JP4329550B2 - Method for producing non-oriented electrical steel sheet - Google Patents
Method for producing non-oriented electrical steel sheet Download PDFInfo
- Publication number
- JP4329550B2 JP4329550B2 JP2004015229A JP2004015229A JP4329550B2 JP 4329550 B2 JP4329550 B2 JP 4329550B2 JP 2004015229 A JP2004015229 A JP 2004015229A JP 2004015229 A JP2004015229 A JP 2004015229A JP 4329550 B2 JP4329550 B2 JP 4329550B2
- Authority
- JP
- Japan
- Prior art keywords
- steel
- steel sheet
- flux density
- annealing
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 229910000565 Non-oriented electrical steel Inorganic materials 0.000 title claims description 15
- 238000004519 manufacturing process Methods 0.000 title claims description 12
- 229910000831 Steel Inorganic materials 0.000 claims description 203
- 239000010959 steel Substances 0.000 claims description 203
- 238000000137 annealing Methods 0.000 claims description 61
- 239000012535 impurity Substances 0.000 claims description 10
- 239000010960 cold rolled steel Substances 0.000 claims description 9
- 238000005096 rolling process Methods 0.000 claims description 9
- 229910052748 manganese Inorganic materials 0.000 claims description 6
- 229910052698 phosphorus Inorganic materials 0.000 claims description 6
- 229910052757 nitrogen Inorganic materials 0.000 claims description 4
- 229910052799 carbon Inorganic materials 0.000 claims description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 66
- 230000004907 flux Effects 0.000 description 49
- 229910052742 iron Inorganic materials 0.000 description 30
- 230000000052 comparative effect Effects 0.000 description 15
- 230000000694 effects Effects 0.000 description 10
- 238000000034 method Methods 0.000 description 10
- 230000005415 magnetization Effects 0.000 description 7
- 229910000976 Electrical steel Inorganic materials 0.000 description 5
- 239000013078 crystal Substances 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 238000005097 cold rolling Methods 0.000 description 4
- 239000000696 magnetic material Substances 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 3
- 230000005381 magnetic domain Effects 0.000 description 3
- 230000035882 stress Effects 0.000 description 3
- 230000032683 aging Effects 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 238000009849 vacuum degassing Methods 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229910001567 cementite Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000009749 continuous casting Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000011162 core material Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- KSOKAHYVTMZFBJ-UHFFFAOYSA-N iron;methane Chemical compound C.[Fe].[Fe].[Fe] KSOKAHYVTMZFBJ-UHFFFAOYSA-N 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000009628 steelmaking Methods 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Manufacturing Of Steel Electrode Plates (AREA)
- Soft Magnetic Materials (AREA)
Description
本発明は、無方向性電磁鋼板の製造方法に関する。特に、本発明は、モータ、発電機、変圧器等の鉄心の素材として好適な無方向性電磁鋼板の製造方法に関する。 The present invention relates to a method for producing a non-oriented electrical steel sheet. In particular, the present invention relates to a method for producing a non-oriented electrical steel sheet suitable as a material for an iron core such as a motor, a generator, or a transformer.
地球温暖化防止、省エネルギー推進等の観点から、各種電気機器の高効率化・小型化が進められている。電気機器の高効率化・小型化には、電気機器の鉄心素材である電磁鋼板の磁気特性を改善することが有効である。従来から電磁鋼板の製造工程において鋼板に歪みが付与された場合、内部応力の蓄積により鋼板の磁気特性が劣化することが一般的に知られている。これは、内部応力によって鋼板の磁化過程における磁壁移動が抑制されるためである。 From the viewpoint of preventing global warming and promoting energy saving, various types of electrical equipment are being made more efficient and smaller. In order to increase the efficiency and miniaturization of electrical equipment, it is effective to improve the magnetic properties of electrical steel sheets that are the core material of electrical equipment. Conventionally, it is generally known that when a strain is applied to a steel sheet in the manufacturing process of the electromagnetic steel sheet, the magnetic properties of the steel sheet deteriorate due to the accumulation of internal stress. This is because the domain wall movement in the magnetization process of the steel sheet is suppressed by the internal stress.
しかしながら、鉄系の軟磁性材料(Si鋼板等)は正の磁気歪みを有することから、軟磁性材料の仕上げ焼鈍時において軟磁性材料に適切な張力を付与して再結晶処理を施すと、主として軟磁性材料の長手方向(張力を印加した方向に同じ)の磁気特性が改善する。例えば、特許文献1においては鋼板のSi含有量に応じて最高加熱温度とユニット張力とを制御することを特徴とする鉄損特性及び低磁場での磁束密度の優れた無方向性電磁鋼板の製造方法が提案されている。しかしながら、この方法では鋼板のSi量のみに着目しており、その他の成分(例えばP)の影響については検討されていない。また、この方法では低磁場における鋼板の磁束密度改善に効果があるとしているが、高磁場における鋼板の磁束密度は改善できない問題があった。 However, since iron-based soft magnetic materials (such as Si steel plates) have a positive magnetostriction, when a recrystallization treatment is performed by applying an appropriate tension to the soft magnetic material during the final annealing of the soft magnetic material, The magnetic properties of the soft magnetic material in the longitudinal direction (same as the direction in which tension is applied) are improved. For example, in Patent Document 1, the production of a non-oriented electrical steel sheet excellent in iron loss characteristics and magnetic flux density in a low magnetic field characterized by controlling the maximum heating temperature and unit tension according to the Si content of the steel sheet A method has been proposed. However, this method focuses only on the amount of Si in the steel sheet, and the influence of other components (for example, P) has not been studied. Further, this method is said to be effective in improving the magnetic flux density of the steel plate in a low magnetic field, but there is a problem that the magnetic flux density of the steel plate in a high magnetic field cannot be improved.
本発明は、上記問題点に鑑みてなされたものであり、鉄損のみならず、低磁場における磁束密度および高磁場における磁束密度のいずれもが改善される無方向性電磁鋼板の製造方法を提供することを課題とする。 The present invention has been made in view of the above problems, and provides a method for producing a non-oriented electrical steel sheet in which not only iron loss but also both magnetic flux density in a low magnetic field and magnetic flux density in a high magnetic field are improved. The task is to do.
本発明は、上記課題を解決するために、質量%で、C:0.005%以下、Si:1.2%〜3.5%、Mn:0.1%〜2%、P:0.03%〜0.15%、S:0.004%以下、Al:0.2%〜3%、Ti:0.003%以下、N:0.005%以下、Ca:0.01%以下を含有し、残部が実質的にFeおよび不純物からなる冷間圧延鋼板に、最高到達温度:900℃〜1150℃、前記冷間圧延鋼板の圧延方向に付与する張力:1MPa〜4MPa、かつ鋼板温度が900℃以上となる時間:t(s)と前記張力P(MPa)とが下記式(1)を満足する条件の仕上げ焼鈍を施すことを特徴とする無方向性電磁鋼板の製造方法を提供する。
20≦t≦150−30P (1)
In order to solve the above-mentioned problems, the present invention provides, in mass%, C: 0.005% or less, Si: 1.2% to 3.5%, Mn: 0.1% to 2%, P: 0.00. 03% to 0.15%, S: 0.004% or less, Al: 0.2% to 3%, Ti: 0.003% or less, N: 0.005% or less, Ca: 0.01% or less Contained in the cold rolled steel sheet, the balance of which is substantially made of Fe and impurities, maximum temperature: 900 ° C. to 1150 ° C., tension applied in the rolling direction of the cold rolled steel sheet: 1 MPa to 4 MPa, and the steel plate temperature is Provided is a method for producing a non-oriented electrical steel sheet, characterized in that finish annealing is performed under a condition in which time of 900 ° C. or higher: t (s) and the tension P (MPa) satisfy the following formula (1). .
20 ≦ t ≦ 150-30P (1)
本発明に係る無方向性電磁鋼板の製造方法においては、仕上げ焼鈍処理における鋼板の最高到達温度、鋼板の圧延方向に付与する張力および鋼板温度の保持時間を適正に制御することにより、鉄損のみならず、低磁場における磁束密度および高磁場における磁束密度のいずれも改善された無方向性電磁鋼板を製造することができる。 In the method for producing a non-oriented electrical steel sheet according to the present invention, only the iron loss is obtained by appropriately controlling the maximum temperature of the steel sheet in the finish annealing treatment, the tension applied in the rolling direction of the steel sheet, and the holding time of the steel sheet temperature. Instead, a non-oriented electrical steel sheet in which both the magnetic flux density in a low magnetic field and the magnetic flux density in a high magnetic field are improved can be manufactured.
本発明によれば、鉄損のみならず、低磁場における磁束密度および高磁場における磁束密度のいずれもが改善された無方向性電磁鋼板を製造することができる。この無方向性電磁鋼板により製造した鉄心が電気機器に組み込まれれば、その電気機器の効率が長期間にわたり良好となる。このような省エネルギー効果により、地球環境に負荷の少ない未来創造に貢献することができる。 ADVANTAGE OF THE INVENTION According to this invention, not only an iron loss but the non-oriented electrical steel sheet in which both the magnetic flux density in a low magnetic field and the magnetic flux density in a high magnetic field were improved can be manufactured. If an iron core manufactured with this non-oriented electrical steel sheet is incorporated into an electrical device, the efficiency of the electrical device will be good over a long period of time. Such energy saving effects can contribute to the creation of a future with less burden on the global environment.
以下、本発明の無方向性電磁鋼板の製造方法について詳細に説明する。 Hereinafter, the manufacturing method of the non-oriented electrical steel sheet of this invention is demonstrated in detail.
なお、鋼中の各元素の含有量を示す「%」は、特に断りのない限り「質量%」を意味するものである。 “%” Indicating the content of each element in the steel means “% by mass” unless otherwise specified .
本発明の無方向性電磁鋼板の製造方法は、質量%で、C:0.005%以下、Si:1.2%〜3.5%、Mn:0.1%〜2%、P:0.03%〜0.15%、S:0.004%以下、Al:0.2%〜3%、Ti:0.003%以下、N:0.005%以下、Ca:0.01%以下を含有し、残部が実質的にFeおよび不純物からなる冷間圧延鋼板に、最高到達温度:900℃〜1150℃、前記冷間圧延鋼板の圧延方向に付与する張力:1MPa〜4MPa、かつ鋼板温度が900℃以上となる時間:t(s)と前記張力P(MPa)とが下記式(1)を満足する条件の仕上げ焼鈍を施すことを特徴とするものである。
20≦t≦150−30P (1)
The manufacturing method of the non-oriented electrical steel sheet of this invention is the mass%, C: 0.005% or less, Si: 1.2% -3.5%, Mn: 0.1% -2%, P: 0 0.03% to 0.15%, S: 0.004% or less, Al: 0.2% to 3%, Ti: 0.003% or less, N: 0.005% or less, Ca: 0.01% or less A cold-rolled steel sheet, the balance of which is substantially composed of Fe and impurities, the highest temperature: 900 ° C. to 1150 ° C., the tension applied in the rolling direction of the cold-rolled steel sheet: 1 MPa to 4 MPa, and the steel plate temperature The time when the temperature becomes 900 ° C. or higher: finish annealing is performed under the condition that t (s) and the tension P (MPa) satisfy the following formula (1).
20 ≦ t ≦ 150-30P (1)
本発明者らは、P含有量を変化させた電磁鋼板に対して種々の張力付加焼鈍を行い、それらの電磁鋼板の磁気特性を調査した。その結果、本発明者らは、焼鈍時の最高温度を制御するよりも焼鈍時間と鋼板に印加する張力の条件とを適正に制御することの方が電磁鋼板の鉄損の改善のみならず、低磁場および高磁場における電磁鋼板の磁束密度を効果的に改善できることを見いだし、本発明を完成させた。以下、この発明をなすに至った知見およびそれに至る実験結果について説明する。 The present inventors performed various tension-added annealings on electrical steel sheets with varying P content, and investigated the magnetic properties of these electrical steel sheets. As a result, the present inventors not only improve the iron loss of the electrical steel sheet, but appropriately control the annealing time and the tension condition applied to the steel sheet rather than controlling the maximum temperature during annealing, The inventors have found that the magnetic flux density of the electrical steel sheet in a low magnetic field and a high magnetic field can be effectively improved, and completed the present invention. Hereinafter, the knowledge that has led to the present invention and the experimental results leading to it will be described.
真空溶解炉において、主要成分がC:0.002%、Si:2.7%、Mn:0.2%、S:0.001%、Al:0.3%、N:0.002%、Ti:0.001%、Ca:<0.0003%であり、P含有量を0.001%から0.25%まで変化させた鋳片を作成し、それらの鋳片を1100℃まで加熱し、850℃仕上げ条件にて厚さ2.6mmの熱延鋼板を作成した。それらの熱延鋼板を厚さ2.1mmまで研削加工し、800℃4hの焼鈍を行い、さらに厚さ0.35mmまで冷間圧延した。それらの冷間圧延鋼板に900℃から1050℃の温度領域において種々の張力を圧延方向に付与しながら10秒から200秒の仕上げ焼鈍を行い、幅30mm、長さ100mmの形状に打ち抜き加工し、単板磁気測定機によって磁気特性を測定した。図1、図2および図3にこれらの結果を示す。 In the vacuum melting furnace, the main components are C: 0.002%, Si: 2.7%, Mn: 0.2%, S: 0.001%, Al: 0.3%, N: 0.002%, Ti: 0.001%, Ca: <0.0003%, and slabs were prepared by changing the P content from 0.001% to 0.25%, and the slabs were heated to 1100 ° C. A hot-rolled steel sheet having a thickness of 2.6 mm was prepared under finishing conditions at 850 ° C. These hot-rolled steel sheets were ground to a thickness of 2.1 mm, annealed at 800 ° C. for 4 hours, and further cold-rolled to a thickness of 0.35 mm. These cold-rolled steel sheets are subjected to finish annealing for 10 seconds to 200 seconds while applying various tensions in the rolling direction in the temperature range of 900 ° C. to 1050 ° C., and are punched into a shape with a width of 30 mm and a length of 100 mm. The magnetic properties were measured with a single plate magnetometer. FIG. 1, FIG. 2 and FIG. 3 show these results.
図1は、50Hzの低磁場(100A/m)における0.07%P含有鋼板の磁束密度B1に対して、上記鋼板に焼鈍を施す時間と焼鈍中の上記鋼板に印加する張力とが及ぼす影響を示すグラフである。図1の縦軸は焼鈍中の鋼板に印加する張力を示し、図1の横軸は鋼板に焼鈍を施す時間を示す。また、図1中の「○」印は鋼板の磁束密度B1が1.0Tを超えている場合を示し、図1中の「×」印は鋼板の磁束密度B1が0.8T未満であることを示す。 FIG. 1 shows the effect of the time for annealing the steel sheet and the tension applied to the steel sheet during annealing on the magnetic flux density B1 of the 0.07% P-containing steel sheet at a low magnetic field (100 A / m) of 50 Hz. It is a graph which shows. The vertical axis in FIG. 1 shows the tension applied to the steel plate during annealing, and the horizontal axis in FIG. 1 shows the time for annealing the steel plate. In addition, “◯” in FIG. 1 indicates a case where the magnetic flux density B1 of the steel sheet exceeds 1.0 T, and “X” in FIG. 1 indicates that the magnetic flux density B1 of the steel sheet is less than 0.8 T. Indicates.
図1内において「○」印が一定の範囲内に集中していることから、鋼板の磁束密度B1を改善するためには、鋼板に焼鈍を施す時間と焼鈍中の鋼板に印加する張力とを一定の範囲内に制御することが有効であることがわかる。図1から、適正条件は、鋼板に印加する張力P(MPa)が1MPa〜4MPaで、かつ、焼鈍時間t(s)と張力Pとが下記式(1)の関係を満たすことが必要であることがわかる。
20≦t≦150−30P (1)
In FIG. 1, since “◯” marks are concentrated within a certain range, in order to improve the magnetic flux density B1 of the steel sheet, the time for annealing the steel sheet and the tension applied to the steel sheet during annealing are determined. It can be seen that it is effective to control within a certain range. From FIG. 1, the proper conditions are that the tension P (MPa) applied to the steel sheet is 1 MPa to 4 MPa, and the annealing time t (s) and the tension P satisfy the relationship of the following formula (1). I understand that.
20 ≦ t ≦ 150-30P (1)
図2は、鋼板中のP含有量と50Hzの高磁場(5000A/m)における鋼板の磁束密度B50との関係を示すグラフである(鋼板に印加する張力:2MPa、焼鈍条件:900℃から1000℃の温度範囲で30秒保持)。図2の縦軸は鋼板の磁束密度B50を示し、図2の横軸は鋼板中のP含有量を示す。図2から明らかなように、鋼板中のP含有量が0.03%以上0.15%以下の場合に鋼板の磁束密度B50が向上することが分かる。 FIG. 2 is a graph showing the relationship between the P content in the steel sheet and the magnetic flux density B50 of the steel sheet at a high magnetic field (5000 A / m) of 50 Hz (tensile applied to the steel sheet: 2 MPa, annealing conditions: 900 ° C. to 1000 ° C. Hold for 30 seconds in the temperature range of ° C) The vertical axis in FIG. 2 indicates the magnetic flux density B50 of the steel plate, and the horizontal axis in FIG. 2 indicates the P content in the steel plate. As is apparent from FIG. 2, it is understood that the magnetic flux density B50 of the steel sheet is improved when the P content in the steel sheet is 0.03% or more and 0.15% or less.
図3は、上記の適正条件で焼鈍した鋼板(仕上げ焼鈍中の鋼板温度が900℃以上である時間t(s)=40s、仕上げ焼鈍中の最高到達温度=1020℃、張力P(MPa)=3MPa)と適正条件外(仕上げ焼鈍中の鋼板温度が900℃以上である時間t(s)=40s、仕上げ焼鈍中の最高到達温度=1020℃、張力P(MPa)=5MPa)で焼鈍した鋼板の鉄損W15/50と鋼板中P含有量との関係を示すグラフである。図3の縦軸は鋼板の磁束密度B50を示し、図3の横軸は鋼板中のP含有量を示す。図3から明らかなように、鋼板の焼鈍条件と鋼板中P含有量とを適正に制御して鋼板を製造することにより、鋼板の鉄損は改善される。 FIG. 3 shows a steel sheet annealed under the above-mentioned proper conditions (the time t (s) when the steel sheet temperature during finish annealing is 900 ° C. or higher = 40 s, the maximum temperature reached during finish annealing = 1020 ° C., and the tension P (MPa) = 3 MPa) and outside the proper conditions (time t (s) = 40 s when the steel plate temperature during finish annealing is 900 ° C. or higher, maximum reached temperature during finish annealing = 1020 ° C., tension P (MPa) = 5 MPa) It is a graph which shows the relationship between iron loss W15 / 50 of steel and P content in a steel plate. The vertical axis in FIG. 3 shows the magnetic flux density B50 of the steel plate, and the horizontal axis in FIG. 3 shows the P content in the steel plate. As apparent from FIG. 3, the iron loss of the steel sheet is improved by producing the steel sheet by appropriately controlling the annealing conditions of the steel sheet and the P content in the steel sheet.
張力付加焼鈍による低磁場磁束密度の改善効果の理由について、本発明者らは次のように推定する。電磁鋼板を900℃以上の高温で張力付加焼鈍すると、電磁鋼板内部に微小な応力が残留することから、磁化ベクトルが張力方向(圧延方向に同じ)近傍に向くような磁区構造が安定化すると推察される。低磁場における磁化過程は磁壁移動が主要な機構であることから、そのような磁区構造変化により圧延方向の低磁場磁束密度は顕著に改善する。一方、直角方向の磁束密度は逆に劣化する。しかしながら、圧延方向の改善効果が大きいので両方向を平均した磁束密度は改善される。ただし、焼鈍時間が長くなると電磁鋼板内部に歪みが多量に蓄積することから、磁壁移動が著しく抑制され磁束密度は低下する。 About the reason of the improvement effect of the low magnetic field magnetic flux density by tension addition annealing, the present inventors estimate as follows. It is speculated that when magnetic steel sheets are subjected to tension annealing at a high temperature of 900 ° C. or higher, a minute stress remains inside the magnetic steel sheets, so that the magnetic domain structure is stabilized so that the magnetization vector is oriented in the vicinity of the tension direction (same as the rolling direction). Is done. Since the domain wall motion is the main mechanism in the magnetization process in a low magnetic field, the low magnetic flux density in the rolling direction is remarkably improved by such a domain structure change. On the other hand, the magnetic flux density in the perpendicular direction deteriorates conversely. However, since the improvement effect in the rolling direction is great, the magnetic flux density averaged in both directions is improved. However, if the annealing time becomes longer, a large amount of strain accumulates inside the magnetic steel sheet, so that the domain wall movement is remarkably suppressed and the magnetic flux density is lowered.
また、P添加による鋼板の高磁場磁束密度の改善理由については、本発明者らは次のように考えている。P含有鋼板においては磁化に有利な(001)面を有する結晶方位粒密度が高いことから、P添加により鋼板の集合組織が改善されると考えられる。 Moreover, the present inventors consider the reason for improving the high magnetic flux density of the steel sheet by adding P as follows. Since the P-containing steel sheet has a high crystal orientation grain density having a (001) plane advantageous for magnetization, it is considered that the texture of the steel sheet is improved by the addition of P.
さらに、鋼板の鉄損W15/50が張力付加焼鈍とP添加との組み合わせにより改善した理由については、次のように推察する。無方向性電磁鋼板を1.5Tまで磁化させるには、磁壁移動と磁化回転とが主要な機構になる。鉄損を改善するにはそれらの磁化過程の障害が少ないことが重要である。磁壁移動に対しては先に述べたように鋼板に対する張力付加焼鈍が有効であり、磁化回転に対してはP添加による鋼板の集合組織制御が有効である。したがって、張力付加焼鈍とP添加とを組み合わせることにより、鋼板の磁区構造及び集合組織が適切に制御された結果、鋼板の鉄損が改善されたものと推察される。 Further, the reason why the iron loss W15 / 50 of the steel sheet is improved by the combination of the tension addition annealing and the P addition is presumed as follows. In order to magnetize the non-oriented electrical steel sheet up to 1.5T, domain wall movement and magnetization rotation are the main mechanisms. In order to improve the iron loss, it is important that there are few obstacles in the magnetization process. As described above, the tension-added annealing of the steel sheet is effective for the domain wall movement, and the texture control of the steel sheet by adding P is effective for the magnetization rotation. Therefore, it is presumed that the iron loss of the steel sheet was improved as a result of appropriately controlling the magnetic domain structure and texture of the steel sheet by combining the tension addition annealing and the P addition.
本発明においては、仕上げ焼鈍における焼鈍時間と仕上げ焼鈍時に鋼板に印加する張力とを適正に制御することにより、鋼の磁気特性を改善するものであるが、その効果を有効に引き出しかつ電磁鋼板として必要な他の特性を満足させるためには、後述するように鋼成分、仕上げ焼鈍の条件および熱延板焼鈍温度を限定する必要がある。以下、本発明の無方向性電磁鋼板における鋼成分、仕上げ焼鈍時の条件および熱延板焼鈍温度について説明する。 In the present invention, by properly controlling the annealing time in finish annealing and the tension applied to the steel plate during finish annealing, the magnetic properties of the steel are improved. In order to satisfy other necessary characteristics, it is necessary to limit the steel components, the conditions of finish annealing, and the hot-rolled sheet annealing temperature as described later. Hereinafter, the steel component in the non-oriented electrical steel sheet of the present invention, conditions during finish annealing, and hot-rolled sheet annealing temperature will be described.
1.鋼成分
・C
Cは、鋼中の不可避的不純物であることから特に添加する必要はない。しかしながら、鋼中のCは、時効により鋼中に炭化物(セメンタイト、εカーバイド等)を形成し、鋼の磁気特性劣化の原因となることから、なるべく低減することが重要である。鋼中のC含有量が0.005%を超えると、時効による鋼の鉄損劣化が顕著になる。したがって、鋼中C含有量は0.005%以下に限定する。
1. Steel composition ・ C
Since C is an inevitable impurity in steel, it is not necessary to add C in particular. However, C in the steel forms carbides (cementite, ε carbide, etc.) in the steel due to aging and causes deterioration of the magnetic properties of the steel, so it is important to reduce it as much as possible. When the C content in the steel exceeds 0.005%, the iron loss of the steel due to aging becomes remarkable. Therefore, the C content in the steel is limited to 0.005% or less.
・Si
鋼中のSiは、鋼の比抵抗を高めることから鋼の鉄損低減に有効である。鋼中Si含有量は必要な鉄損特性に応じて決定すれば良い。しかしながら、鋼中Si含有量が3.5%を超えると鋼板が冷間圧延の際に破断しやすくなり製造コストが著しく増大する。一方、鋼中Si含有量が1.2%未満では鋼板の高温強度が低くなり焼鈍時に歪みが蓄積して鋼板の磁気特性が劣化する。したがって、鋼中Si含有量は1.2%以上3.5%以下に限定する。さらに鋼板の鉄損を改善するには、鋼中のSi含有量を1.5%以上にするのが望ましい。
・ Si
Si in steel is effective in reducing iron loss of steel because it increases the specific resistance of steel. What is necessary is just to determine Si content in steel according to a required iron loss characteristic. However, if the Si content in the steel exceeds 3.5%, the steel sheet tends to break during cold rolling, and the manufacturing cost increases significantly. On the other hand, if the Si content in the steel is less than 1.2%, the high-temperature strength of the steel sheet becomes low, and strain accumulates during annealing, thereby degrading the magnetic properties of the steel sheet. Therefore, the Si content in the steel is limited to 1.2% to 3.5%. Furthermore, in order to improve the iron loss of the steel sheet, it is desirable that the Si content in the steel is 1.5% or more.
・Mn
鋼中のMnは、鋼の比抵抗を高めることから鋼の鉄損低減に有効である。しかしながら、鋼の鉄損低減に対するMnの効果はSiの効果より小さい。また、鋼中Mn含有量が2%を超えると原料コストが大きくなる。一方、鋼中Mn含有量が0.1%未満になると、鋼中にMnSが微細に分散することから鋼の磁気特性が劣化する。したがって、鋼中のMn含有量は0.1%以上2%以下の範囲に限定する。
・ Mn
Mn in steel is effective in reducing iron loss of steel because it increases the specific resistance of steel. However, the effect of Mn on reducing the iron loss of steel is smaller than that of Si. Moreover, if the Mn content in the steel exceeds 2%, the raw material cost increases. On the other hand, when the Mn content in the steel is less than 0.1%, MnS is finely dispersed in the steel, so that the magnetic properties of the steel deteriorate. Therefore, the Mn content in the steel is limited to a range of 0.1% to 2%.
・P
Pは、本発明において必須の元素であり、集合組織制御による高磁場における鋼の磁束密度改善に有効である。しかしながら、鋼中のP含有量が0.03%%未満では鋼の集合組織が改善されず、鋼の磁束密度は向上しない。一方、鋼中P含有量が0.15%を超えても鋼の磁束密度改善効果は飽和し、鋼板の靱性低下による冷間圧延破断が発生する恐れが生じる。したがって、鋼中P含有量は0.03%以上0.15%以下に限定する。さらに、高磁場における鋼の磁束密度を改善するためには、鋼中P含有量は0.05%以上にすることが好ましい。
・ P
P is an essential element in the present invention and is effective in improving the magnetic flux density of steel in a high magnetic field by texture control. However, if the P content in the steel is less than 0.03%, the texture of the steel is not improved and the magnetic flux density of the steel is not improved. On the other hand, even if the P content in the steel exceeds 0.15%, the effect of improving the magnetic flux density of the steel is saturated, and there is a possibility that cold rolling breakage may occur due to a reduction in the toughness of the steel plate. Therefore, the P content in steel is limited to 0.03% or more and 0.15% or less. Furthermore, in order to improve the magnetic flux density of steel in a high magnetic field, the P content in the steel is preferably 0.05% or more.
・S
Sは、鋼中の不可避的不純物であることから添加する必要はない。しかしながら、鋼中S含有量が0.004%を超えると多くのMnSが鋼中に形成されることから鋼の磁気特性が劣化する。したがって、鋼中S含有量は0.004%以下に限定する。特に、鋼の鉄損特性を向上させるには、鋼中S含有量を0.002%未満にすることが望ましい。
・ S
Since S is an unavoidable impurity in steel, it is not necessary to add S. However, if the S content in the steel exceeds 0.004%, a large amount of MnS is formed in the steel, so that the magnetic properties of the steel deteriorate. Therefore, the S content in the steel is limited to 0.004% or less. In particular, in order to improve the iron loss characteristics of steel, it is desirable that the S content in the steel be less than 0.002%.
・Al
Alは、鋼の脱酸に有効な元素であり、かつ、Si同様に鋼の比抵抗を高めることから鋼の鉄損低減に有効である。しかしながら、鋼中Al含有量が0.2%未満の場合、AlNが鋼中に微細に析出することから鋼の磁気特性が劣化する。一方、鋼中Al含有量が3%を超えると鋼の飽和磁束密度が著しく低下し鋼の鉄心性能が劣化する。したがって、鋼中Al含有量は0.2%以上3%以下に限定する。なお、高磁場における鋼の磁束密度を改善するには、鋼中Al含有量を2%以下にすることが望ましい。
・ Al
Al is an element effective for deoxidation of steel and, like Si, increases the specific resistance of steel and is effective in reducing iron loss of steel. However, when the Al content in the steel is less than 0.2%, AlN precipitates finely in the steel, so that the magnetic properties of the steel deteriorate. On the other hand, when the Al content in the steel exceeds 3%, the saturation magnetic flux density of the steel is remarkably lowered, and the iron core performance of the steel is deteriorated. Therefore, the Al content in the steel is limited to 0.2% or more and 3% or less. In order to improve the magnetic flux density of steel in a high magnetic field, the Al content in the steel is desirably 2% or less.
・Ti
Tiは、鋼中の不可避的不純物であることから添加する必要はない。しかしながら、鋼中Ti含有量がわずか0.003%を超えても、TiN,TiS,TiC等の析出物が鋼中に微細分散して鋼の磁気特性を劣化させる。したがって、鋼中Ti含有量は0.003%以下に限定する。
・ Ti
Ti is an unavoidable impurity in steel, so it is not necessary to add Ti. However, even if the Ti content in the steel exceeds only 0.003%, precipitates such as TiN, TiS, and TiC are finely dispersed in the steel and deteriorate the magnetic properties of the steel. Therefore, the Ti content in the steel is limited to 0.003% or less.
・N
Nは、鋼中の不可避的不純物であることから添加する必要はない。しかしながら、鋼中のN含有量が0.005%を超えるとAlNが鋼中に多数分散し鋼の磁気特性が劣化する。したがって、鋼中N含有量は0.005%以下に限定する。
・ N
Since N is an inevitable impurity in steel, it is not necessary to add N. However, if the N content in the steel exceeds 0.005%, a large amount of AlN is dispersed in the steel and the magnetic properties of the steel deteriorate. Therefore, the N content in the steel is limited to 0.005% or less.
・Ca
Caは、鋼中に添加する必要はない。しかしながら、鋼中にCaを0.0005%以上含有させると鋼中の酸化物、硫化物等が粗大化することから、鋼の磁気特性が向上する。一方、0.01%を超えるCaを含有した鋳片スラブは靱性が劣化するので、スラブ冷却時或いは加熱時にスラブに割れが発生する恐れがある。したがって、鋼中Ca含有量は0.01%以下に限定する。好ましくは0.005%以下である。なお、磁気特性改善のためには、鋼中Ca含有量は0.0005%以上に限定することが好ましい。
・ Ca
Ca does not need to be added to the steel. However, if Ca is contained in the steel in an amount of 0.0005% or more, oxides, sulfides, and the like in the steel are coarsened, so that the magnetic properties of the steel are improved. On the other hand, a cast slab containing Ca exceeding 0.01% has deteriorated toughness, so that there is a risk of cracking in the slab during cooling or heating. Therefore, the Ca content in the steel is limited to 0.01% or less. Preferably it is 0.005% or less. In order to improve the magnetic properties, the Ca content in the steel is preferably limited to 0.0005% or more.
・その他の不可避的不純物
製鋼プロセスにおいて鋼中に混入する不純物で0.01%以上混入する可能性のある成分としてCu,Ni,Cr等が存在する。Cu,Ni,Crのいずれも鋼中含有量を0.1%以下に低減しておけば、本発明の効果が損なわれることはない。また、上記成分以外の不純物成分は、いずれも鋼中含有量が0.01%以下に低減されていれば本発明の効果に影響はない。
-Other inevitable impurities Cu, Ni, Cr, etc. exist as components that may be mixed in the steel making process by 0.01% or more of impurities mixed in the steel. If any of Cu, Ni, and Cr is reduced to 0.1% or less in steel, the effect of the present invention is not impaired. Moreover, the impurity components other than the above components do not affect the effects of the present invention as long as the content in steel is reduced to 0.01% or less.
2.仕上げ焼鈍時の張力
仕上げ焼鈍時の鋼板に印加する張力を制御することは、本発明において極めて重要である。この制御の効果は前述した通りであるが、冷間圧延鋼板の圧延方向に付与する張力が1MPa未満の場合には低磁場における鋼板の磁束密度がほとんど改善されない。また、冷間圧延鋼板の平坦度が劣化する。一方、前記張力が4MPaを超えると鋼板内部に歪みが導入されることから鋼板の鉄損および磁束密度が共に劣化する。したがって、前記張力は1MPa以上4MPa以下に限定する。
2. Tension during finish annealing Controlling the tension applied to the steel sheet during finish annealing is extremely important in the present invention. The effect of this control is as described above, but when the tension applied in the rolling direction of the cold rolled steel sheet is less than 1 MPa, the magnetic flux density of the steel sheet in a low magnetic field is hardly improved. Moreover, the flatness of the cold rolled steel sheet is deteriorated. On the other hand, when the tension exceeds 4 MPa, strain is introduced into the steel sheet, so that both the iron loss and magnetic flux density of the steel sheet deteriorate. Therefore, the tension is limited to 1 MPa or more and 4 MPa or less.
3.仕上げ焼鈍のその他の条件
仕上げ焼鈍は、冷間圧延により鋼板に蓄積された歪みを解放し、さらに鋼板中の結晶粒を成長させることにより鋼板の磁気特性を向上させる上で非常に重要な工程である。仕上げ焼鈍中の最高到達温度が900℃未満の場合には、鋼板の結晶粒径が小さくなることから鋼板の磁気特性が劣化する。一方、前記最高到達温度が1150℃を超えると、鋼板の平坦が著しく劣化することから、鉄心の占積率が低下する。また、例えば、平坦度が劣化した鋼板は、コイル状に巻くと一部が塑性変形することとなり、磁気特性も劣化する。したがって、仕上げ焼鈍中の最高到達温度は、900℃以上1150℃以下に限定する。
3. Other conditions for finish annealing Finish annealing is a very important process for improving the magnetic properties of steel sheets by releasing the strain accumulated in the steel sheets by cold rolling and growing crystal grains in the steel sheets. is there. When the maximum temperature reached during finish annealing is less than 900 ° C., the crystal grain size of the steel sheet becomes small, so the magnetic properties of the steel sheet deteriorate. On the other hand, when the maximum temperature reaches 1150 ° C., the flatness of the steel sheet is significantly deteriorated, so that the space factor of the iron core is lowered. In addition, for example, when a steel sheet having deteriorated flatness is wound in a coil shape, a part thereof is plastically deformed, and the magnetic characteristics are also deteriorated. Therefore, the maximum temperature reached during finish annealing is limited to 900 ° C. or higher and 1150 ° C. or lower.
さらに、仕上げ焼鈍中の鋼板温度が900℃以上である時間t(s)と前記張力P(MPa)とは、下記式(1)を満たすことが必要である。
20≦t≦150−30P (1)
Furthermore, the time t (s) when the steel plate temperature during finish annealing is 900 ° C. or more and the tension P (MPa) need to satisfy the following formula (1).
20 ≦ t ≦ 150-30P (1)
仕上げ焼鈍中の鋼板温度が900℃以上に保持される時間が20秒未満であれば、鋼板の結晶粒径が小さくなることがあり、また、張力による磁区構造制御が不十分になることがあることから、低磁場における鋼板の磁束密度、鉄損等が劣化する。一方、仕上げ焼鈍中の鋼板温度が900℃以上に保持される時間が(150−30P)秒を超えると、鋼板に多量の歪みが蓄積されることから鋼板の磁気特性が劣化する。 If the time during which the steel sheet temperature during finish annealing is maintained at 900 ° C. or more is less than 20 seconds, the crystal grain size of the steel sheet may be reduced, and the magnetic domain structure control by tension may be insufficient. For this reason, the magnetic flux density, iron loss, etc. of the steel sheet in a low magnetic field deteriorate. On the other hand, if the time during which the steel plate temperature during finish annealing is maintained at 900 ° C. or more exceeds (150-30 P) seconds, a large amount of strain accumulates in the steel plate, so that the magnetic properties of the steel plate deteriorate.
4.熱延板焼鈍温度
熱延板焼鈍は、本発明の必須工程ではないが、鋼板の磁気特性を高めるのに有効である。熱延板焼鈍の効果を十分得るには、熱延板焼鈍の操業温度を750℃以上にする必要がある。一方、操業温度が1100℃を超えると熱延板の結晶粒径が大きくなりすぎることから、冷間圧延時に鋼板が破断しやすくなる。したがって、熱延板焼鈍を実施する場合の操業温度は、750℃以上1100℃以下に限定する。
4). Hot-rolled sheet annealing temperature Hot-rolled sheet annealing is not an essential process of the present invention, but is effective in enhancing the magnetic properties of the steel sheet. In order to sufficiently obtain the effect of hot-rolled sheet annealing, the operating temperature of hot-rolled sheet annealing needs to be 750 ° C. or higher. On the other hand, if the operating temperature exceeds 1100 ° C., the crystal grain size of the hot rolled sheet becomes too large, so that the steel sheet tends to break during cold rolling. Therefore, the operating temperature when carrying out hot-rolled sheet annealing is limited to 750 ° C. or higher and 1100 ° C. or lower.
(実施例)
転炉で脱炭脱硫した溶鋼230tonを取鍋内に出鋼し、その取鍋をRH式真空脱ガス装置に移動した。RH式真空脱ガス装置にて溶鋼の減圧脱炭を行い、鋼中C含有量を0.005%以下とした後に、溶鋼中Si,Mn,P,S,Al,Caの含有量を調整し、連続鋳造機にてスラブとした。
(Example)
230 ton of molten steel decarburized and desulfurized in a converter was put into a ladle, and the ladle was moved to an RH type vacuum degassing apparatus. After depressurizing the molten steel with an RH vacuum degassing device to reduce the C content in the steel to 0.005% or less, the contents of Si, Mn, P, S, Al, and Ca in the molten steel are adjusted. The slab was made by a continuous casting machine.
上記スラブを加熱炉で1150℃まで加熱し、仕上げ温度850℃、巻き取り温度500℃で熱間圧延し、厚さ2.0mmの鋼板とした。ついで、その鋼板を酸洗脱スケールして800℃10hの熱延板焼鈍を施した後、厚さ0.35mmまで冷間圧延し、仕上げ焼鈍を施し、表面に絶縁皮膜を塗布した。この鋼板から28cmエプスタイン試験片を採取し、JIS−C−2550規定の方法により鉄損および磁束密度を測定した。また、これらの鋼板を定盤上に乗せ、JIS−C−2550規定の方法により平坦度を測定した。表1に各鋼板(鋼A〜鋼J)の成分分析値を示し、表2に各鋼板の焼鈍条件、磁気特性の測定結果および平坦度の測定結果を示す。なお、表2に示す平坦度は、鋼板の側波高さが1mm以下であれば「○」印で表され、鋼板の側波高さが2mm以上であれば「×」印で表される。 The slab was heated to 1150 ° C. in a heating furnace and hot-rolled at a finishing temperature of 850 ° C. and a coiling temperature of 500 ° C. to obtain a steel plate having a thickness of 2.0 mm. Next, the steel sheet was pickled and descaled and subjected to hot rolled sheet annealing at 800 ° C. for 10 h, then cold rolled to a thickness of 0.35 mm, finish annealed, and an insulating film was applied to the surface. A 28 cm Epstein specimen was taken from this steel plate, and the iron loss and magnetic flux density were measured by the method defined in JIS-C-2550. Moreover, these steel plates were put on a surface plate, and the flatness was measured by the method defined in JIS-C-2550. Table 1 shows the component analysis values of each steel plate (Steel A to Steel J), and Table 2 shows the annealing conditions, the measurement results of the magnetic properties, and the measurement results of the flatness of each steel plate. The flatness shown in Table 2 is represented by a “◯” mark if the side wave height of the steel sheet is 1 mm or less, and is represented by a “x” mark if the side wave height of the steel sheet is 2 mm or more.
(評価)
表1に示すように、鋼A〜鋼Eは、鋼中成分全ての含有量が本発明の限定範囲内である。一方、鋼F〜鋼Jは、いずれかの鋼中成分含有量が本発明の限定範囲外である。また、表2に示すように、実施例A−1,A−2、実施例B−1,B−2、実施例C−1、実施例D−1および実施例E−1,E−2においては、焼鈍条件が本発明の限定範囲内にある。一方、比較例A−1〜A−6、比較例B−1、比較例C−1、比較例D−1および比較例E−1においては、いずれかの焼鈍条件が本発明の限定範囲外である。
(Evaluation)
As shown in Table 1, the content of all the components in steel of Steel A to Steel E is within the limited range of the present invention. On the other hand, steel F to steel J have any steel component content outside the limit of the present invention. Further, as shown in Table 2, Example A-1, A-2, Example B-1, B-2, Example C-1, Example D-1 Contact and Example E-1, E- In 2, the annealing conditions are within the limited range of the present invention. On the other hand, in the comparative examples A-1 to A-6, the comparative example B-1, the comparative example C-1, the comparative example D-1, and the comparative example E-1, any annealing condition is outside the limited range of the present invention. It is.
表2から明らかなように、鋼Aから製造した実施例A−1,A−2の鋼板は、鋼Aから製造した比較例A−1〜A−6の鋼板に比べて低磁場における磁束密度、高磁場における磁束密度および鉄損特性が改善している。同様に、実施例B−1,B−2の鋼板、実施例C−1の鋼板、実施例D−1の鋼板および実施例E−1,E−2の鋼板は、それぞれ比較例B−1の鋼板、比較例C−1の鋼板、比較例D−1の鋼板および比較例E−1の鋼板に比べて低磁場における磁束密度、高磁場における磁束密度および鉄損特性が改善している。したがって、鋼中成分が本発明の限定範囲内にあり、かつ、仕上げ焼鈍条件が本発明の限定に範囲内にあれば、低磁場における磁束密度、高磁場における磁束密度および鉄損特性が改善することがわかる。なお、比較例A−3および比較例D−1のように焼鈍時の張力が小さい鋼板と比較例A−6のように焼鈍時の最高到達温度が高い鋼板とは、磁気特性のみならず平坦度が劣化している。
As is apparent from Table 2, the steel plates of Examples A-1 and A-2 manufactured from Steel A were compared with the steel plates of Comparative Examples A-1 to A-6 manufactured from Steel A, and the magnetic flux density in a low magnetic field. The magnetic flux density and iron loss characteristics in high magnetic field are improved. Similarly, the steel plates of Examples B-1 and B-2, the steel plates of Example C- 1, the steel plates of Example D- 1 and the steel plates of Examples E-1 and E-2 are respectively Comparative Example B-1. Compared with the steel plate of Comparative Example C-1, the steel plate of Comparative Example D-1 and the steel plate of Comparative Example E-1, the magnetic flux density in the low magnetic field, the magnetic flux density in the high magnetic field, and the iron loss characteristics are improved. Therefore, if the steel components are within the limited range of the present invention and the finish annealing conditions are within the limited range of the present invention, the magnetic flux density in the low magnetic field, the magnetic flux density in the high magnetic field, and the iron loss characteristics are improved. I understand that. In addition, the steel plate with a small tension at the time of annealing as in Comparative Example A-3 and Comparative Example D-1 and the steel plate with a high maximum temperature at the time of annealing as in Comparative Example A-6 are flat as well as magnetic properties. Degree has deteriorated.
また、鋼E〜鋼GはSi,Mn,Al含有量が同程度であるが、比較例F−1,G−1の鋼板は、低磁場における磁束密度、高磁場における磁束密度および鉄損特性が改善していない。したがって、仕上げ焼鈍条件が本発明の限定範囲内であっても、鋼中成分が本発明の限定範囲内になければ、低磁場における磁束密度、高磁場における磁束密度および鉄損特性が改善しないことがわかる。なお、本発明の限定範囲外の成分を含有する鋼H〜鋼Jから製造した比較例H−1,I−1,J−1の鋼板は、いずれも低磁場における磁束密度が低く、鉄損特性も劣っている。 Steels E to G have the same Si, Mn, and Al contents, but the steel sheets of Comparative Examples F-1 and G-1 have a magnetic flux density in a low magnetic field, a magnetic flux density in a high magnetic field, and iron loss characteristics. Has not improved. Therefore, even if the finish annealing condition is within the limited range of the present invention, the magnetic flux density in the low magnetic field, the magnetic flux density in the high magnetic field, and the iron loss characteristics are not improved unless the components in the steel are within the limited range of the present invention. I understand. In addition, the steel plates of Comparative Examples H-1, I-1, and J-1 manufactured from Steel H to Steel J containing components outside the limited range of the present invention all have low magnetic flux density in a low magnetic field, and iron loss. The characteristics are also inferior.
以上のことから、本発明の限定範囲内の成分を含有する鋼から本発明の限定範囲内の焼鈍条件にて製造した鋼板は、低磁場における磁束密度、高磁場における磁束密度および鉄損特性が改善していることが確かめられた。 From the above, the steel sheet produced from the steel containing the components within the limited range of the present invention under the annealing conditions within the limited range of the present invention has a magnetic flux density in a low magnetic field, a magnetic flux density in a high magnetic field, and iron loss characteristics. It was confirmed that it was improving.
Claims (1)
20≦t≦150−30P (1) In mass%, C: 0.005% or less, Si: 1.2% to 3.5%, Mn: 0.1% to 2%, P: 0.03% to 0.15%, S: 0.00. 004% or less, Al: 0.2% to 3%, Ti: 0.003% or less, N: 0.005% or less, Ca: 0.01% or less, with the balance being Fe and inevitable impurities Maximum temperature reached to cold rolled steel plate: 1000 ° C. to 1150 ° C., tension applied in the rolling direction of the cold rolled steel plate: 2.5 MPa to 4 MPa, and time for the steel plate temperature to be 900 ° C. or higher: t (s) And a method of manufacturing a non-oriented electrical steel sheet, wherein finish annealing is performed under a condition that the tension P (MPa) satisfies the following formula (1).
20 ≦ t ≦ 150-30P (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004015229A JP4329550B2 (en) | 2004-01-23 | 2004-01-23 | Method for producing non-oriented electrical steel sheet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004015229A JP4329550B2 (en) | 2004-01-23 | 2004-01-23 | Method for producing non-oriented electrical steel sheet |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005206887A JP2005206887A (en) | 2005-08-04 |
JP4329550B2 true JP4329550B2 (en) | 2009-09-09 |
Family
ID=34900760
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004015229A Expired - Fee Related JP4329550B2 (en) | 2004-01-23 | 2004-01-23 | Method for producing non-oriented electrical steel sheet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4329550B2 (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100733345B1 (en) | 2005-12-27 | 2007-06-29 | 주식회사 포스코 | Non-oriented electrical steel sheets with improved magnetic property and method for manufacturing the same |
US7763122B2 (en) | 2005-12-27 | 2010-07-27 | Posco Co., Ltd. | Non-oriented electrical steel sheets with improved magnetic property and method for manufacturing the same |
JP2012036459A (en) * | 2010-08-09 | 2012-02-23 | Sumitomo Metal Ind Ltd | Non-oriented magnetic steel sheet and production method therefor |
JP5671869B2 (en) * | 2010-08-09 | 2015-02-18 | 新日鐵住金株式会社 | Non-oriented electrical steel sheet and manufacturing method thereof |
JP5716315B2 (en) * | 2010-08-10 | 2015-05-13 | 新日鐵住金株式会社 | Non-oriented electrical steel sheet and manufacturing method thereof |
EP2612942B1 (en) * | 2012-01-05 | 2014-10-15 | ThyssenKrupp Steel Europe AG | Non-grain oriented electrical steel or sheet metal, component produced from same and method for producing non-grain oriented electrical steel or sheet metal |
JP5892327B2 (en) * | 2012-03-15 | 2016-03-23 | Jfeスチール株式会社 | Method for producing non-oriented electrical steel sheet |
CN104937118A (en) | 2013-02-21 | 2015-09-23 | 杰富意钢铁株式会社 | Production method for semi-processed non-oriented electromagnetic steel sheet exhibiting superior magnetic properties |
PL3239326T3 (en) | 2014-12-24 | 2020-06-29 | Posco | Non-oriented electrical steel sheet and manufacturing method therefor |
DE102017208146B4 (en) * | 2017-05-15 | 2019-06-19 | Thyssenkrupp Ag | NO electrical steel for electric motors |
CN112430775A (en) * | 2019-08-26 | 2021-03-02 | 宝山钢铁股份有限公司 | High-strength non-oriented electrical steel plate with excellent magnetic property and manufacturing method thereof |
-
2004
- 2004-01-23 JP JP2004015229A patent/JP4329550B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2005206887A (en) | 2005-08-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2696887C1 (en) | Sheet from non-textured electrical steel and method of manufacturing thereof | |
RU2590405C2 (en) | Non-textured siliceous steel and manufacturing method thereof | |
TWI457443B (en) | Manufacturing method of non - directional electromagnetic steel sheet | |
JP5927754B2 (en) | Oriented electrical steel sheet and manufacturing method thereof | |
JP4586741B2 (en) | Non-oriented electrical steel sheet and manufacturing method thereof | |
JP6432173B2 (en) | Non-oriented electrical steel sheet with good all-round magnetic properties | |
JP6236466B2 (en) | Oriented electrical steel sheet with excellent iron loss and method for producing the same | |
JP5423616B2 (en) | Method for producing non-oriented electrical steel sheet with excellent magnetic properties and method for producing cast steel strip for producing non-oriented electrical steel sheet | |
JP4329550B2 (en) | Method for producing non-oriented electrical steel sheet | |
KR20190077025A (en) | Non-oriented electrical steel sheet and manufacturing method thereof | |
KR102264103B1 (en) | Non-oriented electrical steel sheet having an excellent recyclability | |
JP2015086414A (en) | Method for manufacturing oriented electromagnetic steel sheet | |
JP5428188B2 (en) | Method for producing grain-oriented electrical steel sheet | |
JP4696750B2 (en) | Method for producing non-oriented electrical steel sheet for aging heat treatment | |
JP5100000B2 (en) | Method for producing non-oriented electrical steel sheet with excellent magnetic properties | |
JP3931842B2 (en) | Method for producing non-oriented electrical steel sheet | |
JP4599843B2 (en) | Method for producing non-oriented electrical steel sheet | |
JP6458813B2 (en) | Method for producing grain-oriented electrical steel sheet | |
JP3843955B2 (en) | Non-oriented electrical steel sheet | |
JP4016552B2 (en) | Method for producing non-oriented electrical steel sheets with excellent magnetic properties and surface properties | |
KR101110257B1 (en) | Non-oriented electrical steel sheet with high magnetic flux density and manufacturing method thereof | |
JP2005187846A (en) | Non-oriented electromagnetic steel sheet and manufacturing method therefor | |
JP3937685B2 (en) | Electrical steel sheet with excellent high-frequency magnetic properties and method for producing the same | |
JP4604449B2 (en) | Oriented electrical steel sheet | |
JP2639290B2 (en) | Manufacturing method of non-oriented electrical steel sheet for rotating machines |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060216 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080813 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080819 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080926 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090113 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090302 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090526 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090608 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4329550 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120626 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130626 Year of fee payment: 4 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20120703 |
|
A072 | Dismissal of procedure [no reply to invitation to correct request for examination] |
Free format text: JAPANESE INTERMEDIATE CODE: A072 Effective date: 20121030 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130626 Year of fee payment: 4 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130626 Year of fee payment: 4 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |