JP3890876B2 - Method for producing non-oriented electrical steel sheet - Google Patents

Method for producing non-oriented electrical steel sheet Download PDF

Info

Publication number
JP3890876B2
JP3890876B2 JP2000306313A JP2000306313A JP3890876B2 JP 3890876 B2 JP3890876 B2 JP 3890876B2 JP 2000306313 A JP2000306313 A JP 2000306313A JP 2000306313 A JP2000306313 A JP 2000306313A JP 3890876 B2 JP3890876 B2 JP 3890876B2
Authority
JP
Japan
Prior art keywords
cold
cold rolling
steel
annealing
degree
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000306313A
Other languages
Japanese (ja)
Other versions
JP2002115034A (en
Inventor
一郎 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Industries Ltd
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2000306313A priority Critical patent/JP3890876B2/en
Publication of JP2002115034A publication Critical patent/JP2002115034A/en
Application granted granted Critical
Publication of JP3890876B2 publication Critical patent/JP3890876B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、優れた磁気特性を有し表面性状の良好な無方向性電磁鋼板の製造方法に関する。
【0002】
【従来の技術】
近年、地球環境問題などから省エネルギーへの取り組みが一段と盛んになっている。このような動向に対応して、電気機器の小型化、高効率化が進められており、モータ、変圧器などの鉄心材料として広く用いられている無方向性電磁鋼板の磁気特性の改善が求められている。
【0003】
無方向性電磁鋼板は、所定の化学組成を備えた鋼を熱間圧延して熱延板とし、これを冷間圧延して最終製品の厚さを有する冷延板とし、仕上焼鈍を施して所望の磁気特性を有する鋼板(最終製品)として製造される。
【0004】
磁気特性向上には、最終製品の厚さに冷間圧延する前の鋼板(以下、「冷延用素材」と記す)の結晶粒径を大きくするのがよいことが知られており、その方法として、冷間圧延前の熱延板に焼鈍を施す方法がある(以下、この焼鈍を単に「熱延板焼鈍」と記す)。
【0005】
しかしながら熱延板焼鈍のみによる磁気特性向上には限界があるうえ、熱延板の結晶粒が過度に粗大化すると製品の表面性状が劣化するという問題もあった。
これを解決する手段として、特開平1−306523号公報、特開平1−309921号公報、あるいは特開平5−171280号公報などには、熱延板に軽度の圧下率の冷間圧延を施して焼鈍することにより冷延用素材の結晶粒を粗大にし、その後最終製品厚さに冷間圧延して仕上焼鈍を施す方法が提案されている。
【0006】
しかしながらこれらの方法は熱延板焼鈍方法におけるのと同様に、冷延用素材の結晶粒径の粗大化のみに着目した方法であり、過度に結晶粒径が粗大化した場合の製品の表面性状劣化は避けられず、得られる磁気特性改善効果には限界があった。
【0007】
【発明の属する技術分野】
本発明はこれらの問題点に鑑みてなされたもので、その目的とするところは、磁気特性と表面性状に優れた無方向性電磁鋼板の製造方法を提供することにある。
【0008】
【課題を解決するための手段】
鋼の結晶方位において[100] 面は面内に磁化容易方向を2つ有し、[110] 面は1つ有する。従って無方向性電磁鋼板の磁束密度を高めるには、製品鋼板の結晶集合組織において、鋼板面に平行な[100] 面あるいは[110] 面の集積度を高め、結晶面内に磁化容易方向のない[111] 面の集積度を低めるのがよいことが知られている。通常、板厚中央部には[111] 面が強く集積するが、これが鋼板の磁気特性の向上を妨げる大きい原因である。従って無方向性電磁鋼板の磁気特性は最終製品の板厚中央部における鋼板面に平行な[200] 面の集積度(以下、単に「[200] 面集積度」と記す)を高めることにより改善することができる。周知のように、[200] 面集積度は[100] 面集積度に対応するものである。
【0009】
このような観点から本発明者は、無方向性電磁鋼板の磁気特性改善における集合組織制御の重要性に着目し、最終製品の板厚中央部の[200] 面集積度に影響する要因を明らかにすべく以下の実験をおこなった。
【0010】
a.質量%で(以下、化学組成の%表示は質量%を意味する)C:0.0031%、Si :0.46%、Mn :0.18%、P:0.074%、S:0.015、sol.Al :0.0002%を含有する鋼を1150℃に加熱し、850℃で仕上げる熱間圧延して厚さ:2.3mmの熱延板とし、これに種々の加工度の冷間加工と種々の温度での焼鈍を施して冷延用素材を得た。これらの冷延用素材を厚さ:0.5mmの鋼板に冷間圧延し、仕上焼鈍として850℃で30秒間保持する連続焼鈍を施した。
【0011】
上記実験で得られた冷延用素材と、連続焼鈍後の鋼板(最終製品)の板厚中央部のX線回折試験をおこない、それぞれの板厚中央部における[200] 面集積度を、[200] 面のX線積分強度(I)と集積状況がランダムである試料のX線積分強度(I0 )との比(I/I0 ;以下、単に「ランダム比」と記す)として評価した。
【0012】
図1は、上記実験で得られた冷延用素材の[200] 面集積度と最終製品の[200] 面集積度との関係を示すグラフである。図1に示すように冷延用素材の[200] 面集積度と最終製品のそれとの間には極めて良好な相関があり、冷延用素材の板厚中央部での[200] 面集積度が高ければ、これを冷間圧延し仕上焼鈍して得られる最終製品においても[200] 面、すなわち[100] 面が強く残存し、磁気特性が向上する。
【0013】
従来のような単に冷延用素材の結晶粒径の粗大化のみによる方法では、このように[200] 面集積度を高める効果は得られない。従来法による冷延用素材の[200] 面集積度はランダム比で6に満たず、最終製品の[200] 面集積度はランダム比で高々1.0前後以下である。
【0014】
図2は冷延用素材の板厚中央部の集合組織を示す極点図であり、図2(a)は熱延板をそのまま焼鈍した鋼板、図2(b)は熱延板に冷間加工を施しその後に焼鈍した鋼板に関するものである。図2(b)に示すように、冷間加工後に焼鈍した鋼板では、熱延板をそのまま焼鈍した鋼板(図2(a))に比較して[100] <011> 方位が強く集積している。このことから、冷延用素材の板厚中央部の[200] 面集積度、すなわち[100] 面集積度が高い状態とは、[100] <011> 方位の集積度が高い状態に対応することがわかる。
【0015】
[100] <011> 方位は再結晶し難い結晶方位であり、通常は、冷間圧延−仕上焼鈍の工程において、再結晶し易い[111] 方位に蚕食されてしまう。しかしながら本実験結果が示すように、冷延用素材の[100] <011> 方位の集積度を高めておくことにより、仕上焼鈍時の[111] 方位の発達が抑制され、冷延用素材が有していた[100] <011> 方位が最終製品に残存し、最終製品の磁気特性が向上する。このような知見は、単に冷延前の結晶粒径を粗大化する従来の方法では認められなかったものである。
【0016】
b.本発明者はさらに、上記冷延用素材の板厚中央部における[200] 面集積度を高める方法を検討した。すなわち、前記a項に記載した熱延板に種々の圧下率で冷間圧延を施し、750℃で10時間保持する焼鈍を施した鋼板の板厚中央部の[200] 面集積度を調査した。
【0017】
図3は上記実験で得られた冷延用素材の[200] 面集積度と冷間加工度との関係を示すグラフである。図3に示すように、熱延板に冷間加工を施して焼鈍した板の板厚中央部の[200] 面集積度は特定の冷間加工度の部分で強くなる。この現象は、冷間加工を引張り曲げ変形による加工とした場合でも同様に認められた。これらのことから、適度な冷間加工を施した後に焼鈍することにより、冷延用素材の板厚中央部の[200] 集合組織を発達させられることが判明した。
【0018】
上記集合組織の発達は板厚中央部の粒成長に伴い進行するが、異常粒成長のように過度に結晶粒が粗大化する場合には、板厚中央部の[100] <011> 方位粒が異常粒に蚕食されるため、所望の集合組織は得られない。本発明では冷延用素材の[100] <011> 方位の集積度を高くするために、結晶粒の粗大化を生じさせない条件で製造する。このような冷延用素材を用いれば、粗大粒に起因する最終製品における凹凸欠陥など、従来の方法では発生していた欠陥が生じるおそれもない。
【0019】
c.無方向性電磁鋼板には、鉄損低減のために鋼の固有抵抗を高める作用があるSi 、Al 、Mn などを含有させる。しかしながら鋼の固有抵抗が同程度、かつ、その集合組織が同程度であっても、これらの合金元素の含有内容により磁気特性、とくに磁束密度が異なることがある。本発明者はこのような磁気特性に影響する固有抵抗および集合組織以外の要因を明らかにするために以下の実験をおこなった。
【0020】
Si 、Al およびMn 含有量が異なる種々の鋼を熱間圧延し、さらに圧下率を8%とする冷間圧延を施し、その後800℃で10時間保持する焼鈍を施して冷延用素材とし、これを冷間圧延して厚さが0.30mmの冷延板とし、その後仕上焼鈍を施して最終製品とした。得られた最終製品の集合組織と磁束密度B50を測定した。その結果、集合組織はほぼ同一であったが磁束密度が異なっていた。
【0021】
本発明者は、この磁束密度の差異は鋼板の飽和磁束密度の差に起因すると思考し、磁気特性と単位体積当たりのFe 原子の個数(以下、単に「Fe 原子密度」とも記す)との関係を解析した。
【0022】
飽和磁束密度は単位体積に含まれるFe 原子がそれぞれ有する磁気モーメントの総和として発現される。すなわち、飽和磁束密度はFe 原子密度に比例し、Fe 原子密度は単位体積当たりの総原子数とFe の原子分率との積に等しい。
【0023】
単位体積あたりの総原子数は、単位体積当たりの質量(密度)を原子の質量で除せばよく、原子の質量は原子量をアボガドロ数で除せばよい。これらのことから単位体積あたりの総原子数は、密度とアボガドロ数の積を原子量で除した値となる。鋼のような合金の場合には、上記原子量として各構成元素の原子量と原子分率より算出した平均の原子量を用いればよい。
【0024】
また、Fe の原子分率は質量%から換算できる。原子%と質量%の換算により、平均の原子量の項は相殺され、単位体積あたりのFe 原子の個数であるFe 原子密度は、鋼の密度とFe の質量分率との積に比例することになる(以下、この積を「Fe*」とも記す)。ここで本発明でいう「Fe の質量分率」は、C、Si 、Al 、Mn 、P、S、Nの各元素の質量分率(%表示の含有量の1/100)を1から差し引いた値を意味する。
【0025】
図4は、上記調査の結果得られた、集合組織が同程度である最終製品の磁束密度B50(5000A/mの磁界中での磁束密度)と、それぞれのFe*との関係を示すグラフである。図4に示す様に、集合組織が同じ場合、磁束密度B50とFe*との間には良好な相関関係があり、Fe*が大きいほど磁束密度B50が良好となる。
【0026】
Fe*を高めるには合金元素の含有量を抑制すればよいが、鉄損を低減する場合には所望の固有抵抗を得るためにある程度合金元素を含有させる必要がある。従って、所望の固有抵抗を得たうえでFe*を高めるには、鋼の密度に及ぼす合金元素の影響を考慮してSi 、Al 、Mn などの含有量を定めればよい。
【0027】
本発明は、これらの新たな知見に基づいて完成されたものであり、その要旨は下記(1)ないし(2)に記載の無方向性電磁鋼板の製造方法にある。
【0028】
(1)化学組成が質量%で、C:0.005%以下、下記式で表されるSi当量が0.1%以上、3.0%以下なる範囲でSi、AlおよびMnからなる群の内の1種または2種以上を含有し、S:0.030%以下、N:0.0050%以下、残部がFeおよび不純物からなり、Feの質量分率と鋼の密度との積が7.40以上であるスラブに熱間圧延をおこない、得られた熱延板に伸び率が0.5〜3%の引張り曲げ加工による冷間加工を施し、次いで650℃以上875℃以下の箱焼鈍を施して冷延用素材とし、これに冷間圧延と仕上焼鈍を施すことを特徴とする無方向性電磁鋼板の製造方法;
Si当量=Si(%)+Al(%)+0.5Mn(%)。
【0029】
(2)前記化学組成が、さらに、質量%でP:0.05〜0.20%を含有することを特徴とする上記(1)記載の無方向性電磁鋼板の製造方法。
【0031】
【発明の実施の形態】
本発明の実施の形態を詳細に述べる。
鋼の化学組成;
C:最終製品に残存すると磁気時効の原因となり、鉄損にも悪影響を及ぼすのでCは少ないほど好ましい。特に磁気時効を抑制するためにC含有量は0.005%以下とする。好ましくは0.003%以下である
Si 、Al およびMn :これらの元素はいずれも鋼の固有抵抗を高め、渦電流損を低減して鉄損を小さくする作用がある。鋼の固有抵抗上昇に対する各元素の効果を調査した結果、Al はSi と同程度であり、Mn はSi の1/2程度であった。従って鉄損低減に対するこれらの元素の影響は{Si(%)+Al(%) +0.5Mn(%) }で表される合計量として考えるのが合理的である(以下、上記合計量を「Si 当量」とも記す)。
【0032】
鉄損低減効果を得るために鋼のSi 当量を0.1%以上とする。好ましくは0.2%以上、より好ましくは0.5%以上である。Si 当量が3.0%を超えると、後述するようにFe 原子の個数の減少に起因して磁気特性が劣化する。また、鋼板の硬度が過度に高くなり、打抜性が低下して鉄心製造工程の生産性が著しく低下する場合がある。これらの不都合を避けるためにSi 当量は3.0%以下とする。磁束密度を特に高くする場合にはSi 当量は低いことが望ましく、1.5%以下とするのが望ましい。
【0033】
本発明においては、Si 、Al およびMn からなる群の内の1種または2種以上をSi 当量が上記範囲になるように含有させる。各元素の含有量の上限は、Si は3.0%以下、Al は3.0%以下、Mn は6.0%以下である。なお、Mn 含有量が増すと共に変態点が低下し、仕上焼鈍時にα−γ変態が生じるおそれが増すので、Mn は3%以下とするのが好ましい。
【0034】
Al が鋼中で微細な窒化物を形成すると焼鈍時の結晶粒成長を阻害し鉄損改善の障害になる場合がある。これを避けるために、Al 含有量を0.002%以下とするか、上記範囲内で0.15%以上とするのが望ましい。
【0035】
P:Pは磁気特性への影響は少なく、必須元素ではない。しかしながらPは鋼の打ち抜き性を向上させるための硬度上昇に有効である。従って硬度を調整する目的でPを含有させても構わない。その場合に所望の効果を得るには、Pを0.05%以上含有させるのが好ましい。過度にPを含有させると鋼が脆くなり、冷間圧延時に板が破断するおそれがあるので、これを避けるために、含有させる場合でも0.20%以下とするのがよい。
【0036】
S:Sは鋼中で硫化物となり、磁気特性を損なうので0.030%以下とする。
N:Nは微細な窒化物を形成し結晶粒成長を阻害して磁気特性を劣化させる作用があるので0.0050%以下とする。
【0037】
残部は実質的にFe である。実質的にとの意味は、鋼にSb、SnあるいはBを含有させると、集合組織形成時に[111] 方位の発達を抑制し、最終製品の磁束密度を改善する作用がある。従って特に磁束密度を改善したい場合には、これらの元素の内の1種以上を含有させても構わないことを意味する。その場合の含有量は、Sb:0.01%以上、0.3%以下、Sn:0.01%以上、0.3%以下、B:0.0005%以上、0.01%以下とするのが望ましい。
【0038】
鋼の密度とFe の質量分率との積(Fe*);
Fe 原子密度が高いほど高い磁束密度が得られる。鉄損低減のために合金元素を含有させる場合に、磁束密度の著しい低下を避けるために、Fe 原子密度に比例する数値である鋼の密度とFe の質量分率との積(Fe*)が7.40以上であるものとする。特に優れた磁束密度が要求される場合には、Fe*は7.6以上とするのが好ましい。鋼のFe*は、鋼の密度を大気中と水中での重量から求め、Fe の質量分率を鋼の化学組成から求めることで計算できる。
【0039】
鋼の化学組成はFe*が上記限界値以上になるようには、C、Si 、Al 、Mn などの元素の含有量を調整する。具体的にいえば、Fe*を高めるには、鋼の密度を小さくする作用が大きいAl 含有量を少なくし、Si 、Mn 等の含有量を増すことにより、同一の固有抵抗でもFe*を高めることができる。
【0040】
集合組織;
最終製品の板厚中央部の[200] 面集積度は、良好な磁気特性を得るために、ランダム比で1.10以上とする。好ましくは1.20以上である。
【0041】
冷延用素材の[200] 面集積度と、これを冷間圧延し仕上焼鈍して製造される最終製品の[200] 面集積度との間には良好な関係がある。また、この集積度は[100] <011> 方位の集積度と対応している。冷延用素材の板厚中央部の[200] 面集積度がランダム比で6.0以上であれば、最終製品の板厚中央部の[200] 面集積度をランダム比で1.10以上とすることができ、最終製品の磁気特性改善効果が得られる。従って、冷延用素材の板厚中央部の[200] 面のランダム比は6.0以上とするのがよい。より好ましくは7.0以上である。[200] 面集積度が高いほど磁気特性が良好になるため、上限は特に定めない。
【0042】
板厚中央部の集合組織は、例えば、化学研磨などの方法で鋼板の片側を板厚中央部まで除去して板厚中央部を測定面とする試料を得、これをX線回折する方法で測定される。ランダム比は、この測定値と配向性が無い材料の[200] 面のX線積分強度を用いて求められる。
【0043】
上記冷延用素材は、結晶集合組織を最適化しており、単位体積当たりのFe 原子の個数が多い。従って、従来法に比較して、冷延用素材の結晶粒をさほど大きくしなくても優れた磁気特性を備えることができるので、冷延用素材の粗大な結晶粒に起因する製品鋼板表面の畳み目状の凹凸欠陥などが生じるおそれがなく、表面性状が良好で磁気特性も優れた無方向性電磁鋼板を容易に製造することができる。冷延用素材の結晶粒径は、特に限定するものではないが、表面性状を良好にするには、平均粒径で150μm以下とするのがよい。
【0044】
製造方法;
本発明の無方向性電磁鋼板は、以下に述べる方法で製造するの好ましい。
上記(1)または(2)に記載の化学組成を備えた鋼を転炉、電気炉など公知の方法で溶製し、必要があれば真空脱ガスなどの処理を施し、これを連続鋳造あるいは鋼塊にして分塊圧延する方法などによりスラブとする。
【0045】
スラブは公知の方法によって熱間圧延し、酸洗など公知の方法により脱スケールして熱延板とする。熱間圧延条件は特に規定しないが、冷間加工後の焼鈍中に[200] 面集積度を高めるために700〜950℃で仕上圧延を施し、700℃以下で巻取るのが好ましい。
【0046】
熱延板には、冷延用素材の板厚中央部の[100]集合組織の集積度を高めるため、軽度の冷間加工と焼鈍を施す。冷間加工は、引張り曲げ加工法により施すのがよい。
【0049】
冷間加工を引張り曲げ加工法で施す場合には、伸び率で0.5%以上、3.0%以下の加工を与えるのが好適である。伸び率が0.5%に満たない場合には[100] 集合組織を増す駆動力として不充分である。
【0050】
引張り曲げ加工手段としては、例えば酸洗装置に設けられるテンションレベラなどを利用するのが経済性に優れるので好適である。しかしながらこれらの方法で工業的に付与できる伸び率は3%が限界であり、それ以上の加工を加えることは設備の負荷が過大になるなどの理由で困難である。従って、引張り曲げ加工法による場合の伸び率は3.0%以下とするのがよい。
【0051】
引張り曲げ加工法では小さな加工度で冷間圧延法と同様の効果が生じる理由は明らかでないが、冷間圧延法と異なり、変形様式の内で張力の作用が大きいためと考えられる。冷間加工は製造コストを低減するために、大規模な冷間圧延設備を必要とする冷間圧延法よりも、酸洗設備などに装備されているテンションレベラなどを活用して加工できる引張り曲げ加工法が好ましい。
【0052】
焼鈍:冷延用素材の板厚中央部の[200] 面集積度をランダム比で6.0以上にするため、冷間加工に次いで焼鈍を施す。前述の様に、[100] 集合組織は板厚中央部の結晶粒成長に伴い発達するため、安定的に所望の集積度を得るには、焼鈍温度を650℃以上、875℃以下とする箱焼鈍で施すのが好ましい。焼鈍温度が650℃に満たない場合には、[200] 面集積度が十分に向上せず、875℃を超える場合には、粗大粒が生じるおそれがある上、[100] 集合組織の成長が飽和するために、経済性に欠けるからである。焼鈍時間は2時間以上であればよい。24時間を超える長時間焼鈍は効果が飽和するので経済性に欠ける。これ以外の焼鈍条件は任意である。
【0053】
上記冷延用素材を公知の方法で最終製品厚さに冷間圧延し、公知の方法で仕上焼鈍する。冷延用素材の厚さは、最終製品の厚さなどに応じて決定すればよく任意であるが、例えば最終製品の厚さが0.2〜0.6mmの範囲の場合であれば、冷延用素材の厚さは1.5〜2.5mmの範囲とすればよい。
【0054】
仕上焼鈍は、再結晶が十分に進行して適度に結晶粒が成長する条件でおこなえばよい。その方法は公知のものでよいが、例えば連続焼鈍方式で、焼鈍温度を650〜1150℃の範囲内に選定して10秒以上均熱する方法などがよい。仕上焼鈍は脱炭焼鈍としてもよいし、非脱炭雰囲気で焼鈍しても構わない。仕上焼鈍後は、必要に応じて表面に、絶縁、防錆、打抜加工性向上を目的に、薄い皮膜を塗布焼き付けても良い。
【0055】
上記冷延用素材を用いることにより、従来の冷延用素材を用いた場合に比較して、表面性状が良好で磁気特性が優れた無方向性電磁鋼板を容易に製造することができる。
【0056】
【実施例】
種々の化学組成を有する鋼を転炉で溶製し、真空処理で成分調整した後、連続鋳造してスラブとし、これを1150℃に加熱し、890℃の仕上温度で熱間圧延し、厚さが2.3mmの熱延板とした。巻取温度は600℃とした。
【0057】
熱延板は酸洗した後、種々の圧下率での冷間圧延(参考例)、あるいは種々の伸び率でのテンションレベラーによる引張り曲げ変形加工(発明例)を施した後、種々の温度で10時間保持する箱焼鈍をおこない冷延用素材を得た。これらの冷延用素材は厚さが0.50mmまたは0.30mmの冷延板に冷間圧延し、850℃、900℃または1000℃でそれぞれ0.5分間保持する連続焼鈍を実施した。
【0058】
冷延用素材の板厚中央部の[200] 面のランダム比をX線回折法により測定した。
最終製品の磁気特性は、圧延方向および幅方向から短冊状のエプスタイン試験片を打ち抜き、打ち抜き状態の試験片を用いてJIS−C2550に規定される方法に従って測定した。
【0059】
Fe の質量分率は化学組成より算出し、鋼の密度は鋼板の大気中と水中での重量より求め、これらの積を計算してFe*を求めた。
表1に鋼の化学組成を示す。また、表2に各製造条件および得られた測定結果をあわせて示す。
【0060】
【表1】

Figure 0003890876
【0061】
【表2】
Figure 0003890876
表1で鋼7〜10はFe*、Si 当量、S含有量またはN含有量が本発明の規定する条件から外れるもので、いずれも比較例として使用したものである。
【0062】
表2に示すように本発明の規定する条件を満足する試験番号2〜4、10、13〜15、18、20、22および24は最終製品の磁気特性、表面性状共に良好であった。これに対し、冷延用素材製造時に冷間加工を施さなかったり、加工度が不適切であったために冷延用素材の[200] 面集積度が低かった試験番号1、5、6、8、9、11、12、17、19、21、23および25では、最終製品の磁気特性がよくなかった。
【0063】
図5は表2に記載の最終製品の鉄損と磁束密度を示したグラフである。同図で図中の丸かっこ内の数字は鋼番を表し、丸かっこにダッシュを付したものは冷延用素材の[200] 面集積度が6.0に満たなかったことを意味する。図5で同一鋼番の鋼の製品の磁束密度を対比すれば、冷延用素材の[200] 面集積度の差異が磁気特性に及ぼす影響を明瞭に理解できる。
【0064】
鋼7を用いた試験番号26もFe*が本発明の規定する下限よりも低かったために磁束密度がよくなかった。Si 当量が本発明の規定する上限を超えた鋼8を用いた試験番号27はFe 原子密度が低く、冷延用素材の[200] 面集積度は高かったが最終製品の磁束密度が低かった。S含有量が本発明の規定する上限を超えた鋼9を用いた試験番号7、N含有量が本発明の規定する上限を超えた鋼10を用いた試験番号16も同様に冷延用素材の[200] 面集積度は高かったが最終製品の磁束密度が低かった。
【0065】
比較例として熱延板焼鈍を高温で施した試験番号9は、最終製品の磁気特性がよくないうえ、異常粒成長に起因する表面欠陥が生じていた。
【0066】
【発明の効果】
本発明の無方向性電磁鋼板は、Fe 原子密度が高いため、飽和磁束密度が高く、かつ、板厚中央部において[200] 面集積度が高いので、磁気特性と表面性状に優れる。このため、モータ、変圧器などの高効率化を実現する鉄心材料として極めて有用である。また、本発明の無方向性電磁鋼板用の冷延用素材は、板厚中心部の[200] 面集積度が高いので、これを用いることにより磁気特性と表面性状に優れた無方向性電磁鋼板を容易に製造できる。
【図面の簡単な説明】
【図1】冷延用素材と最終製品の板厚中央部の[200] 面のランダム比の関係を示すグラフである。
【図2】冷延用素材の板厚中央部の集合組織を示す極点図であり、図2(a)は熱延板をそのまま焼鈍した鋼板、図2(b)は熱延板に冷間加工を施しその後に焼鈍した鋼板である。
【図3】熱延板に冷間加工と焼鈍を施した冷延用素材の板厚中央部の[200] 面集積度と冷間加工度の関係を示すグラフである。
【図4】集合組織が同程度である最終製品の磁束密度B50が、Fe*により変動する状況を示すグラフである。
【図5】実施例の磁束密度と鉄損の関係を示すグラフである。
【符号の説明】[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a non-oriented electrical steel sheet having excellent magnetic properties and good surface properties.
[0002]
[Prior art]
In recent years, energy conservation efforts have become increasingly popular due to global environmental problems. In response to these trends, electrical equipment is becoming smaller and more efficient, and improvement in the magnetic properties of non-oriented electrical steel sheets that are widely used as iron core materials for motors, transformers, etc. is required. It has been.
[0003]
Non-oriented electrical steel sheet is a hot-rolled sheet obtained by hot-rolling steel with a predetermined chemical composition, which is then cold-rolled to form a cold-rolled sheet having the final product thickness, and is subjected to finish annealing. Manufactured as a steel plate (final product) having desired magnetic properties.
[0004]
In order to improve the magnetic properties, it is known to increase the crystal grain size of the steel sheet (hereinafter referred to as “cold rolling material”) before cold rolling to the final product thickness. There is a method of annealing a hot-rolled sheet before cold rolling (hereinafter, this annealing is simply referred to as “hot-rolled sheet annealing”).
[0005]
However, there is a limit to the improvement of the magnetic properties by only hot-rolled sheet annealing, and there is a problem that the surface properties of the product deteriorate when the crystal grains of the hot-rolled sheet become excessively coarse.
As means for solving this problem, Japanese Patent Application Laid-Open No. 1-330623, Japanese Patent Application Laid-Open No. 1-309921, or Japanese Patent Application Laid-Open No. 5-171280 discloses that hot rolling is subjected to cold rolling at a slight reduction rate. There has been proposed a method in which the crystal grain of the raw material for cold rolling is coarsened by annealing, and then finish annealing is performed by cold rolling to the final product thickness.
[0006]
However, as in the hot-rolled sheet annealing method, these methods focus only on the coarsening of the crystal grain size of the material for cold rolling, and the surface properties of the product when the crystal grain size becomes excessively large. Deterioration is unavoidable, and there is a limit to the effect of improving magnetic properties.
[0007]
BACKGROUND OF THE INVENTION
The present invention has been made in view of these problems, and an object thereof is to provide a method for producing a non-oriented electrical steel sheet having excellent magnetic properties and surface properties.
[0008]
[Means for Solving the Problems]
In the crystal orientation of steel, the [100] plane has two directions of easy magnetization in the plane and one [110] plane. Therefore, in order to increase the magnetic flux density of the non-oriented electrical steel sheet, in the crystal texture of the product steel sheet, the degree of integration of the [100] plane or [110] plane parallel to the steel sheet plane is increased, and the direction of easy magnetization in the crystal plane is increased. It is known that it is better to reduce the degree of integration of [111] surfaces that are not present. Usually, the [111] plane is strongly accumulated in the central portion of the plate thickness, which is a major cause of hindering the improvement of the magnetic properties of the steel plate. Therefore, the magnetic properties of non-oriented electrical steel sheets are improved by increasing the degree of integration of the [200] plane parallel to the steel sheet surface at the center of the final product thickness (hereinafter simply referred to as “[200] plane integration degree”). can do. As is well known, the [200] plane integration degree corresponds to the [100] plane integration degree.
[0009]
From this point of view, the present inventor has focused on the importance of texture control in improving the magnetic properties of non-oriented electrical steel sheets, and has clarified the factors that affect the [200] plane integration at the center of the final product. The following experiment was conducted to achieve this.
[0010]
a. In mass% (hereinafter, “%” in chemical composition means mass%) C: 0.0031%, Si: 0.46%, Mn: 0.18%, P: 0.074%, S: 0.00. A steel containing 015, sol.Al:0.0002% is heated to 1150 ° C. and hot rolled to a finish of 850 ° C. to form a hot-rolled sheet having a thickness of 2.3 mm. The material for cold-rolling was obtained by carrying out inter-processing and annealing at various temperatures. These cold-rolling materials were cold-rolled to a steel sheet having a thickness of 0.5 mm, and subjected to continuous annealing that was maintained at 850 ° C. for 30 seconds as finish annealing.
[0011]
An X-ray diffraction test was performed on the cold-rolled material obtained in the above experiment and the steel plate (final product) after continuous annealing at the center of the plate thickness. 200] Evaluation was made as a ratio (I / I 0 ; hereinafter, simply referred to as “random ratio”) between the X-ray integrated intensity (I) of the surface and the X-ray integrated intensity (I 0 ) of the sample whose accumulation state is random .
[0012]
FIG. 1 is a graph showing the relationship between the [200] plane integration degree of the material for cold rolling and the [200] plane integration degree of the final product obtained in the above experiment. As shown in Fig. 1, there is a very good correlation between the degree of [200] surface integration of the material for cold rolling and that of the final product, and the degree of [200] surface integration at the center of the thickness of the material for cold rolling. Is high, the [200] plane, that is, the [100] plane remains strongly even in the final product obtained by cold rolling and finish annealing, thereby improving the magnetic properties.
[0013]
The conventional method simply by increasing the crystal grain size of the material for cold rolling does not provide the effect of increasing the degree of [200] plane integration. The degree of [200] surface integration of the cold rolling material according to the conventional method is less than 6 at a random ratio, and the degree of [200] surface integration of the final product is at most about 1.0 or less at random ratio.
[0014]
2 is a pole figure showing the texture at the center of the thickness of the material for cold rolling, FIG. 2 (a) is a steel sheet obtained by annealing a hot-rolled sheet as it is, and FIG. 2 (b) is a cold-worked hot-rolled sheet. It is related with the steel plate which gave and annealed after that. As shown in Fig. 2 (b), in the steel sheet annealed after cold working, the [100] <011> orientation was strongly accumulated compared to the steel sheet (Fig. 2 (a)) that was annealed as it was. Yes. From this, the [200] plane integration degree at the center of the thickness of the cold-rolling material, that is, the state with a high [100] plane integration degree corresponds to a state with a high integration degree in the [100] <011> orientation. I understand that.
[0015]
The [100] <011> orientation is a crystal orientation that is difficult to recrystallize and is usually engulfed in the [111] orientation that is easily recrystallized in the cold rolling-finish annealing process. However, as the results of this experiment show, by increasing the degree of integration of the [100] <011> orientation of the cold rolling material, the development of the [111] orientation during finish annealing is suppressed, and the cold rolling material is The [100] <011> orientation that it had remains in the final product, improving the magnetic properties of the final product. Such knowledge has not been recognized by the conventional method of simply coarsening the crystal grain size before cold rolling.
[0016]
b. The present inventor further examined a method of increasing the degree of [200] plane integration in the center portion of the thickness of the cold rolling material. That is, the degree of [200] plane integration in the central part of the thickness of the steel sheet subjected to cold rolling at various rolling reductions and subjected to annealing at 750 ° C. for 10 hours was investigated. .
[0017]
FIG. 3 is a graph showing the relationship between the degree of [200] plane integration and the degree of cold working of the material for cold rolling obtained in the above experiment. As shown in FIG. 3, the [200] plane integration degree at the central part of the thickness of the hot-rolled sheet annealed by cold working becomes stronger at a specific cold working degree. This phenomenon was similarly recognized even when the cold working was performed by tensile bending deformation. From these results, it was found that the [200] texture at the center of the thickness of the cold-rolling material can be developed by annealing after appropriate cold working.
[0018]
The above-mentioned texture development progresses with grain growth in the center of the plate thickness, but when the crystal grains become excessively coarse, such as abnormal grain growth, [100] <011> oriented grains in the center of the plate thickness Is phagocytosed by abnormal grains, and a desired texture cannot be obtained. In the present invention, in order to increase the degree of integration of the [100] <011> orientation of the cold rolling material, the material is manufactured under conditions that do not cause coarsening of crystal grains. If such a cold rolling material is used, there is no possibility that defects such as concavo-convex defects in the final product due to coarse grains, which have occurred in the conventional method, will occur.
[0019]
c. The non-oriented electrical steel sheet contains Si, Al, Mn, etc., which have the effect of increasing the specific resistance of the steel in order to reduce iron loss. However, even if the specific resistance of steel is the same and the texture is the same, the magnetic properties, particularly the magnetic flux density, may differ depending on the content of these alloy elements. The present inventor conducted the following experiment in order to clarify factors other than the specific resistance and texture that affect such magnetic characteristics.
[0020]
Various steels having different Si, Al and Mn contents are hot-rolled, further cold-rolled with a reduction ratio of 8%, and then annealed at 800 ° C. for 10 hours to obtain a material for cold rolling, This was cold-rolled to obtain a cold-rolled sheet having a thickness of 0.30 mm, and then subjected to finish annealing to obtain a final product. The texture and the magnetic flux density B 50 of the obtained final product were measured. As a result, the texture was almost the same, but the magnetic flux density was different.
[0021]
The present inventor thinks that the difference in magnetic flux density is caused by the difference in the saturation magnetic flux density of the steel sheet, and the relationship between the magnetic properties and the number of Fe atoms per unit volume (hereinafter also simply referred to as “Fe atom density”). Was analyzed.
[0022]
The saturation magnetic flux density is expressed as the sum of magnetic moments of Fe atoms contained in a unit volume. That is, the saturation magnetic flux density is proportional to the Fe atom density, and the Fe atom density is equal to the product of the total number of atoms per unit volume and the atomic fraction of Fe.
[0023]
The total number of atoms per unit volume may be obtained by dividing the mass (density) per unit volume by the mass of atoms, and the mass of atoms may be obtained by dividing the atomic weight by the Avogadro number. Therefore, the total number of atoms per unit volume is a value obtained by dividing the product of density and Avogadro's number by atomic weight. In the case of an alloy such as steel, an average atomic weight calculated from the atomic weight and atomic fraction of each constituent element may be used as the atomic weight.
[0024]
The atomic fraction of Fe can be converted from mass%. The conversion of atomic% and mass% cancels out the average atomic weight term, and the Fe atomic density, which is the number of Fe atoms per unit volume, is proportional to the product of the steel density and the Fe mass fraction. (Hereinafter, this product is also referred to as “Fe * ”). Here, the “mass fraction of Fe” in the present invention is the mass fraction of each element of C, Si, Al, Mn, P, S, and N (1/100 of the content in%) subtracted from 1. Value.
[0025]
FIG. 4 is a graph showing the relationship between the magnetic flux density B 50 (the magnetic flux density in a magnetic field of 5000 A / m) of the final product having the same texture and the respective Fe * obtained as a result of the above investigation. It is. As shown in FIG. 4, if the texture is the same, there is a good correlation between the magnetic flux density B 50 and Fe *, the magnetic flux density B 50 as Fe * is larger the better.
[0026]
In order to increase Fe * , the content of the alloy element may be suppressed. However, in order to reduce the iron loss, it is necessary to contain the alloy element to some extent in order to obtain a desired specific resistance. Therefore, in order to increase Fe * after obtaining a desired specific resistance, the contents of Si, Al, Mn, etc. may be determined in consideration of the influence of alloy elements on the density of steel.
[0027]
The present invention has been completed based on these new findings, and the gist of the present invention resides in the method for producing a non-oriented electrical steel sheet described in (1) to (2) below.
[0028]
(1) Chemical composition is mass%, C: 0.005% or less, Si equivalent represented by the following formula is 0.1% or more, 3.0% or less of the group consisting of Si, Al and Mn 1 or 2 or more of them, S: 0.030% or less, N: 0.0050% or less, the balance consists of Fe and impurities, and the product of the mass fraction of Fe and the density of steel is 7 .Hot rolling is performed on slabs of 40 or more, the obtained hot-rolled sheet is subjected to cold working by tensile bending with an elongation of 0.5 to 3%, and then box annealing at 650 ° C. to 875 ° C. A method for producing a non-oriented electrical steel sheet, characterized by subjecting to cold rolling material and cold rolling and finish annealing;
Si equivalent = Si (%) + Al (%) + 0.5 Mn (%).
[0029]
(2) The method for producing a non-oriented electrical steel sheet according to (1), wherein the chemical composition further contains P: 0.05 to 0.20% by mass.
[0031]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described in detail.
Chemical composition of steel;
C: Remaining in the final product causes magnetic aging and adversely affects iron loss. In particular, in order to suppress magnetic aging, the C content is set to 0.005% or less. Si, Al and Mn, preferably 0.003% or less: All of these elements have the effect of increasing the specific resistance of the steel, reducing eddy current loss and reducing iron loss. As a result of investigating the effect of each element on the increase in the specific resistance of steel, Al was about the same as Si, and Mn was about 1/2 of Si. Therefore, it is reasonable to consider the influence of these elements on iron loss reduction as a total amount represented by {Si (%) + Al (%) + 0.5Mn (%)}. Equivalent ").
[0032]
In order to obtain the iron loss reduction effect, the Si equivalent of the steel is set to 0.1% or more. Preferably it is 0.2% or more, More preferably, it is 0.5% or more. When the Si equivalent exceeds 3.0%, the magnetic properties deteriorate due to the decrease in the number of Fe atoms as described later. Moreover, the hardness of a steel plate may become high too much, punching property may fall, and the productivity of an iron core manufacturing process may fall remarkably. In order to avoid these disadvantages, the Si equivalent is set to 3.0% or less. When the magnetic flux density is particularly high, the Si equivalent is desirably low and is preferably 1.5% or less.
[0033]
In the present invention, one or more of the group consisting of Si, Al and Mn are contained so that the Si equivalent is in the above range. As for the upper limit of the content of each element, Si is 3.0% or less, Al is 3.0% or less, and Mn is 6.0% or less. Note that the Mn content is preferably 3% or less because the transformation point is lowered as the Mn content is increased and the α-γ transformation is likely to occur during finish annealing.
[0034]
If Al forms fine nitrides in steel, it may hinder crystal grain growth during annealing and hinder iron loss improvement. In order to avoid this, it is desirable that the Al content is 0.002% or less, or 0.15% or more within the above range.
[0035]
P: P has little influence on magnetic properties and is not an essential element. However, P is effective in increasing the hardness for improving the punchability of steel. Therefore, P may be contained for the purpose of adjusting the hardness. In that case, in order to obtain a desired effect, it is preferable to contain 0.05% or more of P. If P is excessively contained, the steel becomes brittle and the plate may be broken during cold rolling. Therefore, in order to avoid this, the content is preferably 0.20% or less.
[0036]
S: S becomes a sulfide in the steel and impairs magnetic properties, so 0.030% or less.
N: N forms fine nitrides, inhibits crystal grain growth, and has an effect of deteriorating magnetic properties, so is made 0.0050% or less.
[0037]
The balance is substantially Fe. Substantially, when steel contains Sb, Sn, or B, it has the effect of suppressing the development of the [111] orientation during the formation of the texture and improving the magnetic flux density of the final product. Therefore, when it is desired to improve the magnetic flux density, it means that one or more of these elements may be contained. The content in that case is Sb: 0.01% or more and 0.3% or less, Sn: 0.01% or more and 0.3% or less, B: 0.0005% or more and 0.01% or less Is desirable.
[0038]
The product of the density of the steel and the mass fraction of Fe (Fe * );
The higher the Fe atom density, the higher the magnetic flux density. When alloying elements are included to reduce iron loss, the product of the steel density and the mass fraction of Fe (Fe * ), which is a value proportional to the Fe atom density, is used to avoid a significant decrease in magnetic flux density. 7.40 or more. When particularly excellent magnetic flux density is required, Fe * is preferably 7.6 or more. The Fe * of steel can be calculated by obtaining the density of the steel from the weight in the air and water and obtaining the mass fraction of Fe from the chemical composition of the steel.
[0039]
The chemical composition of steel is adjusted so that the content of elements such as C, Si, Al, and Mn is adjusted so that Fe * is not less than the above limit value. Specifically, Fe * to enhance is to reduce the Al content action is large to reduce the density of steel, Si, by increasing the content of Mn or the like, increasing the Fe * be the same resistivity be able to.
[0040]
Texture;
In order to obtain good magnetic properties, the [200] plane integration degree at the center of the thickness of the final product is set to 1.10 or more in a random ratio. Preferably it is 1.20 or more.
[0041]
There is a good relationship between the [200] area integration degree of the cold rolling material and the [200] area integration degree of the final product manufactured by cold rolling and finish annealing. This degree of integration corresponds to the degree of integration in the [100] <011> orientation. If the [200] plane integration degree at the center of the sheet thickness of the cold rolling material is 6.0 or more in a random ratio, the [200] plane integration degree in the center of the thickness of the final product is 1.10 or more at a random ratio. The effect of improving the magnetic properties of the final product can be obtained. Accordingly, the random ratio of the [200] plane at the center of the thickness of the cold rolling material is preferably 6.0 or more. More preferably, it is 7.0 or more. [200] The higher the surface integration, the better the magnetic properties, so there is no particular upper limit.
[0042]
The texture at the center of the plate thickness is obtained by, for example, a method of removing one side of the steel plate to the center of the plate thickness by a method such as chemical polishing to obtain a sample having the center of the plate thickness as the measurement surface and diffracting this by X-ray diffraction. Measured. The random ratio is obtained by using the measured value and the X-ray integrated intensity of the [200] plane of the material having no orientation.
[0043]
The cold rolling material has an optimized crystal texture and a large number of Fe atoms per unit volume. Therefore, compared to the conventional method, it is possible to provide excellent magnetic properties without enlarging the crystal grain of the material for cold rolling, so that the surface of the product steel plate caused by the coarse crystal grain of the material for cold rolling can be provided. A non-oriented electrical steel sheet having good surface properties and excellent magnetic properties can be easily produced without the possibility of producing fold-like irregular defects. The crystal grain size of the material for cold rolling is not particularly limited, but in order to improve the surface properties, the average grain size is preferably 150 μm or less.
[0044]
Production method;
The non-oriented electrical steel sheet of the present invention is preferably produced by the method described below.
The steel having the chemical composition described in the above (1) or (2) is melted by a known method such as a converter or an electric furnace, and if necessary, subjected to a treatment such as vacuum degassing, and this is continuously cast or A slab is formed by a method of rolling into a steel ingot.
[0045]
The slab is hot-rolled by a known method and descaled by a known method such as pickling to obtain a hot-rolled sheet. Although the hot rolling conditions are not particularly defined, it is preferable to perform finish rolling at 700 to 950 ° C. and to wind at 700 ° C. or lower in order to increase the degree of [200] plane integration during annealing after cold working.
[0046]
The hot-rolled sheet is subjected to mild cold working and annealing in order to increase the degree of accumulation of the [100] texture in the central part of the thickness of the cold-rolling material. The cold working is preferably performed by a tensile bending method.
[0049]
In the case where the cold working is performed by the tensile bending method, it is preferable to give a working with an elongation of 0.5% or more and 3.0% or less. When the elongation is less than 0.5%, [100] the driving force for increasing the texture is insufficient.
[0050]
As the tension bending means, for example, it is preferable to use a tension leveler provided in the pickling device because it is economical. However, the elongation rate that can be industrially applied by these methods is 3%, and it is difficult to add more processing because the load on the equipment becomes excessive. Therefore, the elongation when the tensile bending method is used is preferably 3.0% or less.
[0051]
The reason why the tensile bending method produces the same effect as that of the cold rolling method with a small degree of work is not clear, but it is considered that, unlike the cold rolling method, the action of tension is large in the deformation mode. In order to reduce manufacturing costs, cold working is a tension bending that can be processed using a tension leveler equipped in pickling equipment, etc., rather than cold rolling that requires large-scale cold rolling equipment. Processing methods are preferred.
[0052]
Annealing: In order to make the [200] plane integration degree at the center of the thickness of the material for cold rolling to 6.0 or more in a random ratio, annealing is performed after cold working. As described above, the [100] texture develops with the growth of crystal grains at the center of the plate thickness. Therefore, in order to stably obtain a desired degree of integration, a box with an annealing temperature of 650 ° C. or higher and 875 ° C. or lower is used. It is preferable to apply by annealing. When the annealing temperature is less than 650 ° C., the [200] plane integration degree is not sufficiently improved, and when it exceeds 875 ° C., coarse grains may be formed, and [100] the texture grows. This is because it is not economical because it saturates. The annealing time may be 2 hours or longer. Long-term annealing exceeding 24 hours is not economical because the effect is saturated. The annealing conditions other than this are arbitrary.
[0053]
The cold-rolling material is cold-rolled to a final product thickness by a known method and finish-annealed by a known method. The thickness of the material for cold rolling is arbitrary as long as it is determined according to the thickness of the final product and the like. For example, when the thickness of the final product is in the range of 0.2 to 0.6 mm, The thickness of the extending material may be in the range of 1.5 to 2.5 mm.
[0054]
The finish annealing may be performed under conditions where recrystallization proceeds sufficiently and crystal grains grow appropriately. Although the method may be a known method, for example, a method in which the annealing temperature is selected within a range of 650 to 1150 ° C. and soaked for 10 seconds or more is preferable. Finish annealing may be decarburization annealing or annealing in a non-decarburizing atmosphere. After finish annealing, a thin film may be applied and baked on the surface as necessary for the purpose of insulation, rust prevention, and punching process improvement.
[0055]
By using the cold rolling material, it is possible to easily manufacture a non-oriented electrical steel sheet having good surface properties and excellent magnetic properties as compared with the case of using a conventional cold rolling material.
[0056]
【Example】
Steels with various chemical compositions are melted in a converter and the components are adjusted by vacuum treatment, then continuously cast into slabs, heated to 1150 ° C, hot rolled at a finishing temperature of 890 ° C, The thickness of the hot rolled sheet was 2.3 mm. The coiling temperature was 600 ° C.
[0057]
The hot-rolled sheet is pickled, cold-rolled at various rolling reductions (reference examples), or subjected to tensile bending deformation processing using tension levelers at various elongation ratios (invention examples), and at various temperatures. Box annealing was performed for 10 hours to obtain a material for cold rolling. These cold-rolling materials were cold-rolled to a cold-rolled sheet having a thickness of 0.50 mm or 0.30 mm, and subjected to continuous annealing that was held at 850 ° C., 900 ° C., or 1000 ° C. for 0.5 minutes, respectively.
[0058]
The random ratio of the [200] plane at the center of the thickness of the cold rolling material was measured by X-ray diffraction.
The magnetic properties of the final product were measured in accordance with the method prescribed in JIS-C2550 using a strip-shaped Epstein test piece punched from the rolling direction and the width direction and using the test piece in the punched state.
[0059]
The mass fraction of Fe was calculated from the chemical composition, the density of the steel was determined from the weight of the steel sheet in the atmosphere and water, and the product of these was calculated to determine Fe * .
Table 1 shows the chemical composition of the steel. Table 2 also shows the manufacturing conditions and the measurement results obtained.
[0060]
[Table 1]
Figure 0003890876
[0061]
[Table 2]
Figure 0003890876
In Table 1, steels 7 to 10 are those in which Fe * , Si equivalent, S content or N content deviates from the conditions defined by the present invention, and all are used as comparative examples.
[0062]
As shown in Table 2, Test Nos. 2 to 4, 10, 13 to 15, 18, 20, 22 and 24 satisfying the conditions specified by the present invention were good in both the magnetic properties and surface properties of the final product. On the other hand, test numbers 1, 5, 6, and 8 in which the degree of [200] surface integration of the material for cold rolling was low because cold working was not performed during manufacturing of the material for cold rolling or the degree of processing was inappropriate. 9, 11, 12, 17, 19, 21, 23 and 25, the magnetic properties of the final product were not good.
[0063]
FIG. 5 is a graph showing the iron loss and magnetic flux density of the final product described in Table 2. In the figure, the numbers in parentheses in the figure represent steel numbers, and the ones with dashes in the parentheses mean that the [200] surface integration degree of the cold rolling material was less than 6.0. By comparing the magnetic flux density of the steel products with the same steel number in Fig. 5, it is possible to clearly understand the influence of the difference in the degree of [200] plane integration of the cold rolling material on the magnetic properties.
[0064]
Test No. 26 using steel 7 also had poor magnetic flux density because Fe * was lower than the lower limit defined by the present invention. Test No. 27 using steel 8 whose Si equivalent exceeded the upper limit defined by the present invention had a low Fe atom density, and the [200] surface integration degree of the material for cold rolling was high, but the magnetic flux density of the final product was low. . Similarly, test number 7 using steel 9 with an S content exceeding the upper limit defined by the present invention and test number 16 using steel 10 with an N content exceeding the upper limit defined by the present invention are materials for cold rolling. The [200] surface integration degree was high, but the magnetic flux density of the final product was low.
[0065]
As a comparative example, Test No. 9, which was subjected to hot-rolled sheet annealing at a high temperature, had poor magnetic properties of the final product and had surface defects due to abnormal grain growth.
[0066]
【The invention's effect】
Since the non-oriented electrical steel sheet of the present invention has a high Fe atom density, the saturation magnetic flux density is high, and the [200] plane integration degree is high at the center of the plate thickness, so that it has excellent magnetic properties and surface properties. For this reason, it is extremely useful as a core material for realizing high efficiency of motors, transformers and the like. Further, the cold rolling material for the non-oriented electrical steel sheet according to the present invention has a high degree of [200] plane integration at the center of the plate thickness. By using this, the non-directional electromagnetic material having excellent magnetic properties and surface properties is used. Steel sheets can be easily manufactured.
[Brief description of the drawings]
FIG. 1 is a graph showing a relationship between a random ratio of a cold-rolling material and a [200] plane at a central portion of a sheet thickness of a final product.
FIG. 2 is a pole figure showing the texture at the center of the thickness of the material for cold rolling, FIG. 2 (a) is a steel sheet obtained by annealing a hot-rolled sheet as it is, and FIG. It is a steel sheet that has been processed and then annealed.
FIG. 3 is a graph showing the relationship between the degree of [200] plane integration and the degree of cold working at the center of the thickness of a cold-rolling material obtained by subjecting a hot-rolled sheet to cold working and annealing.
FIG. 4 is a graph showing a situation in which the magnetic flux density B 50 of the final product having the same texture varies with Fe * .
FIG. 5 is a graph showing the relationship between magnetic flux density and iron loss in Examples.
[Explanation of symbols]

Claims (2)

化学組成が質量%で、C:0.005%以下、下記式で表されるSi当量が0.1%以上、3.0%以下なる範囲でSi、AlおよびMnからなる群の内の1種または2種以上を含有し、S:0.030%以下、N:0.0050%以下、残部がFeおよび不純物からなり、Feの質量分率と鋼の密度との積が7.40以上であるスラブに熱間圧延をおこない、得られた熱延板に伸び率が0.5〜3%の引張り曲げ加工による冷間加工を施し、次いで650℃以上875℃以下の箱焼鈍を施して冷延用素材とし、これに冷間圧延と仕上焼鈍を施すことを特徴とする無方向性電磁鋼板の製造方法;
Si当量=Si(%)+Al(%)+0.5Mn(%)。
1 in the group consisting of Si, Al, and Mn in a range where the chemical composition is mass%, C: 0.005% or less, and the Si equivalent represented by the following formula is 0.1% or more and 3.0% or less. Containing at least two species, S: 0.030% or less, N: 0.0050% or less, the balance being Fe and impurities, and the product of the mass fraction of Fe and the density of the steel is 7.40 or more The slab is subjected to hot rolling, the obtained hot-rolled sheet is subjected to cold working by tensile bending with an elongation of 0.5 to 3%, and then subjected to box annealing at 650 ° C. or higher and 875 ° C. or lower. A method for producing a non-oriented electrical steel sheet, characterized in that the material is used for cold rolling and is subjected to cold rolling and finish annealing;
Si equivalent = Si (%) + Al (%) + 0.5 Mn (%).
前記化学組成が、さらに、質量%でP:0.05〜0.20%を含有することを特徴とする請求項1記載の無方向性電磁鋼板の製造方法。  The method for producing a non-oriented electrical steel sheet according to claim 1, wherein the chemical composition further contains P: 0.05 to 0.20% in mass%.
JP2000306313A 2000-10-05 2000-10-05 Method for producing non-oriented electrical steel sheet Expired - Fee Related JP3890876B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000306313A JP3890876B2 (en) 2000-10-05 2000-10-05 Method for producing non-oriented electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000306313A JP3890876B2 (en) 2000-10-05 2000-10-05 Method for producing non-oriented electrical steel sheet

Publications (2)

Publication Number Publication Date
JP2002115034A JP2002115034A (en) 2002-04-19
JP3890876B2 true JP3890876B2 (en) 2007-03-07

Family

ID=18787027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000306313A Expired - Fee Related JP3890876B2 (en) 2000-10-05 2000-10-05 Method for producing non-oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JP3890876B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5582062B2 (en) * 2011-02-21 2014-09-03 新日鐵住金株式会社 Magnetic property prediction apparatus, magnetic property prediction method, and computer program
EP3575431B1 (en) * 2011-11-11 2021-12-29 Nippon Steel Corporation Non-oriented electrical steel sheet and manufacturing method thereof
JP6992652B2 (en) * 2018-03-30 2022-01-13 日本製鉄株式会社 Manufacturing method of electrical steel sheet and electrical steel sheet
KR102438474B1 (en) * 2020-12-21 2022-09-01 주식회사 포스코 Non-oriented electrical steel sheet and method for manufacturing the same
CN114250420A (en) * 2021-12-30 2022-03-29 本钢板材股份有限公司 Production method of cover type intermediate annealing high-grade non-oriented silicon steel 50BW350

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0832927B2 (en) * 1988-06-04 1996-03-29 株式会社神戸製鋼所 Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density
JPH01309921A (en) * 1988-06-06 1989-12-14 Sumitomo Metal Ind Ltd Production of semiprocess non-oriented magnetic steel sheet
JPH10226854A (en) * 1997-02-19 1998-08-25 Kawasaki Steel Corp Silicon steel hot rolled sheet excellent in magnetic property and its production
JP4281119B2 (en) * 1997-12-04 2009-06-17 Jfeスチール株式会社 Manufacturing method of electrical steel sheet
JP4258854B2 (en) * 1997-12-04 2009-04-30 Jfeスチール株式会社 Manufacturing method of electrical steel sheet
JP4730981B2 (en) * 1998-02-16 2011-07-20 住友金属工業株式会社 Non-oriented electrical steel sheet and manufacturing method thereof

Also Published As

Publication number Publication date
JP2002115034A (en) 2002-04-19

Similar Documents

Publication Publication Date Title
JP5712863B2 (en) Method for producing non-oriented electrical steel sheet
WO2019182022A1 (en) Non-oriented electromagnetic steel sheet
JPH11310857A (en) Nonoriented silicon steel sheet and its manufacture
JP3890876B2 (en) Method for producing non-oriented electrical steel sheet
JP3997712B2 (en) Manufacturing method of grain-oriented electrical steel sheet for EI core
JP7352082B2 (en) Non-oriented electrical steel sheet
JP2003293101A (en) Nonoriented silicon steel sheet having excellent magnetic property and corrosion resistance after stress relieving annealing
JP4013262B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JPH086135B2 (en) Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties
US6425962B1 (en) Non-oriented electrical steel sheet excellent in permeability and method of producing the same
JPH0657332A (en) Manufacture of non-oriented silicon steel sheet having high magnetic flux density and low iron loss
JP7211532B2 (en) Method for manufacturing non-oriented electrical steel sheet
JP7295465B2 (en) Non-oriented electrical steel sheet
JP7268803B1 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP7415138B2 (en) Manufacturing method of non-oriented electrical steel sheet
WO2023282072A1 (en) Non-oriented electrical steel plate and manufacturing method thereof
JP7428872B2 (en) Non-oriented electrical steel sheet and its manufacturing method
JP7428873B2 (en) Non-oriented electrical steel sheet and its manufacturing method
WO2023248861A1 (en) Method for producing electromagnetic steel sheet, and cold-rolled sheet
JP7415135B2 (en) Manufacturing method of non-oriented electrical steel sheet
JP7231895B1 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP7288215B2 (en) Non-oriented electrical steel sheet
JP7415136B2 (en) Manufacturing method of non-oriented electrical steel sheet
JP7415134B2 (en) Manufacturing method of non-oriented electrical steel sheet
WO2021167065A1 (en) Hot-rolled steel sheet for non-oriented electromagnetic steel sheets, non-oriented electromagnetic steel sheet, and method for manufacturing same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060425

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060926

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061127

R150 Certificate of patent or registration of utility model

Ref document number: 3890876

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111215

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111215

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121215

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131215

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131215

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131215

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees