
By mass%, C: 0.003%, Si: 3.3%, Mn: 1.0%, Al: 0.7%, P: 0.02%, S: 0.001%, N: 0. Coarse heat spreading is applied to a steel piece having a chemical composition of 001%, Sn: 0.03%, and the balance: Fe and impurities. Then, it is heated to 1150 ° C. and subjected to finish hot-rolling to obtain a hot-rolled plate having a plate thickness of 2.0 mm. The steel sheet after hot rolling is pickled. The pickled steel sheet is annealed with a hot-rolled sheet annealed at 900 ° C. for 1 minute to obtain a cold-rolled structure having an average particle size of 90 μm. Further, under the conditions shown in Table 1, in the first pass of cold rolling, the friction coefficient and the different speed rate are changed, the reduction rate of the different peripheral speed cold rolling is 30%, and the cold rolling temperature is 100 ° C. To carry out. Then, the second and subsequent passes are cold-rolled at the same peripheral speed, and cold-rolling is performed so that the plate thickness is 0.25 mm (6 passes in total for cold rolling). The cold-rolled steel sheet is heated at a heating rate of 20 ° C./sec and finish-annealed at 1000 ° C. for 30 seconds to obtain a non-oriented electrical steel sheet.
On the other hand, as a comparative material, a steel piece having the same chemical composition as above is subjected to the same process as above to obtain a hot-rolled annealed plate. Then, the hot-rolled annealed sheet was cold-rolled under the conditions shown in Table 1 at the same peripheral speed for all passes at the same peripheral speed in the first pass of cold rolling at a temperature of 100 ° C., and the plate thickness was 0. Obtain a 25 mm cold rolled plate. Further, the friction coefficient of this hot-rolled annealed plate was changed in the first pass of cold rolling under the conditions shown in Table 1, and further, the different speed rate was 5%, the reduction rate of different peripheral speed cold rolling was 30%, and the temperature. The temperature is set to 100 ° C. and cold rolling is carried out at different peripheral speeds. Then, the second and subsequent passes are cold-rolled at the same peripheral speed to obtain a cold-rolled plate having a plate thickness of 0.25 mm. This cold-rolled steel sheet is heated at a heating rate of 20 ° C./sec and finish-annealed at 1000 ° C. for 30 seconds to obtain a non-oriented electrical steel sheet.
For each of the obtained non-oriented electrical steel sheets, the sum of the degree of integration in each direction at 1 / 10t, 1 / 2t, and 9 / 10t is obtained. Furthermore, the aveΓ and the magnetic flux density are evaluated. The results are shown in Table 1.

Figure 0007040184000001
Figure 0007040184000001

以上の結果から、No.A11~No.A16は、摩擦係数μが0.20であり、異速率が5%~40%の範囲のとき、異速率と異周速冷延での圧下率のバランスが適正であるため、aveΓが増加する。それによって、{410}<001>方位の集積度が増加し、L方向およびC方向の磁束密度B50が著しく向上する。No.11~No.16では、{110}<001>方位の集積度が低いこと、及び{100}<001>方位により近い{410}<001>方位の集積度が高いことのために、C方向のB50が高かったと考えられる。 From the above results, No. A11-No. In A16, when the friction coefficient μ is 0.20 and the different speed rate is in the range of 5% to 40%, the balance between the different speed rate and the reduction rate in different peripheral speed cold rolling is appropriate, so that aveΓ increases. .. As a result, the degree of integration in the {410} <001> direction is increased, and the magnetic flux density B 50 in the L direction and the C direction is significantly improved. No. 11-No. In 16, the B 50 in the C direction has a low degree of integration in the {110} <001> direction and a high degree of integration in the {410} <001> direction, which is closer to the {100} <001> direction. It is thought that it was expensive.

一方、No.A1~No.A9は摩擦係数が低いために、aveΓの増加が十分ではなく、{410}<001>方位の集積度の和が増加せず、磁束密度B50が劣位である。
また、No.A10、No.A17、およびNo.A18は、摩擦係数は高い。しかし、異速率と異周速冷延での圧下率のバランスが適正ではないため、aveΓの増加が十分ではなく、{410}<001>方位の集積度の和が増加しない。そのため、磁束密度B50が劣位である。
また、No.A19はaveΓが増加しないうえ、急速加熱により{110}<001>方位の集積度が高くなり、C方向のB50が劣位である。
On the other hand, No. A1 to No. Since the coefficient of friction of A9 is low, the increase of aveΓ is not sufficient, the sum of the degree of integration of the {410} <001> directions does not increase, and the magnetic flux density B50 is inferior.
In addition, No. A10, No. A17 and No. A18 has a high coefficient of friction. However, since the balance between the different speed rate and the rolling reduction in different peripheral speed cold rolling is not appropriate, the increase in aveΓ is not sufficient, and the sum of the accumulation degrees in the {410} <001> directions does not increase. Therefore, the magnetic flux density B 50 is inferior.
In addition, No. In A19, aveΓ does not increase, and the degree of integration in the {110} <001> direction increases due to rapid heating, and B50 in the C direction is inferior.

<実施例2>
実施例1と同様の熱延焼鈍板に、表2に示す条件で、冷延の1パス目において摩擦係数μを0.20、温度を100℃とし、異速率および異周速冷延の圧下率を変更して、異周速冷延を実施する。そして、2パス目以降を同周速冷延とし、板厚が0.25mmとなるように冷延を施す(冷延全体で6パス)。冷延後の鋼板に、昇温速度20℃/secで加熱して、1000℃で30秒間の仕上げ焼鈍を施して、無方向性電磁鋼板を得る。
<Example 2>
On the same hot-rolled annealed plate as in Example 1, under the conditions shown in Table 2, the friction coefficient μ was 0.20 and the temperature was 100 ° C. in the first pass of cold rolling, and the rolling reduction was performed at different speeds and different peripheral speeds. Change the rate and carry out different peripheral speed annealing. Then, the second and subsequent passes are cold-rolled at the same peripheral speed, and cold-rolling is performed so that the plate thickness is 0.25 mm (6 passes in total for cold rolling). The cold-rolled steel sheet is heated at a heating rate of 20 ° C./sec and finish-annealed at 1000 ° C. for 30 seconds to obtain a non-oriented electrical steel sheet.

Figure 0007040184000002
Figure 0007040184000002

なお、No.B19~No.B27は、実施例1のNo.A10~No.A18と同じ条件である。そのため、表2中、No.B19~No.B27の結果は、表1で示した結果と同じ結果を示している。
また、表1及び表2において、異速率0%のときの異周速冷延(異速率ゼロの異周速冷延)の圧下率欄の数値は、同周速冷延としたときの圧下率を表している。
In addition, No. B19-No. B27 is No. 1 of Example 1. A10-No. The conditions are the same as A18. Therefore, in Table 2, No. B19-No. The result of B27 shows the same result as the result shown in Table 1.
Further, in Tables 1 and 2, the numerical value in the reduction rate column of the different peripheral speed cold rolling (different peripheral speed cold rolling with a different speed rate of zero) when the different speed rate is 0% is the rolling reduction when the same peripheral speed cold rolling is used. It represents the rate.

以上より、磁束密度を向上させるためには、異周速冷延の圧下率と異速率とをバランスよく決定することが好ましいことがわかる。No.B1~No.B10、No.B15~No.B19、No.B26~No.B28、及びNo.B36~No.B37は、異周速冷延の圧下率と異速率とのバランスが適正ではないため、aveΓが十分に増加せず、{410}<001>方位の集積度の和が増加しない。そのため、L方向およびC方向のB50が劣位である。これに対し、No.B11~No.B14、No.B20~No.B25、No.B29~No.B35、及びNo.B38~No.B45は、異周速冷延の圧下率と異速率とのバランスが適正であるため、aveΓが増加し、{410}<001>方位の集積度の和が増加する。そのため、L方向およびC方向のB50が優れている。 From the above, it can be seen that in order to improve the magnetic flux density, it is preferable to determine the reduction rate and the different speed rate of different peripheral speed cold rolling in a well-balanced manner. No. B1 to No. B10, No. B15-No. B19, No. B26-No. B28 and No. B36-No. In B37, since the balance between the rolling reduction rate of different peripheral speed cold rolling and the different speed rate is not appropriate, the aveΓ does not increase sufficiently, and the sum of the accumulation degrees in the {410} <001> directions does not increase. Therefore, B 50 in the L direction and the C direction is inferior. On the other hand, No. B11-No. B14, No. B20-No. B25, No. B29-No. B35 and No. B38-No. In B45, since the balance between the rolling reduction rate of different peripheral speed cold rolling and the different speed rate is appropriate, the aveΓ increases and the sum of the accumulation degrees in the {410} <001> directions increases. Therefore, B 50 in the L direction and the C direction is excellent.

<実施例3>
実施例2と同様の熱延焼鈍板に、冷延全体における全パスを6パスとし、表3に示す条件で、冷延を行う。全6パスの冷延のうち、摩擦係数μを0.20、温度を100℃とし、異速率、異周速冷延の合計圧下率、異周速冷延のパス数を変更して、異周速冷延を実施する。なお,異周速冷延を複数パス行うときの異速率は、各パスとも同じである。そして、異周速冷延後の残りのパスを同周速冷延とし、板厚が0.25mmとなるように冷延を施す。冷延後の鋼板に、昇温速度20℃/secで加熱して、1000℃で30秒間の仕上げ焼鈍を施して、無方向性電磁鋼板を得る。
<Example 3>
On the same hot-rolled annealed plate as in Example 2, the total number of passes in the entire cold-rolling is set to 6 and cold-rolling is performed under the conditions shown in Table 3. Of all 6 passes of cold rolling, the friction coefficient μ is 0.20, the temperature is 100 ° C, and the different speed rate, the total reduction rate of different peripheral speed cold rolling, and the number of different peripheral speed cold rolling passes are changed. Carry out peripheral speed cold rolling. The different speed rate when performing different peripheral speed cold rolling in multiple passes is the same for each pass. Then, the remaining paths after cold rolling at different peripheral speeds are set to cold rolling at the same peripheral speed, and cold rolling is performed so that the plate thickness becomes 0.25 mm. The cold-rolled steel sheet is heated at a heating rate of 20 ° C./sec and finish-annealed at 1000 ° C. for 30 seconds to obtain a non-oriented electrical steel sheet.

Figure 0007040184000003
Figure 0007040184000003

異周速冷延の合計パス数が異なっても、異周速冷延の合計圧下率と異速率とをバランスよく決定すれば、磁束密度が向上できることがわかる。No.C11~No.C12は、異速率は適正である。しかし、異周速冷延の合計圧下率が適正ではないため、aveΓが十分に増加せず、{410}<001>方位の集積度の和が増加しない。そのため、L方向およびC方向のB50が劣位である。また、No.C30~No.C34は、異周速冷延の合計圧下率は適正である。しかし、異周速冷延の圧下率と異速率とのバランスが適正ではないため、aveΓが十分に増加せず、{410}<001>方位の集積度の和が増加しない。そのため、L方向およびC方向のB50が劣位である。これに対し、No.C1~No.C10、No.C13~No.C29は、異周速冷延の圧下率と異速率とのバランスが適正であるため、aveΓが増加し、{410}<001>方位の集積度の和が増加する。そのため、L方向およびC方向のB50が優れている。 It can be seen that the magnetic flux density can be improved by determining the total reduction rate and the different speed rate of the different peripheral speed cold rolling in a well-balanced manner even if the total number of passes of the different peripheral speed cold rolling is different. No. C11-No. The different speed rate of C12 is appropriate. However, since the total reduction rate of different peripheral speed cold rolling is not appropriate, the aveΓ does not increase sufficiently, and the sum of the accumulation degrees in the {410} <001> directions does not increase. Therefore, B 50 in the L direction and the C direction is inferior. In addition, No. C30-No. For C34, the total reduction rate of cold rolling at different peripheral speeds is appropriate. However, since the balance between the reduction rate and the different speed rate of the different peripheral speed cold rolling is not appropriate, the aveΓ does not increase sufficiently, and the sum of the accumulation degrees of the {410} <001> directions does not increase. Therefore, B 50 in the L direction and the C direction is inferior. On the other hand, No. C1-No. C10, No. C13-No. In C29, since the balance between the rolling reduction rate of different peripheral speed cold rolling and the different speed rate is appropriate, the aveΓ increases and the sum of the accumulation degrees in the {410} <001> directions increases. Therefore, B 50 in the L direction and the C direction is excellent.

Claims (3)

質量%で、
C :0.0001%~0.005%、
Si:2.0%~5.0%、
Mn:0.1%~3.0%、
Al:0.1%~3.0%、
P :0.001%~0.20%、
S :0.0001%~0.005%、
N :0.0001%~0.005%、
Sn:0.001%~0.20%、並びに、
残部:Fe及び不純物からなる化学組成を有し、
鋼板表面から板厚1/10位置、板厚1/2位置、および板厚9/10位置における{410}<001>方位の集積度の和が13.0以上である無方向性電磁鋼板。
By mass%,
C: 0.0001% to 0.005%,
Si: 2.0% -5.0%,
Mn: 0.1% -3.0%,
Al: 0.1% -3.0%,
P: 0.001% to 0.20%,
S: 0.0001% to 0.005%,
N: 0.0001% to 0.005%,
Sn: 0.001% to 0.20%, and
Remaining: Has a chemical composition consisting of Fe and impurities,
A non-oriented electrical steel sheet in which the sum of the degree of integration of {410} <001> orientations at the plate thickness 1/10 position, the plate thickness 1/2 position, and the plate thickness 9/10 position from the surface of the steel plate is 13.0 or more.
請求項1に記載の無方向性電磁鋼板を製造する方法であって、
質量%で、C :0.0001%~0.005%、Si:2.0%~5.0%、Mn:0.1%~3.0%、Al:0.1%~3.0%、P :0.001%~0.20%、S :0.0001%~0.005%、N :0.0001%~0.005%、Sn:0.001%~0.20%、並びに、残部:Fe及び不純物からなる化学組成を有する鋼片を、熱間圧延する熱間圧延工程と、
前記熱間圧延後の鋼板に、冷間圧延を行う冷間圧延工程であって、累積された付加的剪断ひずみの平均値(aveΓ)が4.0以上である鋼板とする冷間圧延工程と、
前記冷間圧延後の鋼板に、仕上げ焼鈍する工程と、
を有する無方向性電磁鋼板の製造方法。
The method for manufacturing a non-oriented electrical steel sheet according to claim 1.
By mass%, C: 0.0001% to 0.005%, Si: 2.0% to 5.0%, Mn: 0.1% to 3.0%, Al: 0.1% to 3.0. %, P: 0.001% to 0.20%, S: 0.0001% to 0.005%, N: 0.0001% to 0.005%, Sn: 0.001% to 0.20%, In addition, the balance: a hot rolling step of hot rolling a steel piece having a chemical composition consisting of Fe and impurities.
A cold rolling step of cold rolling a steel sheet after hot rolling, and a cold rolling step of making a steel sheet having an average value (aveΓ) of accumulated additional shear strains of 4.0 or more. ,
The process of finish annealing the steel sheet after cold rolling and
A method for manufacturing a non-oriented electrical steel sheet having.
請求項1に記載の無方向性電磁鋼板を製造する方法であって、
質量%で、C :0.0001%~0.005%、Si:2.0%~5.0%、Mn:0.1%~3.0%、Al:0.1%~3.0%、P :0.001%~0.20%、S :0.0001%~0.005%、N :0.0001%~0.005%、Sn:0.001%~0.20%、並びに、残部:Fe及び不純物からなる化学組成を有する鋼片を、熱間圧延する熱間圧延工程と、
前記熱間圧延後の鋼板に、冷間圧延を行う冷間圧延工程であって、周速の異なる2つのワークロールによる異周速での冷間圧延を、前記ワークロールと、前記ワークロールに接する鋼板の表面との摩擦係数が0.1超~0.3であり、かつ異速率が5%~40%である圧延を1パス以上実施し、前記摩擦係数と前記異速率を満足する異周速での冷延の合計圧下率が20%~50%となる条件で行う冷間圧延工程と、
前記冷間圧延後の鋼板に、仕上げ焼鈍する工程と、
を有する無方向性電磁鋼板の製造方法。
The method for manufacturing a non-oriented electrical steel sheet according to claim 1.
By mass%, C: 0.0001% to 0.005%, Si: 2.0% to 5.0%, Mn: 0.1% to 3.0%, Al: 0.1% to 3.0. %, P: 0.001% to 0.20%, S: 0.0001% to 0.005%, N: 0.0001% to 0.005%, Sn: 0.001% to 0.20%, In addition, the balance: a hot rolling step of hot rolling a steel piece having a chemical composition consisting of Fe and impurities.
In the cold rolling step of cold rolling the steel sheet after hot rolling, cold rolling at different peripheral speeds by two work rolls having different peripheral speeds is performed on the work roll and the work roll. Rolling with a friction coefficient of more than 0.1 to 0.3 and a different speed rate of 5% to 40% with the surface of the steel sheet in contact is carried out for one pass or more, and the friction coefficient and the different speed rate are satisfied. A cold rolling process performed under the condition that the total reduction rate of cold rolling at peripheral speed is 20% to 50%, and
The process of finish annealing the steel sheet after cold rolling and
A method for manufacturing a non-oriented electrical steel sheet having.
JP2018052220A 2018-03-20 2018-03-20 Non-oriented electrical steel sheet and its manufacturing method Active JP7040184B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018052220A JP7040184B2 (en) 2018-03-20 2018-03-20 Non-oriented electrical steel sheet and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018052220A JP7040184B2 (en) 2018-03-20 2018-03-20 Non-oriented electrical steel sheet and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2019163509A JP2019163509A (en) 2019-09-26
JP7040184B2 true JP7040184B2 (en) 2022-03-23

Family

ID=68065905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018052220A Active JP7040184B2 (en) 2018-03-20 2018-03-20 Non-oriented electrical steel sheet and its manufacturing method

Country Status (1)

Country Link
JP (1) JP7040184B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7371815B1 (en) 2021-12-16 2023-10-31 Jfeスチール株式会社 Non-oriented electrical steel sheet and its manufacturing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005186112A (en) 2003-12-25 2005-07-14 Nippon Steel Corp Method for manufacturing non-oriented magnetic steel sheet
JP2006045641A (en) 2004-08-06 2006-02-16 Nippon Steel Corp Nonoriented silicon steel sheet having excellent magnetic property in the direction of 45° from rolling direction and its production method
JP2008127600A (en) 2006-11-17 2008-06-05 Nippon Steel Corp Non-oriented electromagnetic steel sheet for divided core
JP2008127659A (en) 2006-11-22 2008-06-05 Nippon Steel Corp Non-oriented electromagnetic steel sheet with less anisotropy
JP2008127608A (en) 2006-11-17 2008-06-05 Nippon Steel Corp Non-oriented electromagnetic steel sheet for divided core

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6016844B2 (en) * 1981-01-29 1985-04-27 石川島播磨重工業株式会社 Method of rolling by changing the frictional force between the upper and lower rolls
JPH07207343A (en) * 1994-01-18 1995-08-08 Nippon Steel Corp Production of semiprocessed grain nonoriented silicon steel sheet

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005186112A (en) 2003-12-25 2005-07-14 Nippon Steel Corp Method for manufacturing non-oriented magnetic steel sheet
JP2006045641A (en) 2004-08-06 2006-02-16 Nippon Steel Corp Nonoriented silicon steel sheet having excellent magnetic property in the direction of 45° from rolling direction and its production method
JP2008127600A (en) 2006-11-17 2008-06-05 Nippon Steel Corp Non-oriented electromagnetic steel sheet for divided core
JP2008127608A (en) 2006-11-17 2008-06-05 Nippon Steel Corp Non-oriented electromagnetic steel sheet for divided core
JP2008127659A (en) 2006-11-22 2008-06-05 Nippon Steel Corp Non-oriented electromagnetic steel sheet with less anisotropy

Also Published As

Publication number Publication date
JP2019163509A (en) 2019-09-26

Similar Documents

Publication Publication Date Title
JP6260800B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof, and motor core and manufacturing method thereof
JP5533958B2 (en) Non-oriented electrical steel sheet with low iron loss degradation by punching
TWI774294B (en) Non-oriented electrical steel sheet, iron core, cold rolled steel sheet, method for producing non-oriented electrical steel sheet, and method for producing cold rolled steel sheet
US10991494B2 (en) Non-oriented electrical steel sheet
JP6954464B2 (en) Manufacturing method of non-oriented electrical steel sheet
WO2019182022A1 (en) Non-oriented electromagnetic steel sheet
US10968503B2 (en) Non-oriented electrical steel sheet
WO2017056383A1 (en) Non-oriented electromagnetic steel sheet and manufacturing method of same
JP4855225B2 (en) Non-oriented electrical steel sheet with small anisotropy
JP6443355B2 (en) Method for producing grain-oriented electrical steel sheet
US10995393B2 (en) Non-oriented electrical steel sheet
JP5037796B2 (en) Method for producing grain-oriented electrical steel sheet
JP7401729B2 (en) Non-oriented electrical steel sheet
JP7040184B2 (en) Non-oriented electrical steel sheet and its manufacturing method
JP2018178198A (en) Nonoriented electromagnetic steel sheet and manufacturing method therefor
JP6977436B2 (en) Non-oriented electrical steel sheet and its manufacturing method
KR102668145B1 (en) Non-oriented electrical steel sheet
JP4622162B2 (en) Non-oriented electrical steel sheet
WO2019245044A1 (en) Grain-oriented electrical steel sheet with excellent magnetic characteristics
JP4258854B2 (en) Manufacturing method of electrical steel sheet
JPH01225A (en) Manufacturing method of high tensile strength non-oriented electrical steel sheet
TWI829403B (en) Non-oriented electromagnetic steel plate and manufacturing method thereof
EP4026930A1 (en) Electromagnetic steel sheet with insulation coating film
JP5045176B2 (en) Hot-rolled steel sheet excellent in in-plane anisotropy of r value and method for producing the same
WO2023248861A1 (en) Method for producing electromagnetic steel sheet, and cold-rolled sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210810

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220221

R151 Written notification of patent or utility model registration

Ref document number: 7040184

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151