JP4604449B2 - Oriented electrical steel sheet - Google Patents

Oriented electrical steel sheet Download PDF

Info

Publication number
JP4604449B2
JP4604449B2 JP2003018092A JP2003018092A JP4604449B2 JP 4604449 B2 JP4604449 B2 JP 4604449B2 JP 2003018092 A JP2003018092 A JP 2003018092A JP 2003018092 A JP2003018092 A JP 2003018092A JP 4604449 B2 JP4604449 B2 JP 4604449B2
Authority
JP
Japan
Prior art keywords
steel sheet
mass
electrical steel
oriented electrical
iron loss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003018092A
Other languages
Japanese (ja)
Other versions
JP2004225154A (en
Inventor
之啓 新垣
康之 早川
猛 今村
峰男 村木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2003018092A priority Critical patent/JP4604449B2/en
Publication of JP2004225154A publication Critical patent/JP2004225154A/en
Application granted granted Critical
Publication of JP4604449B2 publication Critical patent/JP4604449B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、主として小型のモータや発電機の鉄心材料に用いられる方向性電磁鋼板に関するものである。
【0002】
【従来の技術】
例えば、小型トランスでは、積層された電磁鋼板をコア(鉄心)として使用している。このコアの代表的な形状としては、図1に示すような、EI型コアが知られている。このEI型コア用の鉄心材料としては、無方向性電磁鋼板および方向性電磁鋼板の両方が用いられている。
【0003】
まず、無方向性電磁鋼板を用いる場合には、方向性電磁鋼板を使用する場合に比較して磁気特性のレベルが低いために、コアの磁気特性は劣っている。しかしながら、無方向性電磁鋼板は方向性電磁鋼板より製造プロセスが簡略であるがゆえに価格が安く、そのため経済的な面から使用される場合が多い。
【0004】
一方、方向性電磁鋼板は、通常、圧延方向の磁気特性は良好であるものの、圧延直角方向の磁気特性は著しく劣る。但し、EIコア内での磁束の流れを考慮すれば、磁束の流れが圧延直角方向の部分となるのは2割程度にとどまり、8割程度は圧延方向の部分であるから、EI型コアの鉄心材料として方向性電磁鋼板を使用したとしても、無方向性電磁鋼板よりも遥かに良好な特性が得られるのである。そのため、鉄損を重視する場合には方向性電磁鋼板が用いられることが多い。とはいえ、方向性電磁鋼板は圧延直角方向の磁気特性が著しく劣るので,多少なりとも圧延直角方向にも磁束が流れるEI型コアは、方向性電磁鋼板の特徴を十分に生かした用途とは必ずしもいえないのである。
【0005】
このような観点から二次再結晶により(100)[001]組織(正キューブ組織)を発達させて、圧延直角方向へも磁化容易軸を配向させた、いわゆる二方向性電磁鋼板の製造方法も古くから検討されている。例えば、特許文献1には、インヒビターを含有する鋼素材を一方向に冷間圧延した後、さらにこの方向と交差する方向に冷間圧延を加えるクロス圧延に続いて、短時間焼鈍と900〜1300℃の高温焼鈍を行うことにより、正キューブ方位粒を二次再結晶させる方法が記載されている。また、特許文献2には、インヒビターとしてAlNを含有する素材について、熱延方向に対して直角の方向に50〜90%の圧下率で冷間圧延し、ついで一次再結晶を目的とする焼鈍を施したのち、二次再結晶および純化を目的とする最終仕上焼鈍を施すことによって、正キューブ方位粒に二次再結晶させる方法が開示されている。
【0006】
ここで、磁気特性の面のみに着目すれば、EIコア等の二方向に磁化される用途には、圧延方向と圧延直角方向の両方の磁気特性が良好な二方向性電磁鋼板を適用することが最も有利であると考えられるが、通常、二方向性電磁鋼板の製造には生産性が極めて低いクロス圧延を必要とするため、かかる二方向性電磁鋼板は未だかつて工業的に大量生産されたことはない。
【0007】
これに対して、上述したクロス圧延は行わずに、インヒビター成分を減少させて集積度の低いゴス方位を発達させ、方向性電磁鋼板の磁気特性の異方性を低下させることにより、モータの分割型鉄心等に適した材料を得る技術が、特許文献3に開示されている。
【0008】
しかしながら、この技術はゴス方位集積度を低下させていること、またSiの含有量を3.0mass%未満としていることから、その鉄損は圧延方向のW15/50が最良値でも2.1W/kg以上と、高級無方向性電磁鋼板程度の値でしかなく、方向性電磁鋼板のレベルであるW15/50<1.4W/kgに比べると大きく劣っており、省エネルギー化が進む、世界的な需要に応えるレベルには到っていない。
【0009】
以上の技術においては、圧延方向にゴス方位粒が集積する現象と圧延直角方向の磁気特性が改善する現象とが相反する関係にあるために、前述の方向性電磁鋼板では圧延直角方向への十分な磁気特性を確保する代わりに圧延方向の磁気特性がある程度劣化することが避けられなくなってくるのである。
【0010】
また、この他の方向性電磁鋼板の鉄損改善手段として、鋼板への張力付加が知られている。この張力付加による鉄損改善効果は、非特許文献1において認められるとおり、ゴス方位が圧延方向に高い集積率を持っているB8値が高い方向性電磁鋼板において、その効果が大きいことが知られている。このメカニズムは以下のように理解されている。すなわち、一般に結晶方位<001>の鋼板表面鉛直方向への伏角(以下、β角とする)が大きいと、鋼板表面に磁極を発生させることになり、静磁エネルギーの増大を生む。この静磁エネルギーの増大を緩和するために、鋼板厚さ方向に、図2に示すような環流磁区(ランセット磁区)Rが生じる。ここで、圧延方向への一軸張力を付加すると、ランセット磁区は不安定化し消失するため、再び静磁エネルギーが増加することにつながる。これを補填するために、磁区細分化が生じる結果、鉄損が低減するのである。
【0011】
ただし、ゴス方位からずれた粒の多いB8の低い鋼板では、β角のずれも大きい上、結晶粒界での磁極発生量も多いために、ランセット磁区による静磁エネルギーの増大緩和効果だけでは安定状態を取れず、すでに磁区細分化が起こっている状態にある。つまり、磁区幅は極めて狭い状態であり、新たな磁区細分化による大きな鉄損改善効果を期待出来ないのである。
【0012】
【特許文献1】
特公昭35-2657号公報
【特許文献2】
特開平4-362132号公報
【特許文献3】
特開2000-87139号公報
【非特許文献1】
電気学会マグネティックス研究会資料 Mag.86-170 pp62 Fig2(1986)
【0013】
【発明が解決しようとする課題】
上述のように、従来は、圧延直角方向での特性を確保するのと引き換えに圧延方向のB8が1.85T以下となるような電磁鋼板において、張力付加による鉄損改善効果を十分に有するものは未だ提供されていない。このような圧延方向のB8が1.85T以下の電磁鋼板では、その圧延方向の鉄損値も高配向方向性電磁鋼板のレベルに達するものではないため、必要に応じて張力付加を行うことにより圧延方向鉄損の低減が実現すれば、多目的に使用できる鋼板となり極めて有用である。
【0014】
そこで、本発明は、圧延直角方向のBが0.7T以上、かつ圧延方向でのB8が1.85T以下のレベルにあっても、張力付加による鉄損の改善を可能とした、経済的にも有利な方向性電磁鋼板を提供しようとするものである。
【0015】
【課題を解決するための手段】
さて、電磁鋼板に張力を付加すると、ランセット磁区のような補助磁区と呼ばれる、張力付加方向と平行しない磁区を不安定化させることになる。これは、磁歪を逆に利用した効果と言える。ここで、単純化のために等方磁歪を仮定した場合、磁気弾性エネルギーEσ
【数1】

Figure 0004604449
で表される。この式において、φは張力σと磁化とのなす角であり、この式は一種の一軸異方性を表すものである。これは等方磁歪を仮定していない場合においても同様であり、圧延方向への張力の付加はそれと平行する磁化(磁区)に対してエネルギー的に有利に作用し、それと直交する磁化(磁区)に対して最も不利に働く。
【0016】
電磁鋼板において生じる補助磁区は、圧延方向に対して大きな角度を有しており、圧延方向への張力付加により不安定化する。従って、補助磁区を多数有する電磁鋼板では、圧延方向への張力により、補助磁区の消失と、それに伴う磁区細分化が生じる結果、鉄損の改善がはかられるのである。
【0017】
補助磁区にあって、特にランセット磁区が上記したβ角に依存して出現することは前述の通りである。しかし、β角の増大はランセット磁区の数を増加させるが、磁区細分化も並行して行われるため、十分な鉄損改善効果を得ることが出来ない。一方で、補助磁区は、鋼板内に歪や不純物等があった場合も、様々な形で出現し、同様に周囲の静磁エネルギーを低減する役割を果たすことが知られている。かような微細不純物に起因する補助磁区の場合、同時に磁区細分化は生じておらず、張力付加時には補助磁区の消失とともに磁区細分化が生じる。その結果、圧延方向への張力付加により鉄損改善効果が得られることが予想される。
【0018】
ここで、方向性電磁鋼板に不純物が存在すると、一般的には磁気特性の劣化を引き起こす。そのため、最終仕上焼鈍の過程において高温を保って不純物を除去する工程、いわゆる純化焼鈍を経ている。これに対して、本発明は、本来であれば純化により除去する不純物を意図的に鋼板内に残すことにより、微細な補助磁区を適当数で保有させることを意図したものである。
【0019】
発明者らは、既にインヒビター成分(S,Se,N等)を含有しない高純度素材において、固溶窒素の粒界移動抑制効果を利用して二次再結晶を発現させる技術を、特開2000-129356号公報にて提案しており、この技術では高温での純化過程を経ずとも低鉄損が得られる方向性電磁鋼板を提案している。この技術を応用することにより、低鉄損を保ちつつ、純化過程を踏まず微細な不純物(析出物)を適度(微量)に保有させたままにすることに成功し、本発明を完成するに到った。
【0020】
すなわち、本発明の要旨構成は次の通りである。
(1)C:0.12mass%以下、Si:1.0 〜8.0 mass%、Mn:0.005 〜3.0 mass%を含有し、Al:100 ppm以下、N、SおよびSeがそれぞれ50ppm 以下に低減され、かつ、残部Fe及び不可避的不純物の成分組成を有する方向性電磁鋼板であって、圧延直角方向での磁束密度B1が0.7T以上、かつ圧延方向での磁束密度B8が1.85T以下であり、無張力条件下の鋼板表面において、20〜300個/mmの補助磁区を有する粒の面積率が30%以上である、ことを特徴とする方向性電磁鋼板。
【0021】
(2)前記成分組成は、更に、Ni:0.005 〜1.50mass%、Sn:0.02〜0.50mass%、Sb:0.01〜0.50mass%、Cu:0.01〜0.50mass%及びMo:0.01〜0.50mass%の1種または2種以上を含有することを特徴とする上記(1)に記載の方向性電磁鋼板。
【0022】
【発明の実施の形態】
次に、本発明を導くに到った実験結果について、詳しく説明する。
まず、圧延直角方向の磁気特性が向上するのは、冷延前粒径を粗大化させた結果、一次再結晶集合組織の{111}組織が減少するとともに、{100}〜{411}成分が増加し、最終仕上焼鈍後の鋼板に{100}<001>方位を持つ微細な二次再結晶粒が混合してくるためであると考えられる。
【0023】
インヒビターを用いる従来の技術では、975℃を超える高温焼鈍でインヒビター成分(S,Se,N等)を純化しなければ低鉄損が得られないが、インヒビターを使用しない方法では、純化を行わなくとも二次再結晶が完了すれば低鉄損が得られるため、この技術を利用することによって、仕上焼鈍における到達温度を低めに抑え、微細粒を残存させることが可能となる。
【0024】
このようなインヒビター成分を含有せず、S,Se,N等の不純物元素を適度に含有させた素材を用い、最終冷延前の粒径を粗大化させることにより、圧延直角方向にも磁束密度B1が0.7T以上の十分な磁気特性を持つ鋼板を作製した。この鋼板の圧延方向でのB8は1.85T以下程度であった。この方向性電磁鋼板において、従来の方向性電磁鋼板の製造工程で必須であった、不純物を純化する純化焼鈍のプロセスは行わず、意図的に不純物を残すことによって、微細不純物に起因する補助磁区を鋼板に保有させた。なお、一部の鋼板は、1150℃の高温で純化焼鈍を行った。
【0025】
純化焼鈍を行わずに得られた、鋼板表面の磁区を走査型電子顕微鏡により観察した結果を、図3に示す。なお、磁区の観察は、走査電子顕微鏡内において、室温(25℃)および圧力:5×10−1〜×10−4Paの条件下で約1Tで励磁した後、60Hzで約30秒間かけて直線的に減磁することにより消磁したのちに行った。これより、微細不純物に起因する補助磁区は、B8が1.85T以下の鋼板で数多く存在することが確認された。特に、B8が1.8T以下の鋼板において、さらに多数の補助磁区が観察された。
なお、張力被膜を有する鋼板の場合、無張力条件とするために、酸洗による被膜除去を行うと表面性状が変わってしまい、鋼板表面の補助磁区の量に変化が生じる。従って、被膜を有する鋼板では、被膜除去後、化学研磨等により表面を平滑化した状態で観察を行った。
【0026】
次いで、この純化焼鈍を行わない方向性電磁鋼板と、純化焼鈍を行った方向性電磁鋼板とのそれぞれについて、圧延方向に張力を付加したところ、図4に示す結果を得た。その結果、純化焼鈍を行った鋼板では張力による鉄損改善効果が認められなかったのに対して、不純物元素を適度に含有させ、純化焼鈍を行わなかった鋼板では、圧延方向のB8が1.85T以下のグレードはもちろん、1.8T以下となる方向性電磁鋼板においても、張力による鉄損改善効果を示した。
【0027】
続いて鋼板に含有させる不純物元素の量を種々に変更した素材を用い、さらに調査を行ったところ、図5に示すように、無張力条件下、つまり張力を付加する前の状態において、鋼板表面に20〜300個/mm2の補助磁区を有する粒に張力による鉄損改善効果があり、その粒を合計した面積率が30%以上となると、張力による鉄損改善効果が現出することが明らかとなった。
以上の実験結果により、本発明は導かれたものである。
【0028】
以下に、本発明の電磁鋼板について、その要件の限定理由を説明する。
[圧延直角方向でのB1が0.7T以上]
従来の方向性電磁鋼板にあっても、圧延直角方向におけるB8は1.4T程度と、磁束密度としては比較的良好な値を示していた。しかし、高周波での使用や、さらなる鉄損低減という面では、低い励磁場において高い反応性を示すことが極めて重要である。この点において、本発明では、インヒビター成分を含有させず、固溶窒素の粒界移動抑制効果を利用して二次再結晶を発現させ、さらに低酸化性雰囲気で再結晶焼鈍を行って酸化被膜を抑制することによって、従来の方向性電磁鋼板とは異なり、B1という低い励磁場においても、高い磁束密度を示す透磁率の高い電磁鋼板を実現した。
【0029】
[圧延方向のB8が1.85T以下であり、圧延方向の張力により鉄損の改善が現出]
従来の方向性電磁鋼板では、前述のとおり、圧延直角方向の磁気特性を確保し、圧延方向のB8が1.85T以下と低いレベルの場合は、ゴス方位からの結晶粒のずれが多い。この際、β角増大に伴い、表面磁極が増加する。さらに、隣り合う結晶粒同士の方位の差が大きくなり、この方位差に起因して結晶粒界での磁極の生成量が多くなるため、磁区細分化が予め起こってしまう。よって、張力を付加しても新たな磁区細分化は生じず、圧延方向に20MPaの張力を付加しても、無張力下での鉄損からの改善量が0.03W/kgを超えるような、鉄損の改善は起こらない。
【0030】
これに対して、本発明の電磁鋼板は、従来の方向性電磁鋼板とは異なり、単にゴス方位からの結晶粒のずれを大きくするのではなく、不純物を適度に残存させて補助磁区を適度に形成させることにより、圧延方向の張力を付加すると鉄損の改善が現出するのである。
【0031】
[無張力下で鋼板表面に20〜300個/mm2の補助磁区を有する粒の面積率が30%以上]
鋼板表面に適度に補助磁区を形成させることにより、圧延直角方向の磁気特性を高め圧延方向の磁束密度が1.85T以下と低下した鋼板でも、圧延方向に張力を付加した際の補助磁区の消失の効果により、鉄損改善効果を現出させることができる。ここで、補助磁区は20個/mm2未満では鉄損改善効果がほとんどなく、過剰張力によって逆に鉄損が悪化し、一方300個/mm2超では不純物の量が多すぎるため、そもそもの鉄損値が高い水準にあり、その上に張力を付加しても消失せずに残留する補助磁区が多く、かえって鉄損が劣化する場合がある。よって、20〜300個/mm2の補助磁区を有する粒が鉄損改善効果を有する。
【0032】
また、このような粒の面積率が無張力下での鋼板において、合計で30%未満では,鋼板全体としての鉄損改善効果が現出しないことから、20〜300個/mm2の補助磁区を有する粒の面積率は30%以上とすることが好ましい。
【0033】
また、本発明の電磁鋼板には、以下に示す製造方法が適合する。
まず、素材の成分組成について説明する。
C:0.12mass%以下
Cは、組織改善により磁気特性を向上させる有用元素であるが、含有量が0.12mass%を超えると脱炭焼鈍で除去するのが困難になるので、上限を0.12mass%とすることが好ましい。下限に関しては、Cを含まない素材でも二次再結晶が可能であるので特に設けない。特にCを素材段階から30ppm 以下に低減しておくと脱炭焼鈍の省略が可能であり、生産コストの面で有利となるので、低級品の製造の場合にはCを低減した素材を用いることが可能である。
【0034】
Si:1.0 〜8.0 mass%
Siは、電気抵抗を高め、鉄損の低減に有効に寄与するが、そのためには少なくとも1.0 mass%を必要とし、一方8.0mass%を超えると磁東密度が低下するだけでなく、製品の二次加工性が著しく劣化するので、1.0 〜8.0 mass%の範囲が好ましい。特に好適には2.0〜4.5 mass%の範囲である。
【0035】
Mn:0.005 〜3.0 mass%
Mnは、熱間加工性を良好にするために必要な元素であるが、0.005 mass%未満ではその添加効果に乏しく、一方3.0mass%を超えると二次再結晶が困難となるので、0.005〜3.0 mass%の範囲が好ましい。
【0036】
O:50ppm以下
本発明の電磁鋼板を製造するには、スラブ段階においてOを50ppm以下に低減しておくことが重要である。というのは、Oは、本発明において二次再結晶の発現を大きく阻害し、しかも後工程では除去が困難だからである。
【0037】
さらに、本発明では、不純物元素を極力低減することが好ましい。特に、二次再結晶粒の発生に対して有害なだけでなく、地鉄中に残存して鉄損を劣化させる窒化物形成元素であるAlについては100 ppm以下、B,V,NbさらにはS,Se,P,Nの各元素については、50ppm 以下、好ましくは30ppm 以下に低減しておくことが好ましい。なお、本発明では、前述した不純物を、二次再結晶に悪影響を及ぼさない程度に適量を残存させることにより、無張力条件下で形成される補助磁区の量を制御し、もって、圧延方向への張力付加による鉄損改善効果を現出させているのである。
【0038】
また、本発明では、磁気特性改善のために、以下の元素を含有することができる。
Ni:0.005 〜1.50mass%
Niは、組織を改善して磁気特性を向上させる有用元素であり、必要に応じて添加することができる。ここに、含有量が0.005 mass%に満たないと磁気特性の改善量が小さく、一方1.50mass%を超えると二次再結晶が不安定になり磁気特性が劣化するので、Ni含有量は0.005〜1.50mass%とした。
【0039】
Sn:0.02〜0.50mass%、Sb:0.01〜0.50mass%、Cu:0.01〜0.50mass%、Mo:0.01〜0.50mass%
上記の元素はいずれも、鉄損改善成分であり、必要に応じて単独または複合して添加することができる。ここに、含有量が下限に満たないと鉄損の改善効果に乏しく、一方上限を超えると二次再結晶が起こらなくなるので、各元素とも添加量は上記の範囲に限定することが好ましい。
【0040】
さらに、製造工程について具体的に説明する。
まず、上記の好適成分組成に調整した溶鋼から、スラブを製造するが、かかるスラブは、通常の造塊−分塊法、連続鋳造法で製造しても良いし、また100mm以下の厚さの薄鋳片を直接鋳造法で製造しても良い。スラブは、通常、加熱して熱間圧延するが、鋳造後、加熱せずに直ちに熱延しても良い。また、薄鋳片の場合には、熱間圧延を省略してそのまま以後の工程に供給しても良い。
【0041】
ついで、必要に応じて熱延板焼鈍を施したのち、1回または中間焼鈍を挟む2回以上の冷間圧延を施してから、必要に応じて脱炭焼鈍を施し、最終仕上焼鈍を施す。ここに、熱延板焼鈍を施すことによって、磁気特性を向上させることが可能である。また、中間焼鈍を冷間圧延の間に挟むことも磁気特性の安定化に有用である。しかしながら、いずれも生産コストを上昇させることになるため、経済的観点から熱延板焼鈍や中間焼鈍の取捨選択が決定される。
【0042】
なお、熱延板焼鈍および中間焼鈍の好適温度範囲は700℃以上、1200℃以下である。というのは、焼鈍温度が700℃に満たないと焼鈍時の再結晶が進行しないため効果が薄く、一方1200℃を超えると鋼板の機械強度が低下してライン通板が困難になるからである。
【0043】
脱炭焼鈍は、Cを含有しない素材を用いる場合には特に必要ない。また、鋼板表面の酸化は最終仕上焼鈍時に焼鈍分離剤中の酸化物や水酸化物によってなされるため、必ずしも最終仕上げ焼鈍前の酸化が必要とは限らない。さらに、最終仕上焼鈍に先立って浸珪法によって冷間圧延終了後にSi量を増加させる技術を併用してもよい。
【0044】
最終仕上焼鈍では、二次再結晶後に通常行われる高温純化焼鈍を行わずに微量の不純物元素を適度に残留させることが、重要である。そのためには、最終仕上焼鈍は1000℃以下とすることが好ましい。
【0045】
さらに、鉄損を一層改善するためには、鋼板を圧延方向に機械的に引張ることや、鋼板表面に張力被膜を生成させることが有効である。後者の目的のためには、2種類以上の被膜からなる多層膜構造としても良い。また、用途に応じて、樹脂等を混合させたコーティングを施しても良い。本発明の電磁鋼板では、圧延直角方向の磁束密度Bが0.7T以上と極めて高く、そのため圧延方向の磁束密度B8が1.85T以下と低いにもかかわらず、張力付加による鉄損改善効果が現出するため、このような張力被膜の付与は有利に作用する。
【0046】
【実施例】
C: 100ppm、Si:3.3mass%およびMn: 0.0061mass%を基本成分として、不純物元素としてAlを5〜400ppm、Nを4〜110ppm、Sを4〜60ppm、Seを0〜200ppmの範囲で残存させた、種々の成分組成になる鋼スラブを連続鋳造にて製造したのち、各スラブを加熱後、熱間圧延によって2.5mm厚の熱延板とした。ついで、950℃, 30秒の条件で熱延板焼鈍を施したのち、冷間圧延によって0.34mmの最終板厚に仕上げた。ついで、900℃, 60秒の脱炭焼鈍を施して、鋼中Cを0.0020mass%まで低減したのち、最終仕上焼鈍を施した。最終仕上焼鈍は、窒素雰囲気中で900℃まで加熱し、純化焼鈍は行わずに終了した。
【0047】
かくして得られた鋼板の圧延方向に、張力を20MPaまで付加し、鉄損の改善量を調査した。ここで、W17/50は50Hzおよび1.7Tで励磁した際の鉄損値、改善量ΔW17/50は20MPaの張力付加時の鉄損値(W17/50)から無張力時の鉄損値(W17/50)を差し引いた値である。
その調査結果を表1に示すように、本発明に従う鋼板は圧延直角方向のBが0.7T以上であり、圧延方向のBが1.85T以下であった。さらに、表1の結果より、本発明に従う鋼板は張力改善効果が確実に現出していることがわかる。
【0048】
【表1】
Figure 0004604449
【0049】
【発明の効果】
本発明によれば、圧延方向のB8が1.85T以下の方向性電磁鋼板においても、圧延方向への張力を付加することで鉄損改善を図ることが出来る。また、この発明の方向性電磁鋼板を得るには、一般的な方向性電磁鋼板の作製に必要不可欠な素材中のインヒビタ成分を含有せず、加えて高温が必要な純化焼鈍を意図的に行わない方法が有利に適用されるので、結果として省エネルギー化・低コスト化・高生産性が得られるという大きな利点も有している。
【図面の簡単な説明】
【図1】 EI型コアの形状を示す図である。
【図2】 ランセット磁区の磁区構造を示す模式図である。
【図3】 無張力条件下の方向性電磁鋼板表面の磁気構造を示す電子顕微鏡写真である。
【図4】 純化工程の有り無しにおける張力付加時の鉄損低減効果を示す図である。
【図5】 各補助磁区量における張力付加時の鉄損低減効果を示す図である。[0001]
[Industrial application fields]
The present invention relates to a grain-oriented electrical steel sheet used mainly for iron core materials of small motors and generators.
[0002]
[Prior art]
For example, in a small transformer, laminated electromagnetic steel sheets are used as a core (iron core). As a typical shape of this core, an EI type core as shown in FIG. 1 is known. As the iron core material for the EI type core, both non-oriented electrical steel sheets and directional electrical steel sheets are used.
[0003]
First, when a non-oriented electrical steel sheet is used, the magnetic characteristics of the core are inferior because the level of magnetic characteristics is lower than when a directional electrical steel sheet is used. However, non-oriented electrical steel sheets are cheaper because of the simpler manufacturing process than grain oriented electrical steel sheets, and are therefore often used economically.
[0004]
On the other hand, grain-oriented electrical steel sheets usually have excellent magnetic properties in the rolling direction but are extremely inferior in magnetic properties in the direction perpendicular to the rolling direction. However, considering the flow of magnetic flux in the EI core, the flow of magnetic flux is only about 20% in the direction perpendicular to the rolling direction, and about 80% is in the rolling direction. Even if a grain-oriented electrical steel sheet is used as the iron core material, characteristics much better than those of the non-oriented electrical steel sheet can be obtained. For this reason, grain oriented electrical steel sheets are often used when emphasizing iron loss. Nonetheless, grain oriented electrical steel sheets are extremely inferior in magnetic properties in the direction perpendicular to the rolling direction. Therefore, the EI type core, in which magnetic flux flows in the direction perpendicular to the rolling direction, is used to make full use of the characteristics of grain oriented electrical steel sheets. Not necessarily.
[0005]
From this point of view, there is also a method for producing a so-called bi-directional electrical steel sheet in which a (100) [001] structure (positive cube structure) is developed by secondary recrystallization and the easy axis of magnetization is oriented in the direction perpendicular to the rolling direction. It has been studied for a long time. For example, in Patent Document 1, a steel material containing an inhibitor is cold-rolled in one direction and then cold-rolled in a direction crossing this direction, followed by short-time annealing and 900-1300. A method for secondary recrystallization of positive cube orientation grains by performing high temperature annealing at 0 ° C. is described. In Patent Document 2, a material containing AlN as an inhibitor is cold-rolled at a reduction rate of 50 to 90% in a direction perpendicular to the hot rolling direction, and then annealed for primary recrystallization. A method is disclosed in which, after the application, a final re-annealing for the purpose of secondary recrystallization and purification is performed to recrystallize the normal cube orientation grains.
[0006]
Here, focusing only on the surface of the magnetic properties, for a use magnetized in two directions such as an EI core, a bi-directional electrical steel sheet having good magnetic properties in both the rolling direction and the perpendicular direction of rolling should be applied. However, since the production of bi-directional electrical steel sheets usually requires cross rolling, which is extremely low in productivity, such bi-directional electrical steel sheets were still industrially mass-produced. There is nothing.
[0007]
On the other hand, without performing the above-described cross rolling, the inhibitor component is reduced to develop a Goss orientation with a low degree of integration, thereby reducing the magnetic property anisotropy of the grain-oriented electrical steel sheet, thereby dividing the motor. A technique for obtaining a material suitable for a mold core or the like is disclosed in Patent Document 3.
[0008]
However, this technology reduces the Goss orientation integration degree, and the Si content is less than 3.0 mass%, so the iron loss is 2.1 W / kg even when W 15/50 in the rolling direction is the best value. As above, it is only about the value of high-grade non-oriented electrical steel sheet, and it is much inferior to W 15/50 <1.4W / kg, which is the level of grain oriented electrical steel sheet, and the world demand for energy saving is increasing. The level to meet is not reached.
[0009]
In the above technique, the phenomenon in which goss-oriented grains accumulate in the rolling direction and the phenomenon in which the magnetic properties in the perpendicular direction of rolling are improved are contradictory. Therefore, it is inevitable that the magnetic properties in the rolling direction will deteriorate to some extent instead of ensuring the proper magnetic properties.
[0010]
As another means for improving the iron loss of other grain-oriented electrical steel sheets, it is known to add tension to the steel sheets. As recognized in Non-Patent Document 1, this effect of iron loss improvement by applying tension is known to be significant in grain-oriented electrical steel sheets having a high B 8 value in which the Goss orientation has a high accumulation rate in the rolling direction. It has been. This mechanism is understood as follows. That is, generally, when the dip angle (hereinafter referred to as β angle) of the crystal orientation <001> in the vertical direction of the steel sheet is large, a magnetic pole is generated on the steel sheet surface, resulting in an increase in magnetostatic energy. In order to mitigate this increase in magnetostatic energy, a circulating magnetic domain (lancet domain) R as shown in FIG. Here, when uniaxial tension is applied in the rolling direction, the lancet magnetic domain becomes unstable and disappears, leading to an increase in magnetostatic energy again. To compensate for this, magnetic domain fragmentation occurs, resulting in a reduction in iron loss.
[0011]
However, in the case of a low B 8 steel plate with many grains deviating from the Goss orientation, the β angle deviation is large and the amount of magnetic poles generated at the grain boundaries is large. The stable state cannot be taken, and the domain subdivision has already occurred. That is, the magnetic domain width is extremely narrow, and a large iron loss improvement effect due to new magnetic domain subdivision cannot be expected.
[0012]
[Patent Document 1]
Japanese Patent Publication No. 35-2657 [Patent Document 2]
Japanese Patent Laid-Open No. 4-362132 [Patent Document 3]
JP 2000-87139 A [Non-Patent Document 1]
IEEJ Magnetics Study Group Material Mag.86-170 pp62 Fig2 (1986)
[0013]
[Problems to be solved by the invention]
As described above, the conventional steel sheet having a B 8 in the rolling direction of 1.85 T or less in exchange for securing the characteristics in the direction perpendicular to the rolling has a sufficient iron loss improvement effect by applying tension. Has not been provided yet. In such a rolling direction of the following electrical steel sheet B 8 is 1.85 T, therefore iron loss value in the rolling direction does not reach the level of the high orientation magnetic steel sheet, by performing the tensioning optionally If reduction in iron loss in the rolling direction is realized, the steel sheet can be used for multiple purposes and is extremely useful.
[0014]
Accordingly, the present invention is perpendicular to the rolling direction of B 1 is 0.7T or more, and also B 8 in the rolling direction is in the following level 1.85 T, made it possible to improve the iron loss by tensioning, economically Is also intended to provide an advantageous grain-oriented electrical steel sheet.
[0015]
[Means for Solving the Problems]
When tension is applied to the electromagnetic steel sheet, a magnetic domain called an auxiliary magnetic domain such as a lancet magnetic domain that is not parallel to the tension applying direction is destabilized. This can be said to be an effect of using magnetostriction in reverse. Here, for the sake of simplicity, assuming isotropic magnetostriction, the magnetoelastic energy E σ is given by
Figure 0004604449
It is represented by In this equation, φ is an angle formed by the tension σ and the magnetization, and this equation represents a kind of uniaxial anisotropy. This is the same even when isotropic magnetostriction is not assumed, and the addition of tension in the rolling direction has an energetically advantageous effect on the magnetization (magnetic domain) parallel to it, and the magnetization (magnetic domain) perpendicular to it. Work against the most disadvantageous.
[0016]
The auxiliary magnetic domain generated in the electromagnetic steel sheet has a large angle with respect to the rolling direction, and is destabilized by applying tension in the rolling direction. Therefore, in an electrical steel sheet having a large number of auxiliary magnetic domains, iron loss can be improved as a result of the disappearance of the auxiliary magnetic domains and the accompanying magnetic domain fragmentation due to the tension in the rolling direction.
[0017]
As described above, the lancet magnetic domain appears in the auxiliary magnetic domain depending on the β angle. However, an increase in the β angle increases the number of lancet magnetic domains, but since the magnetic domain subdivision is performed in parallel, a sufficient iron loss improvement effect cannot be obtained. On the other hand, it is known that auxiliary magnetic domains appear in various forms even when there are strains or impurities in the steel sheet, and similarly play a role in reducing the surrounding magnetostatic energy. In the case of the auxiliary magnetic domain caused by such fine impurities, magnetic domain subdivision does not occur at the same time, and magnetic domain subdivision occurs as the auxiliary magnetic domain disappears when tension is applied. As a result, it is expected that an iron loss improvement effect can be obtained by applying tension in the rolling direction.
[0018]
Here, the presence of impurities in the grain-oriented electrical steel sheet generally causes deterioration of magnetic properties. Therefore, a process of removing impurities while maintaining a high temperature in the process of final finish annealing, so-called purification annealing, is performed. In contrast, the present invention intends to retain an appropriate number of fine auxiliary magnetic domains by intentionally leaving impurities that would otherwise be removed by purification in the steel sheet.
[0019]
The inventors have disclosed a technique for expressing secondary recrystallization using a grain boundary migration inhibitory effect of solid solution nitrogen in a high-purity material that does not already contain an inhibitor component (S, Se, N, etc.). -129356, this technology proposes a grain-oriented electrical steel sheet that can achieve low iron loss without undergoing a high-temperature purification process. By applying this technology, while maintaining low iron loss, we have succeeded in keeping a small amount of fine impurities (precipitates) without purifying the purification process and completing the present invention. Arrived.
[0020]
That is, the gist configuration of the present invention is as follows.
(1) C: 0.12 mass% or less, Si: 1.0 to 8.0 mass%, Mn: 0.005 to 3.0 mass%, Al: 100 ppm or less, N, S and Se are each reduced to 50 ppm or less, and A grain- oriented electrical steel sheet having a component composition of the balance Fe and inevitable impurities , wherein the magnetic flux density B 1 in the direction perpendicular to the rolling is 0.7 T or more and the magnetic flux density B 8 in the rolling direction is 1.85 T or less. A grain-oriented electrical steel sheet characterized by having an area ratio of grains having auxiliary magnetic domains of 20 to 300 pieces / mm 2 on a steel sheet surface under tension conditions is 30% or more.
[0021]
(2) The component composition further includes Ni: 0.005 to 1.50 mass%, Sn: 0.02 to 0.50 mass%, Sb: 0.01 to 0.50 mass%, Cu: 0.01 to 0.50 mass%, and Mo: 0.01 to 0.50 mass%. The grain-oriented electrical steel sheet according to (1) above, containing one or more kinds.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
Next, the experimental results that led to the present invention will be described in detail.
First, the magnetic properties in the direction perpendicular to the rolling are improved because the {111} structure of the primary recrystallization texture is reduced and the {100} to {411} components are reduced as a result of coarsening the grain size before cold rolling. This is thought to be because fine secondary recrystallized grains having {100} <001> orientation are mixed with the steel sheet after the final finish annealing.
[0023]
In the conventional technique using an inhibitor, low iron loss cannot be obtained unless the inhibitor components (S, Se, N, etc.) are purified by high temperature annealing exceeding 975 ° C. However, in the method not using the inhibitor, no purification is performed. In both cases, if the secondary recrystallization is completed, a low iron loss can be obtained. By using this technique, it is possible to keep the ultimate temperature in the finish annealing low and to leave fine grains.
[0024]
By using a material that does not contain such an inhibitor component and that contains an impurity element such as S, Se, N, etc., and that has a coarse grain size before the final cold rolling, the magnetic flux density is also perpendicular to the rolling direction. A steel sheet having sufficient magnetic properties with B 1 of 0.7 T or more was produced. B 8 in the rolling direction of this steel sheet was about 1.85 T or less. In this grain-oriented electrical steel sheet, the process of purification annealing that purifies impurities, which was essential in the manufacturing process of conventional grain-oriented electrical steel sheets, is not performed, and by intentionally leaving impurities, auxiliary magnetic domains caused by fine impurities Was held in a steel plate. Some steel plates were subjected to purification annealing at a high temperature of 1150 ° C.
[0025]
FIG. 3 shows the result of observing the magnetic domain on the surface of the steel sheet obtained without performing purification annealing with a scanning electron microscope. The magnetic domain was observed in a scanning electron microscope by exciting at about 1 T under room temperature (25 ° C.) and pressure: 5 × 10 −1 to × 10 −4 Pa, and then at 60 Hz for about 30 seconds. It was done after demagnetizing by demagnetizing linearly. From this, it was confirmed that there are many auxiliary magnetic domains caused by fine impurities in a steel sheet having B 8 of 1.85 T or less. In particular, a large number of auxiliary magnetic domains were observed in a steel plate having a B 8 of 1.8 T or less.
In the case of a steel plate having a tension coating, the surface properties change when the coating is removed by pickling in order to obtain a tensionless condition, and the amount of auxiliary magnetic domains on the surface of the steel plate changes. Therefore, the steel sheet having a coating was observed with the surface smoothed by chemical polishing or the like after the coating was removed.
[0026]
Next, when tension was applied in the rolling direction for each of the grain-oriented electrical steel sheet that was not subjected to the purification annealing and the grain-oriented electrical steel sheet that was subjected to the purification annealing, the results shown in FIG. 4 were obtained. As a result, the steel sheet that had been subjected to purification annealing did not have an effect of improving the iron loss due to the tension, whereas the steel sheet that contained an impurity element appropriately and was not subjected to purification annealing had a B 8 in the rolling direction of 1.85. In addition to grades of T and below, grain oriented electrical steel sheets of 1.8 T and below showed an effect of improving iron loss by tension.
[0027]
Subsequent investigation was carried out using materials in which the amount of impurity elements contained in the steel sheet was variously changed, and as shown in FIG. 5, the surface of the steel sheet under no tension condition, that is, before the tension was applied. There is an effect of improving iron loss due to tension on grains having auxiliary magnetic domains of 20 to 300 / mm 2 , and when the total area ratio of the grains exceeds 30%, the effect of improving iron loss due to tension may appear. It became clear.
The present invention has been derived from the above experimental results.
[0028]
Below, the reason for limitation of the requirements is explained about the electrical steel sheet of the present invention.
[B 1 in the direction perpendicular to the rolling direction is more than 0.7 T]
Even in the conventional grain-oriented electrical steel sheet, B 8 in the direction perpendicular to the rolling was about 1.4 T, indicating a relatively good value for the magnetic flux density. However, in terms of use at high frequencies and further reduction of iron loss, it is extremely important to show high reactivity in a low excitation field. In this regard, in the present invention, the inhibitor component is not contained, secondary recrystallization is expressed by utilizing the effect of suppressing the grain boundary migration of solid solution nitrogen, and further, recrystallization annealing is performed in a low oxidizing atmosphere to form an oxide film. In contrast to the conventional grain-oriented electrical steel sheet, an electromagnetic steel sheet having a high magnetic permeability and a high magnetic flux density was realized even in an excitation field as low as B 1 .
[0029]
[B 8 in rolling direction is 1.85T or less, and iron loss is improved by tension in rolling direction]
In the conventional grain-oriented electrical steel sheet, as described above, the magnetic properties in the direction perpendicular to the rolling direction are ensured, and when B 8 in the rolling direction is at a low level of 1.85 T or less, there are many crystal grain shifts from the Goss orientation. At this time, the surface magnetic pole increases as the β angle increases. Furthermore, the difference in orientation between adjacent crystal grains increases, and the amount of magnetic poles generated at the crystal grain boundary increases due to this orientation difference, so that magnetic domain subdivision occurs in advance. Therefore, new magnetic domain refinement does not occur even if tension is added, and even if a tension of 20 MPa is applied in the rolling direction, the improvement from iron loss under no tension exceeds 0.03 W / kg. There is no improvement in iron loss.
[0030]
On the other hand, unlike the conventional grain-oriented electrical steel sheet, the electrical steel sheet of the present invention does not simply increase the deviation of the crystal grains from the Goss orientation, but appropriately leaves the impurities to moderately provide the auxiliary magnetic domain. By forming, if the tension in the rolling direction is applied, an improvement in iron loss appears.
[0031]
[The area ratio of grains having auxiliary magnetic domains of 20 to 300 / mm 2 on the steel sheet surface under no tension is 30% or more]
By forming a suitable auxiliary magnetic domain on the surface of the steel sheet, even if the steel sheet has a magnetic property in the direction perpendicular to the rolling and the magnetic flux density in the rolling direction is reduced to 1.85 T or less, the auxiliary magnetic domain disappears when tension is applied in the rolling direction. The effect can bring about an iron loss improvement effect. Here, if the auxiliary magnetic domain is less than 20 pieces / mm 2 , there is almost no iron loss improvement effect, and the iron loss is worsened by excess tension, whereas if it exceeds 300 pieces / mm 2 , the amount of impurities is too much in the first place. The iron loss value is at a high level, and there are many auxiliary magnetic domains that remain without disappearing even if tension is applied to the iron loss value. Therefore, grains having auxiliary magnetic domains of 20 to 300 / mm 2 have an effect of improving iron loss.
[0032]
In addition, if the total area ratio of such grains is less than 30% in a steel plate under no tension, the effect of improving iron loss as a whole steel plate does not appear, so an auxiliary magnetic domain of 20 to 300 pieces / mm 2 is obtained. It is preferable that the area ratio of the grains having a content of 30% or more.
[0033]
Moreover, the manufacturing method shown below fits the electromagnetic steel plate of this invention.
First, the component composition of the material will be described.
C: 0.12 mass% or less C is a useful element that improves the magnetic properties by improving the structure, but if the content exceeds 0.12 mass%, it becomes difficult to remove by decarburization annealing, so the upper limit is 0.12 mass% It is preferable that The lower limit is not particularly provided because a secondary recrystallization is possible even for a material not containing C. In particular, if C is reduced to 30 ppm or less from the material stage, decarburization annealing can be omitted, which is advantageous in terms of production cost. Therefore, in the production of low-grade products, use a material with reduced C. Is possible.
[0034]
Si: 1.0-8.0 mass%
Si increases the electrical resistance and contributes effectively to the reduction of iron loss, but at least 1.0 mass% is required for this purpose. On the other hand, if it exceeds 8.0 mass%, not only does the magnetic east density decrease, Since the next workability is remarkably deteriorated, the range of 1.0 to 8.0 mass% is preferable. Particularly preferably, it is in the range of 2.0 to 4.5 mass%.
[0035]
Mn: 0.005 to 3.0 mass%
Mn is an element necessary for improving the hot workability, but if less than 0.005 mass%, the effect of addition is poor, while if it exceeds 3.0 mass%, secondary recrystallization becomes difficult, so 0.005 to A range of 3.0 mass% is preferred.
[0036]
O: 50 ppm or less In order to produce the electrical steel sheet of the present invention, it is important to reduce O to 50 ppm or less in the slab stage. This is because O greatly inhibits the occurrence of secondary recrystallization in the present invention and is difficult to remove in the subsequent step.
[0037]
Furthermore, in the present invention, it is preferable to reduce impurity elements as much as possible. In particular, Al is a nitride-forming element that is not only harmful to the occurrence of secondary recrystallized grains but also remains in the ground iron and degrades iron loss. About each element of S, Se, P, and N, it is preferable to reduce to 50 ppm or less, preferably 30 ppm or less. In the present invention, the amount of the auxiliary magnetic domain formed under no-tension conditions is controlled by leaving an appropriate amount of the above-described impurities to such an extent that the secondary recrystallization is not adversely affected, and in the rolling direction. The effect of iron loss improvement due to the addition of tension is revealed.
[0038]
Moreover, in this invention, the following elements can be contained for magnetic property improvement.
Ni: 0.005 to 1.50 mass%
Ni is a useful element that improves the magnetic properties by improving the structure, and can be added as necessary. If the content is less than 0.005 mass%, the improvement in magnetic properties is small. On the other hand, if it exceeds 1.50 mass%, secondary recrystallization becomes unstable and the magnetic properties deteriorate, so the Ni content is 0.005 to 1.50 mass%.
[0039]
Sn: 0.02 to 0.50 mass%, Sb: 0.01 to 0.50 mass%, Cu: 0.01 to 0.50 mass%, Mo: 0.01 to 0.50 mass%
All of the above elements are iron loss improving components, and can be added alone or in combination as required. Here, if the content is less than the lower limit, the effect of improving the iron loss is poor. On the other hand, if the content exceeds the upper limit, secondary recrystallization does not occur. Therefore, it is preferable that the addition amount of each element is limited to the above range.
[0040]
Further, the manufacturing process will be specifically described.
First, a slab is manufactured from the molten steel adjusted to the above preferred component composition. Such a slab may be manufactured by a normal ingot-bundling method, a continuous casting method, or having a thickness of 100 mm or less. Thin cast slabs may be produced by a direct casting method. The slab is usually heated and hot-rolled, but may be hot-rolled immediately after casting without being heated. In the case of a thin slab, the hot rolling may be omitted and the raw slab may be supplied as it is to the subsequent processes.
[0041]
Next, after performing hot-rolled sheet annealing as necessary, it is subjected to cold rolling at least once with one or two intermediate sandwiches, followed by decarburization annealing as necessary and final finish annealing. Here, it is possible to improve the magnetic properties by performing hot-rolled sheet annealing. It is also useful for stabilizing the magnetic properties to sandwich the intermediate annealing between cold rolling. However, since both increase production costs, the selection of hot-rolled sheet annealing or intermediate annealing is determined from an economic viewpoint.
[0042]
The preferred temperature range for hot-rolled sheet annealing and intermediate annealing is 700 ° C. or more and 1200 ° C. or less. This is because if the annealing temperature is less than 700 ° C, the recrystallization does not proceed during annealing, so the effect is thin. On the other hand, if it exceeds 1200 ° C, the mechanical strength of the steel sheet decreases and it becomes difficult to pass through the line. .
[0043]
Decarburization annealing is not particularly necessary when a material that does not contain C is used. Further, since the oxidation of the steel sheet surface is performed by the oxide or hydroxide in the annealing separator during the final finish annealing, the oxidation before the final finish annealing is not necessarily required. Furthermore, prior to the final finish annealing, a technique for increasing the amount of Si after the end of cold rolling by a siliconization method may be used in combination.
[0044]
In the final finish annealing, it is important to leave a small amount of impurity elements appropriately without performing the high-temperature purification annealing usually performed after the secondary recrystallization. For this purpose, the final finish annealing is preferably set to 1000 ° C. or less.
[0045]
Furthermore, in order to further improve the iron loss, it is effective to mechanically pull the steel plate in the rolling direction or to generate a tension coating on the steel plate surface. For the latter purpose, a multilayer film structure composed of two or more kinds of coatings may be used. Moreover, you may give the coating which mixed resin etc. according to a use. The electrical steel sheet of the present invention, perpendicular to the rolling direction of the magnetic flux density B 1 is very high as more than 0.7 T, even though the magnetic flux density B 8 is less and less 1.85T therefor rolling direction, iron loss improvement effect by the tensioning In view of this, the application of such a tension coating is advantageous.
[0046]
【Example】
C: 100ppm, Si: 3.3mass% and Mn: 0.0061mass% as basic components, Al as impurity elements 5 to 400ppm, N 4 to 110ppm, S 4 to 60ppm, Se remaining in the range of 0 to 200ppm Steel slabs having various component compositions were manufactured by continuous casting, and each slab was heated and then hot rolled into 2.5 mm thick hot rolled sheets. Subsequently, after hot-rolled sheet annealing was performed at 950 ° C. for 30 seconds, a final thickness of 0.34 mm was obtained by cold rolling. Next, decarburization annealing was performed at 900 ° C. for 60 seconds to reduce C in the steel to 0.0020 mass%, and then final finish annealing was performed. The final finish annealing was heated to 900 ° C. in a nitrogen atmosphere and finished without performing purification annealing.
[0047]
The tension was applied up to 20 MPa in the rolling direction of the steel sheet thus obtained, and the amount of improvement in iron loss was investigated. Here, W 17/50 is the iron loss value when excited at 50 Hz and 1.7 T, and the improvement ΔW 17/50 is the iron loss when no tension is applied from the iron loss value when applying a 20 MPa tension (W 17/50 ). It is a value obtained by subtracting the value (W 17/50 ).
As shown in Table 1, the steel sheet according to the present invention had B 1 in the direction perpendicular to the rolling of 0.7 T or more and B 8 in the rolling direction of 1.85 T or less. Furthermore, it can be seen from the results in Table 1 that the steel sheet according to the present invention surely exhibits the effect of improving the tension.
[0048]
[Table 1]
Figure 0004604449
[0049]
【The invention's effect】
According to the present invention, iron loss can be improved by applying tension in the rolling direction even in a grain-oriented electrical steel sheet having a B 8 in the rolling direction of 1.85 T or less. In addition, in order to obtain the grain-oriented electrical steel sheet of the present invention, it does not contain the inhibitor component in the material essential for the production of a general grain-oriented electrical steel sheet, and in addition, purification annealing that requires high temperature is intentionally performed. As a result, energy saving, cost reduction, and high productivity can be obtained.
[Brief description of the drawings]
FIG. 1 is a diagram showing the shape of an EI type core.
FIG. 2 is a schematic diagram showing a magnetic domain structure of a lancet magnetic domain.
FIG. 3 is an electron micrograph showing the magnetic structure of a grain-oriented electrical steel sheet surface under tensionless conditions.
FIG. 4 is a diagram showing an effect of reducing iron loss when a tension is applied with and without a purification process.
FIG. 5 is a diagram showing an effect of reducing iron loss when tension is applied in each auxiliary magnetic domain amount.

Claims (2)

C:0.12mass%以下、Si:1.0 〜8.0 mass%、Mn:0.005 〜3.0 mass%を含有し、Al:100 ppm以下、N、SおよびSeがそれぞれ50ppm 以下に低減され、かつ、残部Fe及び不可避的不純物の成分組成を有する方向性電磁鋼板であって、圧延直角方向での磁束密度Bが0.7T以上、かつ圧延方向での磁束密度Bが1.85T以下であり、無張力条件下の鋼板表面において、20〜300個/mmの補助磁区を有する粒の面積率が30%以上である、圧延方向の張力付加により鉄損の改善が見られることを特徴とする方向性電磁鋼板。C: 0.12 mass% or less, Si: 1.0 to 8.0 mass%, Mn: 0.005 to 3.0 mass%, Al: 100 ppm or less, N, S and Se are each reduced to 50 ppm or less , and the balance Fe and a grain-oriented electrical steel sheet having a component composition of unavoidable impurities, perpendicular to the rolling magnetic flux density B 1 in the direction 0.7T or more, and the magnetic flux density B 8 in the rolling direction of not more than 1.85 T, no tension conditions The grain-oriented electrical steel sheet, wherein the area ratio of grains having auxiliary magnetic domains of 20 to 300 pieces / mm 2 is 30% or more on the surface of the steel sheet, and iron loss is improved by applying tension in the rolling direction. . 前記成分組成は、更に、Ni:0.005 〜1.50mass%、Sn:0.02〜0.50mass%、Sb:0.01〜0.50mass%、Cu:0.01〜0.50mass%及びMo:0.01〜0.50mass%の1種または2種以上を含有することを特徴とする請求項1に記載の方向性電磁鋼板。The component composition further includes one of Ni: 0.005 to 1.50 mass%, Sn: 0.02 to 0.50 mass%, Sb: 0.01 to 0.50 mass%, Cu: 0.01 to 0.50 mass%, and Mo: 0.01 to 0.50 mass%, or The grain-oriented electrical steel sheet according to claim 1, comprising two or more kinds.
JP2003018092A 2003-01-27 2003-01-27 Oriented electrical steel sheet Expired - Fee Related JP4604449B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003018092A JP4604449B2 (en) 2003-01-27 2003-01-27 Oriented electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003018092A JP4604449B2 (en) 2003-01-27 2003-01-27 Oriented electrical steel sheet

Publications (2)

Publication Number Publication Date
JP2004225154A JP2004225154A (en) 2004-08-12
JP4604449B2 true JP4604449B2 (en) 2011-01-05

Family

ID=32905051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003018092A Expired - Fee Related JP4604449B2 (en) 2003-01-27 2003-01-27 Oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JP4604449B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7319522B2 (en) * 2019-04-05 2023-08-02 日本製鉄株式会社 Oriented electrical steel sheet
JP7319523B2 (en) * 2019-04-05 2023-08-02 日本製鉄株式会社 Oriented electrical steel sheet

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002212687A (en) * 2001-01-19 2002-07-31 Kawasaki Steel Corp Grain oriented silicon steel sheet having good core loss and blanking workability and its production method
JP2002220644A (en) * 2001-01-30 2002-08-09 Kawasaki Steel Corp Grain-oriented electromagnetic steel sheet with satisfactory properties of high frequency iron loss, and manufacturing method therefor
JP2002220623A (en) * 2001-01-26 2002-08-09 Kawasaki Steel Corp Method for manufacturing grain oriented electromagnetic steel sheet superior in stamping and magnetic properties

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002212687A (en) * 2001-01-19 2002-07-31 Kawasaki Steel Corp Grain oriented silicon steel sheet having good core loss and blanking workability and its production method
JP2002220623A (en) * 2001-01-26 2002-08-09 Kawasaki Steel Corp Method for manufacturing grain oriented electromagnetic steel sheet superior in stamping and magnetic properties
JP2002220644A (en) * 2001-01-30 2002-08-09 Kawasaki Steel Corp Grain-oriented electromagnetic steel sheet with satisfactory properties of high frequency iron loss, and manufacturing method therefor

Also Published As

Publication number Publication date
JP2004225154A (en) 2004-08-12

Similar Documents

Publication Publication Date Title
JP5724824B2 (en) Method for producing non-oriented electrical steel sheet with good magnetic properties in rolling direction
JP6432173B2 (en) Non-oriented electrical steel sheet with good all-round magnetic properties
WO2018135414A1 (en) Non-oriented electromagnetic steel sheet and production method therefor
JP5713100B2 (en) Non-oriented electrical steel sheet, method for producing the same, laminated body for motor core and method for producing the same
WO2017056383A1 (en) Non-oriented electromagnetic steel sheet and manufacturing method of same
JP5375694B2 (en) Method for producing grain-oriented electrical steel sheet
JP2024041844A (en) Method for producing non-oriented magnetic steel sheet
JP5839172B2 (en) Method for producing grain-oriented electrical steel sheet
JP5644154B2 (en) Method for producing grain-oriented electrical steel sheet
JP6690501B2 (en) Method for producing grain-oriented electrical steel sheet
JP4123629B2 (en) Electrical steel sheet and manufacturing method thereof
JP4604449B2 (en) Oriented electrical steel sheet
JP4810777B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP2008260996A (en) Non-oriented electromagnetic steel sheet superior in magnetic properties in rolling direction, and manufacturing method therefor
JP4568999B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP4259269B2 (en) Method for producing grain-oriented electrical steel sheet
JP5310510B2 (en) Method for producing grain-oriented electrical steel sheet
KR101110257B1 (en) Non-oriented electrical steel sheet with high magnetic flux density and manufacturing method thereof
JP5353234B2 (en) Method for producing grain-oriented electrical steel sheet
JP3994667B2 (en) Method for producing grain-oriented electrical steel sheet
JP4211447B2 (en) Method for producing grain-oriented electrical steel sheet
JP4292805B2 (en) Method for producing non-oriented electrical steel sheet with excellent magnetic properties
JP3474741B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
WO2022255259A1 (en) Method for manufacturing oriented electrical steel sheet
JP6702259B2 (en) Method for producing grain-oriented electrical steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081121

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20081121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090609

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100907

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100920

R150 Certificate of patent or registration of utility model

Ref document number: 4604449

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees