JP4016552B2 - Method for producing non-oriented electrical steel sheets with excellent magnetic properties and surface properties - Google Patents

Method for producing non-oriented electrical steel sheets with excellent magnetic properties and surface properties Download PDF

Info

Publication number
JP4016552B2
JP4016552B2 JP34484899A JP34484899A JP4016552B2 JP 4016552 B2 JP4016552 B2 JP 4016552B2 JP 34484899 A JP34484899 A JP 34484899A JP 34484899 A JP34484899 A JP 34484899A JP 4016552 B2 JP4016552 B2 JP 4016552B2
Authority
JP
Japan
Prior art keywords
hot
annealing
rolled sheet
oriented electrical
electrical steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34484899A
Other languages
Japanese (ja)
Other versions
JP2001164318A (en
Inventor
隆史 末田
崇 三長
法之 本庄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP34484899A priority Critical patent/JP4016552B2/en
Publication of JP2001164318A publication Critical patent/JP2001164318A/en
Application granted granted Critical
Publication of JP4016552B2 publication Critical patent/JP4016552B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、磁気特性および表面性状の優れた無方向性電磁鋼板の製造法に関し、より具体的には、家庭用あるいは工業用として用いられる電動機や小型トランス等の電気機器に用いられる磁気特性および表面性状の優れた無方向性電磁鋼板の製造法に関する。
【0002】
【従来の技術】
近年、石油資源の有限性や地球温暖化を初めとする環境問題の観点から、エネルギを有効に活用してエネルギ消費量を低減することが、全世界的に求められている。かかる観点から、例えば家庭用あるいは工業用として用いられる各種の電気機器についてもエネルギ効率を改善することが急務とされている。このため、例えば電動機や小型トランス等の電気機器の鉄心等に広く用いられている無方向性電磁鋼板についても、その電気エネルギ効率を改善するために、電気エネルギ消費の原因である鉄損を改善するとともに磁束密度をさらに改善することが、いずれも強く要求されている。
【0003】
従来、無方向性電磁鋼板の鉄損は、鋼板自体の固有抵抗を増加させるSiやAl等の含有量を増加することや、製品である無方向性電磁鋼板における結晶粒径を粗大化すること等により、改善が図られてきた。しかし、SiやAl等の含有量を増加すると、無方向性電磁鋼板の硬度が著しく上昇して打抜き性が悪化し、電動機や小型トランス等の生産性を著しく低下させてしまう。また、SiやAl等の含有量を増加すると、磁束密度の低下を招く上に、集合組織の制御が工業的には容易でなくなるため、磁束密度を所望の程度に改善できなくなる。
【0004】
集合組織を改善するには、冷間圧延前の結晶粒径を粗大化して結晶粒界を少なくしておき、冷間圧延時に強圧下を行うことにより、一次再結晶集合組織において{100}を富化する方法が有効である。この方法をさらに発展させたものとして、熱延板にスキンパス圧延を行ってから焼鈍を行い、次いで冷間圧延時に強圧下する方法も知られている。
【0005】
例えば、特公昭45−22211号公報には、熱延板に圧下率0.5〜15%のスキンパス圧延を行い、次いで、フェライト域で30分間以上20時間以内程度の焼鈍を行う方法が開示されている。
【0006】
また、特開平10−60532号公報には、介在物の組成比率がMnO/(SiO2 +Al2 3 +CaO+MnO)≦0.35である熱延板に対して、圧下率0.5〜4%のスキンパス圧延を行ってから熱延板焼鈍を行い、次いで冷間圧延および連続焼鈍を行う方法が開示されている。一般的に、酸化物系介在物の量が少ないほうが、結晶粒成長を生じ易いことが知られている。このため、この方法は、スキンパス圧延後に熱延板焼鈍を行うことから、結晶粒径を粗大化させることが期待できる。
【0007】
さらに、特開平5−171280号公報には、熱延板に圧下率5〜15%のスキンパス圧延を行い、次いで結晶粒径が100〜200μmとなる熱延板の連続焼鈍処理を行うことにより、磁束密度に優れるとともに、製品表面に結晶粒が圧延方向に伸びたような凹凸感のある模様の結晶模様が発生しない無方向性電磁鋼板を得る方法が開示されている。
【0008】
【発明が解決しようとする課題】
しかしながら、特公昭45−22211号公報により開示された方法では、スキンパス圧延を行っても、その歪エネルギーを板厚表層部にのみしか蓄えることができない。このため、上述したような長時間の焼鈍を行うと、板厚表層部の結晶粒が異常粒成長し、磁束密度は改善されるものの、製品表面に結晶模様と称される、結晶粒が圧延方向に伸びたような凹凸感のある模様が発生し、外観品質が著しく低下するとともに、占積率も低下してしまう。一方、スキンパス圧延の圧下率を高く設定すると、歪エネルギーは板厚方向の全域に及び始めて内層まで粗大化するようになるが、圧下率が5%以上になると、熱延板での再結晶核生成サイトが増加して板厚方向全体の平均結晶粒径が逆に小さくなり、磁束密度が低下してしまう。
【0009】
また、特開平10−60532号公報により開示された方法では、スキンパス圧延の圧下率が4%以下であるため、板厚方向の極表層部にしか歪エネルギーを蓄えることができないため、熱延板焼鈍において、板厚表層部の結晶のみが異常粒成長をきたし、冷間圧延後に結晶模様が発生してしまう。また、板厚方向の中央部に、歪エネルギーを完全に蓄積させることができないため、熱延板焼鈍により板厚方向の中央部における集合組織を完全に改善することはできない。さらに、連続焼鈍による熱延板焼鈍は、コストを考慮すると、実際には長くても数分間程度の焼鈍時間しか確保できないため、十分な再結晶粒が得られない。また、コストを度外視して焼鈍時間を確保したとしても、熱延板の形状悪化や、板厚表層部のよりいっそうの異常粒成長をまねき、特性や外観品質がいずれも不安定になってしまう。
【0010】
さらに、特開平5−171280号公報により開示された方法では、スキンパス圧延の圧下率が5%を超えるため、前述したように、熱延板での再結晶核生成サイトが増加して板厚方向全体の平均結晶粒径が逆に小さくなり、磁束密度が低下してしまう。
【0011】
すなわち、熱延板へのスキンパス圧延に次いで熱延板焼鈍を行うことによる無方向性電磁鋼板の従来の製造法では、スキンパス圧延の圧下率が5%未満の場合には、板厚表層部にのみ異常粒成長が発生して結晶模様が発生し、逆に圧下率が5%以上の場合には、板厚方向全体の平均結晶粒径が小さくなるため高磁束密度のものが得られなくなり、特性の不均一性が発生してしまう。また、特に酸洗前に熱延板のスキンパス圧延を行うことによる無方向性電磁鋼板の従来の製造法では、スケール押込み等の品質問題を発生させるとともに、スキンパス圧延に要する設備コストが嵩んでしまう。
【0012】
このように、無方向性電磁鋼板の従来の製造法では、鉄損および磁束密度がいずれも良好であって、結晶模様を生じることがない表面性状の優れた無方向性電磁鋼板を提供することは、できなかった。
【0013】
ここに、本発明の目的は、磁気特性が良好であって、結晶模様を生じることがない表面性状の優れた無方向性電磁鋼板を提供すること、具体的には、飽和磁束密度BS (=2.158−0.0427×(Si+Al+(1/2)Mn))で磁束密度B50を無次元化したB50/BS が83.5%以上である良好な磁気特性を有し、結晶模様を生じることがない表面性状の優れた無方向性電磁鋼板を提供することである。
【0014】
【課題を解決するための手段】
本発明者らは、上記課題を解決するために鋭意検討を重ねた結果、熱延板に0.5〜3%の歪みを与えてから熱延板焼鈍を行うことにより、鉄損および磁束密度がいずれも良好であって、結晶模様を生じることがない表面性状の優れた無方向性電磁鋼板を得られることを知見して、本発明を完成した。
【0015】
本発明は、C≦0.01%(本明細書では特にことわりがない限り「%」は「質量%」を意味する。)、Si≦3.0%、Al≦3.0%、Mn≦2.0%、P≦0.2%、S≦0.05%およびN≦0.005%を含有し、残部Feおよび不純物からなる鋼片に熱間圧延を行って熱延板とし、該熱延板に、テンションレベラを用いて0.5〜3.0%の歪みを与え、次いで熱延板焼鈍を行った後に、冷間圧延および連続焼鈍を行うことを特徴とする無方向性電磁鋼板の製造法である。
【0016】
この本発明にかかる無方向性電磁鋼板の製造法では、鋼片が、さらに、Sb≦0.3%、Sn≦0.3%、あるいは、Sb+Sn≦0.3%、または、B≦0.005%を含有することが望ましい。
【0017】
また、これらの本発明にかかる無方向性電磁鋼板の製造法では、熱延板に与える歪EL(%)と、熱延板焼鈍の焼鈍温度TA(℃)とが下記(1)式により規定される関係を満足することが望ましい。
350≦EL×TA≦2400 ・・・・・・・(1)
ただし、(1)式において、歪みELは0.5%以上3.0%以下であり、熱延板焼鈍の温度TAは650℃以上870℃以下である。
【0018】
さらに、これらの本発明にかかる無方向性電磁鋼板の製造法では、連続焼鈍を行った後に、さらに圧下率:1.0〜15.0%のスキンパス圧延を行って最終焼鈍を行うことが、望ましい。
【0019】
【発明の実施の形態】
以下、本発明にかかる磁気特性および表面性状の優れた無方向性電磁鋼板の製造法の実施の形態を、詳細に説明する。なお、以降の実施の形態の説明では、鋼片がスラブである場合を例にとる。
まず、本発明において用いるスラブの組成を限定する理由を説明する。
【0020】
(C≦0.01%)
C含有量は磁気特性を向上するためには少ない方が良く、C含有量は0.01%を超えると、磁気時効により鉄損が劣化する。
そこで、本発明では、磁気時効の影響も考慮し、C含有量は0.01%以下と限定する。同様の観点から、C含有量の上限は0.005%であることが望ましい。また、C含有量の下限は、0.0005%であることが望ましく、0.001%であることがさらに望ましい。
【0021】
(Si≦3.0%、Al≦3.0%)
SiおよびAlは、ともに、鋼板の固有抵抗を増加して渦電流損を低減させるのに有効である。しかし、SiおよびAlそれぞれの含有量が3.0%を超えると、冷間圧延での破断や電気部品への打ち抜き工程での割れの問題が大きくなる。そこで、本発明では、Si≦3.0%、Al≦3.0%と限定する。また、本発明では、Si含有量およびAl含有量それぞれの上限は、2.9%であることが望ましく、2.8%であることがさらに望ましい。また、Si含有量およびAl含有量それぞれの下限は、0.1%であることが望ましく、0.5%であることがさらに望ましい。
【0022】
(Mn≦2.0%)
Mnは、SiおよびAlと同様に、鋼板の固有抵抗を増加して渦電流損を低減させるのに有効である。しかし、2.0%を超えて添加すると、冷間圧延性が悪化して冷間圧延時に破断を引き起こす。そこで、本発明では、Mn含有量は2.0%以下と限定する。
【0023】
(P≦0.2%)
P量は0.2%以下に限定する。Pは、製品とした後の打抜き加工の際に、鋼板のだれやかえりを防ぐのに有効であるが、P含有量が0.2%を超えるとスラブ割れを生じる。そこで、本発明では、P含有量は0.2%以下と限定する。同様の観点からP含有量は0.1%以下であることが望ましい。
【0024】
(S≦0.05%)
Sは、MnS等の微細な硫化物を形成して結晶粒成長を阻害するとともに磁壁移動の妨げになる。特に、S含有量が0.05%を超えると磁性が劣化する。そこで、本発明では、S含有量は0.05%以下と限定する。同様の観点からS含有量は0.03%以下であることが望ましい。
【0025】
(N≦0.005%)
Nは、微細なAlNを形成して結晶粒成長を阻害するとともに磁壁移動の妨げになるため、N含有量は少ないほうがよい。特に、N含有量が0.005%を超えると磁性が劣化する。そこで、本発明では、N含有量は0.005%以下と限定する。同様の観点からN含有量は0.0025%以下であることが望ましい。
【0026】
本発明では、用いる鋼片がSb、SnまたはBを任意添加元素として含有してもよい。以下、これら任意添加元素についても説明する。
【0027】
(Sb≦0.3 %、Sn≦0.3%、あるいは、Sb+Sn≦0.3%)
SbおよびSnは、いずれも、集合組織を改善して圧延方向の磁束密度を向上させるのに有効な元素である。しかし、Sb含有量、Sn含有量あるいは(Sb+Sn)量が、0.3 %を超えると、熱延板に伸びを与えた後の焼鈍により、結晶粒成長が劣化して磁束密度が低下する。そこで、SbやSnを添加する場合には、Sb含有量、Sn含有量あるいは(Sb+Sn)量は、いずれも、0.3 %以下と限定することが望ましい。
【0028】
(B≦0.005%)
Bも、SbやSnと同様に、集合組織を改善して、圧延方向の磁束密度を向上させるのに有効な元素である。しかし、B含有量が、0.005%を超えると、熱延板に伸びを与えた後の焼鈍により、結晶粒成長が劣化して磁束密度が低下する。そこで、Bを添加する場合には、B含有量は0.005%以下と限定することが望ましい。
【0029】
本発明では、用いる鋼片が、Sb、SnおよびB以外にも、磁気特性に有効な元素として知られているCu、NiさらにはCr等を微量添加してもよい。これらの元素は、本発明の効果を何ら損なうものではなく、その含有量は特に制限を要するものではないが、コストの観点からそれぞれの添加量は0.1%以下とすることが望ましい。
本発明において用いるスラブの上記以外の組成は、Feおよび不可避的不純物である。
【0030】
(熱間圧延)
本発明では、かかる鋼組成を有するスラブを加熱して熱間圧延を行い、熱延板とする。
【0031】
この熱間圧延は、公知の条件で行えばよく、特定の圧延条件には限定されない。例えば、スラブ加熱温度は、スラブ低温加熱による析出物の固溶抑制を図って熱間圧延の析出物の微細化を防止するために、1200℃以下とすることが望ましい。また、熱間圧延の仕上温度も、α域あるいはγ域であってもよく、特に限定を要さない。
【0032】
(熱延板への歪み付与)
本発明では、このようにして得た熱延板に、例えばテンションレベラを用いて、0.5%以上3.0%以下の歪を与える。
【0033】
無方向性電磁鋼板の磁束密度を改善するためには、板厚表層部における結晶粒を粗大化することと、板厚中央部についても磁化容易面方位{200}の集積度を高めることがともに重要である。熱延後に歪を与えることにより、表層に異常粒成長を発生させることなく板厚方向に略均一に歪エネルギーを蓄えることができ、これにより、無方向性電磁鋼板の磁束密度を大きく改善することができる。
【0034】
本発明では、熱延板に付与する歪は、0.5%以上3.0%以下と限定する。すなわち、熱延板に付与する歪みが3.0%を超えると、熱延板焼鈍の再結晶時に熱延板の充分な粒成長が得られないばかりか、磁束密度も大きく改善しない。また、熱延板に付与する歪が0.5%を下回ると、表層のみの歪みとなり、熱延板焼鈍後、表層のみの異常粒が発生し、成品での表面品質不良となる。そこで、本発明では、熱延板に付与する歪は、0.5%以上3.0%以下と限定する。
【0035】
本発明では、結晶模様の発生を抑制するために、例えばテンションレベラを用いて熱延板に歪を与えた後の熱延板焼鈍により、板厚表層部の結晶粒を100〜300μm程度の粗大粒とすることができる。
【0036】
なお、熱延板への歪の付与は、例えば、酸洗ライン内でのテンションレベラを用いて、入側においてスケール付きのままで行ってもよい。これにより、無方向性電磁鋼板の磁気特性および表面結晶模様をいずれも改善でき、得られる電磁鋼板の表面性状を改善することができる。
【0037】
これに対し、従来のスキンパス圧延では、板厚表層部のみ歪が導入され、板厚中央部への歪の付与が不足して集合組織を改善することができない。
【0038】
(熱延板焼鈍)
このようにして歪を付与された熱延板に、熱延板焼鈍を行う。熱延板焼鈍温度は、650℃未満であると、熱間圧延時の加工組織が熱延板焼鈍後にも残存し、最終製品の磁気特性を劣化させる。また、熱延板焼鈍温度が870℃を超えると、結晶粒が大きくなり、最終製品の表面に結晶模様を生じさせる。依って、本発明では、熱延板焼鈍の焼鈍温度は650℃以上870℃以下に限定する。
【0039】
この熱延板焼鈍は、連続焼鈍あるいはバッチ式焼鈍でもよく、特に限定を要するものではない。しかし、板厚表層部の結晶粒を100〜300μm程度に粗大化させ、かつ板厚方向中央部の集合組織を改善するためには、700〜830℃の焼鈍温度で1〜20時間程度の均熱を行うことが望ましいため、バッチ式焼鈍を行うことが好ましい。
【0040】
さらに、熱延板に付与する歪みが小さく、かつ熱延板焼鈍の焼鈍温度が小さい場合には、磁気特性が劣化する。具体的には、熱延板に与える歪みEL(%)と、熱延板焼鈍の焼鈍温度TA(℃)とが下記(1)式により規定される関係を満足することにより、磁気特性および表面性状がともに改善されるため、望ましい。
350≦EL×TA≦2400 ・・・・・・・(1)
これ以外の熱延板焼鈍の条件は、公知の条件によればよい。
【0041】
(冷間圧延)
このようにして、熱延板焼鈍を行った後に、酸洗を行ってから冷間圧延を行う。この冷間圧延は、公知のタンデム圧延あるいはレバース圧延によって通常の冷間圧延を行い、例えば0.15mm以上0.8mm以下の板厚を有する冷延鋼板に強圧下する。
【0042】
(連続焼鈍)
冷間圧延後には、適宜脱脂してから、通常の連続焼鈍を行うことにより、一次再結晶させ、所望の集合組織とする。焼鈍温度は、例えば650℃以上1200℃以下を例示することができる。
【0043】
(スキンパス圧延)
この連続焼鈍を行った後に、さらに、圧下率が1.0〜15.0%のスキンパス圧延を行ってもよい。スキンパス圧延の圧下率が、1.0%未満または15.0%超であると、スキンパス圧延後に、出荷先での打抜き後に行われる焼鈍によっても、結晶粒の粗大化が図られず、鉄損が改善されない。
【0044】
このようにして、飽和磁束密度BS で磁束密度B50を無次元化したB50/BS が83.5%以上であるという良好な磁気特性を有し、結晶模様を生じることがない表面性状の優れた無方向性電磁鋼板が製造される。
【0045】
【実施例】
さらに、本発明にかかる磁気特性および表面性状の優れた無方向性電磁鋼板の製造法を、実施例を参照しながら具体的に説明する。
【0046】
表1に示す鋼組成を有する23種の溶鋼をスラブに鋳造し、このスラブを1150℃に加熱して、仕上温度880℃で熱間圧延を行って板厚が2.3mmの熱延板とし、650℃の巻取温度で巻き取った。
【0047】
【表1】

Figure 0004016552
【0048】
これら23種の熱延板に、表1に示す条件で歪を与え、酸洗後に、表1に示す焼鈍温度で20時間のバッチ焼鈍を行った。この後、板厚0.5mmまで冷間圧延を行い、連続焼鈍で、0.25分間の再結晶焼鈍を行った。
なお、一部については、表1に示すように、上記の最終連続焼鈍後に0.2〜1.5%のスキンパス圧延を行った。
【0049】
得られた23種の冷延鋼板から、試料No.1〜試料No.23を切り出して、JIS C2550に準じたエプスタイン試験を行って磁気特性 (鉄損W15/50、磁束密度B50) を測定するとともに表面外観の状態を目視で評価した。測定結果を、表1にまとめて示す。なお、鉄損W15/50は、1.5T、周波数50Hzに対する試料1Kg当たりの鉄損を示し、磁束密度B50は、磁化力5000A/mにおける磁束密度を示す。
【0050】
なお、測定は、切断のまま(フルプロセス)と、750℃、2時間の焼鈍を行った後の特性(セミプロセス)とについて、行った。
表1における試料No.1〜試料No.9は、いずれも、本発明で規定する条件を全て満足する本発明例である。これらの試料は、フルプロセスおよびセミプロセスともに、B50/BS が83.5%以上であるという良好な磁気特性を有し、結晶模様を生じることがなく表面性状が良好であった。
【0051】
これに対し、試料No.10はC含有量が本発明の範囲の上限を超え、試料No.14はS含有量が本発明の範囲の上限を超え、さらに試料No.15はN含有量が本発明の範囲の上限を超えるため、いずれも、磁気特性B50/BS が83.5%未満に劣化した。
【0052】
また、試料No.11はSi含有量が本発明の範囲の上限を超え、また試料No.12はAl含有量が本発明の範囲の上限を超えるため、いずれも、冷間圧延時に破断した。
【0053】
試料No.13は、P含有量が本発明の範囲の上限を超えるためにスラブ割れを生じるとともに、Mn含有量が本発明の範囲の上限を超えるため、その後の冷間圧延時に破断した。
【0054】
試料No.16および試料No.23は、いずれも、熱延板に付与された歪みが本発明の範囲の下限を下回るため、B50/BS が83.5%未満に劣化した。
【0055】
試料No.18、試料No.19、試料No.20および試料No.22は、いずれも、熱延板に付与された歪みEL(%)が本発明の範囲の上限を上回るため、結晶模様を生じてしまい、表面性状が劣化し、さらに、B50/BS も83.5%未満に劣化した。特に、試料No.19は、スキンパス圧延における圧下率が本発明の範囲の上限を上回るため、B50/BS が83.5%未満に劣化した。
【0056】
さらに、試料No.17および試料No.21は、いずれも、熱延板の焼鈍温度が本発明の範囲の下限を下回るため、B50/BS が83.5%未満に劣化した。
【0057】
図1は、試料No.1〜試料No.23について、熱延板に付与された歪みEL(%)と、熱延板焼鈍温度TA(℃)との関係を示すグラフである。なお、図1における○印は本発明例を示し、×印は比較例を示す。
【0058】
また、図2には、試料No.1〜試料No.23について、(熱延板歪みEL)×(熱延板焼鈍温度TA)の値と、B50/BS との関係をグラフで示す。また、図3には、試料No.1〜試料No.23について、(熱延板歪みEL)×(熱延板焼鈍温度TA)の値と、表面肌荒れとの関係をグラフで示す。
【0059】
なお、図3のグラフにおける表面肌荒れ評点は、評点3が良好であることを示し、評点2が境界値であることを示し、評点1が不良であることを示す。また、図2および図3にそれぞれ示すグラフにおいて、○印は本発明例を示し、▲印は表面肌荒れの程度が合否の境界にある比較例を示し、×印は表面肌荒れ不良が発生した比較例を示し、+印は用いた鋼片の組成が本発明の範囲外である比較例を示す。さらに、図3に示すグラフにおいて、飽和磁束密度BS は、BS =2.158−0.0427×(Si+Al+(1/2)Mn)により算出した。
【0060】
図2および図3のいずれのグラフにおいても、(熱延板歪みEL)×(熱延板焼鈍温度TA)の値が本発明の範囲である350以上2400以下を満足すると、磁気特性B50/BS および表面肌荒れがともに良好となることがわかる。
【0061】
さらに、最終焼鈍後のスキンパス圧延を行った試料No.3、試料No.5、試料No.6および試料No.8と、試料No.16、試料No.19および試料No.22とを対比することにより、スキンパス圧延の圧下率が1.0%以上15.0%以下であれば、優れた磁気特性B50/BS が得られることがわかる。
【0062】
【発明の効果】
以上詳細に説明したように、本発明により、板厚方向全体に歪エネルギーを付与させることにより、結晶粒径の適正化と集合組織の改善とを図ることができ、磁気特性、特に磁束密度が高く、かつ結晶模様やスケール押込み等が発生しない表面外観の良好な無方向性電磁鋼板を、低コストで、しかも安定して製造することができる。
かかる効果を有する本発明の意義は、極めて著しい。
【図面の簡単な説明】
【図1】試料No.1〜試料No.23について、熱延板に付与された歪みEL(%)と、熱延板焼鈍温度TA(℃)との関係を示すグラフである。
【図2】実施例の試料No.1〜試料No.23について、(熱延板歪みEL)×(熱延板焼鈍温度TA)の値と、B50/BS との関係を示すグラフである。
【図3】実施例の試料No.1〜試料No.23について、(熱延板歪みEL)×(熱延板焼鈍温度TA)の値と、表面肌荒れとの関係を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a non-oriented electrical steel sheet having excellent magnetic properties and surface properties. More specifically, the present invention relates to magnetic properties used in electrical equipment such as electric motors and small transformers used for home use or industrial use, and The present invention relates to a method for producing a non-oriented electrical steel sheet having excellent surface properties.
[0002]
[Prior art]
In recent years, from the viewpoint of environmental problems such as the finite nature of petroleum resources and global warming, it has been demanded worldwide to effectively use energy to reduce energy consumption. From this point of view, there is an urgent need to improve the energy efficiency of various electric devices used for home use or industrial use, for example. For this reason, for example, non-oriented electrical steel sheets widely used in iron cores of electric devices such as electric motors and small transformers also improve iron loss, which causes electric energy consumption, in order to improve their electric energy efficiency. In addition, there is a strong demand for further improving the magnetic flux density.
[0003]
Conventionally, the iron loss of a non-oriented electrical steel sheet increases the content of Si, Al, etc., which increases the specific resistance of the steel sheet itself, and increases the grain size of the non-oriented electrical steel sheet as a product. Improvements have been made by such means. However, when the content of Si, Al, etc. is increased, the hardness of the non-oriented electrical steel sheet is remarkably increased, the punchability is deteriorated, and the productivity of an electric motor or a small transformer is remarkably lowered. Further, when the content of Si, Al, or the like is increased, the magnetic flux density is lowered and the texture control is not industrially easy, so that the magnetic flux density cannot be improved to a desired level.
[0004]
In order to improve the texture, the crystal grain size before cold rolling is coarsened to reduce the grain boundaries, and by performing strong reduction during cold rolling, {100} is added to the primary recrystallized texture. An enrichment method is effective. As a further development of this method, there is also known a method in which a hot-rolled sheet is subjected to skin pass rolling and then annealed, and then subjected to strong reduction during cold rolling.
[0005]
For example, Japanese Examined Patent Publication No. 45-22211 discloses a method in which a hot-rolled sheet is subjected to skin pass rolling with a rolling reduction of 0.5 to 15%, and then annealed in the ferrite region for 30 minutes to 20 hours. ing.
[0006]
Japanese Patent Laid-Open No. 10-60532 discloses a rolling reduction ratio of 0.5 to 4% with respect to a hot-rolled sheet in which the composition ratio of inclusions is MnO / (SiO 2 + Al 2 O 3 + CaO + MnO) ≦ 0.35. A method is disclosed in which hot-rolled sheet annealing is performed after performing skin pass rolling, followed by cold rolling and continuous annealing. In general, it is known that the smaller the amount of oxide inclusions, the easier the growth of crystal grains occurs. For this reason, since this method performs hot-rolled sheet annealing after skin pass rolling, it can be expected to increase the crystal grain size.
[0007]
Furthermore, in JP-A-5-171280, by subjecting a hot-rolled sheet to skin pass rolling at a reduction rate of 5 to 15%, and then performing a continuous annealing treatment of the hot-rolled sheet with a crystal grain size of 100 to 200 μm, There is disclosed a method for obtaining a non-oriented electrical steel sheet that is excellent in magnetic flux density and that does not generate a crystal pattern with a concavo-convex feeling such that crystal grains extend in the rolling direction on the product surface.
[0008]
[Problems to be solved by the invention]
However, in the method disclosed in Japanese Examined Patent Publication No. 45-22221, even if skin pass rolling is performed, the strain energy can be stored only in the plate thickness surface layer portion. For this reason, if annealing is performed for a long time as described above, the crystal grains in the surface layer portion grow abnormally and the magnetic flux density is improved, but the crystal grains called the crystal pattern are rolled on the product surface. A pattern with a sense of unevenness extending in the direction is generated, the appearance quality is remarkably lowered, and the space factor is also lowered. On the other hand, when the rolling reduction ratio of skin pass rolling is set high, the strain energy starts to spread over the entire region in the sheet thickness direction and begins to coarsen to the inner layer, but when the rolling reduction ratio becomes 5% or more, the recrystallization nuclei in the hot rolled sheet The generation sites increase, the average crystal grain size in the entire plate thickness direction becomes smaller, and the magnetic flux density decreases.
[0009]
Further, in the method disclosed in Japanese Patent Laid-Open No. 10-60532, since the rolling reduction of skin pass rolling is 4% or less, strain energy can be stored only in the extreme surface layer portion in the plate thickness direction. In annealing, only the crystals in the surface layer portion of the plate thickness grow abnormally, and a crystal pattern is generated after cold rolling. In addition, since strain energy cannot be completely accumulated in the central portion in the thickness direction, the texture in the central portion in the thickness direction cannot be completely improved by hot-rolled sheet annealing. Furthermore, in the case of hot-rolled sheet annealing by continuous annealing, in consideration of cost, only an annealing time of about several minutes can be ensured at most, so that sufficient recrystallized grains cannot be obtained. In addition, even if the annealing time is secured without considering the cost, it leads to deterioration of the shape of the hot-rolled sheet and further abnormal grain growth of the surface layer part of the sheet, and both the characteristics and appearance quality become unstable. .
[0010]
Furthermore, in the method disclosed in Japanese Patent Laid-Open No. 5-171280, the reduction rate of the skin pass rolling exceeds 5%, and as described above, the recrystallization nucleation sites in the hot rolled sheet increase and the thickness direction On the contrary, the overall average crystal grain size is reduced, and the magnetic flux density is lowered.
[0011]
That is, in the conventional manufacturing method of the non-oriented electrical steel sheet by performing the hot-rolled sheet annealing after the skin-pass rolling to the hot-rolled sheet, when the rolling reduction of the skin-pass rolling is less than 5%, Only when abnormal grain growth occurs and a crystal pattern is generated, on the contrary, when the rolling reduction is 5% or more, the average crystal grain size in the entire plate thickness direction becomes small, so that a high magnetic flux density cannot be obtained. Non-uniform characteristics will occur. In addition, the conventional manufacturing method for non-oriented electrical steel sheets, in particular by performing skin pass rolling of hot-rolled sheets before pickling, causes quality problems such as scale indentation and increases the equipment cost required for skin pass rolling. .
[0012]
Thus, in the conventional manufacturing method of a non-oriented electrical steel sheet, the iron loss and the magnetic flux density are both good, and a non-oriented electrical steel sheet with excellent surface properties that does not produce a crystal pattern is provided. Could not.
[0013]
The object of the present invention is to provide a non-oriented electrical steel sheet having excellent surface properties that have good magnetic properties and no crystal pattern. Specifically, the saturation magnetic flux density B S ( = 2.158−0.0427 × (Si + Al + (1/2) Mn)), and B50 / B S obtained by making the magnetic flux density B50 dimensionless has a good magnetic property of 83.5% or more, and has a crystal pattern It is an object to provide a non-oriented electrical steel sheet having an excellent surface property that does not cause a problem.
[0014]
[Means for Solving the Problems]
As a result of intensive studies to solve the above-mentioned problems, the present inventors have performed annealing of hot-rolled sheets after imparting a strain of 0.5 to 3% to the hot-rolled sheets, thereby reducing iron loss and magnetic flux density. As a result, it was found that a non-oriented electrical steel sheet having excellent surface properties that does not produce a crystal pattern can be obtained.
[0015]
In the present invention, C ≦ 0.01% (in this specification, “%” means “mass%” unless otherwise specified), Si ≦ 3.0%, Al ≦ 3.0%, Mn ≦ 2.0%, P ≦ 0.2%, S ≦ 0.05% and N ≦ 0.005%, and a steel slab comprising the balance Fe and impurities is hot-rolled to form a hot-rolled sheet, the hot-rolled sheet, distorts 0.5 to 3.0% using a tension leveler, and then after the hot-rolled sheet annealing, non-directional you and performing cold rolling and continuous annealing It is a manufacturing method of an electromagnetic steel sheet.
[0016]
The method for producing non-oriented electrical steel sheet that written in this invention, the steel slab further, Sb ≦ 0.3%, Sn ≦ 0.3%, or, Sb + Sn ≦ 0.3%, or, B ≦ It is desirable to contain 0.005%.
[0017]
In the manufacturing process of these non-oriented electrical steel sheet that written to the present invention, a strain EL (%) applied to the hot-rolled sheet, annealing temperature TA (° C.) of the hot-rolled sheet annealing and the following formula (1) It is desirable to satisfy the relationship defined by
350 ≦ EL × TA ≦ 2400 (1)
However, in the formula (1), the strain EL is 0.5% or more and 3.0% or less, and the temperature TA of hot-rolled sheet annealing is 650 ° C. or more and 870 ° C. or less.
[0018]
Further, in the method for producing non-oriented electrical steel sheet that written in these present invention, after the continuous annealing, further reduction ratio: 1.0 to 15.0% of performing the final annealing by performing skin pass rolling Is desirable.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of a method for producing a non-oriented electrical steel sheet having excellent magnetic properties and surface properties according to the present invention will be described in detail. In the following description of the embodiment, a case where the steel piece is a slab is taken as an example.
First, the reason for limiting the composition of the slab used in the present invention will be described.
[0020]
(C ≦ 0.01%)
The C content is preferably as small as possible in order to improve the magnetic properties. If the C content exceeds 0.01%, the iron loss deteriorates due to magnetic aging.
Therefore, in the present invention, the C content is limited to 0.01% or less in consideration of the influence of magnetic aging. From the same viewpoint, the upper limit of the C content is preferably 0.005%. Further, the lower limit of the C content is preferably 0.0005%, and more preferably 0.001%.
[0021]
(Si ≦ 3.0%, Al ≦ 3.0%)
Both Si and Al are effective in increasing the specific resistance of the steel sheet and reducing eddy current loss. However, if the content of each of Si and Al exceeds 3.0%, the problem of breakage in cold rolling and cracking in the punching process for electric parts increases. Therefore, in the present invention, it is limited to Si ≦ 3.0% and Al ≦ 3.0%. In the present invention, the upper limit of each of the Si content and the Al content is preferably 2.9%, and more preferably 2.8%. Further, the lower limit of each of the Si content and the Al content is preferably 0.1%, and more preferably 0.5%.
[0022]
(Mn ≦ 2.0%)
Similar to Si and Al, Mn is effective in increasing the specific resistance of the steel sheet and reducing eddy current loss. However, if added over 2.0%, the cold rollability deteriorates and breaks during cold rolling. Therefore, in the present invention, the Mn content is limited to 2.0% or less.
[0023]
(P ≦ 0.2%)
The amount of P is limited to 0.2% or less. P is effective for preventing drooling and burring of the steel sheet in the punching process after making the product, but when the P content exceeds 0.2%, slab cracking occurs. Therefore, in the present invention, the P content is limited to 0.2% or less. From the same viewpoint, the P content is desirably 0.1% or less.
[0024]
(S ≦ 0.05%)
S forms fine sulfides such as MnS to inhibit crystal grain growth and hinder domain wall movement. In particular, when the S content exceeds 0.05%, the magnetism deteriorates. Therefore, in the present invention, the S content is limited to 0.05% or less. From the same viewpoint, the S content is preferably 0.03% or less.
[0025]
(N ≦ 0.005%)
Since N forms fine AlN to hinder crystal grain growth and hinders domain wall movement, it is preferable that the N content is small. In particular, when the N content exceeds 0.005%, the magnetism deteriorates. Therefore, in the present invention, the N content is limited to 0.005% or less. From the same viewpoint, the N content is preferably 0.0025% or less.
[0026]
In the present invention, the steel piece to be used may contain Sb, Sn or B as an optional additive element. Hereinafter, these optional additive elements will also be described.
[0027]
(Sb ≦ 0.3%, Sn ≦ 0.3%, or Sb + Sn ≦ 0.3%)
Sb and Sn are both effective elements for improving the texture and improving the magnetic flux density in the rolling direction. However, if the Sb content, the Sn content or the (Sb + Sn) content exceeds 0.3%, the crystal grain growth deteriorates and the magnetic flux density decreases due to annealing after the elongation of the hot-rolled sheet. Therefore, when adding Sb or Sn, it is desirable to limit the Sb content, the Sn content, or the (Sb + Sn) content to 0.3% or less.
[0028]
(B ≦ 0.005%)
B, like Sb and Sn, is an element effective in improving the texture and improving the magnetic flux density in the rolling direction. However, if the B content exceeds 0.005%, the crystal grain growth deteriorates and the magnetic flux density decreases due to the annealing after the elongation of the hot-rolled sheet. Therefore, when B is added, the B content is preferably limited to 0.005% or less.
[0029]
In the present invention, in addition to Sb, Sn, and B, the steel slab used may contain a small amount of Cu, Ni, or even Cr, which is known as an element effective for magnetic properties. These elements do not impair the effects of the present invention at all, and the content thereof is not particularly limited, but the addition amount of each element is preferably 0.1% or less from the viewpoint of cost.
The other composition of the slab used in the present invention is Fe and inevitable impurities.
[0030]
(Hot rolling)
In the present invention, a slab having such a steel composition is heated and hot-rolled to obtain a hot-rolled sheet.
[0031]
This hot rolling may be performed under known conditions, and is not limited to specific rolling conditions. For example, the slab heating temperature is desirably set to 1200 ° C. or lower in order to prevent solid precipitates from being hot-rolled by slab low-temperature heating and to prevent refinement of hot-rolled precipitates. Moreover, the finishing temperature of the hot rolling may be in the α region or the γ region, and is not particularly limited.
[0032]
(Add strain to hot-rolled sheet)
In the present invention, a strain of 0.5% or more and 3.0% or less is applied to the hot-rolled sheet thus obtained using, for example, a tension leveler.
[0033]
In order to improve the magnetic flux density of the non-oriented electrical steel sheet, it is necessary to coarsen the crystal grains in the surface layer portion of the plate thickness and to increase the degree of easy magnetization plane orientation {200} integration at the plate thickness central portion. is important. By applying strain after hot rolling, strain energy can be stored almost uniformly in the thickness direction without causing abnormal grain growth on the surface layer, thereby greatly improving the magnetic flux density of non-oriented electrical steel sheets. Can do.
[0034]
In the present invention, the strain applied to the hot-rolled sheet is limited to 0.5% or more and 3.0% or less. That is, if the strain applied to the hot-rolled sheet exceeds 3.0%, sufficient grain growth of the hot-rolled sheet cannot be obtained at the time of recrystallization of hot-rolled sheet annealing, and the magnetic flux density is not greatly improved. When the strain applied to the hot-rolled sheet is less than 0.5%, only the surface layer is strained, and after the hot-rolled sheet annealing, abnormal grains only in the surface layer are generated, resulting in poor surface quality in the product. Therefore, in the present invention, the strain applied to the hot-rolled sheet is limited to 0.5% or more and 3.0% or less.
[0035]
In the present invention, in order to suppress the generation of the crystal pattern, for example, by hot-rolled sheet annealing after straining the hot-rolled sheet using a tension leveler, the crystal grain size of the plate thickness surface layer is about 100 to 300 μm. It can be a grain.
[0036]
In addition, you may perform the provision of the strain to a hot-rolled sheet with a scale with the entrance side, for example using the tension leveler in a pickling line. Thereby, both the magnetic properties and the surface crystal pattern of the non-oriented electrical steel sheet can be improved, and the surface properties of the obtained electrical steel sheet can be improved.
[0037]
On the other hand, in the conventional skin pass rolling, strain is introduced only in the surface layer portion of the plate thickness, and the texture cannot be improved due to insufficient application of strain to the central portion of the plate thickness.
[0038]
(Hot rolled sheet annealing)
The hot-rolled sheet thus imparted with strain is subjected to hot-rolled sheet annealing. When the hot-rolled sheet annealing temperature is less than 650 ° C., the processed structure during hot rolling remains even after hot-rolled sheet annealing, and deteriorates the magnetic properties of the final product. Moreover, when a hot-rolled sheet annealing temperature exceeds 870 degreeC, a crystal grain will become large and a crystal pattern will be produced on the surface of a final product. Therefore, in this invention, the annealing temperature of hot-rolled sheet annealing is limited to 650 degreeC or more and 870 degrees C or less.
[0039]
This hot-rolled sheet annealing may be continuous annealing or batch annealing, and is not particularly limited. However, in order to coarsen the crystal grains in the plate thickness surface layer portion to about 100 to 300 μm and improve the texture in the center portion in the plate thickness direction, the annealing temperature is 700 to 830 ° C. and the average is about 1 to 20 hours. Since it is desirable to perform heating, it is preferable to perform batch annealing.
[0040]
Further, when the strain imparted to the hot-rolled sheet is small and the annealing temperature for hot-rolled sheet annealing is small, the magnetic properties deteriorate. Specifically, by satisfying the relationship defined by the following formula (1) between the strain EL (%) applied to the hot-rolled sheet and the annealing temperature TA (° C.) of hot-rolled sheet annealing, the magnetic properties and surface This is desirable because both properties are improved.
350 ≦ EL × TA ≦ 2400 (1)
Other conditions for hot-rolled sheet annealing may be known conditions.
[0041]
(Cold rolling)
In this way, after hot-rolled sheet annealing, pickling is performed and then cold rolling is performed. In this cold rolling, ordinary cold rolling is performed by known tandem rolling or lever rolling, and the steel sheet is strongly reduced to a cold rolled steel sheet having a thickness of 0.15 mm to 0.8 mm, for example.
[0042]
(Continuous annealing)
After cold rolling, it is degreased as appropriate, and then subjected to normal continuous annealing, whereby primary recrystallization is performed to obtain a desired texture. As for annealing temperature, 650 degreeC or more and 1200 degrees C or less can be illustrated, for example.
[0043]
(Skin pass rolling)
After performing this continuous annealing, skin pass rolling with a rolling reduction of 1.0 to 15.0% may be further performed. If the rolling reduction of the skin pass rolling is less than 1.0% or more than 15.0%, the grain size is not increased due to the annealing after the skin pass rolling and after the punching at the shipping destination. Is not improved.
[0044]
In this way, the surface property has good magnetic characteristics that B50 / B S obtained by making the magnetic flux density B50 dimensionless with the saturation magnetic flux density B S is 83.5% or more, and does not produce a crystal pattern. An excellent non-oriented electrical steel sheet is produced.
[0045]
【Example】
Further, a method for producing a non-oriented electrical steel sheet having excellent magnetic properties and surface properties according to the present invention will be specifically described with reference to examples.
[0046]
23 types of molten steel having the steel composition shown in Table 1 were cast into a slab, the slab was heated to 1150 ° C., and hot rolled at a finishing temperature of 880 ° C. to obtain a hot-rolled sheet having a thickness of 2.3 mm. The coil was wound at a coiling temperature of 650 ° C.
[0047]
[Table 1]
Figure 0004016552
[0048]
These 23 types of hot-rolled sheets were strained under the conditions shown in Table 1, and after pickling, batch annealing was performed for 20 hours at the annealing temperature shown in Table 1. Then, it cold-rolled to plate thickness 0.5mm, and recrystallized annealing for 0.25 minutes by continuous annealing.
In addition, about a part, as shown in Table 1, 0.2-1.5% skin pass rolling was performed after said last continuous annealing.
[0049]
From the 23 types of cold-rolled steel sheets obtained, Sample No. 1 to Sample No. 23 was cut out and subjected to an Epstein test in accordance with JIS C2550 to measure magnetic properties (iron loss W15 / 50, magnetic flux density B50), and the surface appearance was visually evaluated. The measurement results are summarized in Table 1. The iron loss W15 / 50 indicates the iron loss per 1 kg of the sample with respect to 1.5 T and the frequency of 50 Hz, and the magnetic flux density B50 indicates the magnetic flux density at a magnetizing force of 5000 A / m.
[0050]
In addition, the measurement was performed about the characteristic (semi process) after performing 750 degreeC and the annealing for 2 hours as a cutting | disconnection (full process).
Sample No. in Table 1 1 to Sample No. 9 is an example of the present invention that satisfies all the conditions defined in the present invention. These samples had good magnetic properties such that B50 / B S was 83.5% or more in both the full process and the semi-process, and had good surface properties without producing a crystal pattern.
[0051]
In contrast, sample no. No. 10 has a C content exceeding the upper limit of the range of the present invention. No. 14 has an S content exceeding the upper limit of the range of the present invention. No. 15 had an N content exceeding the upper limit of the range of the present invention, and in both cases, the magnetic characteristics B50 / B S deteriorated to less than 83.5%.
[0052]
Sample No. No. 11 has a Si content exceeding the upper limit of the range of the present invention. No. 12 broke during cold rolling because the Al content exceeded the upper limit of the range of the present invention.
[0053]
Sample No. No. 13 caused slab cracking because the P content exceeded the upper limit of the range of the present invention, and Mn content exceeded the upper limit of the range of the present invention.
[0054]
Sample No. 16 and sample no. In No. 23, since the strain applied to the hot-rolled sheet was below the lower limit of the range of the present invention, B50 / B S deteriorated to less than 83.5%.
[0055]
Sample No. 18, Sample No. 19, Sample No. 20 and sample no. In No. 22, the strain EL (%) applied to the hot-rolled sheet exceeds the upper limit of the range of the present invention, so that a crystal pattern is generated, the surface properties are deteriorated, and B50 / B S is 83. Degraded to less than 5%. In particular, sample no. No. 19, B50 / B S deteriorated to less than 83.5% because the rolling reduction in skin pass rolling exceeded the upper limit of the range of the present invention.
[0056]
Furthermore, sample no. 17 and sample no. In No. 21, since the annealing temperature of the hot-rolled sheet was lower than the lower limit of the range of the present invention, B50 / B S deteriorated to less than 83.5%.
[0057]
FIG. 1 to Sample No. 23 is a graph showing the relationship between strain EL (%) applied to a hot-rolled sheet and hot-rolled sheet annealing temperature TA (° C.). In FIG. 1, the ◯ marks indicate examples of the present invention, and the X marks indicate comparative examples.
[0058]
Further, in FIG. 1 to Sample No. 23, the relationship between the value of (hot rolled sheet strain EL) × (hot rolled sheet annealing temperature TA) and B50 / B S is shown in a graph. Further, in FIG. 1 to Sample No. About 23, the relationship between the value of (hot-rolled sheet distortion EL) x (hot-rolled sheet annealing temperature TA) and surface roughness is shown in a graph.
[0059]
The rough surface score in the graph of FIG. 3 indicates that the score 3 is good, the score 2 is a boundary value, and the score 1 is poor. Further, in the graphs shown in FIG. 2 and FIG. 3, ◯ indicates an example of the present invention, ▲ indicates a comparative example in which the degree of surface roughness is on the pass / fail boundary, and × indicates a comparison in which surface roughness is poor. An example is shown, and + indicates a comparative example in which the composition of the steel slab used is outside the scope of the present invention. Furthermore, in the graph shown in FIG. 3, the saturation magnetic flux density B S was calculated by B S = 2.158−0.0427 × (Si + Al + (1/2) Mn).
[0060]
In both graphs of FIG. 2 and FIG. 3, when the value of (hot rolled plate strain EL) × (hot rolled plate annealing temperature TA) satisfies the range of 350 to 2400, which is the range of the present invention, the magnetic characteristics B50 / B It can be seen that both S and surface roughness are good.
[0061]
Furthermore, the sample No. No. No. No. No. 1 subjected to skin pass rolling after final annealing. 3, Sample No. 5, Sample No. 6 and sample no. 8 and sample no. 16, Sample No. 19 and sample no. 22 is compared, it can be seen that if the rolling reduction of the skin pass rolling is 1.0% or more and 15.0% or less, excellent magnetic properties B50 / B S can be obtained.
[0062]
【The invention's effect】
As described in detail above, according to the present invention, by imparting strain energy to the entire plate thickness direction, the crystal grain size can be optimized and the texture can be improved, and the magnetic properties, particularly the magnetic flux density can be improved. A non-oriented electrical steel sheet that is high and has a good surface appearance that does not generate crystal patterns or scale indentation can be produced at low cost and stably.
The significance of the present invention having such an effect is extremely remarkable.
[Brief description of the drawings]
FIG. 1 to Sample No. 23 is a graph showing the relationship between strain EL (%) applied to a hot-rolled sheet and hot-rolled sheet annealing temperature TA (° C.).
2 is a sample No. of Example. 1 to Sample No. 23 is a graph showing the relationship between the value of (hot-rolled sheet strain EL) × (hot-rolled sheet annealing temperature TA) and B50 / B S.
3 is a sample No. of Example. 1 to Sample No. 23 is a graph showing the relationship between the value of (hot-rolled sheet strain EL) × (hot-rolled sheet annealing temperature TA) and surface roughness.

Claims (4)

質量%で、C≦0.01%、Si≦3.0%、Al≦3.0%、Mn≦2.0%、P≦0.2%、S≦0.05%およびN≦0.005%を含有し、残部Feおよび不純物からなる鋼片に熱間圧延を行って熱延板とし、該熱延板に、テンションレベラを用いて0.5〜3.0%の歪みを与え、次いで熱延板焼鈍を行った後に、冷間圧延および連続焼鈍を行うことを特徴とする無方向性電磁鋼板の製造法。% By mass, C ≦ 0.01%, Si ≦ 3.0%, Al ≦ 3.0%, Mn ≦ 2.0%, P ≦ 0.2%, S ≦ 0.05% and N ≦ 0. 005% is contained, the steel piece consisting of the balance Fe and impurities is hot-rolled into a hot-rolled sheet, and the hot-rolled sheet is subjected to a strain of 0.5 to 3.0% using a tension leveler , then after the hot-rolled sheet annealing, the preparation of non-oriented electrical steel sheet you and performing cold rolling and continuous annealing. 前記鋼片が、さらに、質量%で、Sb≦0.3%、Sn≦0.3%、あるいは、Sb+Sn≦0.3%、または、B≦0.005%を含有する請求項1に記載された無方向性電磁鋼板の製造法。The steel slab further contains, in mass%, Sb ≦ 0.3%, Sn ≦ 0.3%, or Sb + Sn ≦ 0.3%, or B ≦ 0.005%. Of manufacturing a non- oriented electrical steel sheet. 前記熱延板に与える歪EL(%)と、前記熱延板焼鈍の焼鈍温度TA(℃)とが下記(1)式により規定される関係を満足する請求項1または請求項2に記載された無方向性電磁鋼板の製造法。
350≦EL×TA≦2400 ・・・・・・・(1)
ただし、EL:0.5%以上3.0%以下、TA:650℃以上870℃以下である。
The strain EL (%) applied to the hot-rolled sheet and the annealing temperature TA (° C) of the hot-rolled sheet annealing satisfy the relationship defined by the following formula (1). Non- oriented electrical steel sheet manufacturing method.
350 ≦ EL × TA ≦ 2400 (1)
However, EL: 0.5% to 3.0%, TA: 650 ° C to 870 ° C.
前記連続焼鈍を行った後に、さらに圧下率:1.0〜15.0%のスキンパス圧延を行って最終焼鈍を行うことを特徴とする請求項1から請求項3までのいずれか1項に記載された無方向性電磁鋼板の製造法。4. The method according to claim 1, wherein after the continuous annealing is performed, skin annealing is further performed at a rolling reduction of 1.0 to 15.0% to perform final annealing. 5. Of manufacturing a non- oriented electrical steel sheet.
JP34484899A 1999-12-03 1999-12-03 Method for producing non-oriented electrical steel sheets with excellent magnetic properties and surface properties Expired - Fee Related JP4016552B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34484899A JP4016552B2 (en) 1999-12-03 1999-12-03 Method for producing non-oriented electrical steel sheets with excellent magnetic properties and surface properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34484899A JP4016552B2 (en) 1999-12-03 1999-12-03 Method for producing non-oriented electrical steel sheets with excellent magnetic properties and surface properties

Publications (2)

Publication Number Publication Date
JP2001164318A JP2001164318A (en) 2001-06-19
JP4016552B2 true JP4016552B2 (en) 2007-12-05

Family

ID=18372458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34484899A Expired - Fee Related JP4016552B2 (en) 1999-12-03 1999-12-03 Method for producing non-oriented electrical steel sheets with excellent magnetic properties and surface properties

Country Status (1)

Country Link
JP (1) JP4016552B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9624136B2 (en) 2014-07-01 2017-04-18 Corning Incorporated Transparent spinel article and tape cast methods for making

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4810788B2 (en) * 2003-07-29 2011-11-09 Jfeスチール株式会社 Helical machining core material and helical machining core with excellent iron loss characteristics
CN101812570B (en) * 2009-02-24 2011-11-23 宝山钢铁股份有限公司 Method for drawing patterns on surface of high magnetic induction oriented silicon steel
US9728312B2 (en) 2011-11-11 2017-08-08 Nippon Steel & Sumitomo Metal Corporation Non-oriented electrical steel sheet and manufacturing method thereof
JP7192378B2 (en) * 2018-10-11 2022-12-20 日本製鉄株式会社 Rolling equipment and steel plate rolling method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9624136B2 (en) 2014-07-01 2017-04-18 Corning Incorporated Transparent spinel article and tape cast methods for making

Also Published As

Publication number Publication date
JP2001164318A (en) 2001-06-19

Similar Documents

Publication Publication Date Title
JP6451967B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP5754097B2 (en) Oriented electrical steel sheet and manufacturing method thereof
EP1838882A1 (en) Non-oriented electrical steel sheets with excellent magnetic properties and method for manufacturing the same
JP6432173B2 (en) Non-oriented electrical steel sheet with good all-round magnetic properties
WO2011115120A1 (en) Method for producing directional electromagnetic steel sheet
JP6436316B2 (en) Method for producing grain-oriented electrical steel sheet
JP2015086414A (en) Method for manufacturing oriented electromagnetic steel sheet
JP4329550B2 (en) Method for producing non-oriented electrical steel sheet
JP6432671B2 (en) Method for producing grain-oriented electrical steel sheet
JP4016552B2 (en) Method for producing non-oriented electrical steel sheets with excellent magnetic properties and surface properties
EP2243865B1 (en) Grain-oriented electromagnetic steel sheet excellent in magnetic characteristics
JP2017106111A (en) Manufacturing method of oriented electromagnetic steel sheet
JPH1060532A (en) Production of nonoriented silicon steel sheet excellent in magnetic property and surface property
JP4873770B2 (en) Unidirectional electrical steel sheet
JP2003034820A (en) Method for manufacturing grain-oriented electrical steel sheet superior in blanking property having no undercoat film
JP2023554123A (en) Non-oriented electrical steel sheet and its manufacturing method
JP2017110304A (en) Method for producing oriented electromagnetic steel sheet
KR101110257B1 (en) Non-oriented electrical steel sheet with high magnetic flux density and manufacturing method thereof
JP5353234B2 (en) Method for producing grain-oriented electrical steel sheet
JP2002115034A (en) Nonoriented silicon steel sheet, stock for cold rolling therefor and its production method
JP7211532B2 (en) Method for manufacturing non-oriented electrical steel sheet
JP6116793B2 (en) Method for producing grain-oriented electrical steel sheet
JP2001279327A (en) Method for producing nonoriented silicon steel sheet for high frequency
KR100544416B1 (en) Non-oriented electrical steel sheet with high magnetic flux density and low iron loss and its manufacturing method
KR100501000B1 (en) Non-oriented electrical steel sheet with low iron loss after stress relief annealing and its manufacturing method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070828

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070910

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110928

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120928

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120928

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130928

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130928

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130928

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees