JP4258854B2 - Manufacturing method of electrical steel sheet - Google Patents

Manufacturing method of electrical steel sheet Download PDF

Info

Publication number
JP4258854B2
JP4258854B2 JP33413897A JP33413897A JP4258854B2 JP 4258854 B2 JP4258854 B2 JP 4258854B2 JP 33413897 A JP33413897 A JP 33413897A JP 33413897 A JP33413897 A JP 33413897A JP 4258854 B2 JP4258854 B2 JP 4258854B2
Authority
JP
Japan
Prior art keywords
rolling
hot
less
annealing
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33413897A
Other languages
Japanese (ja)
Other versions
JPH11172383A (en
Inventor
明博 松崎
重彰 高城
修 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP33413897A priority Critical patent/JP4258854B2/en
Publication of JPH11172383A publication Critical patent/JPH11172383A/en
Application granted granted Critical
Publication of JP4258854B2 publication Critical patent/JP4258854B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3268Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Power Engineering (AREA)
  • Soft Magnetic Materials (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、変圧器や電動機の鉄芯材料として有利に適合する電磁鋼板の製造方法に関する。
【0002】
【従来の技術】
変圧器や電動機の鉄芯材料には、これら機器の高効率化や小型化をはかるために、磁束密度が高くかつ鉄損の低いことが要求される。この種の鉄芯材料に供する電磁鋼板としては、上記の要求を満足する、優れた特性を有するところから、Siを7wt%以下で含有するけい素鋼板が専ら用いられてきた。
【0003】
さて、電磁鋼板は、使用時における磁化方向の電磁特性が優れるような集合組織を持つことが望ましい。好適な集合組織は、使用形態によって異なるが、回転機のように面内で等方的に磁化方向を有する場合には、圧延面の方位が{100}でかつ、磁化容易軸の方位<001>が面内でランダムに分布しているような、いわゆるランダム立方集合組織が最も望ましい。なお、この集合組織は、圧延面の方位が{100}でかつ、圧延方向(RD)の方位が<001>および<011>の双方に集積したもの、と定義できる。かような集合組織を得ることができれば、面内の全方位に対する平均の磁束密度はさらに向上するため、上記Fe−P系の電磁鋼板においてランダム立方集合組織を得ることは、極めて有意義である。
【0004】
このような集合組織を得るために、主にけい素鋼を対象として種々の方法が提案されている。
例えば、特開平2−133523号公報に記載されている、溶湯超急冷に冷間圧延および焼鈍を組み合わせた方法、特公昭48−19767 号公報に記載される、強圧下冷間圧延と脱炭焼鈍とを組み合わせた方法および、特開平7−278666号公報に記載される、冷延板の焼鈍と、その後の急冷を利用した方法等が、それである。
【0005】
【発明が解決しようとする課題】
しかしながら、上記の各方法のうち、超急冷法は特殊な冷却ロールを必要とするところから、製造コストが高くなる問題がある。また、強圧下冷間圧延と脱炭焼鈍とを組み合わせた方法は、複雑な工程を必要とするほか、主に0.30mm以下の特殊な薄鋼板に限定される点で不利である。さらに、焼鈍および急冷方法は、簡便に板面内の磁気特性を均一にすることができるが、とりわけ高い磁束密度を得るには至らない。
【0006】
そこで、この発明は、複雑な工程を必要とすることなしにかつ低コストにて、熱間圧延段階において{100}<001>および{100}<011>方位の集積度が高い集合組織を有する電磁鋼板有利な製造方法について提案することを目的とする。
【0007】
【課題を解決するための手段】
発明者らは、熱間圧延によってランダム立方集合組織を形成し、2方向の磁気特性とりわけ磁束密度を高めた電磁鋼板を得るために、鋭意研究を重ねた結果、Siを主たる合金元素とし、さらに熱間仕上げ圧延における圧延温度と圧下率を制御し、従来通常の工程で採用されている条件よりも高温かつ強圧下条件とすることが、所期した目的の達成に極めて有効であるとの知見を得た。
この発明は、上記の知見に立脚するものである。
【0010】
すなわち、この発明の要旨構成は、次のとおりである。
.Si:3.5 wt%以下を含有し、残部Feおよび不可避不純物からなる鋼スラブに、熱間粗圧延を施し、次いで圧下率(1パス):50%以上および圧延終了温度:750 〜1050℃の条件下で熱間仕上げ圧延を施したのち、得られた熱延板を700 ℃以下の温度域で焼鈍することを特徴とする電磁鋼板の製造方法。
【0011】
.Si:3.5 wt%以下を含み、さらにP:0.01wt%以上0.2 wt%未満、Al:0.05wt%以下及びMn:0.05wt%以上2.0 wt%以下のうちから選んだ1種または2種以上を含有し、残部Feおよび不可避不純物からなる鋼スラブに、熱間粗圧延を施し、次いで圧下率(1パス):50%以上および圧延終了温度:750 〜1050℃の条件下で熱間仕上げ圧延を施したのち、得られた熱延板を700 ℃以下の温度域で焼鈍することを特徴とする電磁鋼板の製造方法。
【0012】
.上記またはにおいて、熱間仕上げ圧延後に、圧下率40%未満の冷間圧延次いで焼鈍を行うことを特徴とする磁気特性に優れた電磁鋼板の製造方法。
【0013】
この発明は、Siを含有した電磁鋼板において、{100}<001>および{100}<001>方位の集積強度がランダム組織のそれの3倍以上である集合組織を有するため、電磁特性に優れた鋼板を熱間圧延のみでまたは特殊な手法を用いることなしに、提供することができ、大幅なコスト低減を可能とする。ここで、電磁鋼板は、鉄損が低い場合は磁束密度も低くなり、とくに板面内の全方位に対する平均的特性に劣るのが通例である。これに対して、この発明に従う電磁鋼板は、後述する実験例に示すとおり、このような集積度を付与することにより、通常の無方向性電磁鋼板と同程度の工程によって、現在の無方向性けい素鋼板と同等または少ない鉄損で、かつ大幅に高い磁束密度、とくに板面の全方位に対する平均にて、W15/50 が2〜3.5 W/kgのときにB50が1.68T以上、またW15/50 が3.5 〜6W/kgのときにB50が1.74T以上を確保することができる。
【0014】
【発明の実施の形態】
以下、この発明を由来するに至った実験結果について説明する。
真空小型溶解炉にて、Si:0.70wt%を含有し残部はFe及び不純物の組成になる50kg鋼塊を溶解し、熱間粗圧延により板厚:3.5 mmに圧延した。この鋼板を、1100℃にて30分間加熱後、ロール径が 700mmφの圧延機にて、周速:800 m/min 、圧下率:80%、圧延終了温度:950 ℃にて圧延し、板厚:0.7 mmの熱延板とした。
【0015】
この熱延板に600 ℃で1分間の焼鈍を施したのち、その集合組織を調査した結果、{100}<001>方位への集積度がランダム組織のそれの 5.0倍、また{100}<011>方位への集積度がランダム組織のそれの4.0 倍といずれも高くなった。さらに、板面全方位の平均的な磁気特性を簡便に評価するために、外径35mmおよび内径25mmのリング状試料を切り出して、その磁気特性を測定したところ、鉄損はW15/50 で6.6 W/kgおよび磁束密度はB50で 1.77 Tと、今までにない優れた特性の熱延鋼板が得られた。
【0016】
ここで、特定の方位の集積度は、その方位をもつ結晶粒の存在頻度が、完全にランダムな方位分布をもつ組織に対して、どの程度であるかを示しており、次のように求めることができる。すなわち、鋼板試料の板面に平行の板厚中央部分を研磨し、その研磨面について、X線回折のシュルツ法にて、(110) 、(200) および(211) の不完全極点図を数値データとして測定する。この測定データを、H.J.Bunge 著の“Texture Analysis Materials Science”に記載されている、級数展開法を用いて、3次元方位分布関数に変換する。この分布関数は、完全ランダム分布であれば、いずれの方位も存在頻度が1になるように正規化されていて、特定の方位の集積度を求めるには、その方位、ここでは{100}<001>または{100}<011>方位における分布関数の値を採用すればよい。この値が、正しくランダム分布に対する集積度の倍数になる。
なお、圧延終了温度:700 ℃の条件で圧延した同組成の鋼板についても同様に調査した結果、{100}<001>および{100}<011>方位への集積度が低下していることが判明した。
【0017】
さらに、上記の圧延終了温度が950 ℃の熱間圧延で得られた熱延板を0.5 mmに冷間圧延(圧下率:29%)し、850 ℃で1分間の焼鈍を施したのち、その集合組織と磁気特性を調査した結果、{100}<001>および{100}<011>方位への集積度がランダム組織のそれのそれぞれ5.2 倍および4.4 倍と、熱延板段階での集積度がほぼ保たれており、またリング試料の鉄損はW15/50 で4.8 W/kg、磁束密度はB50で 1.78 Tと、同程度の鉄損の従来の無方向性電磁鋼板に比べると、リング試料による評価としては格段に高い磁束密度を持つ電磁鋼板が得られた。
一方、熱間圧延における圧延終了温度が700 ℃であった場合は、冷延板においても{100}<001>および{100}<011>方位への集積度がいずれも低下していた。
【0018】
この発明は、上記の実験事実に基づいたものであり、成分組成に加えて、熱間圧延条件が重要になる。
すなわち、熱間圧延終了時における鋼板の温度が十分に高く、かつ圧下率も十分に高い場合に限って、好適な集合組織が得られるのである。
さらに、適切な圧下率の冷間圧延を施すことによって、この集合組織が強化されるのである。この理由については完全に解明されていないが、熱間圧延については、特定の条件下での圧延変形時の再結晶において、圧延面に平行に{100}面を持つ結晶粒が優先的に出現するためと考えられる。
また、冷間圧延および焼鈍における集合組織の集積度向上については、従来知見によれば強圧下により集合組織が破壊されて集積度が低下すると考えられてきたが、それとは逆に集積度が向上しており、これは、熱延板の特殊な集合組織と関連していると考えられるが、明確な説明ができるには至っていない。
【0019】
さて、この発明における各種条件の限定理由について説明する。
まず、成分組成について述べる。
Si:3.5 wt%以下
Siは比抵抗を増大させ、滑電流損を低減させる効果がある。しかしながら、3.5 wt%をこえると、磁束密度の低下が激しくなるため、3.5 wt%を上限とする。なお、Siの上記効果を発揮するには、0.1 wt%以上を含有することが、望ましい。
【0020】
また、Siの働きを補助することを目的として、比抵抗を増大する、P、AlおよびMnのうちから選んだ1種または2種以上を含有することができる。
P:0.01wt%以上0.2 wt%未満
Pは、比抵抗を増大させ、滑電流損を低減させる効果がある。そのためには、0.01wt%以上は必要であるが、0.2 wt%以上では加工性が低下するため、0.01wt%以上0.2 wt%未満とする。
【0021】
Al:0.05wt%以上2.0 wt%以下
Alは、比抵抗を増大させ、滑電流損を低減させる効果がある。そのためには、0.05wt%以上は必要であるが、2.0 wt%をこえると磁束密度の低下が激しくなるとともに加工性も劣化するため、0.05wt%以上2.0 wt%以下とする。
【0022】
Mn:0.05wt%以上2.0 wt%以下
Mnは、比抵抗を増大させ、滑電流損を低減させる効果がある。そのためには、0.05wt%以上は必要であるが、2.0 wt%をこえると磁束密度の低下が激しくなるとともに加工性も劣化するため、0.05wt%以上2.0 wt%以下とする。
【0023】
一方、Oについては、不純物元素として集合組織の形成に悪影響を及ぼす。すなわち、Oの含有量が0.005 wt%をこえると、熱間圧延での{100}<001>へ集積した集合組織の形成に悪影響を及ぼし、ひいては製品の集合組織そして磁気特性を劣化するため、0.005 wt%以下に抑制することが好ましい。
【0024】
次に、集合組織について説明すると、この発明は{100}<001>および{100}<011>方位に集積している組織を特徴とし、この効果を電磁鋼板製品として十分に活かすためには、その集積度をランダム組織のそれの3倍以上とすることが重要である。さらに、平均結晶粒径が10μm未満になると、鉄損とくに履歴損が顕著に増大し鉄損が劣化し、500 μmをこえると、製品における打ち抜き性が劣化するため、結晶粒径は10〜500 μmの範囲とする。
【0025】
次に、製造条件について述べる。
まず、熱間圧延における圧延終了温度については、 750℃未満では{100}<001>および{100}<011>方位の集積強度がランダム組織のそれの3倍に満たず、一方1050℃を超えると加熱炉送出から圧延までに時間的制約を受けるだけでなく、高温での加熱を必要としコストの上昇を招くので、圧延終了温度は 750〜1050℃の範囲に限定した。
また、熱間圧延の圧下率については、圧下率が50%未満では、好適な集合組織を持つ再結晶に必要となる、十分な歪を付与できないため、圧下率は50%以上に定めた。
【0026】
さらに、{100}<001>および{100}<011>の双方の方位の集積度をバランスよく高めるために、熱延板焼鈍を施すことが有利である。この焼鈍温度が700 ℃をこえると、とくに{100}<011>方位の集積度が弱くなり、圧延面内にあって圧延方向に対して45°傾いた方向の磁気特性が劣化し、結果として圧延面内全方位平均の磁気特性が劣化する。従って、熱延板の焼鈍温度を700 ℃以下とする。
【0027】
ここで、熱間圧延後の熱延板はコイルに巻き取るのが、工業的規模での製造における通常であるが、この巻取りを実施する場合には、その巻取り温度に応じて焼鈍が施されることになる。従って、コイルの巻取り温度が高いと、熱延板焼鈍を高温で行ったことになるから、熱延板をコイルに巻き取る場合は、巻取り温度を、上記した焼鈍の温度と同様に、700 ℃以下とする必要がある。なお、この巻取り段階において焼鈍と同等の効果が得られるのであれば、熱延板の焼鈍工程を新たに設ける必要はないのは勿論である。
【0028】
さらに、上記の熱間仕上げ圧延後に、冷間圧延次いで焼鈍を行う際は、冷間圧延における圧下率が40%以上であると、熱延板の段階で得られたランダム立方組織が変化し、面内での等方的な性質が失われるため、40%未満の圧下率で冷間圧延を行う。
【0029】
【実施例】
実施例1
真空小型溶解炉にて、表1に示す各成分組成の50kg鋼塊をそれぞれ溶解した。表1において、鋼(C) 、(D) および(E) がこの発明に従う成分組成であり、鋼(D) がSi単独、そして鋼(C) および(E) がSiに加えてP、AlおよびMnを添加した例である。また、鋼(A) および(B) はSiおよびMn添加量がこの発明の範囲を外れた例である。さらに、鋼(F) はOの含有量が多い例である。
【0030】
次いで、これら鋼塊を1150℃に加熱後、熱間粗圧延により 1.3〜4.0 mm厚の板とした。この板を、1100℃に加熱後、圧延終了温度を 600〜950 ℃に制御し、 800m/min の圧延速度で1パスにて 0.8mmに仕上げ(圧下率:40〜80%)、その後600 ℃, 2時間の焼鈍を施した。
【0031】
かくして得られた各熱延鋼板について、X線解析にて (110), (200), (211)極点図を求め、上記した級数展開法を用いて3次元方位解析を行い、3次元方位分布密度を求めた。さらに、外径35mmおよび内径25mmのリング状に切り出した試料によって磁気測定を行い、 1.5T励磁の時の鉄損値W15/50 および励磁磁場5000 A/mの時の磁束密度B50を求めた。
得られた結果を表2に示す。
【0032】
【表1】

Figure 0004258854
【0033】
【表2】
Figure 0004258854
【0034】
No.1及び3は、この発明の製造条件を満たしているが、鋼の成分組成がこの発明の範囲外であるため、磁気特性に劣る。また、 No.2は、鋼組成及び製造条件ともに、この発明の範囲外であるため、磁気特性に劣るものである。
【0035】
これに対して、 No.3と同様の圧延条件で、かつこの発明の組成範囲に適合する No.4および5は、とくにリング状試料の磁束密度において、同等の鉄損値の No.3に比べて高い磁束密度が得られることが注目される。すなわち、この発明の圧延条件で得られた従来組成の鋼板 No.3に比べて、この発明の圧延条件および組成に従う鋼板 No.4および5は、板面内の全方位に対する平均的鉄損が低くかつ磁束密度が格段に高い、優れた特性が得られる。これは、この発明に従う No.6および8についても同様である。
【0036】
また、 No.11は、Siに加えてP、AlおよびMnを含有する発明例であり、この場合も従来の比較例 No.1に比べ、同等の鉄損水準において格段に高い磁束密度となっている。
【0037】
一方、 No.7、9および10は、成分組成は発明範囲であるが、圧延条件が発明範囲から外れているため、従来組成の No.2よりは特性が優れるものの、 No.3と同等程度の特性となる。なお、 No.12の結果から、Oの含有量が多いと、集合組織の集積度が低下し、磁気特性が劣化することもわかる。
【0038】
実施例2
次に、冷間圧延の圧下率に関する実施例を示す。
真空小型溶解炉にて、表1に示した鋼(C)の成分組成の50kg鋼塊を溶解し、この鋼塊を1150℃に加熱後、熱間粗圧延により2〜3mm厚の板とした。この板を、1100℃に加熱後、圧延終了温度を950 ℃に制御し、 800m/min の圧延速度で1パス(圧下率:65〜70%)にて0.6 〜1.0 mmに仕上げた。その後熱延板の表面のスケールをショットブラスト処理にて除去し、水素:35%および窒素65%の雰囲気中で650 ℃、2時間の焼鈍を施したのち、圧下率17〜50%にて0.5 mm厚まで冷間圧延を行ってから、水素:35%および窒素65%の雰囲気中で850 ℃、1分間の焼鈍を施した。
【0039】
かくして得られた各冷延鋼板について、X線解析にて (110), (200), (211)極点図を求め、上記した級数展開法を用いて3次元方位解析を行い、3次元方位分布密度を求めた。さらに、外径35mmおよび内径25mmのリング状に切り出した試料によって磁気測定を行い、 1.5T励磁の時の鉄損値;W15/50 および励磁磁場:5000 A/mの時の磁束密度;B50を求めた。
得られた結果を表3に示す。
【0040】
【表3】
Figure 0004258854
【0041】
No.12および13は、冷間圧延の圧下率が適合範囲にある実施例であり、{100}<001>および{100}<011>方位の集積強度が高く、とりわけ板面全方位の平均磁束密度が極めて高くなっている。
【0042】
これに対して、 No.14は冷間圧延の圧下率が過大であるため、{100}<001>方位の集積度は高くなるものの、{100}<011>方位の集積度はさほど大きくなく、磁束密度もやや低下している。
【0043】
実施例3
ここでは、熱延板焼鈍に関する実施例を示す。
真空小型溶解炉にて、表1に示した鋼(C)の成分組成の50kg鋼塊を溶解し、この鋼塊を1150℃に加熱後、熱間粗圧延により 2.0mm厚の板とした。この板を、1100℃に加熱後、圧延終了温度を950 ℃に制御し、800 m/min の圧延速度で1パスにて0.7 mmに仕上げ(圧下率:65%)、仕上熱延板を得た。この仕上熱延板の表面にショットをかけてスケールを落とし、水素35%、窒素65%の雰囲気中で300 〜900 ℃、2時間の焼鈍を施したのち、0.5mm まで圧下率29%にて冷間圧延し、水素35%、窒素65%の雰囲気中で850 ℃、1分間の焼鈍を施した。
【0044】
かくして得られた各電磁鋼板について、X線解析にて(110), (200), (211) 極点図を求め、上記した級数展開法を用いて3次元方位解析を行い、3次元方位分布密度を求めた。さらに、外径35mmおよび内径25mmのリング状に切り出した試料によって磁気測定を行い、1.5 T励磁の時の鉄損値W15/50 および励磁磁場5000 A/mの時の磁束密度B50を求めた。
得られた結果を表4に示す。
【0045】
【表4】
Figure 0004258854
【0046】
No. 15〜17は、熱延板焼鈍温度が適合する実施例であり、{100}<001>および{100}<011>双方の方位の集積強度が高く、特に板面全方位平均の磁束密度が極めて高くなっている。
【0047】
これに対して、No. 18および19は、熱延板焼鈍温度が高すぎるため、{100}<001>方位の集積度は高くなるものの、{100}<011>方位の集積度が低下し、その結果、リング試料の磁束密度がやや低下している。
【0048】
【発明の効果】
この発明によれば、従来、通常の製造方法では実現不可能であった、磁化方向が面内無方向、すなわちランダム立方組織に高度に集積した高磁束密度電磁鋼板を、熱間圧延のままで、また特殊な冷間圧延や焼鈍工程に頼ることなしに、安価に提供することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of manufacturing an electromagnetic steel sheet that is advantageously adapted as a core material for transformers and electric motors.
[0002]
[Prior art]
Iron core materials for transformers and electric motors are required to have high magnetic flux density and low iron loss in order to increase the efficiency and miniaturization of these devices. As an electrical steel sheet used for this type of iron core material, a silicon steel sheet containing Si at 7 wt% or less has been exclusively used because it has excellent characteristics that satisfy the above requirements.
[0003]
Now, it is desirable that the electrical steel sheet has a texture that is excellent in electromagnetic characteristics in the magnetization direction during use. A suitable texture differs depending on the use form, but when the direction of magnetization is isotropic in a plane like a rotating machine, the orientation of the rolling surface is {100} and the orientation of the easy axis <001 The so-called random cubic texture in which> is randomly distributed in the plane is most desirable. This texture can be defined as one in which the orientation of the rolling surface is {100} and the orientation in the rolling direction (RD) is accumulated in both <001> and <011>. If such a texture can be obtained, the average magnetic flux density with respect to all orientations in the plane is further improved. Therefore, it is extremely meaningful to obtain a random cubic texture in the Fe-P-based electrical steel sheet.
[0004]
In order to obtain such a texture, various methods have been proposed mainly for silicon steel.
For example, a method in which cold rolling and annealing are combined with molten metal ultra-quenching described in JP-A-2-133523, cold rolling under high pressure and decarburization annealing described in JP-B-48-19767 And a method using annealing of a cold-rolled sheet and subsequent rapid cooling described in JP-A-7-278666.
[0005]
[Problems to be solved by the invention]
However, among the above-described methods, the ultra-rapid cooling method requires a special cooling roll, and thus has a problem that the manufacturing cost increases. Moreover, the method combining cold rolling under strong pressure and decarburization annealing is disadvantageous in that it requires a complicated process and is mainly limited to a special thin steel sheet of 0.30 mm or less. Further, the annealing and rapid cooling methods can easily make the magnetic properties in the plate surface uniform, but do not achieve a particularly high magnetic flux density.
[0006]
Therefore, the present invention has a texture having a high accumulation degree of {100} <001> and {100} <011> orientations in the hot rolling stage without requiring a complicated process and at low cost. It aims at proposing about the advantageous manufacturing method of an electrical steel sheet.
[0007]
[Means for Solving the Problems]
The inventors of the present invention have made a random cubic texture by hot rolling to obtain a magnetic steel sheet having two-direction magnetic properties, particularly a high magnetic flux density. Knowledge that controlling the rolling temperature and reduction ratio in hot finish rolling and achieving a higher temperature and a higher reduction condition than those conventionally employed in the normal process is extremely effective in achieving the intended purpose. Got.
The present invention is based on the above findings.
[0010]
That is, the gist of the present invention is as follows.
1 . Si: A steel slab containing 3.5 wt% or less , the balance being Fe and inevitable impurities , is subjected to hot rough rolling, and then rolling reduction (1 pass): 50% or more and rolling end temperature: 750 to 1050 ° C After subjected to hot finish rolling under manufacturing method of that electrical steel sheet to, characterized in that annealing the obtained hot rolled sheet at a temperature range of 700 ° C. or less.
[0011]
2 . Si: 3.5 wt% or less, P: 0.01 wt% or more and less than 0.2 wt%, Al: 0.05 wt% or less and Mn: 0.05 wt% or more and 2.0 wt% or less The steel slab containing the remaining Fe and inevitable impurities is subjected to hot rough rolling, followed by hot finish rolling under the conditions of reduction ratio (1 pass): 50% or more and rolling end temperature: 750 to 1050 ° C. After subjected method of that electrical steel sheet to, characterized in that annealing the obtained hot rolled sheet at a temperature range of 700 ° C. or less.
[0012]
3 . 3. The method for producing an electrical steel sheet having excellent magnetic properties according to 1 or 2, wherein after hot finish rolling, cold rolling with a rolling reduction of less than 40% and annealing are performed.
[0013]
This invention is excellent in electromagnetic characteristics because it has a texture in which the integrated strength of the {100} <001> and {100} <001> orientations is three times or more that of the random structure in the Si-containing electromagnetic steel sheet. Steel sheets can be provided only by hot rolling or without using a special technique, which enables a significant cost reduction. Here, the magnetic steel sheet has a low magnetic flux density when the iron loss is low, and is generally inferior in average characteristics with respect to all directions in the plate surface. On the other hand, the electrical steel sheet according to the present invention, as shown in an experimental example to be described later, gives such a degree of integration, so that the current non-oriented property is achieved by a process similar to that of a normal non-oriented electrical steel sheet. B 50 is 1.68T or more when W 15/50 is 2 to 3.5 W / kg on average for all orientations of the plate surface, with iron loss equivalent to or less than that of silicon steel sheet and significantly higher magnetic flux density. Further, when W 15/50 is 3.5 to 6 W / kg, B 50 can be secured to 1.74T or more.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the experimental results that led to the present invention will be described.
In a vacuum compact melting furnace, a 50 kg steel ingot containing Si: 0.70 wt% and the balance being Fe and impurities was melted and rolled to a thickness of 3.5 mm by hot rough rolling. This steel sheet was heated at 1100 ° C for 30 minutes, and then rolled on a rolling mill with a roll diameter of 700 mmφ at a peripheral speed of 800 m / min, a reduction rate of 80%, and a rolling end temperature of 950 ° C. : 0.7 mm hot rolled sheet.
[0015]
After annealing the hot-rolled sheet at 600 ° C. for 1 minute, the texture was investigated. As a result, the degree of accumulation in the {100} <001> orientation was 5.0 times that of the random structure, and {100} < The degree of integration in the 011> direction was 4.0 times that of the random structure, both of which were high. Furthermore, in order to easily evaluate the average magnetic properties in all directions on the plate surface, a ring-shaped sample having an outer diameter of 35 mm and an inner diameter of 25 mm was cut out and measured for magnetic properties. The iron loss was W 15/50 . and 6.6 W / kg and the magnetic flux density is 1.77 T at B 50, hot-rolled steel sheet without excellent properties so far were obtained.
[0016]
Here, the degree of accumulation of a specific orientation indicates how much the existence frequency of crystal grains having the orientation is with respect to a structure having a completely random orientation distribution, and is obtained as follows. be able to. That is, the center part of the plate thickness parallel to the plate surface of the steel plate sample is polished, and the incomplete pole figures of (110), (200), and (211) are numerically expressed on the polished surface by the Schulz method of X-ray diffraction. Measure as data. This measurement data is converted into H.264. J. et al. Using the series expansion method described in “Texture Analysis Materials Science” by Bunge, it is converted into a three-dimensional orientation distribution function. This distribution function is normalized so that the existence frequency is 1 in the case of a completely random distribution, and in order to obtain the degree of integration of a specific direction, the direction, here {100} < The value of the distribution function in the 001> or {100} <011> orientation may be adopted. This value is correctly a multiple of the degree of integration for a random distribution.
In addition, as a result of investigating similarly about the steel plate of the same composition rolled on the conditions of rolling completion temperature: 700 degreeC, the integration degree to {100} <001> and {100} <011> direction has fallen. found.
[0017]
Further, the hot rolled sheet obtained by hot rolling with the above rolling end temperature of 950 ° C. is cold-rolled to 0.5 mm (rolling ratio: 29%), annealed at 850 ° C. for 1 minute, As a result of investigating the texture and magnetic properties, the degree of accumulation in the {100} <001> and {100} <011> orientations was 5.2 times and 4.4 times that of the random structure, respectively, and the degree of accumulation at the hot-rolled plate stage. The iron loss of the ring sample is 4.8 W / kg at W 15/50 , and the magnetic flux density is 1.78 T at B 50 , compared to the conventional non-oriented electrical steel sheet with the same iron loss. As a result of evaluation using a ring sample, an electromagnetic steel sheet having a remarkably high magnetic flux density was obtained.
On the other hand, when the rolling end temperature in the hot rolling was 700 ° C., the degree of accumulation in the {100} <001> and {100} <011> directions was also reduced in the cold-rolled sheet.
[0018]
This invention is based on the above experimental fact, and in addition to the component composition, the hot rolling conditions are important.
That is, a suitable texture can be obtained only when the temperature of the steel sheet at the end of hot rolling is sufficiently high and the rolling reduction is sufficiently high.
Furthermore, this texture is strengthened by cold rolling at an appropriate reduction rate. The reason for this has not been fully elucidated, but for hot rolling, crystal grains having {100} faces parallel to the rolling surface appear preferentially in recrystallization during rolling deformation under specific conditions. It is thought to do.
In addition, regarding the improvement of the degree of texture accumulation in cold rolling and annealing, according to the conventional knowledge, it was thought that the texture was destroyed due to strong pressure and the degree of accumulation decreased, but on the contrary, the degree of accumulation increased. This is thought to be related to the special texture of hot-rolled sheets, but has not yet been clearly explained.
[0019]
Now, the reasons for limiting the various conditions in the present invention will be described.
First, the component composition will be described.
Si: 3.5 wt% or less
Si has the effect of increasing the specific resistance and reducing the sliding current loss. However, if it exceeds 3.5 wt%, the magnetic flux density will decrease drastically, so 3.5 wt% is the upper limit. In order to exhibit the above effect of Si, it is desirable to contain 0.1 wt% or more.
[0020]
Further, for the purpose of assisting the function of Si, one or more selected from P, Al and Mn which increase the specific resistance can be contained.
P: 0.01 wt% or more and less than 0.2 wt% P has an effect of increasing specific resistance and reducing sliding current loss. For that purpose, 0.01 wt% or more is necessary, but if it is 0.2 wt% or more, the workability deteriorates, so 0.01 wt% or more and less than 0.2 wt%.
[0021]
Al: 0.05 wt% or more and 2.0 wt% or less
Al has the effect of increasing the specific resistance and reducing the sliding current loss. For that purpose, 0.05 wt% or more is necessary, but if it exceeds 2.0 wt%, the magnetic flux density will decrease drastically and the workability will deteriorate, so 0.05 wt% or more and 2.0 wt% or less.
[0022]
Mn: 0.05wt% or more and 2.0wt% or less
Mn has the effect of increasing the specific resistance and reducing the sliding current loss. For that purpose, 0.05 wt% or more is necessary, but if it exceeds 2.0 wt%, the magnetic flux density will decrease drastically and the workability will deteriorate, so 0.05 wt% or more and 2.0 wt% or less.
[0023]
On the other hand, O adversely affects the formation of texture as an impurity element. That is, if the content of O exceeds 0.005 wt%, it adversely affects the formation of the texture accumulated in {100} <001> in hot rolling, and consequently deteriorates the texture and magnetic properties of the product. It is preferable to suppress to 0.005 wt% or less.
[0024]
Next, the texture will be described. The present invention is characterized by a structure accumulated in {100} <001> and {100} <011> orientations, and in order to fully utilize this effect as an electrical steel sheet product, It is important that the degree of accumulation is at least three times that of random tissues. Furthermore, when the average crystal grain size is less than 10 μm, iron loss, particularly hysteresis loss, increases remarkably and iron loss deteriorates. When the average crystal grain size exceeds 500 μm, the punchability in products deteriorates. The range is μm.
[0025]
Next, manufacturing conditions will be described.
First, as for the rolling end temperature in hot rolling, if it is less than 750 ° C., the {100} <001> and {100} <011> orientation accumulation strength is less than three times that of the random structure, while it exceeds 1050 ° C. In addition to time constraints from the heating furnace delivery to rolling, heating at a high temperature is required and the cost is increased, so the rolling end temperature is limited to a range of 750 to 1050 ° C.
In addition, the rolling reduction of the hot rolling is set to 50% or more because sufficient strain required for recrystallization having a suitable texture cannot be applied if the rolling reduction is less than 50%.
[0026]
Furthermore, it is advantageous to perform hot-rolled sheet annealing in order to enhance the degree of integration of the orientations of both {100} <001> and {100} <011> in a balanced manner. When this annealing temperature exceeds 700 ° C., the accumulation degree of the {100} <011> orientation is particularly weak, and the magnetic properties in the direction inclined by 45 ° with respect to the rolling direction are deteriorated as a result. The magnetic properties of the omnidirectional average in the rolling plane deteriorate. Accordingly, the annealing temperature of the hot-rolled sheet is set to 700 ° C. or less.
[0027]
Here, the hot-rolled sheet after hot rolling is normally wound in a coil on an industrial scale, but when this winding is performed, annealing is performed according to the winding temperature. Will be given. Therefore, when the coil winding temperature is high, the hot-rolled sheet annealing is performed at a high temperature. Therefore, when the hot-rolled sheet is wound around the coil, the winding temperature is the same as the annealing temperature described above. Must be 700 ° C or less. It is needless to say that it is not necessary to newly provide an annealing process for the hot-rolled sheet if an effect equivalent to annealing is obtained in this winding stage.
[0028]
Furthermore, after performing the above hot finish rolling, when performing cold rolling and then annealing, if the rolling reduction in cold rolling is 40% or more, the random cubic structure obtained at the stage of hot rolling changes, Since the in-plane isotropic properties are lost, cold rolling is performed at a rolling reduction of less than 40%.
[0029]
【Example】
Example 1
In a small vacuum melting furnace, 50 kg steel ingots having the composition shown in Table 1 were melted. In Table 1, steels (C), (D) and (E) have the composition according to the present invention, steel (D) is Si alone, and steels (C) and (E) are P, Al in addition to Si. In this example, Mn is added. Steels (A) and (B) are examples in which the amounts of Si and Mn added are outside the scope of the present invention. Furthermore, steel (F) is an example in which the O content is large.
[0030]
Next, these steel ingots were heated to 1150 ° C., and then hot rolled to form 1.3 to 4.0 mm thick plates. After heating this plate to 1100 ° C, the rolling end temperature is controlled to 600 to 950 ° C, and finished to 0.8mm in one pass at a rolling speed of 800m / min (rolling rate: 40 to 80%), and then 600 ° C. , Annealed for 2 hours.
[0031]
For each hot-rolled steel sheet obtained in this way, (110), (200), (211) pole figures are obtained by X-ray analysis, three-dimensional orientation analysis is performed using the series expansion method described above, and three-dimensional orientation distribution is obtained. The density was determined. In addition, magnetic measurements are performed on a sample cut into a ring shape with an outer diameter of 35 mm and an inner diameter of 25 mm, and the iron loss value W 15/50 at 1.5 T excitation and the magnetic flux density B 50 at an excitation magnetic field of 5000 A / m are obtained. It was.
The obtained results are shown in Table 2.
[0032]
[Table 1]
Figure 0004258854
[0033]
[Table 2]
Figure 0004258854
[0034]
Nos. 1 and 3 satisfy the production conditions of the present invention, but have inferior magnetic properties because the composition of steel is outside the scope of the present invention. No. 2 is inferior in magnetic properties because both the steel composition and production conditions are outside the scope of the present invention.
[0035]
On the other hand, Nos. 4 and 5 that meet the rolling conditions similar to those of No. 3 and conform to the composition range of the present invention have the same iron loss value No. 3 especially in the magnetic flux density of the ring-shaped sample. It is noted that a higher magnetic flux density can be obtained. That is, compared with the steel plate No. 3 having the conventional composition obtained under the rolling conditions of the present invention, the steel plates No. 4 and 5 according to the rolling conditions and the composition of the present invention have an average iron loss with respect to all directions in the plate surface. Excellent characteristics are obtained which are low and the magnetic flux density is remarkably high. The same applies to Nos. 6 and 8 according to the present invention.
[0036]
No. 11 is an invention example containing P, Al and Mn in addition to Si, and in this case, the magnetic flux density is much higher at the same iron loss level than the conventional comparative example No. 1. ing.
[0037]
On the other hand, Nos. 7, 9 and 10 have the composition of the composition within the scope of the invention, but the rolling conditions are out of the scope of the scope of the invention. It becomes the characteristic. From the results of No. 12, it can be seen that when the O content is large, the degree of texture accumulation decreases and the magnetic properties deteriorate.
[0038]
Example 2
Next, the Example regarding the reduction rate of cold rolling is shown.
In a small vacuum melting furnace, a 50 kg steel ingot having the composition of steel (C) shown in Table 1 was melted, and the steel ingot was heated to 1150 ° C. and then hot rolled into a 2-3 mm thick plate. . The plate was heated to 1100 ° C., the rolling end temperature was controlled to 950 ° C., and finished to 0.6 to 1.0 mm in one pass (rolling rate: 65 to 70%) at a rolling speed of 800 m / min. Thereafter, the scale of the surface of the hot-rolled sheet is removed by shot blasting, and after annealing at 650 ° C. for 2 hours in an atmosphere of hydrogen: 35% and nitrogen 65%, 0.5% is applied at a reduction rate of 17 to 50%. After cold rolling to a thickness of mm, annealing was performed at 850 ° C. for 1 minute in an atmosphere of 35% hydrogen and 65% nitrogen.
[0039]
For each cold-rolled steel sheet obtained in this way, (110), (200), (211) pole figures are obtained by X-ray analysis, and three-dimensional orientation analysis is performed using the series expansion method described above. The density was determined. In addition, magnetic measurements were performed on a sample cut into a ring shape with an outer diameter of 35 mm and an inner diameter of 25 mm, and the iron loss value at 1.5 T excitation; W 15/50 and excitation magnetic field: magnetic flux density at 5000 A / m; B Asked 50 .
The obtained results are shown in Table 3.
[0040]
[Table 3]
Figure 0004258854
[0041]
Nos. 12 and 13 are examples in which the reduction ratio of the cold rolling is in the applicable range, and the {100} <001> and {100} <011> orientations have a high accumulation strength, and in particular, the average of all the plate surface orientations The magnetic flux density is extremely high.
[0042]
On the other hand, No. 14 has an excessive cold rolling reduction ratio, so that the accumulation degree of {100} <001> orientation is high, but the accumulation degree of {100} <011> orientation is not so large. The magnetic flux density is also slightly reduced.
[0043]
Example 3
Here, the Example regarding hot-rolled sheet annealing is shown.
In a vacuum small melting furnace, a 50 kg steel ingot having the component composition of steel (C) shown in Table 1 was melted, and the steel ingot was heated to 1150 ° C., and then hot rolled into a 2.0 mm thick plate. After heating this plate to 1100 ° C, the rolling end temperature is controlled to 950 ° C and finished to 0.7 mm (rolling rate: 65%) in one pass at a rolling speed of 800 m / min to obtain a finished hot rolled sheet. It was. The surface of this finished hot-rolled sheet is shot to drop the scale, annealed at 300-900 ° C in an atmosphere of 35% hydrogen and 65% nitrogen for 2 hours, and then reduced to 0.5mm at a reduction rate of 29%. It was cold-rolled and annealed at 850 ° C. for 1 minute in an atmosphere of 35% hydrogen and 65% nitrogen.
[0044]
For each electrical steel sheet obtained in this way, (110), (200), (211) pole figures are obtained by X-ray analysis, three-dimensional orientation analysis is performed using the above series expansion method, and three-dimensional orientation distribution density is obtained. Asked. In addition, magnetic measurements were performed on a sample cut into a ring shape with an outer diameter of 35 mm and an inner diameter of 25 mm, and the iron loss value W 15/50 at 1.5 T excitation and the magnetic flux density B 50 at an excitation magnetic field of 5000 A / m were obtained. It was.
Table 4 shows the obtained results.
[0045]
[Table 4]
Figure 0004258854
[0046]
Nos. 15 to 17 are examples in which the hot-rolled sheet annealing temperature is suitable, and the integrated strength of both the {100} <001> and {100} <011> orientations is high. The density is extremely high.
[0047]
On the other hand, in No. 18 and 19, since the hot rolled sheet annealing temperature is too high, the integration degree of {100} <001> orientation is increased, but the integration degree of {100} <011> orientation is lowered. As a result, the magnetic flux density of the ring sample is slightly lowered.
[0048]
【The invention's effect】
According to the present invention, a high magnetic flux density electrical steel sheet that has not been realized by a normal manufacturing method in the past, has a magnetization direction in the in-plane non-direction, that is, highly accumulated in a random cubic structure. In addition, it can be provided at low cost without resorting to special cold rolling or annealing processes.

Claims (3)

Si:3.5 wt%以下を含有し、残部Feおよび不可避不純物からなる鋼スラブに、熱間粗圧延を施し、次いで圧下率(1パス):50%以上および圧延終了温度:750 〜1050℃の条件下で熱間仕上げ圧延を施したのち、得られた熱延板を700 ℃以下の温度域で焼鈍することを特徴とする電磁鋼板の製造方法。Si: A steel slab containing 3.5 wt% or less , the balance being Fe and inevitable impurities , is subjected to hot rough rolling, and then rolling reduction (1 pass): 50% or more and rolling end temperature: 750 to 1050 ° C After subjected to hot finish rolling under manufacturing method of that electrical steel sheet to, characterized in that annealing the obtained hot rolled sheet at a temperature range of 700 ° C. or less. Si:3.5 wt%以下を含み、さらにP:0.01wt%以上0.2 wt%未満、Al:0.05wt%以下及びMn:0.05wt%以上2.0 wt%以下のうちから選んだ1種または2種以上を含有し、残部Feおよび不可避不純物からなる鋼スラブに、熱間粗圧延を施し、次いで圧下率(1パス):50%以上および圧延終了温度:750 〜1050℃の条件下で熱間仕上げ圧延を施したのち、得られた熱延板を700 ℃以下の温度域で焼鈍することを特徴とする電磁鋼板の製造方法。Si: 3.5 wt% or less, P: 0.01 wt% or more and less than 0.2 wt%, Al: 0.05 wt% or less and Mn: 0.05 wt% or more and 2.0 wt% or less The steel slab containing the remaining Fe and inevitable impurities is subjected to hot rough rolling, followed by hot finish rolling under the conditions of reduction ratio (1 pass): 50% or more and rolling end temperature: 750 to 1050 ° C. After subjected method of that electrical steel sheet to, characterized in that annealing the obtained hot rolled sheet at a temperature range of 700 ° C. or less. 請求項またはにおいて、熱間仕上げ圧延後に、圧下率40%未満の冷間圧延次いで焼鈍を行うことを特徴とする電磁鋼板の製造方法。According to claim 1 or 2, after hot finish rolling, the manufacturing method of that electrical steel plate to and performing cold rolling and then annealing a reduction ratio less than 40%.
JP33413897A 1997-12-04 1997-12-04 Manufacturing method of electrical steel sheet Expired - Fee Related JP4258854B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33413897A JP4258854B2 (en) 1997-12-04 1997-12-04 Manufacturing method of electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33413897A JP4258854B2 (en) 1997-12-04 1997-12-04 Manufacturing method of electrical steel sheet

Publications (2)

Publication Number Publication Date
JPH11172383A JPH11172383A (en) 1999-06-29
JP4258854B2 true JP4258854B2 (en) 2009-04-30

Family

ID=18273959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33413897A Expired - Fee Related JP4258854B2 (en) 1997-12-04 1997-12-04 Manufacturing method of electrical steel sheet

Country Status (1)

Country Link
JP (1) JP4258854B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4123663B2 (en) * 1999-12-22 2008-07-23 Jfeスチール株式会社 Electrical steel sheet and manufacturing method thereof
JP3890876B2 (en) * 2000-10-05 2007-03-07 住友金属工業株式会社 Method for producing non-oriented electrical steel sheet
JP5716315B2 (en) * 2010-08-10 2015-05-13 新日鐵住金株式会社 Non-oriented electrical steel sheet and manufacturing method thereof
JP6880920B2 (en) * 2017-03-29 2021-06-02 日本製鉄株式会社 Non-oriented electrical steel sheet and its manufacturing method, and motor core and its manufacturing method

Also Published As

Publication number Publication date
JPH11172383A (en) 1999-06-29

Similar Documents

Publication Publication Date Title
RU2092605C1 (en) Sheets of isotropic electrotechnical steel and method for their manufacturing
CA2525742C (en) Improved method for production of non-oriented electrical steel strip
WO2013069754A1 (en) Anisotropic electromagnetic steel sheet and method for producing same
JP7462737B2 (en) 600MPa-class non-oriented electrical steel sheet and its manufacturing method
US3287184A (en) Method of producing low carbon electrical sheet steel
JP4218077B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP4258854B2 (en) Manufacturing method of electrical steel sheet
US6416592B2 (en) Electromagnetic steel sheet having excellent magnetic properties and production method thereof
JP4337146B2 (en) Method for producing non-oriented electrical steel sheet
JP3931842B2 (en) Method for producing non-oriented electrical steel sheet
JPH055126A (en) Production of nonoriented silicon steel sheet
JP4613436B2 (en) Non-oriented electrical steel sheet
JP4281119B2 (en) Manufacturing method of electrical steel sheet
US6500278B1 (en) Hot rolled electrical steel sheet excellent in magnetic characteristics and corrosion resistance and method for production thereof
JPS59123715A (en) Production of non-directional electromagnetic steel
JPH08143960A (en) Production of nonoriented silicon steel sheet having high magnetic flux density and reduced in iron loss
JPH11158590A (en) Silicon steel sheet excellent in magnetic property and its production
JPH0623411B2 (en) Manufacturing method of electrical steel sheet with small anisotropy
JP7211532B2 (en) Method for manufacturing non-oriented electrical steel sheet
JP2647323B2 (en) Manufacturing method of grain-oriented electrical steel sheet with low iron loss
JPH07258736A (en) Production of nonoriented silicon steel sheet excellent in magnetic property
JPS5831367B2 (en) Method for manufacturing non-oriented electrical steel strip with excellent magnetic properties
JP4320794B2 (en) Method for producing electrical steel sheet with excellent magnetic properties in the rolling direction
JP4269138B2 (en) Non-oriented electrical steel sheet for semi-process
JP2758915B2 (en) Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041007

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050922

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081020

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20081020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090120

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090202

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees