JP2002115034A - Nonoriented silicon steel sheet, stock for cold rolling therefor and its production method - Google Patents

Nonoriented silicon steel sheet, stock for cold rolling therefor and its production method

Info

Publication number
JP2002115034A
JP2002115034A JP2000306313A JP2000306313A JP2002115034A JP 2002115034 A JP2002115034 A JP 2002115034A JP 2000306313 A JP2000306313 A JP 2000306313A JP 2000306313 A JP2000306313 A JP 2000306313A JP 2002115034 A JP2002115034 A JP 2002115034A
Authority
JP
Japan
Prior art keywords
cold rolling
sheet
rolling
steel sheet
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000306313A
Other languages
Japanese (ja)
Other versions
JP3890876B2 (en
Inventor
Ichiro Tanaka
一郎 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2000306313A priority Critical patent/JP3890876B2/en
Publication of JP2002115034A publication Critical patent/JP2002115034A/en
Application granted granted Critical
Publication of JP3890876B2 publication Critical patent/JP3890876B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a stock for cold rolling, giving a nonoriented silicon steel sheet having excellent magnetic properties and surface properties, and to provide its production method. SOLUTION: This nonoriented silicon steel sheet has a composition containing, by mass, <=0.005% C, [Si(%)+Al(%)+0.5Mn(%)]: 0.1 to 3.0%, <=0.20% P, <=0.030% S and <=0.0050% N, and the blance substantially Fe, in which the product of the mass fraction of Fe and the density of the steel is >=7.40, and also, the accumulated degree of the [200] plane in the central part of the sheet thickness is >=1.10 by random ratio. Further, in the stock for cold rolling of the nonoriented silicon steel sheet, the accumulated degree of the [200] plane in the central part of the sheet thickness is >=6.0 by random ratio. The steel sheet is produced by subjecting a slab having the above chemical composition to hot rolling, performing rolling at a draft of 4 to 15% or cold working by tensile bending at an elongation percentage of 0.5 to 3% and annealing into the stock for cold rolling and subjecting the stock to cold rolling and finish annealing.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、優れた磁気特性を
有し表面性状の良好な無方向性電磁鋼板とその冷延用素
材ならびに上記無方向性電磁鋼板の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-oriented electrical steel sheet having excellent magnetic properties and good surface properties, a material for cold rolling the same, and a method for producing the above-mentioned non-oriented electrical steel sheet.

【0002】[0002]

【従来の技術】近年、地球環境問題などから省エネルギ
ーへの取り組みが一段と盛んになっている。このような
動向に対応して、電気機器の小型化、高効率化が進めら
れており、モータ、変圧器などの鉄心材料として広く用
いられている無方向性電磁鋼板の磁気特性の改善が求め
られている。
2. Description of the Related Art In recent years, efforts to save energy have become more active due to global environmental problems and the like. In response to these trends, the miniaturization and high efficiency of electrical equipment are being promoted, and there is a need to improve the magnetic properties of non-oriented electrical steel sheets that are widely used as core materials for motors, transformers, etc. Have been.

【0003】無方向性電磁鋼板は、所定の化学組成を備
えた鋼を熱間圧延して熱延板とし、これを冷間圧延して
最終製品の厚さを有する冷延板とし、仕上焼鈍を施して
所望の磁気特性を有する鋼板(最終製品)として製造さ
れる。
A non-oriented electrical steel sheet is prepared by hot rolling a steel having a predetermined chemical composition into a hot-rolled sheet, cold-rolling the sheet into a cold-rolled sheet having a thickness of a final product, and finishing annealing. To produce a steel sheet (final product) having desired magnetic properties.

【0004】磁気特性向上には、最終製品の厚さに冷間
圧延する前の鋼板(以下、「冷延用素材」と記す)の結
晶粒径を大きくするのがよいことが知られており、その
方法として、冷間圧延前の熱延板に焼鈍を施す方法があ
る(以下、この焼鈍を単に「熱延板焼鈍」と記す)。
In order to improve the magnetic properties, it is known that it is better to increase the crystal grain size of a steel sheet before cold-rolling to the thickness of the final product (hereinafter, referred to as “material for cold rolling”). As a method thereof, there is a method of annealing a hot-rolled sheet before cold rolling (hereinafter, this annealing is simply referred to as “hot-rolled sheet annealing”).

【0005】しかしながら熱延板焼鈍のみによる磁気特
性向上には限界があるうえ、熱延板の結晶粒が過度に粗
大化すると製品の表面性状が劣化するという問題もあっ
た。これを解決する手段として、特開平1−30652
3号公報、特開平1−309921号公報、あるいは特
開平5−171280号公報などには、熱延板に軽度の
圧下率の冷間圧延を施して焼鈍することにより冷延用素
材の結晶粒を粗大にし、その後最終製品厚さに冷間圧延
して仕上焼鈍を施す方法が提案されている。
[0005] However, there is a limit to the improvement of the magnetic properties only by annealing the hot-rolled sheet, and there is a problem that if the crystal grains of the hot-rolled sheet are excessively coarsened, the surface properties of the product are deteriorated. As means for solving this, Japanese Patent Laid-Open Publication No.
No. 3, JP-A-1-309921, and JP-A-5-171280 disclose that a hot-rolled sheet is subjected to cold rolling at a low rolling reduction and then annealed to obtain a crystal grain of a material for cold rolling. Has been proposed, and then finish annealing is performed by cold rolling to a final product thickness.

【0006】しかしながらこれらの方法は熱延板焼鈍方
法におけるのと同様に、冷延用素材の結晶粒径の粗大化
のみに着目した方法であり、過度に結晶粒径が粗大化し
た場合の製品の表面性状劣化は避けられず、得られる磁
気特性改善効果には限界があった。
However, these methods focus on only the coarsening of the crystal grain size of the material for cold rolling, as in the hot-rolled sheet annealing method. Deterioration of the surface properties was unavoidable, and the effect of improving the magnetic properties obtained was limited.

【0007】[0007]

【発明が解決しようとする課題】本発明はこれらの問題
点に鑑みてなされたもので、その目的とするところは、
磁気特性と表面性状に優れた無方向性電磁鋼板、その製
造に好適な無方向性電磁鋼板の冷延用素材、および上記
無方向性電磁鋼板の製造方法を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of these problems.
An object of the present invention is to provide a non-oriented electrical steel sheet having excellent magnetic properties and surface properties, a material for cold rolling of a non-oriented electrical steel sheet suitable for the production thereof, and a method for producing the non-oriented electrical steel sheet.

【0008】[0008]

【課題を解決するための手段】鋼の結晶方位において[1
00] 面は面内に磁化容易方向を2つ有し、[110] 面は1
つ有する。従って無方向性電磁鋼板の磁束密度を高める
には、製品鋼板の結晶集合組織において、鋼板面に平行
な[100] 面あるいは[110] 面の集積度を高め、結晶面内
に磁化容易方向のない[111] 面の集積度を低めるのがよ
いことが知られている。通常、板厚中央部には[111] 面
が強く集積するが、これが鋼板の磁気特性の向上を妨げ
る大きい原因である。従って無方向性電磁鋼板の磁気特
性は最終製品の板厚中央部における鋼板面に平行な[20
0] 面の集積度(以下、単に「[200] 面集積度」と記
す)を高めることにより改善することができる。周知の
ように、[200] 面集積度は[100] 面集積度に対応するも
のである。
[Means for Solving the Problems] [1]
The [00] plane has two easy magnetization directions in the plane, and the [110] plane has 1
Have one. Therefore, in order to increase the magnetic flux density of the non-oriented electrical steel sheet, in the crystal texture of the product steel sheet, the degree of integration of the [100] or [110] plane parallel to the steel sheet plane is increased, and the direction of easy magnetization is It is known that it is better to reduce the degree of integration of the [111] plane. Usually, the [111] plane is strongly accumulated in the central part of the sheet thickness, and this is a major factor that hinders the improvement of the magnetic properties of the steel sheet. Therefore, the magnetic properties of the non-oriented electrical steel sheet are parallel to the steel sheet plane at the center of the thickness of the final product [20
0] It can be improved by increasing the degree of integration of the plane (hereinafter simply referred to as “[200] plane integration degree)”. As is well known, the [200] plane integration corresponds to the [100] plane integration.

【0009】このような観点から本発明者は、無方向性
電磁鋼板の磁気特性改善における集合組織制御の重要性
に着目し、最終製品の板厚中央部の[200] 面集積度に影
響する要因を明らかにすべく以下の実験をおこなった。
From such a viewpoint, the present inventors have focused on the importance of texture control in improving the magnetic properties of non-oriented electrical steel sheets and affect the degree of [200] plane integration at the center of the sheet thickness of the final product. The following experiment was performed to clarify the factors.

【0010】a.質量%で(以下、化学組成の%表示は
質量%を意味する)C:0.0031%、Si :0.4
6%、Mn :0.18%、P:0.074%、S:0.
015、sol.Al :0.0002%を含有する鋼を11
50℃に加熱し、850℃で仕上げる熱間圧延して厚
さ:2.3mmの熱延板とし、これに種々の加工度の冷
間加工と種々の温度での焼鈍を施して冷延用素材を得
た。これらの冷延用素材を厚さ:0.5mmの鋼板に冷
間圧延し、仕上焼鈍として850℃で30秒間保持する
連続焼鈍を施した。
A. C: 0.0031%, Si: 0.4% by mass (hereinafter, the chemical composition in% means mass%).
6%, Mn: 0.18%, P: 0.074%, S: 0.
015, steel containing sol. Al: 0.0002%
It is heated to 50 ° C and hot rolled to finish at 850 ° C to obtain a hot-rolled sheet having a thickness of 2.3 mm, which is subjected to cold-working at various working degrees and annealing at various temperatures to be used for cold-rolling. I got the material. These cold rolled materials were cold-rolled into steel sheets having a thickness of 0.5 mm, and subjected to continuous annealing at 850 ° C. for 30 seconds as finish annealing.

【0011】上記実験で得られた冷延用素材と、連続焼
鈍後の鋼板(最終製品)の板厚中央部のX線回折試験を
おこない、それぞれの板厚中央部における[200] 面集積
度を、[200] 面のX線積分強度(I)と集積状況がラン
ダムである試料のX線積分強度(I0 )との比(I/
0 ;以下、単に「ランダム比」と記す)として評価し
た。
[0011] An X-ray diffraction test was performed on the cold rolled material obtained in the above experiment and the steel sheet (final product) after continuous annealing, and an X-ray diffraction test was performed. Is calculated as a ratio (I / I) between the X-ray integrated intensity (I) of the [200] plane and the X-ray integrated intensity (I 0 ) of the sample whose accumulation status is random.
I 0 ; hereinafter simply referred to as “random ratio”).

【0012】図1は、上記実験で得られた冷延用素材の
[200] 面集積度と最終製品の[200]面集積度との関係を
示すグラフである。図1に示すように冷延用素材の[20
0] 面集積度と最終製品のそれとの間には極めて良好な
相関があり、冷延用素材の板厚中央部での[200] 面集積
度が高ければ、これを冷間圧延し仕上焼鈍して得られる
最終製品においても[200] 面、すなわち[100] 面が強く
残存し、磁気特性が向上する。
FIG. 1 shows the cold rolled material obtained in the above experiment.
9 is a graph showing the relationship between the [200] plane integration degree and the [200] plane integration degree of the final product. As shown in FIG. 1, [20]
0] There is an extremely good correlation between the degree of surface integration and that of the final product. If the surface integration at the center of the sheet thickness of the cold-rolling material is high, the surface is cold-rolled and finish-annealed. In the final product obtained as a result, the [200] plane, that is, the [100] plane remains strongly and the magnetic properties are improved.

【0013】従来のような単に冷延用素材の結晶粒径の
粗大化のみによる方法では、このように[200] 面集積度
を高める効果は得られない。従来法による冷延用素材の
[200] 面集積度はランダム比で6に満たず、最終製品の
[200] 面集積度はランダム比で高々1.0前後以下であ
る。
The conventional method of merely increasing the crystal grain size of the material for cold rolling does not provide the effect of increasing the degree of [200] plane integration. Conventional cold rolling materials
[200] The degree of surface integration is less than 6 at random ratio,
[200] The degree of surface integration is at most about 1.0 or less at random ratio.

【0014】図2は冷延用素材の板厚中央部の集合組織
を示す極点図であり、図2(a)は熱延板をそのまま焼
鈍した鋼板、図2(b)は熱延板に冷間加工を施しその
後に焼鈍した鋼板に関するものである。図2(b)に示
すように、冷間加工後に焼鈍した鋼板では、熱延板をそ
のまま焼鈍した鋼板(図2(a))に比較して[100]<01
1> 方位が強く集積している。このことから、冷延用素
材の板厚中央部の[200] 面集積度、すなわち[100] 面集
積度が高い状態とは、[100] <011> 方位の集積度が高い
状態に対応することがわかる。
FIG. 2 is a pole figure showing the texture of the central part of the thickness of the cold-rolled material. FIG. 2 (a) shows a hot-rolled steel sheet as it is, and FIG. 2 (b) shows a hot-rolled steel sheet. The present invention relates to a steel sheet subjected to cold working and then annealed. As shown in FIG. 2B, in the steel sheet annealed after the cold working, [100] <01 is compared with the steel sheet in which the hot-rolled sheet is annealed as it is (FIG. 2A).
1> The direction is strongly accumulated. From this fact, a state where the degree of [200] plane integration at the center of the sheet thickness of the cold rolling material, that is, a state where the [100] plane integration is high, corresponds to a state where the degree of integration in the [100] <011> orientation is high. You can see that.

【0015】[100] <011> 方位は再結晶し難い結晶方位
であり、通常は、冷間圧延−仕上焼鈍の工程において、
再結晶し易い[111] 方位に蚕食されてしまう。しかしな
がら本実験結果が示すように、冷延用素材の[100] <011
> 方位の集積度を高めておくことにより、仕上焼鈍時の
[111] 方位の発達が抑制され、冷延用素材が有していた
[100] <011> 方位が最終製品に残存し、最終製品の磁気
特性が向上する。このような知見は、単に冷延前の結晶
粒径を粗大化する従来の方法では認められなかったもの
である。
[100] The <011> orientation is a crystal orientation that is difficult to recrystallize. Usually, in the cold rolling-finishing process,
Silkworms are eaten in the [111] orientation that is easy to recrystallize. However, as the results of this experiment show, [100] <011
> By increasing the degree of orientation accumulation, the finish annealing
[111] Orientation development was suppressed and the material for cold rolling had
[100] <011> The orientation remains in the final product, and the magnetic properties of the final product are improved. Such a finding was not found in the conventional method of simply increasing the crystal grain size before cold rolling.

【0016】b.本発明者はさらに、上記冷延用素材の
板厚中央部における[200] 面集積度を高める方法を検討
した。すなわち、前記a項に記載した熱延板に種々の圧
下率で冷間圧延を施し、750℃で10時間保持する焼
鈍を施した鋼板の板厚中央部の[200] 面集積度を調査し
た。
B. The present inventor further studied a method of increasing the degree of [200] plane integration at the center of the sheet thickness of the above-mentioned cold rolling material. That is, the hot rolled sheet described in the above section a was subjected to cold rolling at various rolling reductions, and the [200] plane integration degree at the center of the sheet thickness of the annealed steel sheet maintained at 750 ° C. for 10 hours was investigated. .

【0017】図3は上記実験で得られた冷延用素材の[2
00] 面集積度と冷間加工度との関係を示すグラフであ
る。図3に示すように、熱延板に冷間加工を施して焼鈍
した板の板厚中央部の[200] 面集積度は特定の冷間加工
度の部分で強くなる。この現象は、冷間加工を引張り曲
げ変形による加工とした場合でも同様に認められた。こ
れらのことから、適度な冷間加工を施した後に焼鈍する
ことにより、冷延用素材の板厚中央部の[200] 集合組織
を発達させられることが判明した。
FIG. 3 shows [2] of the material for cold rolling obtained in the above experiment.
00 is a graph showing the relationship between the degree of surface integration and the degree of cold working. As shown in FIG. 3, the degree of integration of the [200] plane in the center of the thickness of the sheet obtained by subjecting the hot-rolled sheet to cold working and annealing is increased at a specific cold working degree. This phenomenon was also observed when cold working was performed by tensile bending deformation. From these facts, it was found that by performing appropriate cold working and then annealing, it is possible to develop the [200] texture in the central part of the sheet thickness of the material for cold rolling.

【0018】上記集合組織の発達は板厚中央部の粒成長
に伴い進行するが、異常粒成長のように過度に結晶粒が
粗大化する場合には、板厚中央部の[100] <011> 方位粒
が異常粒に蚕食されるため、所望の集合組織は得られな
い。本発明では冷延用素材の[100] <011> 方位の集積度
を高くするために、結晶粒の粗大化を生じさせない条件
で製造する。このような冷延用素材を用いれば、粗大粒
に起因する最終製品における凹凸欠陥など、従来の方法
では発生していた欠陥が生じるおそれもない。
The development of the texture proceeds with the grain growth in the central part of the sheet thickness. However, when the crystal grains become excessively coarse as in the abnormal grain growth, [100] <011 in the central part of the sheet thickness is obtained. > Desired texture cannot be obtained because oriented grains are eaten by abnormal grains. In the present invention, in order to increase the degree of integration of the [100] <011> orientation of the material for cold rolling, the material is manufactured under conditions that do not cause coarsening of crystal grains. If such a material for cold rolling is used, there is no possibility that defects that have occurred in the conventional method, such as unevenness defects in the final product due to coarse grains, will occur.

【0019】c.無方向性電磁鋼板には、鉄損低減のた
めに鋼の固有抵抗を高める作用があるSi 、Al 、Mn
などを含有させる。しかしながら鋼の固有抵抗が同程
度、かつ、その集合組織が同程度であっても、これらの
合金元素の含有内容により磁気特性、とくに磁束密度が
異なることがある。本発明者はこのような磁気特性に影
響する固有抵抗および集合組織以外の要因を明らかにす
るために以下の実験をおこなった。
C. Non-oriented electrical steel sheets have the effect of increasing the specific resistance of steel to reduce iron loss, Si, Al, Mn.
And so on. However, even if the steel has the same specific resistance and the same texture, the magnetic properties, particularly the magnetic flux density, may differ depending on the content of these alloying elements. The present inventor has conducted the following experiments in order to clarify factors other than the specific resistance and the texture that affect such magnetic characteristics.

【0020】Si 、Al およびMn 含有量が異なる種々
の鋼を熱間圧延し、さらに圧下率を8%とする冷間圧延
を施し、その後800℃で10時間保持する焼鈍を施し
て冷延用素材とし、これを冷間圧延して厚さが0.30
mmの冷延板とし、その後仕上焼鈍を施して最終製品と
した。得られた最終製品の集合組織と磁束密度B50を測
定した。その結果、集合組織はほぼ同一であったが磁束
密度が異なっていた。
Various steels having different contents of Si, Al and Mn are hot-rolled, cold-rolled to a rolling reduction of 8%, and then annealed at 800 ° C. for 10 hours for cold rolling. The material is cold rolled to a thickness of 0.30
mm cold-rolled sheet, and then subjected to finish annealing to obtain a final product. The texture and the magnetic flux density B 50 of the obtained final product were measured. As a result, the textures were almost the same, but the magnetic flux densities were different.

【0021】本発明者は、この磁束密度の差異は鋼板の
飽和磁束密度の差に起因すると思考し、磁気特性と単位
体積当たりのFe 原子の個数(以下、単に「Fe 原子密
度」とも記す)との関係を解析した。
The present inventor believes that this difference in magnetic flux density is caused by the difference in saturation magnetic flux density of the steel sheet, and thus the magnetic characteristics and the number of Fe atoms per unit volume (hereinafter, also simply referred to as “Fe atom density”). The relationship with was analyzed.

【0022】飽和磁束密度は単位体積に含まれるFe 原
子がそれぞれ有する磁気モーメントの総和として発現さ
れる。すなわち、飽和磁束密度はFe 原子密度に比例
し、Fe 原子密度は単位体積当たりの総原子数とFe の
原子分率との積に等しい。
The saturation magnetic flux density is expressed as a sum of magnetic moments of Fe atoms contained in a unit volume. That is, the saturation magnetic flux density is proportional to the Fe atom density, and the Fe atom density is equal to the product of the total number of atoms per unit volume and the atomic fraction of Fe.

【0023】単位体積あたりの総原子数は、単位体積当
たりの質量(密度)を原子の質量で除せばよく、原子の
質量は原子量をアボガドロ数で除せばよい。これらのこ
とから単位体積あたりの総原子数は、密度とアボガドロ
数の積を原子量で除した値となる。鋼のような合金の場
合には、上記原子量として各構成元素の原子量と原子分
率より算出した平均の原子量を用いればよい。
The total number of atoms per unit volume may be obtained by dividing the mass (density) per unit volume by the mass of an atom, and the mass of the atom may be obtained by dividing the atomic weight by the Avogadro number. From these facts, the total number of atoms per unit volume is a value obtained by dividing the product of the density and the Avogadro number by the atomic weight. In the case of an alloy such as steel, an average atomic weight calculated from the atomic weights and atomic fractions of the constituent elements may be used as the atomic weight.

【0024】また、Fe の原子分率は質量%から換算で
きる。原子%と質量%の換算により、平均の原子量の項
は相殺され、単位体積あたりのFe 原子の個数であるF
e 原子密度は、鋼の密度とFe の質量分率との積に比例
することになる(以下、この積を「Fe*」とも記す)。
ここで本発明でいう「Fe の質量分率」は、C、Si、
Al 、Mn 、P、S、Nの各元素の質量分率(%表示の
含有量の1/100)を1から差し引いた値を意味す
る。
The atomic fraction of Fe can be converted from mass%. By the conversion of atomic% and mass%, the term of the average atomic weight is offset, and the number of Fe atoms per unit volume, F
The e atomic density is proportional to the product of the steel density and the mass fraction of Fe (hereinafter, this product is also referred to as “Fe * ”).
Here, the “mass fraction of Fe” referred to in the present invention is C, Si,
It means a value obtained by subtracting the mass fraction (1/100 of the content in%) of each element of Al, Mn, P, S and N from 1.

【0025】図4は、上記調査の結果得られた、集合組
織が同程度である最終製品の磁束密度B50(5000A
/mの磁界中での磁束密度)と、それぞれのFe*との関
係を示すグラフである。図4に示す様に、集合組織が同
じ場合、磁束密度B50とFe*との間には良好な相関関係
があり、Fe*が大きいほど磁束密度B50が良好となる。
FIG. 4 shows the magnetic flux density B 50 (5000A) of the final product obtained as a result of the above investigation and having a similar texture.
/ M is a graph showing the relationship between the magnetic flux density in a magnetic field and each Fe * . As shown in FIG. 4, if the texture is the same, there is a good correlation between the magnetic flux density B 50 and Fe *, the magnetic flux density B 50 as Fe * is larger the better.

【0026】Fe*を高めるには合金元素の含有量を抑制
すればよいが、鉄損を低減する場合には所望の固有抵抗
を得るためにある程度合金元素を含有させる必要があ
る。従って、所望の固有抵抗を得たうえでFe*を高める
には、鋼の密度に及ぼす合金元素の影響を考慮してSi
、Al 、Mn などの含有量を定めればよい。
To increase Fe * , the content of the alloying element may be suppressed. However, in order to reduce iron loss, it is necessary to contain the alloying element to some extent in order to obtain a desired specific resistance. Therefore, in order to increase Fe * after obtaining a desired specific resistance, it is necessary to consider the influence of alloying elements on the density of steel in consideration of Si.
, Al, Mn, etc. may be determined.

【0027】本発明は、これらの新たな知見に基づいて
完成されたものであり、その要旨は下記(1)および
(2)に記載の無方向性電磁鋼板、(3)に記載のその
冷延用素材、および(4)に記載のその製造方法にあ
る。
The present invention has been completed on the basis of these new findings. The gist of the present invention is as follows: a non-oriented electrical steel sheet described in (1) and (2) below; A material for rolling and a method for producing the material according to (4).

【0028】(1)化学組成が質量%で、C:0.00
5%以下、下記式で表されるSi 当量が0.1%以上、
3.0%以下なる範囲でSi 、Al およびMn からなる
群の内で1種または2種以上を含有し、S:0.030
%以下、N:0.0050%以下、残部が実質的にFe
からなり、Fe の質量分率と鋼の密度との積が7.40
以上、かつ、板厚中央部における[200] 面の集積度がラ
ンダム比で1.10以上であることを特徴とする無方向
性電磁鋼板; Si当量=Si(%)+Al(%)+0.5Mn(%)。
(1) Chemical composition in mass%, C: 0.00
5% or less, Si equivalent represented by the following formula is 0.1% or more,
One or two or more of the group consisting of Si, Al and Mn are contained in an amount of 3.0% or less, and S: 0.030
% Or less, N: 0.0050% or less, and the balance is substantially Fe
And the product of the mass fraction of Fe and the density of steel is 7.40.
Non-oriented electrical steel sheet characterized in that the degree of integration of the [200] plane in the central part of the sheet thickness is 1.10 or more at a random ratio; Si equivalent = Si (%) + Al (%) + 0. 5Mn (%).

【0029】(2)前記化学組成が、さらに、質量%で
P:0.05〜0.20%を含有することを特徴とする
上記(1)記載の無方向性電磁鋼板。 (3)上記(1)または(2)記載の化学組成を備え、
Fe の質量分率と鋼の密度との積が7.40以上、か
つ、板厚中央部における[200] 面の集積度がランダム比
で6.0以上であることを特徴とする無方向性電磁鋼板
の冷延用素材; Si当量=Si(%)+Al(%)+0.5Mn(%)。
(2) The non-oriented electrical steel sheet according to (1), wherein the chemical composition further contains P: 0.05 to 0.20% by mass. (3) having the chemical composition according to the above (1) or (2),
Non-directionality characterized in that the product of the mass fraction of Fe and the density of steel is 7.40 or more, and the degree of integration of the [200] plane in the center of the sheet thickness is 6.0 or more in a random ratio. Material for cold rolling of magnetic steel sheet; Si equivalent = Si (%) + Al (%) + 0.5Mn (%).

【0030】(4)上記(1)または(2)記載の化学
組成を備え、Fe の質量分率と鋼の密度との積が7.4
0以上であるスラブに熱間圧延をおこない、得られた熱
延板に圧下率が4〜15%の圧延、または伸び率が0.
5〜3%の引張り曲げ加工による冷間加工を施し、次い
で焼鈍を施して冷延用素材とし、これに冷間圧延と仕上
焼鈍を施すことを特徴とする無方向性電磁鋼板の製造方
法。
(4) Having the chemical composition described in (1) or (2) above, the product of the mass fraction of Fe and the density of steel is 7.4.
Hot rolling is performed on a slab of 0 or more, and the obtained hot rolled sheet is rolled with a rolling reduction of 4 to 15% or an elongation is 0.1%.
A method for producing a non-oriented electrical steel sheet, comprising: performing cold working by 5% to 3% tensile bending, and then performing annealing to obtain a material for cold rolling, and performing cold rolling and finish annealing on the material.

【0031】[0031]

【発明の実施の形態】本発明の実施の形態を詳細に述べ
る。 鋼の化学組成; C:最終製品に残存すると磁気時効の原因となり、鉄損
にも悪影響を及ぼすのでCは少ないほど好ましい。特に
磁気時効を抑制するためにC含有量は0.005%以下
とする。好ましくは0.003%以下であるSi 、Al
およびMn :これらの元素はいずれも鋼の固有抵抗を高
め、渦電流損を低減して鉄損を小さくする作用がある。
鋼の固有抵抗上昇に対する各元素の効果を調査した結
果、Al はSi と同程度であり、Mn はSi の1/2程
度であった。従って鉄損低減に対するこれらの元素の影
響は{Si(%)+Al(%) +0.5Mn(%) }で表される合
計量として考えるのが合理的である(以下、上記合計量
を「Si 当量」とも記す)。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described in detail. Chemical composition of steel; C: Residual in the final product causes magnetic aging and adversely affects iron loss. Particularly, in order to suppress magnetic aging, the C content is set to 0.005% or less. Si, Al which is preferably 0.003% or less
And Mn: These elements all have the effect of increasing the specific resistance of steel, reducing eddy current loss and reducing iron loss.
As a result of investigating the effect of each element on the increase in specific resistance of steel, Al was about the same as Si, and Mn was about 1/2 of Si. Therefore, it is reasonable to consider the influence of these elements on iron loss reduction as a total amount represented by {Si (%) + Al (%) + 0.5Mn (%)} (hereinafter, the above total amount is referred to as “Si Equivalent ”).

【0032】鉄損低減効果を得るために鋼のSi 当量を
0.1%以上とする。好ましくは0.2%以上、より好
ましくは0.5%以上である。Si 当量が3.0%を超
えると、後述するようにFe 原子の個数の減少に起因し
て磁気特性が劣化する。また、鋼板の硬度が過度に高く
なり、打抜性が低下して鉄心製造工程の生産性が著しく
低下する場合がある。これらの不都合を避けるためにS
i 当量は3.0%以下とする。磁束密度を特に高くする
場合にはSi 当量は低いことが望ましく、1.5%以下
とするのが望ましい。
In order to obtain an iron loss reducing effect, the Si equivalent of steel is set to 0.1% or more. Preferably it is 0.2% or more, more preferably 0.5% or more. If the Si equivalent exceeds 3.0%, the magnetic properties deteriorate due to the decrease in the number of Fe atoms, as described later. Further, the hardness of the steel sheet may become excessively high, the punching property may be reduced, and the productivity of the iron core manufacturing process may be significantly reduced. To avoid these inconveniences, S
i The equivalent is 3.0% or less. When the magnetic flux density is particularly increased, the Si equivalent is desirably low, preferably 1.5% or less.

【0033】本発明においては、Si 、Al およびMn
からなる群の内の1種または2種以上をSi 当量が上記
範囲になるように含有させる。各元素の含有量の上限
は、Si は3.0%以下、Al は3.0%以下、Mn は
6.0%以下である。なお、Mn 含有量が増すと共に変
態点が低下し、仕上焼鈍時にα−γ変態が生じるおそれ
が増すので、Mn は3%以下とするのが好ましい。
In the present invention, Si, Al and Mn are used.
One or two or more of the group consisting of are contained so that the Si equivalent is within the above range. The upper limit of the content of each element is as follows: Si is 3.0% or less, Al is 3.0% or less, and Mn is 6.0% or less. The Mn content is preferably set to 3% or less because the transformation point decreases as the Mn content increases, and the α-γ transformation may occur during the finish annealing.

【0034】Al が鋼中で微細な窒化物を形成すると焼
鈍時の結晶粒成長を阻害し鉄損改善の障害になる場合が
ある。これを避けるために、Al 含有量を0.002%
以下とするか、上記範囲内で0.15%以上とするのが
望ましい。
If Al forms fine nitrides in the steel, it may hinder the growth of crystal grains during annealing and may hinder the improvement of iron loss. To avoid this, the Al content should be 0.002%
It is desirable that the content be not more than 0.15% within the above range.

【0035】P:Pは磁気特性への影響は少なく、必須
元素ではない。しかしながらPは鋼の打ち抜き性を向上
させるための硬度上昇に有効である。従って硬度を調整
する目的でPを含有させても構わない。その場合に所望
の効果を得るには、Pを0.05%以上含有させるのが
好ましい。過度にPを含有させると鋼が脆くなり、冷間
圧延時に板が破断するおそれがあるので、これを避ける
ために、含有させる場合でも0.20%以下とするのが
よい。
P: P has little effect on magnetic properties and is not an essential element. However, P is effective in increasing the hardness for improving the punchability of steel. Therefore, P may be contained for the purpose of adjusting the hardness. In that case, in order to obtain a desired effect, it is preferable to contain P by 0.05% or more. If P is excessively contained, the steel becomes brittle, and the sheet may be broken during cold rolling. Therefore, in order to avoid this, even when P is contained, the content is preferably 0.20% or less.

【0036】S:Sは鋼中で硫化物となり、磁気特性を
損なうので0.030%以下とする。 N:Nは微細な窒化物を形成し結晶粒成長を阻害して磁
気特性を劣化させる作用があるので0.0050%以下
とする。
S: S forms a sulfide in the steel and impairs the magnetic properties. N: N has a function of forming fine nitrides, inhibiting the growth of crystal grains and deteriorating magnetic properties.

【0037】残部は実質的にFe である。実質的にとの
意味は、鋼にSb、SnあるいはBを含有させると、集
合組織形成時に[111] 方位の発達を抑制し、最終製品の
磁束密度を改善する作用がある。従って特に磁束密度を
改善したい場合には、これらの元素の内の1種以上を含
有させても構わないことを意味する。その場合の含有量
は、Sb:0.01%以上、0.3%以下、Sn:0.
01%以上、0.3%以下、B:0.0005%以上、
0.01%以下とするのが望ましい。
The balance is substantially Fe. Substantially, the inclusion of Sb, Sn or B in steel has the effect of suppressing the development of the [111] orientation during texture formation and improving the magnetic flux density of the final product. Therefore, particularly when it is desired to improve the magnetic flux density, it means that one or more of these elements may be contained. In that case, the content is as follows: Sb: 0.01% or more, 0.3% or less, Sn: 0.
01% or more, 0.3% or less, B: 0.0005% or more,
It is desirable that the content be 0.01% or less.

【0038】鋼の密度とFe の質量分率との積(F
e*);Fe 原子密度が高いほど高い磁束密度が得られ
る。鉄損低減のために合金元素を含有させる場合に、磁
束密度の著しい低下を避けるために、Fe 原子密度に比
例する数値である鋼の密度とFe の質量分率との積(F
e*)が7.40以上であるものとする。特に優れた磁束
密度が要求される場合には、Fe*は7.6以上とするの
が好ましい。鋼のFe*は、鋼の密度を大気中と水中での
重量から求め、Fe の質量分率を鋼の化学組成から求め
ることで計算できる。
The product of the steel density and the mass fraction of Fe (F
e * ); A higher magnetic flux density is obtained as the Fe atom density is higher. When alloying elements are included to reduce iron loss, in order to avoid a remarkable decrease in magnetic flux density, the product of the steel density and the mass fraction of Fe, which is a numerical value proportional to the Fe atomic density (F
e * ) is equal to or greater than 7.40. When particularly excellent magnetic flux density is required, Fe * is preferably 7.6 or more. The Fe * of the steel can be calculated by obtaining the density of the steel from the weight in air and water, and obtaining the mass fraction of Fe from the chemical composition of the steel.

【0039】鋼の化学組成はFe*が上記限界値以上にな
るようには、C、Si 、Al 、Mnなどの元素の含有量
を調整する。具体的にいえば、Fe*を高めるには、鋼の
密度を小さくする作用が大きいAl 含有量を少なくし、
Si 、Mn 等の含有量を増すことにより、同一の固有抵
抗でもFe*を高めることができる。
For the chemical composition of the steel, the contents of elements such as C, Si, Al, and Mn are adjusted so that Fe * is equal to or more than the above limit value. Specifically, to increase Fe * , reduce the Al content, which has a large effect of reducing the density of steel,
By increasing the content of Si, Mn, etc., Fe * can be increased even with the same specific resistance.

【0040】集合組織;最終製品の板厚中央部の[200]
面集積度は、良好な磁気特性を得るために、ランダム比
で1.10以上とする。好ましくは1.20以上であ
る。
Texture: [200] in the center of the thickness of the final product
The degree of surface integration is set to 1.10 or more in a random ratio in order to obtain good magnetic characteristics. Preferably it is 1.20 or more.

【0041】冷延用素材の[200] 面集積度と、これを冷
間圧延し仕上焼鈍して製造される最終製品の[200] 面集
積度との間には良好な関係がある。また、この集積度は
[100] <011> 方位の集積度と対応している。冷延用素材
の板厚中央部の[200] 面集積度がランダム比で6.0以
上であれば、最終製品の板厚中央部の[200] 面集積度を
ランダム比で1.10以上とすることができ、最終製品
の磁気特性改善効果が得られる。従って、冷延用素材の
板厚中央部の[200] 面のランダム比は6.0以上とする
のがよい。より好ましくは7.0以上である。[200] 面
集積度が高いほど磁気特性が良好になるため、上限は特
に定めない。
There is a good relationship between the [200] plane integration degree of the material for cold rolling and the [200] plane integration degree of the final product manufactured by cold rolling and finish annealing the material. This degree of integration
[100] <011> Corresponds to the degree of integration of the orientation. If the degree of [200] plane integration at the center of the sheet thickness of the cold rolling material is 6.0 or more at a random ratio, the degree of [200] plane integration at the center of the sheet thickness of the final product is 1.10 or more at a random ratio. The effect of improving the magnetic properties of the final product can be obtained. Therefore, the random ratio of the [200] plane at the center of the sheet thickness of the material for cold rolling is preferably set to 6.0 or more. More preferably, it is 7.0 or more. [200] The upper limit is not particularly defined because the higher the surface integration degree, the better the magnetic properties.

【0042】板厚中央部の集合組織は、例えば、化学研
磨などの方法で鋼板の片側を板厚中央部まで除去して板
厚中央部を測定面とする試料を得、これをX線回折する
方法で測定される。ランダム比は、この測定値と配向性
が無い材料の[200] 面のX線積分強度を用いて求められ
る。
The texture at the center of the sheet thickness is obtained, for example, by removing one side of the steel sheet to the center of the sheet thickness by a method such as chemical polishing to obtain a sample having the center of the sheet thickness as a measurement surface, and subjecting it to X-ray diffraction. It is measured in such a way. The random ratio is determined using the measured value and the integrated X-ray intensity of the [200] plane of the material having no orientation.

【0043】上記冷延用素材は、結晶集合組織を最適化
しており、単位体積当たりのFe 原子の個数が多い。従
って、従来法に比較して、冷延用素材の結晶粒をさほど
大きくしなくても優れた磁気特性を備えることができる
ので、冷延用素材の粗大な結晶粒に起因する製品鋼板表
面の畳み目状の凹凸欠陥などが生じるおそれがなく、表
面性状が良好で磁気特性も優れた無方向性電磁鋼板を容
易に製造することができる。冷延用素材の結晶粒径は、
特に限定するものではないが、表面性状を良好にするに
は、平均粒径で150μm以下とするのがよい。
The material for cold rolling optimizes the crystal texture and has a large number of Fe atoms per unit volume. Therefore, compared to the conventional method, it is possible to provide excellent magnetic properties without making the crystal grains of the cold-rolling material so large, so that the surface of the product steel sheet due to the coarse crystal grains of the cold-rolling material can be provided. It is possible to easily produce a non-oriented electrical steel sheet having good surface properties and excellent magnetic properties without causing a possibility of occurrence of a concavo-convex defect. The crystal grain size of the material for cold rolling is
Although not particularly limited, in order to improve the surface properties, the average particle size is preferably 150 μm or less.

【0044】製造方法;本発明の無方向性電磁鋼板は、
以下に述べる方法で製造するの好ましい。上記(1)ま
たは(2)に記載の化学組成を備えた鋼を転炉、電気炉
など公知の方法で溶製し、必要があれば真空脱ガスなど
の処理を施し、これを連続鋳造あるいは鋼塊にして分塊
圧延する方法などによりスラブとする。
Production method: The non-oriented electrical steel sheet of the present invention comprises:
It is preferable to produce by the method described below. The steel having the chemical composition described in the above (1) or (2) is melted by a known method such as a converter or an electric furnace, and if necessary, subjected to a treatment such as vacuum degassing, and then subjected to continuous casting or It is made into a slab by a method such as a steel ingot and slab rolling.

【0045】スラブは公知の方法によって熱間圧延し、
酸洗など公知の方法により脱スケールして熱延板とす
る。熱間圧延条件は特に規定しないが、冷間加工後の焼
鈍中に[200] 面集積度を高めるために700〜950℃
で仕上圧延を施し、700℃以下で巻取るのが好まし
い。
The slab is hot-rolled by a known method,
It is descaled by a known method such as pickling to obtain a hot rolled sheet. The hot rolling conditions are not particularly specified, but are set to 700 to 950 ° C. in order to increase the [200] plane integration during annealing after cold working.
It is preferable to perform finish rolling and wind at 700 ° C. or less.

【0046】熱延板には、冷延用素材の板厚中央部の[1
00] 集合組織の集積度を高めるため、軽度の冷間加工と
焼鈍を施す。冷間加工は、冷間圧延法または引張り曲げ
加工法により施すのがよい。
The hot-rolled sheet has a [1] at the center of the sheet thickness of the cold-rolling material.
[0000] In order to increase the degree of texture accumulation, light cold working and annealing are performed. The cold working is preferably performed by a cold rolling method or a tension bending method.

【0047】冷間圧延法で施す場合には、その圧下率を
4%以上、15%以下の範囲とするのがよい。4%未満
では、板厚中央部での加工歪みが不足し、また、厚さ方
向に均一に歪みを与えることが出来ないために表層部で
異常粒成長が生じる、などにより板厚中央部での[100]
集合組織の発達が十分ではなく、[200] 面集積度が高く
ならない。良好な集積度を得るには圧下率を5%以上と
するのがより好ましい。
In the case of performing cold rolling, the rolling reduction is preferably in the range of 4% to 15%. If it is less than 4%, processing strain at the center of the sheet thickness is insufficient, and abnormal grain growth occurs at the surface layer because the strain cannot be uniformly applied in the thickness direction. [100]
The texture is not sufficiently developed and the [200] plane accumulation does not increase. In order to obtain a good degree of integration, the rolling reduction is more preferably 5% or more.

【0048】圧下率が15%を超えると通常の冷間圧延
と同じになり、次の焼鈍時に板厚中央部の[100] 集合組
織が他の方位の結晶粒に蚕食されてしまうことがある。
これを防ぐために圧下率は15%以下とするのがよい。
より好ましくは12%以下である。
If the rolling reduction exceeds 15%, it becomes the same as ordinary cold rolling, and the [100] texture in the central part of the sheet thickness may be eroded by crystal grains of another orientation during the next annealing. .
In order to prevent this, the rolling reduction is preferably set to 15% or less.
It is more preferably at most 12%.

【0049】冷間加工を引張り曲げ加工法で施す場合に
は、伸び率で0.5%以上、3.0%以下の加工を与え
るのが好適である。伸び率が0.5%に満たない場合に
は[100] 集合組織を増す駆動力として不充分である。
In the case where the cold working is performed by a tension bending method, it is preferable to provide a work having an elongation of 0.5% or more and 3.0% or less. When the elongation is less than 0.5%, the driving force for increasing the [100] texture is insufficient.

【0050】引張り曲げ加工手段としては、例えば酸洗
装置に設けられるテンションレベラなどを利用するのが
経済性に優れるので好適である。しかしながらこれらの
方法で工業的に付与できる伸び率は3%が限界であり、
それ以上の加工を加えることは設備の負荷が過大になる
などの理由で困難である。従って、引張り曲げ加工法に
よる場合の伸び率は3.0%以下とするのがよい。
As the tension bending means, it is preferable to use, for example, a tension leveler provided in an pickling apparatus because of its excellent economic efficiency. However, the elongation percentage that can be industrially provided by these methods is limited to 3%,
It is difficult to perform further processing because the load on the equipment becomes excessive. Therefore, the elongation percentage in the case of the tensile bending method is preferably set to 3.0% or less.

【0051】引張り曲げ加工法では小さな加工度で冷間
圧延法と同様の効果が生じる理由は明らかでないが、冷
間圧延法と異なり、変形様式の内で張力の作用が大きい
ためと考えられる。冷間加工は製造コストを低減するた
めに、大規模な冷間圧延設備を必要とする冷間圧延法よ
りも、酸洗設備などに装備されているテンションレベラ
などを活用して加工できる引張り曲げ加工法が好まし
い。
It is not clear why the tensile bending method produces the same effect as the cold rolling method at a small working ratio, but it is considered that, unlike the cold rolling method, the effect of tension is large in the deformation mode. Cold bending is a type of tension bending that can be performed using a tension leveler installed in pickling equipment, etc., rather than a cold rolling method that requires large-scale cold rolling equipment to reduce manufacturing costs. Processing methods are preferred.

【0052】焼鈍:冷延用素材の板厚中央部の[200] 面
集積度をランダム比で6.0以上にするため、冷間加工
に次いで焼鈍を施す。前述の様に、[100] 集合組織は板
厚中央部の結晶粒成長に伴い発達するため、安定的に所
望の集積度を得るには、焼鈍温度を650℃以上、87
5℃以下とする箱焼鈍で施すのが好ましい。焼鈍温度が
650℃に満たない場合には、[200] 面集積度が十分に
向上せず、875℃を超える場合には、粗大粒が生じる
おそれがある上、[100] 集合組織の成長が飽和するため
に、経済性に欠けるからである。焼鈍時間は2時間以上
であればよい。24時間を超える長時間焼鈍は効果が飽
和するので経済性に欠ける。これ以外の焼鈍条件は任意
である。
Annealing: Annealing is performed after cold working in order to make the [200] plane integration degree at the center of the sheet thickness of the cold rolling material 6.0 or more at a random ratio. As described above, since the [100] texture develops along with the growth of crystal grains in the central part of the sheet thickness, in order to stably obtain a desired degree of integration, the annealing temperature must be 650 ° C. or more and 87 ° C.
It is preferable to perform box annealing at 5 ° C. or less. If the annealing temperature is lower than 650 ° C., the degree of [200] plane integration is not sufficiently improved. If the annealing temperature is higher than 875 ° C., coarse grains may be generated. The reason for this is that economic efficiency is lacking due to saturation. The annealing time may be 2 hours or more. Long-time annealing exceeding 24 hours is not economical because the effect is saturated. Other annealing conditions are optional.

【0053】上記冷延用素材を公知の方法で最終製品厚
さに冷間圧延し、公知の方法で仕上焼鈍する。冷延用素
材の厚さは、最終製品の厚さなどに応じて決定すればよ
く任意であるが、例えば最終製品の厚さが0.2〜0.
6mmの範囲の場合であれば、冷延用素材の厚さは1.
5〜2.5mmの範囲とすればよい。
The above-mentioned material for cold rolling is cold-rolled to a final product thickness by a known method, and finish-annealed by a known method. The thickness of the material for cold rolling may be determined arbitrarily according to the thickness of the final product and the like.
In the case of the range of 6 mm, the thickness of the material for cold rolling is 1.
What is necessary is just to make it the range of 5-2.5 mm.

【0054】仕上焼鈍は、再結晶が十分に進行して適度
に結晶粒が成長する条件でおこなえばよい。その方法は
公知のものでよいが、例えば連続焼鈍方式で、焼鈍温度
を650〜1150℃の範囲内に選定して10秒以上均
熱する方法などがよい。仕上焼鈍は脱炭焼鈍としてもよ
いし、非脱炭雰囲気で焼鈍しても構わない。仕上焼鈍後
は、必要に応じて表面に、絶縁、防錆、打抜加工性向上
を目的に、薄い皮膜を塗布焼き付けても良い。
The finish annealing may be performed under the condition that recrystallization proceeds sufficiently and crystal grains grow moderately. The method may be a publicly known method, for example, a continuous annealing method, a method in which an annealing temperature is selected in a range of 650 to 1150 ° C., and the temperature is soaked for 10 seconds or more is good. The finish annealing may be decarburization annealing or annealing in a non-decarburization atmosphere. After the finish annealing, if necessary, a thin film may be applied and baked on the surface for the purpose of insulation, rust prevention, and improvement in punching workability.

【0055】上記冷延用素材を用いることにより、従来
の冷延用素材を用いた場合に比較して、表面性状が良好
で磁気特性が優れた無方向性電磁鋼板を容易に製造する
ことができる。
By using the above-mentioned cold rolling material, it is possible to easily produce a non-oriented electrical steel sheet having good surface properties and excellent magnetic properties as compared with the case where a conventional cold rolling material is used. it can.

【0056】[0056]

【実施例】種々の化学組成を有する鋼を転炉で溶製し、
真空処理で成分調整した後、連続鋳造してスラブとし、
これを1150℃に加熱し、890℃の仕上温度で熱間
圧延し、厚さが2.3mmの熱延板とした。巻取温度は
600℃とした。
EXAMPLES Steel having various chemical compositions is melted in a converter,
After adjusting the components by vacuum processing, it is continuously cast into a slab,
This was heated to 1150 ° C. and hot-rolled at a finishing temperature of 890 ° C. to obtain a hot-rolled sheet having a thickness of 2.3 mm. The winding temperature was 600 ° C.

【0057】熱延板は酸洗した後、種々の圧下率での冷
間圧延、あるいは種々の伸び率でのテンションレベラー
による引張り曲げ変形加工を施した後、種々の温度で1
0時間保持する箱焼鈍をおこない冷延用素材を得た。こ
れらの冷延用素材は厚さが0.50mmまたは0.30
mmの冷延板に冷間圧延し、850℃、900℃または
1000℃でそれぞれ0.5分間保持する連続焼鈍を実
施した。
The hot-rolled sheet is pickled, cold-rolled at various rolling reductions, or subjected to tensile bending deformation with a tension leveler at various elongation rates, and then subjected to a hot rolling at various temperatures.
Box annealing was performed for 0 hour to obtain a material for cold rolling. These cold rolling materials have a thickness of 0.50 mm or 0.30 mm.
The sheet was cold-rolled into a cold-rolled sheet having a thickness of 1 mm and subjected to continuous annealing at 850 ° C., 900 ° C. or 1000 ° C. for 0.5 minute each.

【0058】冷延用素材の板厚中央部の[200] 面のラン
ダム比をX線回折法により測定した。最終製品の磁気特
性は、圧延方向および幅方向から短冊状のエプスタイン
試験片を打ち抜き、打ち抜き状態の試験片を用いてJI
S−C2550に規定される方法に従って測定した。
The random ratio of the [200] plane at the center of the sheet thickness of the material for cold rolling was measured by the X-ray diffraction method. The magnetic properties of the final product were determined by punching strip-shaped Epstein test pieces from the rolling direction and the width direction, and using the punched test pieces.
It measured according to the method prescribed | regulated to S-C2550.

【0059】Fe の質量分率は化学組成より算出し、鋼
の密度は鋼板の大気中と水中での重量より求め、これら
の積を計算してFe*を求めた。表1に鋼の化学組成を示
す。また、表2に各製造条件および得られた測定結果を
あわせて示す。
The mass fraction of Fe was calculated from the chemical composition, the density of the steel was obtained from the weight of the steel sheet in the air and in water, and the product of these was calculated to obtain Fe * . Table 1 shows the chemical composition of the steel. Table 2 also shows the respective manufacturing conditions and the measurement results obtained.

【0060】[0060]

【表1】 [Table 1]

【0061】[0061]

【表2】 表1で鋼7〜10はFe*、Si 当量、S含有量またはN
含有量が本発明の規定する条件から外れるもので、いず
れも比較例として使用したものである。
[Table 2] In Table 1, steels 7 to 10 are Fe * , Si equivalent, S content or N
The content deviates from the conditions specified in the present invention, and all are used as comparative examples.

【0062】表2に示すように本発明の規定する条件を
満足する試験番号2〜4、10、13〜15、18、2
0、22および24は最終製品の磁気特性、表面性状共
に良好であった。これに対し、冷延用素材製造時に冷間
加工を施さなかったり、加工度が不適切であったために
冷延用素材の[200] 面集積度が低かった試験番号1、
5、6、8、9、11、12、17、19、21、23
および25では、最終製品の磁気特性がよくなかった。
As shown in Table 2, test numbers 2 to 4, 10, 13 to 15, 18, 2 satisfying the conditions specified by the present invention.
Nos. 0, 22, and 24 were good in both magnetic properties and surface properties of the final product. On the other hand, Test No. 1, in which the cold-rolled material had a low degree of [200] surface integration because no cold working was performed during the production of the cold-rolled material or the degree of work was inappropriate.
5, 6, 8, 9, 11, 12, 17, 19, 21, 23
And 25, the magnetic properties of the final product were not good.

【0063】図5は表2に記載の最終製品の鉄損と磁束
密度を示したグラフである。同図で図中の丸かっこ内の
数字は鋼番を表し、丸かっこにダッシュを付したものは
冷延用素材の[200] 面集積度が6.0に満たなかったこ
とを意味する。図5で同一鋼番の鋼の製品の磁束密度を
対比すれば、冷延用素材の[200] 面集積度の差異が磁気
特性に及ぼす影響を明瞭に理解できる。
FIG. 5 is a graph showing iron loss and magnetic flux density of the final product described in Table 2. In the figure, the numbers in parentheses in the figure represent steel numbers, and those with a dash in parentheses mean that the [200] plane integration of the material for cold rolling was less than 6.0. By comparing the magnetic flux densities of the products of the same steel number in FIG. 5, it is possible to clearly understand the effect of the difference in the degree of [200] plane integration of the cold rolling material on the magnetic properties.

【0064】鋼7を用いた試験番号26もFe*が本発明
の規定する下限よりも低かったために磁束密度がよくな
かった。Si 当量が本発明の規定する上限を超えた鋼8
を用いた試験番号27はFe 原子密度が低く、冷延用素
材の[200] 面集積度は高かったが最終製品の磁束密度が
低かった。S含有量が本発明の規定する上限を超えた鋼
9を用いた試験番号7、N含有量が本発明の規定する上
限を超えた鋼10を用いた試験番号16も同様に冷延用
素材の[200] 面集積度は高かったが最終製品の磁束密度
が低かった。
Test No. 26 using steel 7 also had poor magnetic flux density because Fe * was lower than the lower limit specified in the present invention. Steel 8 whose Si equivalent exceeds the upper limit specified by the present invention 8
In Test No. 27 using No. 2, the atomic density of Fe was low, and the [200] plane integration of the material for cold rolling was high, but the magnetic flux density of the final product was low. Test No. 7 using steel 9 having an S content exceeding the upper limit specified by the present invention, and Test No. 16 using steel 10 having an N content exceeding the upper limit specified by the present invention were similarly used for the material for cold rolling. [200] The surface integration was high, but the magnetic flux density of the final product was low.

【0065】比較例として熱延板焼鈍を高温で施した試
験番号9は、最終製品の磁気特性がよくないうえ、異常
粒成長に起因する表面欠陥が生じていた。
As a comparative example, in Test No. 9 in which hot-rolled sheet annealing was performed at a high temperature, the magnetic properties of the final product were not good, and a surface defect caused by abnormal grain growth occurred.

【0066】[0066]

【発明の効果】本発明の無方向性電磁鋼板は、Fe 原子
密度が高いため、飽和磁束密度が高く、かつ、板厚中央
部において[200] 面集積度が高いので、磁気特性と表面
性状に優れる。このため、モータ、変圧器などの高効率
化を実現する鉄心材料として極めて有用である。また、
本発明の無方向性電磁鋼板用の冷延用素材は、板厚中心
部の[200] 面集積度が高いので、これを用いることによ
り磁気特性と表面性状に優れた無方向性電磁鋼板を容易
に製造できる。
The non-oriented electrical steel sheet of the present invention has a high atomic flux density, a high saturation magnetic flux density, and a high degree of [200] plane integration at the center of the sheet thickness. Excellent. For this reason, it is extremely useful as a core material for realizing high efficiency of motors, transformers, and the like. Also,
The cold-rolled material for a non-oriented electrical steel sheet of the present invention has a high degree of [200] plane integration at the center of the sheet thickness. By using this, a non-oriented electrical steel sheet having excellent magnetic properties and surface properties can be obtained. Can be easily manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】冷延用素材と最終製品の板厚中央部の[200] 面
のランダム比の関係を示すグラフである。
FIG. 1 is a graph showing a relationship between a random ratio of a [200] plane at a central portion of a sheet thickness of a cold rolling material and a final product.

【図2】冷延用素材の板厚中央部の集合組織を示す極点
図であり、図2(a)は熱延板をそのまま焼鈍した鋼
板、図2(b)は熱延板に冷間加工を施しその後に焼鈍
した鋼板である。
FIG. 2 is a pole figure showing a texture at a central portion of a sheet thickness of a material for cold rolling. FIG. 2 (a) shows a steel sheet obtained by annealing a hot rolled sheet as it is, and FIG. It is a steel plate that has been processed and then annealed.

【図3】熱延板に冷間加工と焼鈍を施した冷延用素材の
板厚中央部の[200] 面集積度と冷間加工度の関係を示す
グラフである。
FIG. 3 is a graph showing the relationship between the degree of [200] plane integration and the degree of cold working at the center of the thickness of a cold-rolled material obtained by subjecting a hot-rolled sheet to cold working and annealing.

【図4】集合組織が同程度である最終製品の磁束密度B
50が、Fe*により変動する状況を示すグラフである。
FIG. 4 shows a magnetic flux density B of a final product having a similar texture.
50 is a graph showing a situation that varies with Fe * .

【図5】実施例の磁束密度と鉄損の関係を示すグラフで
ある。
FIG. 5 is a graph showing the relationship between magnetic flux density and iron loss in the example.

【符号の説明】[Explanation of symbols]

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 化学組成が質量%で、C:0.005%
以下、下記式で表されるSi 当量が0.1%以上、3.
0%以下なる範囲でSi 、Al およびMn からなる群の
内の1種または2種以上を含有し、S:0.030%以
下、N:0.0050%以下、残部が実質的にFe から
なり、Fe の質量分率と鋼の密度との積が7.40以
上、かつ、板厚中央部における[200] 面の集積度がラン
ダム比で1.10以上であることを特徴とする無方向性
電磁鋼板; Si当量=Si(%)+Al(%)+0.5Mn(%)。
1. The chemical composition in mass%, C: 0.005%
Hereinafter, the Si equivalent represented by the following formula is 0.1% or more;
It contains one or more members of the group consisting of Si, Al and Mn in the range of 0% or less, S: 0.030% or less, N: 0.0050% or less, and the balance is substantially from Fe. Wherein the product of the mass fraction of Fe and the density of steel is 7.40 or more, and the degree of integration of the [200] plane in the center of the sheet thickness is 1.10 or more in a random ratio. Grain-oriented electrical steel sheet; Si equivalent = Si (%) + Al (%) + 0.5Mn (%).
【請求項2】 前記化学組成が、さらに、質量%でP:
0.05〜0.20%を含有することを特徴とする請求
項1記載の無方向性電磁鋼板。
2. The composition of claim 1, wherein said chemical composition further comprises P:
The non-oriented electrical steel sheet according to claim 1, containing 0.05 to 0.20%.
【請求項3】 請求項1または2記載の化学組成を備
え、Fe の質量分率と鋼の密度との積が7.40以上、
かつ、板厚中央部における[200] 面の集積度がランダム
比で6.0以上であることを特徴とする無方向性電磁鋼
板の冷延用素材; Si当量=Si(%)+Al(%)+0.5Mn(%)。
3. A chemical composition according to claim 1 or 2, wherein the product of the mass fraction of Fe and the density of the steel is 7.40 or more;
A material for cold rolling non-oriented electrical steel sheets, characterized in that the degree of integration of the [200] plane in the central part of the sheet thickness is 6.0 or more in random ratio; Si equivalent = Si (%) + Al (% ) +0.5 Mn (%).
【請求項4】 請求項1または2記載の化学組成を備
え、Fe の質量分率と鋼の密度との積が7.40以上で
あるスラブに熱間圧延をおこない、得られた熱延板に圧
下率が4〜15%の圧延、または伸び率が0.5〜3%
の引張り曲げ加工による冷間加工を施し、次いで焼鈍を
施して冷延用素材とし、これに冷間圧延と仕上焼鈍を施
すことを特徴とする無方向性電磁鋼板の製造方法。
4. A hot rolled sheet obtained by subjecting a slab having the chemical composition according to claim 1 or 2 and having a product of the mass fraction of Fe and the density of steel to 7.40 or more to hot rolling. Rolling with rolling reduction of 4 to 15% or elongation of 0.5 to 3%
A method for producing a non-oriented electrical steel sheet, comprising: performing cold working by tensile bending, followed by annealing to obtain a cold rolling material, and performing cold rolling and finish annealing on the material.
JP2000306313A 2000-10-05 2000-10-05 Method for producing non-oriented electrical steel sheet Expired - Fee Related JP3890876B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000306313A JP3890876B2 (en) 2000-10-05 2000-10-05 Method for producing non-oriented electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000306313A JP3890876B2 (en) 2000-10-05 2000-10-05 Method for producing non-oriented electrical steel sheet

Publications (2)

Publication Number Publication Date
JP2002115034A true JP2002115034A (en) 2002-04-19
JP3890876B2 JP3890876B2 (en) 2007-03-07

Family

ID=18787027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000306313A Expired - Fee Related JP3890876B2 (en) 2000-10-05 2000-10-05 Method for producing non-oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JP3890876B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012173116A (en) * 2011-02-21 2012-09-10 Nippon Steel Corp Magnetic characteristic prediction device and method, and computer program
WO2013069754A1 (en) * 2011-11-11 2013-05-16 新日鐵住金株式会社 Anisotropic electromagnetic steel sheet and method for producing same
JP2019178380A (en) * 2018-03-30 2019-10-17 日本製鉄株式会社 Electromagnetic steel sheet, and manufacturing method of electromagnetic steel sheet
CN114250420A (en) * 2021-12-30 2022-03-29 本钢板材股份有限公司 Production method of cover type intermediate annealing high-grade non-oriented silicon steel 50BW350
WO2022139567A1 (en) * 2020-12-21 2022-06-30 주식회사 포스코 Non-oriented electrical steel sheet and manufacturing method therefor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01306523A (en) * 1988-06-04 1989-12-11 Kobe Steel Ltd Production of non-oriented electrical sheet having high magnetic flux density
JPH01309921A (en) * 1988-06-06 1989-12-14 Sumitomo Metal Ind Ltd Production of semiprocess non-oriented magnetic steel sheet
JPH10226854A (en) * 1997-02-19 1998-08-25 Kawasaki Steel Corp Silicon steel hot rolled sheet excellent in magnetic property and its production
JPH11172382A (en) * 1997-12-04 1999-06-29 Kawasaki Steel Corp Silicon steel sheet excellent in magnetic property, and its production
JPH11172383A (en) * 1997-12-04 1999-06-29 Kawasaki Steel Corp Silicon steel sheet excellent in magnetic property, and its production
JPH11229096A (en) * 1998-02-16 1999-08-24 Sumitomo Metal Ind Ltd Nonoriented silicon steel sheet and its production

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01306523A (en) * 1988-06-04 1989-12-11 Kobe Steel Ltd Production of non-oriented electrical sheet having high magnetic flux density
JPH01309921A (en) * 1988-06-06 1989-12-14 Sumitomo Metal Ind Ltd Production of semiprocess non-oriented magnetic steel sheet
JPH10226854A (en) * 1997-02-19 1998-08-25 Kawasaki Steel Corp Silicon steel hot rolled sheet excellent in magnetic property and its production
JPH11172382A (en) * 1997-12-04 1999-06-29 Kawasaki Steel Corp Silicon steel sheet excellent in magnetic property, and its production
JPH11172383A (en) * 1997-12-04 1999-06-29 Kawasaki Steel Corp Silicon steel sheet excellent in magnetic property, and its production
JPH11229096A (en) * 1998-02-16 1999-08-24 Sumitomo Metal Ind Ltd Nonoriented silicon steel sheet and its production

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012173116A (en) * 2011-02-21 2012-09-10 Nippon Steel Corp Magnetic characteristic prediction device and method, and computer program
JPWO2013069754A1 (en) * 2011-11-11 2015-04-02 新日鐵住金株式会社 Non-oriented electrical steel sheet and manufacturing method thereof
KR20140073569A (en) * 2011-11-11 2014-06-16 신닛테츠스미킨 카부시키카이샤 Anisotropic electromagnetic steel sheet and method for producing same
CN103930583A (en) * 2011-11-11 2014-07-16 新日铁住金株式会社 Anisotropic electromagnetic steel sheet and method for producing same
JP5605518B2 (en) * 2011-11-11 2014-10-15 新日鐵住金株式会社 Non-oriented electrical steel sheet and manufacturing method thereof
TWI479029B (en) * 2011-11-11 2015-04-01 Nippon Steel & Sumitomo Metal Corp Non - directional electrical steel sheet and manufacturing method thereof
WO2013069754A1 (en) * 2011-11-11 2013-05-16 新日鐵住金株式会社 Anisotropic electromagnetic steel sheet and method for producing same
KR101598312B1 (en) * 2011-11-11 2016-02-26 신닛테츠스미킨 카부시키카이샤 Anisotropic electromagnetic steel sheet and method for producing same
US9728312B2 (en) 2011-11-11 2017-08-08 Nippon Steel & Sumitomo Metal Corporation Non-oriented electrical steel sheet and manufacturing method thereof
US10214791B2 (en) 2011-11-11 2019-02-26 Nippon Steel & Sumitomo Metal Corporation Non-oriented electrical steel sheet
JP2019178380A (en) * 2018-03-30 2019-10-17 日本製鉄株式会社 Electromagnetic steel sheet, and manufacturing method of electromagnetic steel sheet
JP6992652B2 (en) 2018-03-30 2022-01-13 日本製鉄株式会社 Manufacturing method of electrical steel sheet and electrical steel sheet
WO2022139567A1 (en) * 2020-12-21 2022-06-30 주식회사 포스코 Non-oriented electrical steel sheet and manufacturing method therefor
CN114250420A (en) * 2021-12-30 2022-03-29 本钢板材股份有限公司 Production method of cover type intermediate annealing high-grade non-oriented silicon steel 50BW350

Also Published As

Publication number Publication date
JP3890876B2 (en) 2007-03-07

Similar Documents

Publication Publication Date Title
JP5712863B2 (en) Method for producing non-oriented electrical steel sheet
CN110651058B (en) Grain-oriented electromagnetic steel sheet and method for producing same
JP6127440B2 (en) Hot rolled steel sheet for manufacturing non-oriented electrical steel sheet and method for manufacturing the same
CN108699621B (en) Method for producing grain-oriented electromagnetic steel sheet
WO2018135414A1 (en) Non-oriented electromagnetic steel sheet and production method therefor
JP6432173B2 (en) Non-oriented electrical steel sheet with good all-round magnetic properties
JP4860783B2 (en) Non-oriented electrical steel sheet
KR20190077025A (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP6443355B2 (en) Method for producing grain-oriented electrical steel sheet
RU2755916C1 (en) Undirected sheet of electrical steel and method for its production
JP2009167480A (en) Method for producing non-oriented electrical steel sheet for etching-process, and method for manufacturing motor core
JP2024041844A (en) Method for producing non-oriented magnetic steel sheet
JP2008127659A (en) Non-oriented electromagnetic steel sheet with less anisotropy
JP2001303214A (en) Grain oriented silicon steel sheet excellent in high frequency magnetic property and its producing method
JP2011195875A (en) Method for producing grain-oriented magnetic steel sheet
JP3890876B2 (en) Method for producing non-oriented electrical steel sheet
WO2021167065A1 (en) Hot-rolled steel sheet for non-oriented electromagnetic steel sheets, non-oriented electromagnetic steel sheet, and method for manufacturing same
JP2003293101A (en) Nonoriented silicon steel sheet having excellent magnetic property and corrosion resistance after stress relieving annealing
JP4016552B2 (en) Method for producing non-oriented electrical steel sheets with excellent magnetic properties and surface properties
JP4258163B2 (en) Non-oriented electrical steel sheet with excellent magnetic properties after strain relief annealing
JP7414145B2 (en) Method for producing grain-oriented electrical steel sheets and hot-rolled steel sheets for grain-oriented electrical steel sheets
JP7211532B2 (en) Method for manufacturing non-oriented electrical steel sheet
WO2023248861A1 (en) Method for producing electromagnetic steel sheet, and cold-rolled sheet
JPH0657332A (en) Manufacture of non-oriented silicon steel sheet having high magnetic flux density and low iron loss
KR20230159875A (en) Manufacturing method of grain-oriented electrical steel sheet

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060425

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060926

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061127

R150 Certificate of patent or registration of utility model

Ref document number: 3890876

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111215

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111215

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121215

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131215

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131215

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131215

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees